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Modularity plays a fundamental role in the prediction of
the behavior of a system from the behavior of its
components, guaranteeing that the properties of indi-
vidual components do not change upon interconnection.
Just as electrical, hydraulic, and other physical systems
often do not display modularity, nor do many biochem-
ical systems, and specifically, genetic, and signaling
networks. Here, we study the effect of interconnections
on the input/output dynamic characteristics of tran-
scriptional components, focusing on a concept, which we
call ‘‘retroactivity’’ that plays a role similar to imped-
ance in electrical circuits. In order to attenuate the effect
of retroactivity on a system dynamics, we propose to
design insulation devices based on a feedback mechan-
ism inspired by the design of amplifiers in electronics. In
particular, we introduce a bio-molecular realization of
an insulation device based on phosphorylation.1

Keywords: Bio-molecular circuits, disturbance rejec-
tion, modularity, singular perturbation

1. Introduction

A common approach to study the behavior of a
complex system is to decompose it into simpler com-
ponents with known functions and to then predict the
behavior of the overall system by those of the com-

ponents. This approach has been successfully applied
in engineering disciplines such as Electrical Engin-
eering and Control System Design. More recently, it
has been argued for the recognition of functional
‘‘modules’’ as a critical level of biological organization
[1,10], which could be employed to decipher the
complex behavior of bio-molecular networks. Exam-
ples of functional modules are signaling subsystems
such as MAPK cascades, or machinery for protein
synthesis or DNA replication [3,16]. This modular
approach is even more relevant in the nascent field of
Synthetic Biology, in which synthetic bio-molecular
‘‘circuits’’ composed of genes and proteins are syn-
thesized and then placed into living cells (through the
process of transformation or transfection) to control
cell behavior [2,4,8,9,22].

The modular approach to analysis and design is
based on the tacit assumption that the behavior of a
component does not change upon interconnection. As
it occurs in several engineering systems such as elec-
trical, mechanical, and hydraulic systems, the property
of modularity does not generally hold in biological
systems. Upon interconnection, the behavior of an
‘‘upstream’’ component (the one that sends the signal)
is affected by the presence of the ‘‘downstream’’ com-
ponent (the one that receives the signal). Consider for
example the oscillator of [4] as a source generator to be
employed to synchronize a number of downstream
transcriptional processes. The oscillator is ‘‘inter-
connected’’ with these downstream processes by
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having one of the proteins of the oscillator be a tran-
scription factor for the downstream transcriptional
processes. These downstream processes in turn act as a
load on the oscillator by using up its output protein
and by thus affecting its dynamics. We broadly call
retroactivity as the phenomenon bywhich the behavior
of an upstream component changes upon intercon-
nection. The above considerations strongly motivate
the need for a novel theoretical framework to formally
define and quantify retroactivity effects. In this paper,
we review a recently proposed framework for studying,
characterizing, and designing systems with retro-
activity [5–7]. We illustrate this framework with
engineering and biological examples, and study gen-
eral approaches to the reduction of retroactivity by
setting a disturbance attenuation problem.

The principle of studying complex systems through
decomposition and interconnection techniques is at
the heart of systems and control theory. Approaches
based on this general principle range from passivity
and more generally dissipativity-based analysis [19,
31, 32, 34, 35], to the derivation of stability properties
of large interconnected systems from the graph-the-
oretic properties of interconnections and stability of
individual systems [18, 33], to the use of backstepping
feedback approaches [15, 27] based on input to state
stability [30]. Our work complements, but differs
from, problems of optimally partitioning large net-
works into ‘‘modules’’ for which retroactivity-like
effects are minimized, which typically employ graph
theoretic and statistical approaches [2, 14, 17, 20, 23,
28]. In contrast, and similar to the work in Ref. [26],
we are not concerned with network topology but with
the understanding of dynamical behavior. Our ulti-
mate goal is not top-down partitioning or to neces-
sarily minimize retroactivity, but to formally define
and characterize these effects especially in view of
enabling modular assembly of synthetic bio-molecular
networks.

The standard model, used in virtually every control
and systems theory mathematical and engineering
textbook since the 1950s, e.g., Ref. [29], is based on the
view of devices described solely in terms of input
channels, output channels, and state (internal, non-
shared) variables. A notable exception to this standard
model is found in the work of Willems [21]. Willems
has emphasized the fact that, for many physical
situations, directionality of signals is an artificial, and
technically wrong, assumption. Although agreeing
with this general point of view, we argue that, in cer-
tain circumstances such as those illustrated in this
paper, it does make sense to distinguish between input
and output channels. Thus, instead of blurring the
distinction between inputs, states, and outputs as in

Willems work, we prefer to keep these three distinct
entities but augment the model with two additional
signals, namely the retroactivities to inputs and to
outputs, respectively.

As a simple example, consider the one-tank system
shown on the left of Fig. 1. We consider a constant
input flow f0 as input to the tank system and the
pressure p at the output pipe is considered the output
of the tank system. The corresponding output flow is
given by k

ffiffiffi
p

p
, in which k is a positive constant

depending on the geometry of the system. The pres-
sure p is given by (neglecting the atmospheric pressure
for simplicity) p ¼ �h, in which h is the height of the
water level in the tank and � is water density. Let A be
the cross-section of the tank, then the tank system can
be represented by the equation A dp

dt ¼ �f0 � �k
ffiffiffi
p

p
. Let

us now connect the output pipe of the same tank to the
input pipe of a downstream tank shown on the right of
Fig. 1. Let p1 ¼ �h1 be the pressure generated by the
downstream tank at its input and output pipes. Then,
the flow at the output of the upstream tank will
change and will now be given by gðp; p1Þ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp� p1j
p

if p > p1 and by gðp; p1Þ ¼ �k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp� p1j

p
if p � p1. As a

consequence, the time behavior of the pressure p
generated at the output pipe of the upstream tank will
change to

A
dp

dt
¼ �f0 � �gðp; p1Þ

A1
dp1
dt

¼ �gðp; p1Þ � �k1
ffiffiffiffiffi
p1

p
;

in which A1 is the cross-section of the downstream
tank and k1 is a positive parameter depending on the
geometry of the downstream tank. It is therefore not
the case that the input/output response of the tank
measured in isolation stays the same when the tank is
connected through its output pipe to another tank.
The dynamics of the pressure p changes upon inter-
connection. In this example, the interconnection
mechanism between an upstream system and a
downstream system affects the dynamics of the
internal state and thus of the output of the upstream
system. We will model this phenomenon by a signal

h

h1

f0

p p1

Fig. 1. On the left, we represent a tank system that takes as input
the constant flow f0 and gives as output the pressure p at the output
pipe. On the right, we show a downstream tank.
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that travels from downstream to upstream, which we
call retroactivity. The amount of such a retroactivity
will change depending on the features of the inter-
connection and of the downstream system. For
example, if the aperture of the pipe connecting the two
tanks is very small compared to the aperture of an
output pipe of the downstream tank, the pressure p at
the output of the upstream tank will not change much
when the downstream tank is connected. We thus
propose to directly model a system by taking into
account the interconnection mechanism. That is, we
can add an additional input, called s to the system to
model any change in its dynamics that may occur
upon interconnection with a downstream system.
Similarly, we will add to a system a signal r as another
output to model the fact that when such a system is
connected downstream of another system, it will send
upstream a signal that will alter the dynamics of the
upstream system. More generally, we define a system
S to have internal state x, two types of inputs (I), and
two types of outputs (O): an input ‘‘u’’ (I), an output
‘‘y’’ (O), a retroactivity to the input ‘‘r’’ (O), and a
retroactivity to the output ‘‘s’’ (I) (Fig. 2). We will thus
represent a system S by the equations

_x ¼ fðx; u; sÞ; y ¼ Yðx; uÞ; r ¼ Rðx; uÞ; ð1Þ
in which f, Y, and R are arbitrary functions and the
signals x, u, s, r, and y may be scalars or vectors. In
such a formalism, we define the input/output model of
the isolated system as the one in equation (1) without r
in which we have also set s ¼ 0. In practice, it is sim-
pler to model the isolated system first, and only later
model the interconnection mechanism to obtain
model (1). Let Si be a system with inputs ui and si and
with outputs yi and ri. Let S1 and S2 be two systems
with disjoint sets of internal states. We define the
interconnection of an upstream system S1 with a
downstream system S2 by simply setting y1 ¼ u2 and
s1 ¼ r2. For interconnecting two systems, we require
that the two systems do not have internal states in
common. For example, in the case of transcriptional
components, this would mean that the two tran-
scriptional components express different protein spe-
cies; in the case of electrical circuits, this would mean
that the two circuits do not share common electrical
parts except for the ones that establish the intercon-
nection mechanism.

2. Retroactivity in a Transcriptional System

Transcriptional networks are usually viewed as the
input/output interconnection of fundamental modules,
transcriptional components, that take a transcription
factor as an input and produce a transcription factor as
an output [1]. However, we showed in Ref. [6] that the
behavior of a transcriptional component in isolation
differs from that of the same component when con-
nected in the network. To illustrate this point, consider
a transcriptional component, whose output is con-
nected to downstream processes, which can be, for
example, other transcriptional components (Fig. 3).
The activity of the promoter controlling gene x depends
on the amount of Z bound to the promoter. If
Z ¼ ZðtÞ, such an activity changes with time. We
denote it by kðtÞ. By neglecting the mRNA dynamics,
which are not relevant for the current discussion, we
can write the dynamics of X as

dX

dt
¼ kðtÞ � �X; ð2Þ

in which � is the decay rate of the protein. We refer to
equation (2) as the isolated system dynamics. Now,
assume that X drives a downstream transcriptional
module by binding to a promoter p with concentration
p (3). The reversible binding reaction of X with p is
given by Xþ pkonkoff

Ð C, in which C is the complex
protein-promoter and kon and koff are the binding and
dissociation rates of the protein X to the promoter site
p. Since the promoter is not subject to decay, its total
concentration pTOT is conserved so that we can write
pþ C ¼ pTOT. Therefore, the new dynamics of X is
governed by the equations

dX

dt
¼ kðtÞ � �Xþ koffC� konðpTOT � CÞX

dC

dt
¼ �koffCþ konðpTOT � CÞX; ð3Þ

in which s ¼ koffC� konðpTOT � CÞX is the retro-
activity to the output. Then, we can interpret s as being
a mass flow between the upstream and the down-
stream system. When s=0, the first of equation (3)

S
x

u y

sr

Fig. 2. A system S input and output signals. The red signals denote
signals originating by retroactivity upon interconnection.

Transcriptional component

p

Z

x

X

Fig. 3. The transcriptional component takes as input u protein
concentration Z and gives as output y protein concentration X.
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reduces to the dynamics of the isolated system given in
equation (2).

The effect of the retroactivity s on the behavior of X
can be very large (Fig. 4). This is undesirable in a
number of situations in which we would like an up-
stream system to ‘‘drive’’ a downstream one as is the
case, for example, when a biological oscillator has to
time a number of downstream processes. If, due to the
retroactivity, the output signal of the upstream pro-
cess becomes too low and/or out of phase with the
output signal of the isolated system (as in Fig. 4), the
coordination between the oscillator and the down-
stream processes will be lost. We focus on the retro-
activity to the output s. We can analyze the effect of
the retroactivity to the input r on the upstream system
by simply analyzing the dynamics of Z in the presence
of its binding sites p0 in Fig. 3 in a way similar to how
we analyze the dynamics of X in the presence of the
downstream binding sites p.

2.1. Quantification of the retroactivity

to the output

An operative quantification of the retroactivity to the
output can be obtained by exploiting the difference of
time-scales between the dynamics of the output of the
upstream module and the dynamics of the input stage
of the downstream module. This separation of time-
scales is always encountered in transcriptional circuits
[1]. We quantify the difference between the dynamics
of X in the isolated system (equation (2)) and the
dynamics of X in the connected system (equation (3))
by establishing conditions on the biological para-
meters that make the two dynamics close to each
other. This is achieved by exploiting the difference of
time scales between the protein production and decay

processes and its binding and unbinding process to the
promoter p. By virtue of this separation of time scales,
we can approximate system (3) by a one dimensional
system describing the evolution of X on the slow
manifold [13]. This reduced system takes the form
d �X
dt ¼ kðtÞ � � �Xþ �s, where �X is an approximation of
X and �s is an approximation of s, which can be written
as �s ¼ �Rð �XÞðkðtÞ � � �XÞ with (see Refs. [6, 7] for
details)

Rð �XÞ ¼ 1

1þð1þ �X=kdÞ2
pTOT=kd

: ð4Þ

The expression Rð �XÞ quantifies the retroactivity to the
output on the dynamics of X after a fast transient,
when we approximate X with �X in the limit in which
� � 0. The retroactivity measure is thus low if the
affinity of the binding sites p is small (kd large) or if the
signal XðtÞ is large enough compared to pTOT. Thus,
the expression of Rð �XÞ provides an operative quanti-
fication of the retroactivity: such an expression can in
fact be evaluated once the association and dissociation
constants of X to p are known, the concentration of
the binding sites pTOT is known, and the range of
operation of the signal �XðtÞ that travels across the
interconnection is also known.

3. Design of Insulation Devices to

Attenuate Retroactivity

Of course, it is not always possible to design an
interconnection such that the retroactivity is low. This
is, for example, the case of an oscillator that has to
time a downstream load: the load cannot be in general
designed and the oscillator must perform well in the
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Fig. 4. The dramatic effect of interconnection. Simulation results for the system in equation (3). The green line represents XðtÞ originating by
equation (2), while the blue line represents XðtÞ obtained by equation (3). Both transient and permanent behaviors are different. Here,
kðtÞ ¼ 0:01ð1þ sinð!tÞÞ with !=0.005 in the left side plots and !=0 in the right side plots, kon ¼ 10, koff ¼ 10, �=0.01, pTOT ¼ 100,
Xð0Þ ¼ 5. The choice of protein decay rate (in min�1) corresponds to a half life of about one hour. The frequency of oscillations is chosen to
have a period of about 12 times the protein half life in accordance to what is experimentally observed in the synthetic clock of Ref. [4].

392 D.D. Vecchio and E.D. Sontag



face of unknown and possibly variable load proper-
ties. Therefore, in analogy to what is performed in
electrical circuits, one can design a device to be placed
between the oscillator and the load so that the device
output is not changed by the load and the device does
not affect the behavior of the upstream oscillator.
Specifically, consider a system S as the one shown in
Fig. 2 that takes u as input and gives y as output. We
would like to design it in such a way that (a) the ret-
roactivity r to the input is very small; (b) the effect of
the retroactivity s to the output on the internal
dynamics of the system is very small; (c) its input/
output relationship is about linear. Such a system is
said to enjoy the insulation property and will be called
an insulation device. Indeed, such a system will not
affect an upstream system because r � 0 and it will
keep the same output signal y independently of any
connected downstream system. The concept of
amplifier in the context of a biochemical network has
been considered before in relation to its robustness
and insulation property from external disturbances
[24, 25]. Here, we revisit the amplifier mechanism in
the context of gene transcriptional networks with the
objective of mathematically and computationally
proving how suitable biochemical realizations of such
a mechanism can attain properties (a), (b), and (c).

In electronic amplifiers, r is very small because the
input stage of an operational amplifier (OPAMP)
absorbs almost zero current. This way, there is no
voltage drop across the output impedance of an up-
stream voltage source. Equation (4) quantifies the
effect of retroactivity on the dynamics of X as a
function of biochemical parameters that characterize
the interconnection mechanism with a downstream
system. These parameters are the affinity of the bind-
ing site 1=kd, the total concentration of such binding
site pTOT, and the level of the signal XðtÞ. Therefore, to
reduce retroactivity, we can choose kd large (low
affinity) and pTOT small, for example. Having small
value of pTOT and/or low affinity implies that there is a
small ‘‘flow’’ of protein X toward its target sites. Thus,
we can say that a low retroactivity to the input is
obtained when the ‘‘input flow’’ to the system is small.
This interpretation establishes a nice analogy to the
electrical case, in which low retroactivity to the input is
obtained by a low input current. In electronic ampli-
fiers, the effect of the retroactivity to the output s on
the amplifier behavior is reduced to almost zero by
virtue of a large (theoretically infinite) input ampli-
fication gain and a negative output feedback. Such a
mechanism can be illustrated in its simplest form by
Fig. 5A, which is very well known to control engineers.
For simplicity, we have assumed in such a diagram
that the retroactivity s is just an additive disturbance.

The reason why for large gains G the effect of the
retroactivity s to the output is negligible can be verified
through the following simple computation. The
output y is given by y ¼ Gðu� KyÞ þ s, which leads to
y ¼ u G

1þKG þ s
1þKG. As G grows, y tends to u=K, which

is independent of the retroactivity s.
Therefore, a central enabler to attenuate the retro-

activity effect at the output of a component is to (1)
amplify through a large gain the input of the com-
ponent and (2) to apply a large negative output feed-
back (Fig. 5B).

In order to show the generality of such a mechan-
ism, we show how it can be applied to the academic
hydraulic example consisting of two connected tanks
shown in Fig. 6. The objective is to attenuate the effect
of the pressure applied from the downstream tank to
the upstream tank, so that the output pressure of the
upstream system does not change when the down-
stream tank is connected. We let the input flow f0 be
amplified by a large factorG. Also, we consider a large
pipe in the upstream tank with output flow G0 ffiffiffi

p
p

, with
G0 � k and G0 � k1. Let p be the pressure at the
output pipe of the upstream tank and p1 the pressure
at the bottom of the downstream tank. One can verify
that the only equilibrium value for the pressure p at
the output pipe of the upstream tank is obtained for
p > p1 and it is given by peq ¼ Gf0

G0þðkk1Þ=
ffiffiffiffiffiffiffiffiffiffi
k2
1
þk2

p
� �2

. If

we let G0 be sufficientlylarger than k1 and k and we
let G0 ¼ KG for some positive K ¼ Oð1Þ, then for G
sufficiently large peq � f0=Kð Þ2, which does not
depend on the presence of the downstream system. In

+ ++G = KGyu

K

G

s

u y

G

G

sA B

Fig. 5. Diagram A shows the basic feedback/amplification mech-
anism by which amplifiers attenuate the effect of the retroactivity to
the output s. Diagram B shows an alternative representation of the
same mechanism of diagram A, which will be employed to design
biological insulation devices.

h1G √p

G f0

h

Fig. 6. We amplify the input flow f0 through a large gain G and we
apply a large negative feedback by employing a large output pipe
with output flow G0 ffiffiffi

p
p

.
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fact, it is the same as the equilibrium value of the
isolated upstream system A dp

dt ¼ �Gf0 � �G0 ffiffiffi
p

p �
�k

ffiffiffi
p

p
for G sufficiently large and for G0 ¼ KG with

K ¼ Oð1Þ.
We next illustrate this idea in the context of the

transcriptional example. Consider the approximated
dynamics of X. Let us assume that we can apply a gain
G to the input kðtÞ and a negative feedback gain G0 to
X with G0 ¼ KG. This leads to the new differential
equation for the connected system given by

dX

dt
¼ GkðtÞ � ðG0 þ �ÞXð Þð1� RðXÞÞ: ð5Þ

It can be shown (see Ref. [7] for details) that as G and
thus as G0 grow, the signal XðtÞ generated by the
connected system (5) becomes close to the solution
XðtÞ of the isolated system

dX

dt
¼ GkðtÞ � ðG0 þ �ÞX; ð6Þ

that is, the presence of the disturbance term RðXÞ will
not significantly affect the time behavior of XðtÞ.
How can we obtain a large amplification gain G and a
large negative feedback G0 in a biological insulation
component? This question is addressed in the follow-
ing section, in which we show that a simple phos-
phorylation/dephosphorylation cycle has remarkable
insulation properties (for additional designs of bio-
molecular insulation devices, the reader is referred to
Ref. [6]).

3.1. A Bio-molecular Realization of an Insulation

Device Through Protein Phosphorylation

In this design, we propose to obtain input amplifica-
tion through a fast phosphorylation reaction and
negative feedback through a fast dephosphorylation
reaction. In particular, this is realized by having Z
activate the phosphorylation of a protein X, which is
available in the system in abundance. That is, Z is a
kinase for a protein X. The phosphorylated form of X,
called Xp, binds to the downstream sites, while X does
not. A negative feedback on Xp is obtained by having
a phosphatase Y activate the dephosphorylation of
protein Xp. Protein Y is also available in abundance in
the system. This mechanism is depicted in Fig. 7. A
similar design has been proposed in Refs. [24, 25], in
which a MAPK cascade plus a negative feedback loop
that spans the length of the MAPK cascade is con-
sidered as a feedback amplifier. Our design is much
simpler as it involves only one phosphorylation cycle
and does not require the additional feedback loop.

We consider a one-step reaction model for the
phosphorylation reactions to convey the idea of how
this devices realizes the insulation function. The one
step model that we consider is the one of [11]
ZþX!k1 ZþXp and YþXp !k2 YþX. We assume
that there is plenty of protein X and of phosphatase Y
in the system and that these quantities are conserved.
The conservation of X gives Xþ Xp þ C ¼ XTOT, in
which X is the inactive protein, Xp is the phosphory-
lated protein that binds to the downstream sites p, and
C is the complex of the phosphorylated protein Xp

bound to the promoter p. The Xp dynamics can be
described by the first equation in the following model

dXp

dt
¼ k1XTOTZðtÞ 1� Xp

XTOT
� C

XTOT

� �
� k2YXpþ

koffC� konXpðpTOT � CÞ ð7Þ

dC

dt
¼ �koffCþ konXpðpTOT � CÞ: ð8Þ

The boxed terms represent the retroactivity s to the
output of the insulation system of Fig. 7. For a weakly
activated pathway [11], Xp � XTOT. Also, if we
assume that the concentration of total X is large
compared to the concentration of the downstream
binding sites, that is, XTOT � pTOT, equation (7) is

approximatively equal to
dXp

dt ¼ k1XTOTZðtÞ � k2
YXp þ koffC� konXpðpTOT � CÞ.

Denote G ¼ k1XTOT and G0 ¼ k2Y. Exploiting
again the difference of time scales between the Xp

dynamics and the C dynamics, after a fast initial
transient, the dynamics of Xp can be well approxi-
mated by

dXp

dt
¼ ðGZðtÞ � G0XpÞð1� RðXpÞÞ; ð9Þ

in which RðXpÞ is the measure of the retroactivity s to
the output after a short transient. Therefore, forG and
G0 large enough, XpðtÞ tends to the solution XpðtÞ of
the isolated system

dXp

dt ¼ GZðtÞ � G0Xp. As a con-
sequence, the effect of the retroactivity to the output s

Z
Insulation component

X

Y

Xp

p

Fig. 7. The dashed box contains the insulation device.
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is attenuated by increasing k1XTOT and k2Y enough.
That is, to obtain large input and feedback gains, one
shouldhave largephosphorylation/dephosphorylation
rates and/or a large amount of protein X and phos-
phatase Y in the system. This reveals that G / XTOTk1
and G0 / Yk2.

A more complex model for the phosphorylation
and dephosphorylation reactions can be considered
and parametric analysis can be performed to highlight
the roles of the various parameters for attaining the
insulation properties. In particular, we consider a two-
step reaction model such as those in Ref. [12].
According to this model, we have the following two
reactions for phosphorylation and depho-
sphorylation, respectively:

Xþ ZÐ
�1

�2
C1 !k1 Xp þ Z and YþXp Ð

�1

�2

C2 !k2 XþY;

ð10Þ

in which C1 is the [protein X/kinase Z] complex and C2

is the [phosphatase Y/protein Xp] complex. Addi-
tionally, we have the conservation equations YTOT ¼
Yþ C2; XTOT ¼ Xþ Xp þ C1 þ C2 þ C, because pro-
teins X and Y are not degraded. Therefore, the dif-
ferential equations modeling the insulation system of
Fig. 7 become

dZ

dt
¼ kðtÞ � �Z��1ZXTOT 1� Xp

XTOT
� C1

XTOT
� C2

XTOT

�

� C

XTOT

�
þ ð�2 þ k1ÞC1

ð11Þ

dC1

dt
¼� ð�2 þ k1ÞC1 þ �1ZXTOT 1� Xp

XTOT

�

� C1

XTOT
� C2

XTOT
� C

XTOT

�
ð12Þ

dC2

dt
¼ �ðk2 þ �2ÞC2 þ �1YTOTXp 1� C2

YTOT

� �

ð13Þ

dXp

dt
¼ k1C1 þ �2C2 � �1YTOTXp 1� C2

YTOT

� �

þ koffC� konXpðpTOT � CÞ
ð14Þ

dC

dt
¼ �koffCþ konXpðpTOT � CÞ; ð15Þ

in which the expression of gene z is controlled by a
promoter with activity kðtÞ. The terms in the large box

in equation (11) represent the retroactivity r to the
input, while the terms in the small box in equation (11)
and in the boxes of equations (12) and (14) represent
the retroactivity s to the output. A detailed analysis of
the system in equations (11–15) also provides ana-
lytical relationships among the parameters for
obtaining small retroactivity to the input r and linear
input/output relationship (see Ref. [6] for details). It
was shown in Ref. [5] that the fast time-scale of the
phosphorylation and dephosphorylation reactions
with respect to the input dynamics are the funda-
mental feature that allows this system to reach
attenuation of the retroactivity to the output.

System in equations (11–15) was simulated with and
without the downstream binding sites p, that is, with
and without, respectively, the terms in the small box of
equation (11) and in the boxes in equations (14) and
(12). This is performed to highlight the effect of the
retroactivity to the output s on the dynamics ofXp. The
simulations validate our theoretical study that indi-
cates that when XTOT � pTOT and the time scales of
phosphorylation/dephosphorylation are much faster
than the time scale of decay and production of the
protein Z, the retroactivity to the output s is very well
attenuated (Fig. 8A). Similarly, the time behavior ofZ
was simulated with and without the terms in the large
box in equation (11), that is, with and without X to
which Z binds, to verify whether the insulation com-
ponent exhibits retroactivity to the input r. In par-
ticular, the accordance of the behaviors of ZðtÞ with
and without its downstream binding sites on X (Fig.
8B), indicates that there is no substantial retroactivity
to the input r generated by the insulation device.

4. Conclusions and Future works

We have presented a review of recent results on ret-
roactivity, modularity, and insulation concepts in the
context of bio-molecular systems. We have illustrated
that the modularity assumption does not usually hold
in bio-molecular systems and that it can cause dra-
matic effects on the system dynamics. Such effects
need to be modeled and characterized in order to reach
the correct conclusions about the behavior of a com-
posed system. In view of modularly building synthetic
bio-molecular circuits, we have illustrated the design
of insulation devices. In particular, we have shown
that a simple phosphorylation/dephosphorylation
cycle can work in parameter ranges so as to work as an
insulation device. This fact suggests that another
reason why these cycles are ubiquitous in natural
signal transmission systems is because they can
enforce unidirectional signal propagation.
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A number of future challenges need to be addressed.
These include the experimental characterization of the
proposed bio-molecular insulation device, the devel-
opment of a frequency domain analysis that accounts
for retroactivity, and the understanding of the effects
of the high gains of the insulation device on biological
noise.
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Fig. 8. Simulation results for system in equations (11–15). In all
plots, pTOT ¼ 100, koff ¼ kon ¼ 10, �=0.01, kðtÞ ¼ 0:01
ð1þ sinð!tÞÞ, and !=0.005. In subplots A and B, k1 ¼ k2 ¼ 50,
�1 ¼ �1 ¼ 0:01, �2 ¼ �2 ¼ 10, and YTOT ¼ XTOT ¼ 1500. In sub-
plot A, the signal XpðtÞ without the downstream binding sites p is
the solid line, while the same signal with the downstream binding
sites p is in the dashed line. The small error shows that the effect of
the retroactivity to the output s is attenuated very well. In subplot
B, the signal ZðtÞ without X to which Z binds is in the solid line,
while the same signal ZðtÞ with X present in the system is in the
dashed line. The small error confirms a small retroactivity to the
input.
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