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SUMMARY

A new notion of input-to-state stability involving infinity norms of input derivatives up to a finite order k is
introduced and characterized. An example shows that this notion of stability is indeed weaker than the
usual iss. Applications to the study of global asymptotic stability of cascaded non-linear systems are
discussed. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A central question in control theory is how to formulate, for general non-linear systems, notions of
robustness and stability with respect to exogenous input disturbances. The linear case is by now very
well understood, and, at least in a finite-dimensional set-up, most ‘reasonable’ definitions of ‘input-
to-state’ or ‘input–output’ stability (provided in this last case that additional reachability and
observability assumptions are met) boil down to local asymptotic stability, viz. to the classical
condition on the systems poles lying in the complex open left half-plane. However, for non-linear
systems the range of possibilities is much broader, and the goal of coming up with an effective
classification for many different behaviours that might be labeled as ‘stable’ together with methods
which would allow to establish relationships between such stability notions has attracted a
substantial research effort within the past years. In this respect, input to state stability (iss) and
integral iss, as well as H1 theory, have proven to be powerful tools, used successfully in order to
tackle problems both of robustness analysis and control synthesis, [1–5].
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In the iss-related literature, a ‘disturbance’ is a locally essentially bounded measurable
function. Such an extremely rich set of possible input perturbations is well suited to model
Gaussian and random noises, as well as constant or periodic signals, slow parameters drifts, and
so on. If, on one side, this makes the notion of iss extremely powerful, on the other it is known
that iss might sometimes be too strong a requirement [6]. In the output regulation literature [7],
instead, the focus is on ‘deterministic’ disturbances, i.e. signals that can be generated by a finite
dimensional non-linear systems, (usually smooth), when the state is evolving in a neighbour-
hood of a neutrally stable equilibrium position. This is an extremely interesting class of
persistent disturbances for which, roughly speaking, the following is true:

jjd jj1 small ) jj ’dd jj1 and derivatives of arbitrary order are also small

Under similar circumstances, for instance when cascading asymptotically stable systems,
regarding the ‘forcing’ system’s state as a disturbance typically yields

lim sup
t!þ1

jdðtÞj ¼ 0 ) lim sup
t!þ1

j ’ddðtÞj ¼ 0

Nevertheless, the classical definition of input-to-state stability completely disregards such
additional information. Tracking of output references, see Reference [8], is another area where
‘derivative’ knowledge is usually disregarded (the analysis is often performed only taking into
account constant set-points), whereas such information could be exploited to get tighter
estimates for the steady-state tracking error due to time-varying, smooth reference signals.

Analogous situations arise when parameters variations are taken into account (i.e. in adaptive
control) and we expect the system to have nice and stable behaviour for slow parameters drifts.
The study of systems with slowly varying parameters has long been an interesting topic in the
literature, see e.g. References [9, 10]. The analysis of such a system is usually carried out by first
considering the systems corresponding to ‘frozen’ parameters. If for all the frozen parameters,
the corresponding frozen systems possess certain stability property uniformly, then it is
reasonable to expect that the system with slowly varying parameters will possess the same
property. See, for instance, Reference [10] for a result of this type. A more general question is
how the magnitudes of the time derivatives of the time varying parameters affect the behaviour
of the systems.

The main contribution of this note is to show how, in the context of iss, stability notions can
be adjusted in order to take into account robustness with respect to disturbances and their time
derivatives. The new notion of Dk

iss is defined through an iss-like estimate which involves the
magnitudes of the inputs and their derivatives up to the kth order. We also propose several
properties related to the Dk

iss notion. All these properties serve to formalize the idea of ‘stable’
dependence upon the inputs and their time derivatives. They differ in the formulation of the
decay estimates which make precise how the magnitudes of derivatives affect the system. We
illustrate by means of several interesting examples how these properties differ from each other
and from the well known iss property.

One of our main objectives is to provide equivalent Lyapunov characterizations for these
properties. Interestingly enough, one of our Lyapunov formulations already appeared in
Reference [9], (see formula (5) in that reference). In this work, we provide a stability property
that is equivalent to the existence of this type of Lyapunov functions. As a key step in
establishing the Lyapunov formulations, we show how the Dk

iss property can be treated as a
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special case of the input–output-to-state stability property (for detailed discussions on this
property, see Reference [11]).

A second objective is to discuss some applications of the newly introduced notions to the
analysis of cascaded non-linear systems. The well known result that cascading preserves the iss
property is generalized to the Dk

iss property.
The paper is organized as follows: Section 2 provides the basic definitions. Sections 3–5

contain the Lyapunov characterizations of the Dk
iss property and some other related properties.

Sections 6 and 7 are devoted to the study of cascaded systems. Sections 8 and 9 provide
discussions on the relation between the newly introduced stability notions and the well
established iss property.

2. BASIC DEFINITIONS

Consider non-linear systems of the following form:

’xxðtÞ ¼ f ðxðtÞ; uðtÞÞ ð1Þ

where xðtÞ 2 Rn and uðtÞ 2 Rm for each t50: The function f :Rn � Rm ! Rn is locally Lipschitz
continuous. Thus, for any measurable, locally essentially bounded function uðtÞ :R ! Rm; and
any initial condition x 2 Rn; there exists a unique solution xðt; x; uÞ of (1) satisfying the initial
condition xð0; x; uÞ ¼ x; defined on some maximal interval ðT�

x;u; T
þ
x;uÞ:

Recall that system (1) is input-to-state stable (iss for short) if there exist g 2 K1
n and

b 2 KL so that the following holds:

jxðt; x; uÞj4bðjxj; tÞ þ gðjju½0;tÞjj1Þ ð2Þ

for all t50; all x 2 Rn; and all input signals u; where for any interval I ; uI denotes the restriction
of u to I ; and where jjvjj denotes the usual Lm1-norm (possibly infinite) of v:Usually one can think
of u as an exogenous disturbance entering the system. Note that if (2) holds for any trajectory on
any interval where the trajectory is defined, then the system is automatically forward complete.

We denote by W k;1ðJ Þ; for any integer k51 and any interval J ; the space of all functions
u : J ! Rm for which the ðk � 1Þst derivative uðk�1Þ exists and is locally Lipschitz. For k ¼ 0; we
define W 0;1ðJ Þ as the set of locally essentially bounded u : J ! Rm: When J ¼ ½0;þ1Þ; we omit
J and write simply W k;1: (Since absolutely continuous functions have essentially bounded
derivatives if and only if they are Lipschitz, the definition of W k;1ðJ Þ; for positive k; amounts to
asking that the ðk � 1Þst derivative uðk�1Þ exists and is absolutely continuous, and hence, its
derivative, that is, uðkÞ; is locally essentially bounded. Thus W k;1ðJ Þ is a standard Sobolev space,
justifying our notation.)

Definition 2.1
System (1) is said to be kth derivative input-to-state stable ðDk

iss) if there exist some KL-
function b; and some K-functions g0; g1; . . . ; gk such that, for every input u 2 W k;1; the

*A function F : S ! R is positive definite if F ðxÞ > 0; 8x 2 S; x=0 and F ð0Þ ¼ 0: A function g :R50 ! R50 is of
class K if it is continuous, positive definite, and strictly increasing. It is of class K1 if it is also unbounded. Finally,
b : R50 � R50 ! R50 is of classKL if for each fixed t50; bð�; tÞ is of classK and for each fixed s > 0; bðs; tÞ decreases
to 0 as t ! 1: An important fact concerning K1 functions which will often be used in the following sections is the so-
called ‘weak triangular inequality’ gðaþ bÞ4gð2aÞ þ gð2bÞ for all a; b50:
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following holds:

jxðt; x; uÞj4bðjxj; tÞ þ g0ðjjujjÞ þ g1ðjj ’uujjÞ þ � � � þ gkðjju
ðkÞjjÞ ð3Þ

for all t50:

As with iss, we remark that if estimate (3) was instead only required to hold on the maximal
interval of definition of the solution xðt; x; uÞ; then jxðt; x; uÞj is uniformly bounded on any
subinterval of the maximal interval. Hence, the solution must be globally defined if u 2 W k;1;
and the same definition results.

We say simply that the system is Diss when it is D1
iss and, of course, iss is the same as Dk

iss

for k ¼ 0:
It is also clear that a system is Dk

iss if and only if there exist some b 2 KL and some g 2 K
such that

jxðt; x; uÞj4bðjxj; tÞ þ gðjjujj½k�Þ ð4Þ

for all t50; where jjujj½k� ¼ max04i4kfjjuðiÞjjg:

Lemma 2.2
System (1) is Dk

iss if and only if property (4) holds for all smooth input functions (with the same b; g).

Proof
One implication is trivial. To prove the non-trivial implication, assume for some b 2 KL and
g 2 K; estimate (4) holds for all smooth input functions. By causality, one may replace jjujj½k� by
jju½0;tÞjj½k� in (4).

Let u 2 W k;1: Fix T > 0 such that xðt; x; uÞ is defined on ½0; T �: Note that uðkÞ is essentially
bounded on ½0; T �: It is a routine approximation fact (reviewed in Corollary A.2 in the appendix)
that there exists an equibounded sequence of C1 functions fujg such that

* uj ! u pointwise on ½0; T �; and
* lim supj!1 jjðujÞ½0;T Þjj

½k�4jju½0;T Þjj
½k�:

Applying (4) to the trajectories with the input function uj; and then taking the limits, we get

jxðt; x; uÞj4bðjxj; 0Þ þ gðjjujj½k�½0;Tþ
x;uÞ
Þ ð5Þ

Hence, Tþ
x;u ¼ 1; that is, xðt; x; uÞ is defined on ½0;1Þ: Thus T can be picked arbitrarily, and (5)

holds for all t50 where jjujj½k�½0;Tþ
x;uÞ

becomes by jjujj½k�: &

3. A LYAPUNOV CHARACTERIZATION OF Dk
iss

Fix k51: For system (1), consider the auxiliary system

’xx ¼ f ðx; z0Þ; ’zz0 ¼ z1; . . . ; ’zzk�1 ¼ v ð6Þ

Let

#xxðt; x; Z; vÞ :¼
xðt; x; Z; vÞ

zðt; Z; vÞ

 !
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denote the trajectory of (6) with the initial state xð0Þ ¼ x; zð0Þ ¼ Z; (note that the z-component of
the solution is independent of the choice of x:)

Observe that, if property (4) is known to hold for all inputs in W k;1; then, for the trajectories
ðxðt; x; z0; vÞ; zðt; x; z0; vÞÞ of the auxiliary system, the following property holds:

jxðt; x; Z; vÞj4bðjxj; tÞ þ *gg0ðjjzjj½0;t�Þ þ *gg1ðjjvjjÞ ð7Þ

for all measurable, locally essentially bounded inputs v: Given the fact that jzðtÞj4jjzjj½0;tÞ is
always true, we get

j #xxðt; x; Z; vÞj4bðjðx; ZÞj; tÞ þ #gg0ðjjzjj½0;t�Þ þ #gg1ðjjvjjÞ

for some #gg0; #gg1 2 K: This shows that if (1) is Dk
iss; then (6) is input–output-to-state stable, i.e.,

ioss, with v as input and z ¼ ðz0; z1; . . . ; zk�1Þ as outputs (cf. Reference [11]).
On the other hand, if the auxiliary system (6) is ioss, then there exist some b 2 KL and

g0; g 2 K such that

j #xxðt; x; Z; vÞj4bðjxj þ jZj; tÞ þ g0ðjjzjj½0;tÞÞ þ gðjjvjjÞ

for all locally essentially bounded inputs v: Observe that

bðjxj þ jZj; tÞ4bð2jxj; tÞ þ bð2jZj; 0Þ4bð2jxj; tÞ þ bð2jjzjj½0;tÞ; 0Þ

It follows that

j #xxðt; x; Z; vÞj4 %bbðjxj; tÞ þ %gg0ðjjzjj½0;tÞÞ þ gðjjvjjÞ

holds for all locally essentially bounded v; where %bbðs; tÞ ¼ bð2s; tÞ; and %gg0ðsÞ ¼ bð2s; 0Þ þ g0ðsÞ: In
particular,

jxðt; x; Z; vÞj4 %bbðjxj; tÞ þ %gg0ðjjzjj½0;tÞÞ þ gðjjvjjÞ

This implies that for any u 2 W k;1; the trajectory of system (1) with initial state x satisfies the
estimate:

jxðt; x; uÞj4bðjxj; tÞ þ g1ðjjujj
½k�Þ

where g1ðsÞ ¼ %gg0ðsÞ þ gðsÞ: We have therefore proved the following result that underlies the
proofs of Theorems 1 and 2 to be given later.

Lemma 3.1
Let k51: System (1) is Dk

iss if and only the associated auxiliary system (6) is ioss with v as input
and z ¼ ðz0; z1; . . . ; zk�1Þ as output.

By the main result in Reference [11], System (6) is ioss if and only if it admits an ioss-
Lyapunov function, that is, a smooth function V :Rn � Rkm ! R50 such that

* for some
%
a; %aa 2 K1; it holds that

%
aðjðx; zÞjÞ4V ðx; zÞ4%aaðjðx; zÞjÞ 8ðx; zÞ
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* for some a;r 2 K1;

@V
@x

ðx; zÞf ðx; zÞ þ
@V
@z0

ðx; zÞz1 þ � � � þ
@V
@zk�1

ðx; zÞv4� aðV ðx; zÞÞ þ rðjðz; vÞjÞ

for all x; z and v:
Interpreting z as the input and its derivatives for system (1), we get the following:

Theorem 1
Let k51: System (1) is Dk

iss if and only if there exists a smooth function V :Rn � Rkm ! R50

such that

* there exist some
%
a; %aa 2 K1 such that for all ðx; m½k�1�Þ 2 Rn � Rkm; it holds that

%
aðjðx;m½k�1�ÞjÞ4V ðx;m½k�1�Þ4%aaðjðx; m½k�1�ÞjÞ ð8Þ

* there exist some a 2 K1;r 2 K1 such that for all x 2 Rn and all m½k� 2 Rmðkþ1Þ with
m½k� ¼ ðm0; m1; . . . ; mkÞ; it holds that

@V
@x

ðx; m½k�1�Þf ðx;m0Þ þ
@V
@m0

ðx; m½k�1�Þm1 þ
@V
@m1

ðx;m½k�1�Þm2

þ � � � þ
@V

@mk�1

ðx; m½k�1�Þmk4� aðV ðx; m½k�1�ÞÞ þ rðjm½k�jÞ ð9Þ

Remark 3.2
Note that inequality (8) implies that

%
aðjxjÞ4V ðx;m½k�1�Þ4%aaðjðx; m½k�1�ÞjÞ ð10Þ

Suppose a system (1) admits a Lyapunov function V satisfying (9) and (10). Then it can be seen
that, along any trajectory xðtÞ with u 2 W k;1 as the input, (9) yields

d

dt
V ðxðtÞ; uðtÞ; . . . ; uðk�1ÞðtÞÞ4� aðV ðxðtÞ; uðtÞ; . . . ; uðk�1ÞðtÞÞÞ þ rðjjujj½k�Þ

for almost all t50: From this it follows that for some b 2 KL and g 2 K; it holds that

V ðxðtÞ; uðtÞ; . . . ; uðk�1ÞðtÞÞ4bðjV0j; tÞ þ gðjjujj½k�Þ 8t50

where V0 ¼ V ðxð0Þ; uð0Þ; . . . ; uðk�1Þð0ÞÞ: Combining this with (10), one sees that system (1) is Dk
iss:

Hence, an equivalent Lyapunov characterization of Dk
iss is the existence of a smooth function V

satisfying (9) and (10) for some
%
a; %aa; a 2 K1 and some r 2 K:

4. ASYMPTOTIC GAINS

Clearly, if a system is Dk
iss; then it is forward complete (for u 2 W k;1) and for some g0;

g1; . . . ; gk 2 K it holds that

lim sup
t!1

jxðt; x; uÞj4g0ðjjujjÞ þ g1ðjj ’uujjÞ þ � � � þ gkðjju
ðkÞjjÞ: ð11Þ

We say that a forward complete system satisfies the asymptotic gain (AG) property in u; . . . ; uðkÞ

if, for some g0; . . . ; gk 2 K; (11) holds for all x 2 Rn and all u 2 W k;1:
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By Lemma 3.1, the system (1) is Dk
iss if and only if the associated auxiliary system (6) is ioss

with v as input and z ¼ ðz0; z1; . . . ; zk�1Þ as output. Applying the main result in Reference [12]
about asymptotic gains for the ioss property to the auxiliary system (6), one can prove the
following:

Theorem 2
For a forward complete system as in (1), the following are equivalent:

1. it is Dk
iss;

2. it satisfies the AG property in u; . . . ; uðkÞ; and the corresponding zero-input system

’xx ¼ f ðx; 0Þ

is (neutrally) stable.

5. RELATED NOTIONS

In this section, we consider two properties related to Diss: We focus specifically on Diss (rather
than Dk

iss) as it seems to be the most relevant in applications. As a matter of fact, the authors
were not able to find any example of a D2

iss system not being Diss and it is therefore an open
question whether or not Dk

iss (k51) is equivalent to Diss:
We say that system (1) is iss in ’uu if, for some b 2 KL and some g 2 K; the following estimate

holds for all trajectories with inputs in W 1;1:

jxðt; x; uÞj4bðjxj; tÞ þ gðjj ’uujjÞ 8t50 ð12Þ

We say that system (1) is iss in constant inputs if, for some b 2 KL and g 2 K; the following
estimate holds for all trajectories corresponding to constant inputs u:

jxðt; x; uÞj4bðjxj; tÞ þ gðjjujjÞ 8t50: ð13Þ

It is obvious that if a system is iss in ’uu; then it is gas uniformly in all constant inputs, that is,
for some b 2 KL; the following holds for all trajectories with constant inputs:

jxðt; x; uÞj4bðjxj; tÞ 8t50

Also note that ðiss in ’uuÞ ) ðDissÞ: The converse is in general false. This can be seen through the
following argument. Suppose Diss implies iss in ’uu: Then we would have

ðissÞ ) ðDissÞ ) ðiss in ’uuÞ

and hence, ðissÞ ) ðiss in ’uuÞ: But this is false, as one can see that the linear system ’xx ¼ �xþ u is
iss but not iss in ’uu:

It is also clear that, for any k50;

ðDk
issÞ ) ðiss in constant uÞ

Again, the converse implication is in general false as shown by examples in Section 9. Using
similar arguments as in the proof of Lemma 3.1, we get the following:

* System (1) is iss in ’uu if and only if the auxiliary system

’xx ¼ f ðx; zÞ; ’zz ¼ v ð14Þ
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is state-independent-input-to-output stable, i.e. siios (see Reference [13]) with v as inputs and
x as outputs; and

* System (1) is iss in constant inputs if and only if the auxiliary system

’xx ¼ f ðx; zÞ; ’zz ¼ 0 ð15Þ

is output-to-state-stable, i.e. oss (see Reference [11]) with z as outputs.

Applying Theorem 1.2 of Reference [14] in conjunction with Remark 4.1 in Reference [14] to
the siios property for system (14), we get the following:

Proposition 5.1
System (1) is iss in ’uu if and only if there exists a smooth Lyapunov function V :Rn � Rm ! R50

satisfying the following:

* for some
%
a; %aa 2 K1;

%
aðjxjÞ4V ðx;m0Þ4%aaðjxjÞ 8 x 2 Rn; 8m0 2 Rm ð16Þ

* for some w 2 K1 and some continuous, positive definite function a;

V ðx;m0Þ5wðjm1jÞ )
@V
@x

ðx;m0Þf ðx;m0Þ þ
@V
@m0

ðx;m0Þm14� aðV ðx;m0ÞÞ ð17Þ

for all x 2 Rn and all m0;m1 2 Rm:

Observe that if one restricts the set where the input functions take values to be a bounded setU
(as in the case of Reference [9]), then the Lyapunov characterization in Proposition 5.1 is
equivalent to the existence of a smooth Lyapunov function V satisfying (16) for some

%
a; %aa 2 K1

such that for some a 2 K1 and s 2 K;

@V
@x

ðx; m0Þf ðx; m0Þ þ
@V
@m0

ðx;m0Þm14� aðV ðx; m0ÞÞ þ sðjm1jÞ

for all x 2 Rn; all m0 2 U; and all m1 2 Rm: Such a Lyapunov estimate was used in [9] to analyze
the asymptotic behaviour of systems with slowly varying parameters.

Applying Theorem 2 of Reference [11] to the oss property for system (15), we have the
following:

Proposition 5.2
System (1) is iss with respect to constant inputs if and only if it admits a smooth Lyapunov
function V :Rn � Rm ! R50 such that

* for some
%
a; %aa 2 K1;

%
aðjðx;mÞjÞ4V ðx;mÞ4%aaðjV ðx;mÞjÞ 8x 2 Rn; 8m 2 Rm ð18Þ

* for some a 2 K1; s 2 K;

@V
@x

ðx;mÞf ðx;mÞ4� aðV ðx;mÞÞ þ sðjmjÞ ð19Þ

for all x 2 Rn;m 2 Rm:
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Remark 5.3
It may also be interesting to consider the Diss property with different indexes on different
components of the inputs. For instance, for a system

’xx ¼ f ðx; u; vÞ ð20Þ

with ðu; vÞ as inputs, one may consider the property that for some b 2 KL; gu 2 K and gv 2 K;
it holds that

jxðt; x; u; vÞj4bðjxj; tÞ þ guðjjujjÞ þ gvðjjvjjÞ þ gvðjj ’vvjjÞ ð21Þ

One can also get a Lyapunov characterization for such a property by using the same argument
as in the proof of Theorem 1 with the ioss results. For instance, a system as in (20) satisfies
property (21) if and only if there exists a smooth Lyapunov function V such that

* for some
%
a; %aa 2 K1;

%
aðjðx; n0ÞjÞ4V ðx; n0Þ4%aaðjðx; n0ÞjÞ

* for some a 2 K1; some ru; rv 2 K; it holds that

@V
@x

ðx; n0Þf ðx;m0; n0Þ þ
@V
@n0

ðx; n0Þn14� aðV ðx; n0ÞÞ þ ruðjm0jÞ þ rvðjn0jÞ þ rvðjn1jÞ

for all x; m0; n0 and n1:

6. APPLICATION OF Diss TO THE ANALYSIS OF CASCADE SYSTEMS

An interesting feature of iss, which makes it particularly useful in feedback design, is that the
property is preserved under cascades, (see Reference [15]). Unfortunately, this is not the case for
the weaker notion of integral iss, as remarked in Reference [1] (but, see Reference [16] for
related work). Interestingly, however, although Diss is also a weaker property than iss, it is
preserved under cascades, as shown in this section.

For a system

’xx ¼ f ðx; v; uÞ

with ðv; uÞ as inputs, we say that the system is Dk
iss in v and Dl

iss in u if there exist b 2 KL and
g 2 K such that the following holds along any trajectory xðt; x; v; uÞ with initial state x; any input
ðv; uÞ for which v 2 W k;1 and u 2 W l;1:

jxðt; x; v; uÞj4bðjxj; tÞ þ gðjjvjj½k�Þ þ gðjjujj½l�Þ 8t50

Lemma 6.1
Consider a cascade system

’xx ¼ f ðx; z; uÞ

’zz ¼ gðz; uÞ
ð22Þ

where xð�Þ and zð�Þ evolve on Rn1 and Rn2 ; respectively, the input u takes values in Rm; and where
f is locally Lipschitz and g is smooth. Let k50: Suppose that the z-subsystem is Dk

iss with u as
input, and that the x-subsystem Dkþ1

iss in z and Dk
iss in u: Then the cascade system (22) is Dk

iss:
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Proof
By assumption, there exist bz 2 KL and gz 2 K such that, along any trajectory zðtÞ of the z-
subsystem with input u; it holds that

jzðtÞj4bzðjzð0Þj; tÞ þ gzðjjujj
½k�Þ 8t50 ð23Þ

and there exist some bx 2 KL and gx 2 K such that, for any trajectory xðt; v; uÞ of the system
’xx ¼ f ðx; v; uÞ;

jxðt; x; v; uÞj4bxðjxð0Þj; tÞ þ gxðjjvjj
½kþ1�Þ þ gxðjjujj

½k�Þ 8t50 ð24Þ

To prove Lemma 6.1, we need to find a suitable estimate for the x-component of solutions of
(22). For this purpose, we define by induction for 14i4k þ 1:

giða; b0; b1; . . . ; bi�1Þ ¼
@gi�1

@a
gða; b0Þ þ

Xi�2

j¼0

@gi�1

@bj
bjþ1

where g1ða; b0Þ ¼ gða; b0Þ: It can be seen that gið0; 0; . . . ; 0Þ ¼ 0 for all 04i4k; hence, there exists
some si 2 K such that

giða; b0; . . . ; bi�1Þ4siðjajÞ þ siðjb½i�1�jÞ

Again, by induction, one can show that, along any trajectory zðtÞ of the z-subsystem of (22) with
an input u 2 W k;1; it holds that

di

d ti
zðtÞ ¼ giðZðtÞ; dðtÞ; ’ddðtÞ; . . . ; d ði�1ÞðtÞÞ

for all 14i4k þ 1: It then follows that

jjz½kþ1�jj4sðjjzjjÞ þ sðjju½k�jjÞ ð25Þ

for some s 2 K: It then follows from (24) and (25) that, for some r 2 K; it holds that along any
trajectory ðxðtÞ; zðtÞÞ of (22),

jxðtÞj4bxðjxð0Þj; tÞ þ rðjjzjjÞ þ rðjjujj½k�Þ 8t50 ð26Þ

Applying a standard argument to (26) and (23) as in the proof of the result that a cascade of iss
systems is again iss, one can show that system (22) is Dk

iss:
To be more precise, (26) implies that

jxðtÞj4bx jxðt=2Þj;
t
2

� �
þ rðjjzjj½t=2;tÞÞ þ rðjjujj½k�½t=2;tÞÞ 8t50 ð27Þ

along any trajectory of (22). Fix an input u and pick any trajectory ðxðtÞ; zðtÞÞ of (22) with the
input u: Let x1 ¼ xðt=2Þ: We also have

jx1j4bx jxj;
t
2

� �
þ rðjjzjj½0;t=2ÞÞ þ rðjjujj½k�½0;t=2ÞÞ 8t50

Hence, there exist some *bbx; *bbz and some *rr 2 K (which depend only on bx; r) such that

bx jx1j;
t
2

� �
4 *bbxðjxj; tÞ þ *bbzðjjzjj½0;t=2Þ; tÞ þ *rrðjjujj½k�½0;t=2ÞÞ ð28Þ

for all t50: By (23), jzðtÞj4bzðjzð0Þj; 0Þ þ gzðjjujj
½k�Þ for all t50; hence,

*bbzðjjzjj½0;t=2Þ; tÞ4 %bbzðjzð0Þj; tÞ þ %ggzðjjujj½k�Þ 8t50 ð29Þ
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for some %bbz 2 KL and some %ggz 2 K: With (29), one sees from (28) that for some #bb 2 KL and
some #ggz 2 K; it holds that

bx jx1j;
t
2

� �
4 *bbxðjxj; tÞ þ #bbzðjzð0Þj; tÞ þ #gguðjjujj½k�Þ ð30Þ

for all t50: Since

jzðtÞj4bzðjzð0Þj; t=2Þ þ gzðjjujj
½k�Þ 8t5t=2

it follows that for some $bbz 2 KL and some $ggz 2 K; it holds that

rðjjzjj½t=2;tÞÞ4 $bbzðjzð0Þj; tÞ þ $ggzðjjujj½k�Þ 8t50 ð31Þ

Combining (26), (30) and (31), one sees that there exist some b 2 KL and some g 2 K such that

jxðtÞj4bðjxð0Þj þ jzð0Þj; tÞ þ gðjjujj½k�Þ 8t50

Note that the choice of b and g was made independent of the trajectory of (22). Together with
(23) this shows that (22) is Dk

iss: &

Remark 6.2
Observe from the above proof that to show that system (22) is Dk

iss; the assumption that
requires g be smooth can be relaxed to requiring that g be Ck if k51; or to requiring that g be
locally Lipschitz in the case when k ¼ 0:

Applying Lemma 6.1 to the special case of k ¼ 1; one gets the following:

Corollary 6.3
Consider a cascade system as in Lemma 6.1, where f and g are C1 maps. Suppose that the x-
subsystem is Diss with ðz; uÞ as inputs that the z-subsystem is Diss with u as inputs, then the
cascade system (22) is Diss with u as inputs.

Applying Lemma 6.1 to the following autonomous system:

’xx ¼ f ðx; zÞ

’zz ¼ gðzÞ
ð32Þ

where f is locally Lipschitz, and g is smooth, one sees that the system is gas provided that the z-
subsystem is gas and the x-subsystem is Dk

iss with z as inputs for some k50:
It is by now a standard result that a system (32) is gas if the x-subsystem is iss and the z-

subsystem is gas. Now one sees that the iss property of the x-subsystem can be relaxed to Dk
iss:

This result can be further improved by only requiring the Dk
iss property hold for small signals

produced by the z-subsystems.
For d > 0; we define the saturation function satd by

satdðrÞ ¼
r if jrj5d

signðrÞd otherwise

(
ð33Þ

For z ¼ ðz1; z2; . . . ; zmÞ 2 Rm; we define satdðzÞ :¼ ðsatdðz1Þ; satdðz2Þ; . . . ; satdðzmÞÞ:
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Proposition 6.4
A forward complete system as in (32) is gas provided that for some d > 0 and for some k50; the
system

’xx ¼ f ðx; satdðzÞÞ ð34Þ

is Dk
iss and that the z-subsystem is gas.

Proof
The local asymptotic stability property of (32) follows directly from the local asymptotic
stability property of the x and z subsystems. Thus we only need to show the global attraction
property, in particular, the convergence property of xðtÞ for any trajectory ðxðtÞ; zðtÞÞ of (32).

First of all, the forward completeness assumption guarantees that xðt; x; zÞ is defined on ½0;1Þ
for any trajectory of the x-subsystem with initial state x and external signal z:

Pick any trajectory ðxðtÞ; zðtÞÞ of (32). Since the z-subsystem is gas, there is some T > 0 such
that jzðtÞj4d for all t5T : Consequently, ðxðtÞ; zðtÞÞ is also a trajectory of (34) with the z-
subsystem for all t5T : Since system (34) cascaded with the z-subsystem is gas, it follows that
xðtÞ converges to 0: &

7. AN ISS RELATED INTERPRETATION OF Dk
iss

Definition 7.1
A smoothly invertible iss filter is an iss system

’ww ¼ gðw; dÞ ð35Þ

with wðtÞ; dðtÞ 2 Rm; where g :Rm � Rm ! Rm is a smooth map for which there exists a smooth
map G :Rm � Rm ! Rm such that Gðn0; gðn0; n1ÞÞ ¼ n1 and gðn0;Gðn0; n1ÞÞ ¼ n1 for all n0; n1:

The main result in this section is the following characterization of Dk
iss:

Theorem 3
Let k be a positive integer. The following facts are equivalent:

1. System (1) is Dk
iss:

2. There exists a smoothly invertible iss filter

’ZZ ¼ gðZ;mÞ ð36Þ

such that the system

’xx ¼ f ðx; ZÞ

’ZZ ¼ gðZ; mÞ ð37Þ

is Dk�1
iss:

3. For each smoothly invertible iss filter as in (36) the cascade system (37) is Dk�1
iss:

Proof
The implication ðiiiÞ ) ðiiÞ is obvious. Let us consider ðiiÞ ) ðiÞ: Since system (37) is Dk�1

iss;
there exist some b 2 KL and some g 2 K such that along any trajectory ðxðtÞ; ZðtÞÞ of (37), it
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holds that

jxðtÞj4bðjxð0Þj þ jZð0Þj; tÞ þ gðjjd jj½k�1�Þ

4bð2jxð0Þj; tÞ þ b0ð2jjZjjÞ þ gðjjd jj½k�1�Þ ð38Þ

where b0ðsÞ ¼ bðs; 0Þ: Let G be the smooth function as in Definition 7.1 for the function g in
system (37).

Observe that any trajectory xðtÞ of (1) with an input Z 2 W k;1; ðxðtÞ; ZðtÞÞ is a trajectory of (37)
with the input d 2 W k;1 defined by dðtÞ ¼ GðZðtÞ; ’ZZðtÞÞ:

Notice that gð0; 0Þ ¼ 0 implies Gð0; 0Þ ¼ 0: Thus, by continuity of G; there exists g0 2 K1

such that Gða; bÞ4g0ðjajÞ þ g0ðjbjÞ: Take any trajectory xðtÞ of (1) with an input Z 2 W k;1; and let
dðtÞ ¼ GðZðtÞ; ’ZZðtÞÞ: Then

jjd jj4g0ðjjZjjÞ þ g0ðjj’ZZjjÞ ð39Þ

Hence, in the case when k ¼ 1; that is, when system (37) is iss, (38) combined with (39) implies
that

jxðtÞj4bð2jxð0Þj; tÞ þ b0ð2jjZjjÞ þ g0ðjjZjjÞ þ g0ðjj’ZZjjÞ ð40Þ

This shows that system (1) is Diss: To consider the more general case for k52; we consider
inductively the following functions defined by

Giða0; a1; . . . ; ai; aiþ1Þ ¼
Xi
j¼0

@Gi�1

@aj
ða0; a1; . . . ; aiÞajþ1

with G0ða0; a1Þ :¼ Gða0; a1Þ: Observe that for each i; Gið0; . . . ; 0Þ ¼ 0; and hence, there exists
some gi 2 K such that

jGiða0; a1; . . . ; aiþ1Þj4giðja
½iþ1�jÞ

where a½i� ¼ ða0; a1; . . . ; aiÞ:
By induction, one can show that for any trajectory ZðtÞ of the Z-subsystem of (37) with the

input d 2 W k�1;1; it holds that, for any 04i4k � 1;

d ðiÞðtÞ ¼ GiðZðtÞ; ’ZZðtÞ; . . . ; Zðiþ1ÞðtÞÞ

Consequently, one has

jjd jj½k�1�4gkðjjZjj
½k�Þ

Thus, for any trajectory xðt; x; ZÞ of (1), it holds that, with d ¼ GðZ; ’ZZÞ;

jxðt; x; ZÞj4bð2jxj; tÞ þ b0ð2jjZjjÞ þ gðjjd jj½k�1�Þ

4bð2jxj; tÞ þ b0ð2jjZjjÞ þ *ggkðjjZjj½k�Þ

where *ggk ¼ g8gk : Hence, system (1) is Dk
iss:

To complete the proof of Theorem 3, it only remains to show the implication ðiÞ ) ðiiiÞ: But
this implication is an immediate consequence of Lemma 6.1. &
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8. ARE Diss SYSTEMS ALWAYS ISS?

In this section we will discuss an example of a Diss system which is not iss. This shows that Diss
is indeed strictly weaker than iss. First, however, we show that Diss and iss are equivalent for
scalar systems.

Proposition 8.1
A one-dimensional system in the form of (1) is iss if and only if it is Diss:

Proof
Clearly, we only need to show one direction of the implication. Let a one-dimensional system (1)
be Diss: Then, there exists a smooth function V :R� Rm ! R50 such that

%
aðjxj þ jm0jÞ4V ðx;m0Þ4%aaðjxj þ jm0jÞ 8ðx;m0Þ 2 R� Rm ð41Þ

for some
%
a; %aa 2 K1; and

@V
@x

ðx; m0Þf ðx;m0Þ þ
@V
@m0

m14� aðjxjÞ þ gðjm0j þ jm1jÞ; 8x; 8ðm0;m1Þ ð42Þ

for some a; g of class K1: In particular, with m1 ¼ 0; (42) yields

@V
@x

ðx;m0Þf ðx;m0Þ4� aðjxjÞ þ gðjm0jÞ ð43Þ

This implies that there exists a K1 gain margin w (for instance w ¼ a�1
82g) such that

jxj5wðjm0jÞ )
@V
@x

ðx;m0Þf ðx;m0Þ4� *aaðjxjÞ ð44Þ

where *aa is of class K1: If V is independent of m0; this would already provide an iss-Lyapunov
function for the system, and the iss property would follow. For the general case, let
V0ðxÞ ¼ V ðx; 0Þ: From (41), one sees that

%
aðjxjÞ4V0ðxÞ4%aaðjxjÞ 8x

and from (44), one sees that

DV0ðxÞf ðx; 0Þ5� *aaðjxjÞ 8x ð45Þ

Since both DV0 and f ðx; 0Þ are scalar functions, it follows that DV0ðxÞ=0 for all x=0: Since the
0-input system ’xx ¼ f ðx; 0Þ is gas, it follows that xf ðx; 0Þ50 for all x=0: This together with (45)
implies that xDV0ðxÞ50 for all x=0: We will complete the proof by showing the following:

jxj5wðjm0jÞ ) DV0ðxÞf ðx;m0Þ50 ð46Þ

for all x=0; from which it follows that V0 is an iss-Lyapunov function for the system.
Suppose (46) fails for some x0=0: Applying the intermediate value theorem to the continuous

function DV0ðx0Þf ðx0;mÞ with the property that DV0ðx0Þf ðx0; 0Þ50; one sees that there exists
some %mm0 for which wðj %mm0jÞ4jx0j such that DV0ðx0Þf ðx0; %mm0Þ ¼ 0: It then follows from the fact that
DV0ðx0Þ=0 that f ðx0; %mm0Þ ¼ 0: This is impossible since it contradicts (44). Hence, (46) holds
for all x: &
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Remark 8.2
Applying Theorem 3 and Proposition 8.1, one sees that for a scalar system as in (1), the
following are equivalent:

1. The system is iss.
2. For some smoothly invertible iss filter as in (36), the corresponding cascade system (37) is

iss.
3. For each smoothly invertible iss filter as in (36) the corresponding cascade system (37) is

iss.

In what follows we show by example that Proposition 8.1 in general fails in higher
dimensions.

Example 8.3
Take any 2� 2 matrix F with the property that F is Hurwitz but FT þ F has at least one
positive eigenvalue (where AT denotes the transpose of A). An example of such a matrix is

F ¼
�1 4

�1 �1

" #

Let %ll be such an eigenvalue of ðFT þ FÞ; and let v1 be a unit eigenvector of F corresponding to %ll:
For y 2 R; let U ðyÞ be defined by

U ðyÞ ¼
cosðyÞ sinðyÞ

�sinðyÞ cosðyÞ

" #
ð47Þ

Notice that U ðyÞTU ðyÞ ¼ I: Consider now the system:

’xx ¼ ðxTxÞU ðyÞTFU ðyÞx ð48Þ

where yð�Þ is taken to be the input to the system.
To see that this system is not iss, we will show that there is some input which is bounded and

for which the solution of (48) with xð0Þ ¼ ð0; 1Þ0 is not defined for all t > 0:
To define this input, we proceed as follows. We start by writing the eigenvector v1 in polar

form: v1 ¼ ðcos f0; sin f0Þ; with 04f052p: Viewing the system away from zero as a system on
R2=f0g; we consider the feedback law yðxÞ :¼ f� f0; where, using polar coordinates, x1 ¼
r cos f and x2 ¼ r sin f: In defining the feedback, we may assume that arguments are taken in
the following range: 04f52p: However, the choice is irrelevant, since only trigonometric
functions of y appear in the system description.

In principle, there is no reason for a solution to exist for (48), under this feedback law, since
the feedback law is discontinuous. However, again from periodicity of the equations,
substitution into the right-hand side of (48) results in a smooth differential equation. Thus
there is a unique solution, defined on some maximal interval ½0; TmaxÞ; starting from the initial
state xð0Þ ¼ ð0; 1Þ0: We consider the input u which coincides with yðxðtÞÞ on the maximal interval
½0; TmaxÞ; and equals some arbitrary value, let us say zero, for t > Tmax: This input is bounded (by
4p). We now show that r ¼ jxðtÞj % 1 as t % Tmax:
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Transforming to polar coordinates, we have that along trajectories of (48):

2r’rr ¼ 2ðxTxÞxTU ðyÞTFU ðyÞx ¼ 2r4ðcos f sin fÞU ðyÞTFU ðyÞ
cos f

sinf

 !

¼ r4ðcosðf� yÞ sinðf� yÞÞC
cosðf� yÞ

sinðf� yÞ

 !

where C ¼ Fþ FT; and

’ff ¼
x1 ’xx2 � x2 ’xx1
x21 þ x22

¼ r2ð�sin f cos fÞU ðyÞFU ðyÞ
cos f

sin f

 !

¼ r2ðsinðy� fÞ cosðy� fÞÞF
cosðf� yÞ

sinðf� yÞ

 !

Thus, away from the equilibrium x ¼ 0; we have that the system (48) on R2=f0g is, up to a co-
ordinate change, the same as the following system which evolves on R>0 � S1:

’rr ¼
1

2
r3ðcosðf� yÞ sinðf� yÞÞC

cosðf� yÞ

sinðf� yÞ

 !
ð49Þ

’ff ¼ r2ðsinðy� fÞ cosðy� fÞÞF
cosðf� yÞ

sinðf� yÞ

 !
ð50Þ

With the feedback law y ¼ f� f0; Equation (49) becomes

’rr ¼
1

2
r3vT1 Cv1 ¼

%ll
2
r3 ð51Þ

Thus r diverges monotonically to infinity in finite time, as claimed.
Nevertheless we claim that (48) is Diss: For this purpose, consider the system

’xx ¼ ðx0xÞU ðyÞ0FU ðyÞx

’yy ¼ �yþ d ð52Þ

Here d takes value in R and plays the role of an exogenous input, whereas y is a component of
the extended state ½x0; y�0: By virtue of the main result in Section 7, the Diss property for (48) is
equivalent to the iss property for (52). Pick as a candidate Lyapunov function:

W ðx; yÞ ¼ xTU ðyÞTPU ðyÞxþ ky2 ð53Þ

where P ¼ P 0 > 0 is the solution of the Lyapunov equation

FTP þ PF ¼ �I2 ð54Þ

Notice that

lminðP Þjxj
2 þ ky24W ðx; yÞ4lmaxðP Þjxj

2 þ ky2 ð55Þ

where lmin and lmax denote the largest and smallest eigenvalues of P ; respectively.
Thus W is proper. Taking derivatives of W along any trajectory ðxðtÞ; yðtÞÞ of (52)
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yields

d

dt
W ðxðtÞ; yðtÞÞ ¼ jxðtÞj2½ðU ðyðtÞÞTFU ðyðtÞÞxðtÞÞTU ðyðtÞÞTPU ðyðtÞÞxðtÞ

þ xðtÞTU ðyðtÞÞTPU ðyðtÞÞðU ðyðtÞÞTFU ðyðtÞÞxðtÞÞ�

þ 2xðtÞTU ðyðtÞÞTP
@

@y
U ðyðtÞÞxðtÞ þ 2kyðtÞ

� �
ð�yðtÞ þ dðtÞÞ ð56Þ

Since U ðoÞ is orthonormal for all o 2 R; it follows from (54) that

U ðoÞTPU ðoÞU ðoÞTFU ðoÞ þ U ðoÞTFTU ðoÞU ðoÞTPU ðoÞ ¼ �I2 ð57Þ

for all o: Let c > 0 be such that jU ðoÞ P ð@=@oÞU ðoÞj4c for all o; where jAj denotes the operator
norm of A 2 R2�2: Then

2xðtÞTU ðyðtÞÞTP
@

@y
U ðyðtÞÞxðtÞ þ 2kyðtÞ

� �
ð�yðtÞ þ dðtÞÞ

42cjxðtÞj2ðjyðtÞj þ jdðtÞjÞ � 2kyðtÞ2 þ 2kyðtÞdðtÞ

4
1

4
jxðtÞj4 þ 4c2ðjyðtÞj þ jdðtÞjÞ2 � kyðtÞ2 þ k dðtÞ2

4
1

4
jxðtÞj4 þ 8c2yðtÞ2 þ 8c2dðtÞ2 � kyðtÞ2 þ k dðtÞ2 ð58Þ

Combining (56)–(58), one sees that

d

dt
W ðxðtÞ; yðtÞÞ4�

3

4
jxðtÞj4 � ðk � 8c2ÞyðtÞ2 þ ð8c2 þ kÞdðtÞ

along any trajectory of (52). It then can be seen that if k > 8c; W is an iss-Lyapunov function
for system (52). Consequently, system (52) is iss as we wanted to show.

9. MORE EXAMPLES

It is clear that one has the following implications for each k51:

iss ) Dk
iss ) iss in constant u

Below we show by examples how the converse implications may fail. For this purpose, we first
show the following.

Lemma 9.1
Consider a locally Lipschitz map f :Rn ! Rn:

1. If the system ’xx ¼ f ðxÞ is gas, then the system ’xx ¼ f ðxþ uÞ is iss in constant u:
2. If the system ’xx ¼ f ðxÞ þ u is iss, then the system ’xx ¼ f ðxþ uÞ is Diss:

Proof
(i) Suppose that the system ’zz ¼ f ðzÞ is gas. Then, there is some b0 2 KL such that

jzðtÞj4b0ðjzð0Þj; tÞ 8t50 ð59Þ
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holds for every trajectory zð�Þ of the system. Let uðtÞ � m be a constant input, and consider a
trajectory xðtÞ of the system ’xx ¼ f ðxþ uÞ: Let zðtÞ ¼ xðtÞ þ uðtÞ Then zðtÞ is a trajectory of
’zz ¼ f ðzÞ: Hence, zð�Þ satisfies (59). Combining this with the fact that jxðtÞj4jzðtÞj þ jjujj; we get

jxðtÞj4b0ðjzð0Þj; tÞ þ jjujj4b0ð2jxð0Þj; tÞ þ b0ð2jmj; tÞ þ jjujj

4b0ð2jxð0Þj; tÞ þ gðjjujjÞ

where gðsÞ ¼ b0ð2s; 0Þ þ s: This shows that the system is iss in constant inputs.
(ii) Suppose that system ’zz ¼ f ðzÞ þ u is iss. Then, for some b0 2 KL and some g0 2 K; it

holds that

jzðt; x; uÞj4b0ðjxj; tÞ þ g0ðjjujjÞ

for the trajectory zðt; x; uÞ of the system with initial state zð0Þ ¼ x and input u: Take a trajectory
xðt; x; uÞ of the system ’xx ¼ f ðxþ uÞ for some input u 2 W 1;1: Let zðtÞ ¼ xðt; x; uÞ þ uðtÞ:
Obviously, zð�Þ is a solution of ’zz ¼ f ðzÞ þ ’uu: Hence,

jzðt; x; uÞj4b0ðjzð0Þj; tÞ þ g0ðjj ’uujjÞ

Arguing as in the proof of (i), it can be seen that

jxðt; x; uÞj4b0ð2jxj; tÞ þ g0ðjj ’uujjÞ þ gðjjujjÞ

where gðsÞ ¼ b0ð2s; 0Þ þ s: Hence, the system is Diss: &

To show that (iss in constant u) RDk
iss; we first show the following.

Lemma 9.2
There exists a smooth system ’xx ¼ f ðxÞ in R2 with the following properties:

1. The origin is globally asymptotically stable for ’xx ¼ f ðxÞ:
2. For each a > 2 there exists an input ua such that:

* ua is smooth, periodic, and ua as well as all its derivatives are bounded in norm by 1;
* the solution of

’xx ¼ f ðxþ uaðtÞÞ; xð0Þ ¼
a

0

 !
ð60Þ

is xðtÞ ¼ ða cos t; a sin tÞ0:

Proof
We fix a smooth non-increasing function g : ½0;1Þ ! ½�1; 0� such that gðrÞ ¼ �r on ½0; 1=2�; and
gðrÞ ¼ �1 for all r51: In terms of this g; we define the following system:

’xx1 ¼
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q x1 � x2

’xx2 ¼
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q x2 þ x1
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Note that this is a smooth system on R2; since g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
� �1 for x � 0 (the

dynamics are, in fact, linear near 0). In polar co-ordinates, we have

’rr ¼ gðrÞ; ’jj ¼ �1

so the origin is indeed globally asymptotically stable. Observe that near the origin we have
’rr ¼ �r; but for jxj51 we have ’rr ¼ �1: This ‘slowing down’ will allow us to obtain the desired
result.

For each a > 2; we define the input ua as follows:

uaðtÞ ¼
ua1ðtÞ

ua2ðtÞ

 !
:¼

ffiffiffiffiffiffiffiffi
a2�1

p
sin t�cos t
a

�
sin tþ

ffiffiffiffiffiffiffiffi
a2�1

p
cos t

a

0
B@

1
CA

and observe that dua1=dt ¼ ua2; dua2=dt ¼ �ua1; and ðua1Þ
2 þ ðua2Þ

2 � 1: These facts imply that ua

and all its derivatives are bounded by 1:
The form xaðtÞ ¼ ða cos t; a sin tÞ0 for the solutions of (60) may be verified by substitution into

the equation: one needs only to check that

gð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða cos t þ ua1ðtÞÞ

2 þ ða sin t þ ua2ðtÞÞ
2

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða cos t þ ua1ðtÞÞ
2 þ ða sin t þ ua2ðtÞÞ

2
q ða cos t þ ua1ðtÞÞ � ða sin t þ ua2ðtÞÞ ¼ �a sin t

gð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða cos t þ ua1ðtÞÞ

2 þ ða sin t þ ua2ðtÞÞ
2

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða cos t þ ua1ðtÞÞ
2 þ ða sin t þ ua2ðtÞÞ

2
q ða sin t þ ua2ðtÞÞ þ ða cos t þ ua1ðtÞÞ ¼ a cos t

As ða cos t; a sin tÞ0 has constant norm a > 2 and u has unit norm, the vector xþ u has norm
always bigger than one, so the two multipliers of the form gðrÞ=r reduce to �1=r: In summary, it
suffices to verify that

�a sin t ¼ �
ða cos t þ ua1ðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða cos t þ ua1ðtÞÞ
2 þ ða sin t þ ua2ðtÞÞ

2
q � ða sin t þ ua2ðtÞÞ

a cos t ¼ �
ða sin t þ ua2ðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða cos t þ ua1ðtÞÞ
2 þ ða sin t þ ua2ðtÞÞ

2
q þ ða cos t þ ua1ðtÞÞ

with the above choice of ua: It can be checked that this is indeed the case. &

Note that in the above example, jjuajj½k� ¼ 1 for all k50: Hence, the system ’xx ¼ f ðxþ uÞ is not
Dk

iss for any k50: To see this, suppose that the system is Dk
iss for some k50: Then there exist

some b 2 KL and s 2 K such that

jxaðtÞj4bðjxað0Þj; tÞ þ sðjjuajj½k�Þ ¼ bða; tÞ þ sð1Þ

for any a > 2: Consequently,

lim sup
t!1

jxaðtÞj4sð1Þ

for any a52: This is a contradiction since jxaðtÞj � a for all a > 2:
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Also note that since the system ’xx ¼ f ðxÞ as in the example is gas, the system ’xx ¼ f ðxþ uÞ is
iss in constant inputs. Thus, the lemma provides an example where a system is iss in constant
inputs but fails to be Dk

iss for any k50:
Below we modify the system to get a system that is Diss but not iss. Thus we obtain an

alternative to the counterexample in Section 9.
Let f be as defined in Lemma 9.2 and consider the system

’zz ¼ jðjzjÞf ðzÞ þ u ð61Þ

where jðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
5jrj: Let V ðzÞ ¼ ðz21 þ z22Þ=2: One has

DV ðzÞðjðjzjÞf ðzÞ þ uÞ ¼ jðjzjÞ
gð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z12 þ z22

q
Þ

jzj
jzj2 þ z � u4gð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z12 þ z22

q
Þjzj2 þ z � u

It follows that

juj4
gðjzjÞjzj

2
) DV ðzÞðjðjzjÞf ðzÞ þ uÞ4

gðjzjÞjzj2

2

Consequently, system (61) is iss. According to Lemma 9.2, the system

’xx ¼ jðjxþ ujÞf ðxþ uÞ ð62Þ

is Diss: Below we show that system (62) is not iss. To see this, consider, for each a > 2; the input
*uua defined by *uuaðtÞ ¼ uðatÞ: Let *xxaðtÞ ¼ ða cos at; a sin atÞ: One has:

* j *uuaðtÞj � 1 and j *xxaðtÞj � a:
* For any a > 2; *xxaðtÞ � *uuaðtÞ ¼ �1 and

j *xxaðtÞ þ *uuaðtÞj2 ¼ j *xxaðtÞj2 þ 2 *xxaðtÞ � *uuaðtÞ þ j *uuaðtÞj2 ¼ �1

Hence, jðj *xxaðtÞ þ *uuaðtÞjÞ ¼ a:
Since *xxaðtÞ ¼ xaðatÞ and *uuaðtÞ ¼ uaðatÞ; and since xaðtÞ is a solution of (60), it follows that *xxaðtÞ is a
solution of the equation

’*xx*xxaðtÞ ¼ af ð *xxaðtÞ; *uuaðtÞÞ

Combining this with the fact that jðj *xxaðtÞ þ *uuaðtÞjÞ ¼ a; one sees that *xxaðtÞ is a solution of (62)
with the input *uua: It follows from the fact that j *uuaðtÞj � 1 and j *xxaðtÞj � a that it is impossible for
system (62) to be iss.
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APPENDIX A: SMOOTH APPROXIMATION TO MEASURABLE, ESSENTIALLY
BOUNDED FUNCTIONS

We need in the text several routine smooth approximation results; for ease of reference, we
provide proofs here.

Let j be measurable, essentially bounded on ½a; b�: Then there exists a sequence of measurable
simple functions fjjg that converges to j almost everywhere on ½a; b� such that jjjjjj4jjjjj (c.f.
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[17, Theorem 4.13]), (where jj � jj stands for the L1 norm on ½a; b�). Furthermore, it is also easy to
see that for every measurable simple function r; there exist a sequence of measurable piecewise
constant functions frjg that converges to r almost everywhere on ½a; b�; and the frjg can be
chosen so that jjrjjj4jjrjj for all j (see, for instance, Remark C.1.2 in Reference [18]). In turn, for
each piecewise constant function c : ½a; b� ! R; one can find a sequence of continuous functions
fcjg that approaches c almost everywhere with the property that jjcjjj4jjcjj: Finally, by the
Weierstrass theorem, each continuous function s : ½a; b� ! R can be approximated by a
sequence of polynomial functions fsjg uniformly on ½a; b�: Since the convergence is uniform, one
sees that limj!1 jjsjjj4jjsjj: Combining the above arguments together, we have the following
small variation of Remarks C.1.1 and C.1.2 in Reference [18]:

Lemma A.1
Let j : ½a; b� ! R be measurable, essentially bounded. Then there exists an equibounded
sequence fjjg of smooth functions such that

* jj ! j a.e. on ½a; b�;
* lim supj!1 jjjjjj4jjjjj; and
* by the Lebesgue dominated convergence theorem, limj!1 jjjj � jjj1 ¼ 0; where jj � jj1 is the L1

norm on ½a; b�:

Observe that the above approximation result also holds for functions from ½a; b� to Rm:
Let k51: Suppose that u 2 W k;1ða; bÞ: Let fjjg be a sequence of smooth functions that

approaches j :¼ uðkÞ as in Lemma A.1. Define inductively, for i ¼ 1; 2; . . . ; k

ji
jðtÞ ¼ uðk�iÞðaÞ þ

Z t

a
ji�1
j ðsÞ ds

where j0
j ðtÞ ¼ jjðtÞ: Let ujðtÞ ¼ jk

j ðtÞ: It can be seen that, for i ¼ 1; . . . ; k; uðiÞj ¼ jk�i
j : Since

juðk�1Þ
j ðtÞ � uðk�1ÞðtÞj4

Z t

a
jjjðsÞ � uðkÞðsÞj ds4jjjj � jjj1

it follows that uðk�1Þ
j ! uðk�1Þ uniformly on ½a; b�: Processing inductively, one shows that, for

i ¼ 0; 1; . . . ; k � 1; fuðiÞj g converges to uðiÞ uniformly on ½a; b�: It then follows from the uniform
convergence that limj!1 jjuðiÞj jj ¼ limj!1 jjuðiÞjj for all i ¼ 0; 1; . . . ; k � 1: Hence, we have shown
that, for k51; if u 2 W k;1ða; bÞ; then there exists a sequence of smooth functions fujg that
converges to u uniformly with the property that lim supj!1 jjujjj½k�4jjujj½k�: Combining with the
case of k ¼ 0 as stated in Lemma A.1, we get the following:

Corollary A.2
Let k50: Suppose that u 2 W k;1ða; bÞ: Then there exists an equibounded sequence of smooth
functions fujg that converges to u pointwise on ½a; b� with the property that

lim sup
j!1

jjujjj
½k�4jjujj½k�
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