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SUMMARY

A new notion of input-to-state stability involving infinity norms of input derivatives up to a finite order £ is
introduced and characterized. An example shows that this notion of stability is indeed weaker than the
usual 18S. Applications to the study of global asymptotic stability of cascaded non-linear systems are
discussed. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A central question in control theory is how to formulate, for general non-linear systems, notions of
robustness and stability with respect to exogenous input disturbances. The linear case is by now very
well understood, and, at least in a finite-dimensional set-up, most ‘reasonable’ definitions of ‘input-
to-state’ or ‘input—output’ stability (provided in this last case that additional reachability and
observability assumptions are met) boil down to local asymptotic stability, viz. to the classical
condition on the systems poles lying in the complex open left half-plane. However, for non-linear
systems the range of possibilities is much broader, and the goal of coming up with an effective
classification for many different behaviours that might be labeled as ‘stable’ together with methods
which would allow to establish relationships between such stability notions has attracted a
substantial research effort within the past years. In this respect, input to state stability (1ss) and
integral 1ss, as well as # , theory, have proven to be powerful tools, used successfully in order to
tackle problems both of robustness analysis and control synthesis, [1-5].
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1036 D. ANGELIL E. D. SONTAG AND Y. WANG

In the 1ss-related literature, a ‘disturbance’ is a locally essentially bounded measurable
function. Such an extremely rich set of possible input perturbations is well suited to model
Gaussian and random noises, as well as constant or periodic signals, slow parameters drifts, and
so on. If, on one side, this makes the notion of 1ss extremely powerful, on the other it is known
that 1ss might sometimes be too strong a requirement [6]. In the output regulation literature [7],
instead, the focus is on ‘deterministic’ disturbances, i.e. signals that can be generated by a finite
dimensional non-linear systems, (usually smooth), when the state is evolving in a neighbour-
hood of a neutrally stable equilibrium position. This is an extremely interesting class of
persistent disturbances for which, roughly speaking, the following is true:

Idll,, small = ||d

~ and derivatives of arbitrary order are also small

Under similar circumstances, for instance when cascading asymptotically stable systems,
regarding the ‘forcing’ system’s state as a disturbance typically yields

limsup [d(f) =0 = limsup |d(5)] =0

t—>+00 t—>+400

Nevertheless, the classical definition of input-to-state stability completely disregards such
additional information. Tracking of output references, see Reference [8], is another area where
‘derivative’ knowledge is usually disregarded (the analysis is often performed only taking into
account constant set-points), whereas such information could be exploited to get tighter
estimates for the steady-state tracking error due to time-varying, smooth reference signals.

Analogous situations arise when parameters variations are taken into account (i.e. in adaptive
control) and we expect the system to have nice and stable behaviour for slow parameters drifts.
The study of systems with slowly varying parameters has long been an interesting topic in the
literature, see e.g. References [9, 10]. The analysis of such a system is usually carried out by first
considering the systems corresponding to ‘frozen’ parameters. If for all the frozen parameters,
the corresponding frozen systems possess certain stability property uniformly, then it is
reasonable to expect that the system with slowly varying parameters will possess the same
property. See, for instance, Reference [10] for a result of this type. A more general question is
how the magnitudes of the time derivatives of the time varying parameters affect the behaviour
of the systems.

The main contribution of this note is to show how, in the context of 1ss, stability notions can
be adjusted in order to take into account robustness with respect to disturbances and their time
derivatives. The new notion of DfIss is defined through an 1ss-like estimate which involves the
magnitudes of the inputs and their derivatives up to the kth order. We also propose several
properties related to the D¥iss notion. All these properties serve to formalize the idea of ‘stable’
dependence upon the inputs and their time derivatives. They differ in the formulation of the
decay estimates which make precise how the magnitudes of derivatives affect the system. We
illustrate by means of several interesting examples how these properties differ from each other
and from the well known 1Ss property.

One of our main objectives is to provide equivalent Lyapunov characterizations for these
properties. Interestingly enough, one of our Lyapunov formulations already appeared in
Reference [9], (see formula (5) in that reference). In this work, we provide a stability property
that is equivalent to the existence of this type of Lyapunov functions. As a key step in
establishing the Lyapunov formulations, we show how the DFiss property can be treated as a
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special case of the input-output-to-state stability property (for detailed discussions on this
property, see Reference [11]).

A second objective is to discuss some applications of the newly introduced notions to the
analysis of cascaded non-linear systems. The well known result that cascading preserves the 1ss
property is generalized to the DFiss property.

The paper is organized as follows: Section 2 provides the basic definitions. Sections 3-5
contain the Lyapunov characterizations of the D¥Iss property and some other related properties.
Sections 6 and 7 are devoted to the study of cascaded systems. Sections 8 and 9 provide
discussions on the relation between the newly introduced stability notions and the well
established 1ss property.

2. BASIC DEFINITIONS

Consider non-linear systems of the following form:
x(1) = f(x(2), u(2)) (1

where x(¢) € R" and u(f) € R" for each #>0. The function f:R" x R” — R" is locally Lipschitz
continuous. Thus, for any measurable, locally essentially bounded function u(¢) : R — R™, and
any initial condition ¢ € R”, there exists a unique solution x(z, &, u) of (1) satisfying the initial
condition x(0, &, u) = £, defined on some maximal interval (Tgu, Tgu).

Recall that system (1) is input-to-state stable (1ss for short) if there exist y € # ,,* and
p e A& so that the following holds:

(e, & )| < BUEL ) + 7(lugon o) )

forall t>0, all £ € R", and all input signals u, where for any interval 7, u; denotes the restriction
of u to 1, and where [|v|| denotes the usual L” -norm (possibly infinite) of v. Usually one can think
of u as an exogenous disturbance entering the system. Note that if (2) holds for any trajectory on
any interval where the trajectory is defined, then the system is automatically forward complete.

We denote by W%>(J), for any integer k>1 and any interval J, the space of all functions
u:J — R" for which the (k — 1)st derivative u*~ exists and is locally Lipschitz. For k = 0, we
define W% (J) as the set of locally essentially bounded u:J — R”. When J = [0, 4+-00), we omit
J and write simply W%>. (Since absolutely continuous functions have essentially bounded
derivatives if and only if they are Lipschitz, the definition of W%>(J), for positive k, amounts to
asking that the (k — 1)st derivative «*~1 exists and is absolutely continuous, and hence, its
derivative, that is, u®, is locally essentially bounded. Thus W*>(J) is a standard Sobolev space,
justifying our notation.)

Definition 2.1
System (1) is said to be kth derivative input-to-state stable (D*1ss) if there exist some % .%-
function B, and some . -functions },,7,...,7; such that, for every input ue W5, the

“A function F:S — R is positive definite if F(x)>0, YxeS, x#0 and F(0)=0. A function y:Rsq — Rs¢ is of
class ¢ if it is continuous, positive definite, and strictly increasing. It is of class 4, if it is also unbounded. Finally,
P:R>0 X R>9 = Rxis of class " & if for each fixed >0, f(-,7)is of class # and for each fixed s > 0, f(s, ) decreases
to 0 as ¢ — o0o. An important fact concerning 4", functions which will often be used in the following sections is the so-
called ‘weak triangular inequality’ y(a + b) <7y(2a) + y(2b) for all a,b>0.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1035-1056
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following holds:
(e, & )l < BAEL B + polllall) + yo(lllD) + - - + (1) 3)

for all 1>0.

As with 18s, we remark that if estimate (3) was instead only required to hold on the maximal
interval of definition of the solution x(¢,&,u), then |x(¢,&,u)| is uniformly bounded on any
subinterval of the maximal interval. Hence, the solution must be globally defined if u e W5>,
and the same definition results.

We say simply that the system is Diss when it is D'1ss and, of course, Iss is the same as D1ss
for £ = 0.

It is also clear that a system is DF1ss if and only if there exist some ff € #"% and some y € A
such that

(e, & w)l < BUEL 1) + y(llull™) 4)

for all #>0, where ||u|™ = maxo<;<¢{||u®||}.

Lemma 2.2
System (1) is D¥1ss if and only if property (4) holds for all smooth input functions (with the same f, ).

Proof
One implication is trivial. To prove the non-trivial implication, assume for some f§ € #".% and
y € A, estimate (4) holds for all smooth input functions. By causality, one may replace |[u||} by
llugo.p|[*) in (4).

Let u e W5, Fix T >0 such that x(¢,,u) is defined on [0, T]. Note that u® is essentially
bounded on [0, T]. It is a routine approximation fact (reviewed in Corollary A.2 in the appendix)
that there exists an equibounded sequence of ™ functions {u;} such that

® u; — y pointwise on [0, T]; and
® limsup; . ||(;).n " < lluo. I
Applying (4) to the trajectories with the input function u;, and then taking the limits, we get

be(t, €, )] < B(EL, 00 + p(lulg)y. ) (5)
Hence, T ju = 00, that is, x(¢, &, u) is defined on [0, c0). Thus T can be picked arbitrarily, and (5)
holds for all >0 where ||u||{§]Tf) becomes by ||u||). O

3. A LYAPUNOV CHARACTERIZATION OF D'iss

Fix k> 1. For system (1), consider the auxiliary system

X = f(x,20), Z0=121,...,%k—1 =0 B
Let
X, & n,0) = ("(” &, v))
z(t,1,v)
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denote the trajectory of (6) with the initial state x(0) = &, z(0) = 5, (note that the z-component of
the solution is independent of the choice of ¢&.)
Observe that, if property (4) is known to hold for all inputs in W% then, for the trajectories
(x(t, &, 29, 0),2(2, £, 29, v)) of the auxiliary system, the following property holds:
x(#, &, m, v) < BAEL 0) + Folllzllo,9) + Frdllvll) (7)
for all measurable, locally essentially bounded inputs v. Given the fact that |z(¢)|<||zll;p, is
always true, we get

1%z, &, ) < BACE I, 1) + Fo(llzllo.9) + 1 (Ilol])

for some 7y, 7, € # . This shows that if (1) is D1ss, then (6) is input—output-to-state stable, i.e.,
10ss, with v as input and z = (z,zj,...,25_1) as outputs (cf. Reference [11]).

On the other hand, if the auxiliary system (6) is 10ss, then there exist some f € 4% and
V0,7 € A such that

1%(2, &, )| < BUS =+ Inl, ) + 70(llzllo.0)) + v(I[vlD
for all locally essentially bounded inputs v. Observe that
BAL =+ Inl, ) < p2IC], 1) + B2Inl, 0) < B2IC], 1) + B2Izlljo,- 0)
It follows that
1%, &, 0)| < BUEL 1) + Fo(llzll.0) + 7ol

holds for all locally essentially bounded v, where ﬁ(s, t) = B(2s, 1), and Po(s) = P(2s,0) + yo(s). In
particular,

(e, & m, 0) < BAUEL 1) + Follzlle.) + (el

This implies that for any u € W%™, the trajectory of system (1) with initial state & satisfies the
estimate:

(e, & ) < BUEL £) + 7 ([l )

where y,(s) = 70(s) + y(s). We have therefore proved the following result that underlies the
proofs of Theorems 1 and 2 to be given later.

Lemma 3.1
Let k> 1. System (1) is Df1ss if and only the associated auxiliary system (6) is 10ss with v as input
and z = (z9,21,...,2¢_1) as output.

By the main result in Reference [11], System (6) is 10ss if and only if it admits an 10ss-
Lyapunov function, that is, a smooth function ¥ : R" x R — R such that

® for some o, & € A , it holds that

Ul 2D <V(xz)<a(x,2)])  V(x, 2)
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® for some o, p € A ,
ov
Ozj—1

020D + o2 4o+ (5,20 — 2V (62) + p( 0
X 620

for all x, z and v.
Interpreting z as the input and its derivatives for system (1), we get the following:

Theorem 1
Let k> 1. System (1) is D*1ss if and only if there exists a smooth function ¥ : R" x R — R-o
such that

e there exist some o, & € # ~, such that for all (x, u~) e R” x R it holds that
o[, D < Ve, Ty <[ e, 1)) (®)

e there exist some o€ 4 n,p€ A~ such that for all xeR" and all uf e R™D with
WM = (o, 1y, . . ., 1), it holds that

ov ov ov
—— (o, 1) £, pg) + 2 o 1My 4+ =— (e, 1y
Ox Olg Oy
ov _ _
o — ol < — a0 ) + () ©)
k-1
Remark 3.2
Note that inequality (8) implies that
o) <V (ox, iy <, 1)) (10)

Suppose a system (1) admits a Lyapunov function ¥ satisfying (9) and (10). Then it can be seen
that, along any trajectory x(z) with u € W5 as the input, (9) yields

d _ _
3 V6O, u@), . u V@) < = a(V @), u(0), w7V @) + p(lu )
for almost all £>0. From this it follows that for some f € # % and y € ¢, it holds that
V() u(@), ., u® @) < BVl D) + p(llul™) V=0

where ¥y = V(x(0), u(0), . . .,u*~1(0)). Combining this with (10), one sees that system (1) is D*1ss.
Hence, an equivalent Lyapunov characterization of D*Iss is the existence of a smooth function ¥
satisfying (9) and (10) for some o, &, € # +, and some p € A .

4. ASYMPTOTIC GAINS

Clearly, if a system is DFfiss, then it is forward complete (for u € W*~) and for some 7,
Vis---»Vk € A it holds that

tim sup |x(z, & )| < yolull) + 71 (lell) + - - - + p (@), (11)

=00

We say that a forward complete system satisfies the asymptotic gain (AG) property in u, ..., u"*
if, for some y,,...,7; € 4, (11) holds for all ¢ e R" and all u € Wk,

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1035-1056
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By Lemma 3.1, the system (1) is D¥1ss if and only if the associated auxiliary system (6) is 10Ss
with v as input and z = (zp,zj,...,2;_1) as output. Applying the main result in Reference [12]
about asymptotic gains for the 10ss property to the auxiliary system (6), one can prove the
following:

Theorem 2
For a forward complete system as in (1), the following are equivalent:

1. it is Dhiss;
2. it satisfies the AG property in u,...,u® and the corresponding zero-input system

x = f(x,0)
is (neutrally) stable.

5. RELATED NOTIONS

In this section, we consider two properties related to Diss. We focus specifically on Diss (rather
than DF1ss) as it seems to be the most relevant in applications. As a matter of fact, the authors
were not able to find any example of a D?1ss system not being Diss and it is therefore an open
question whether or not Df1ss (k>1) is equivalent to Diss.

We say that system (1) is 18s in # if, for some ff € # % and some y € 4, the following estimate
holds for all trajectories with inputs in W!>:

(2, &l < BAEL O + y(llal) - ve=0 (12)

We say that system (1) is 1SS in constant inputs if, for some ff € A" ¥ and y € A, the following
estimate holds for all trajectories corresponding to constant inputs u:

(e, & w)| < BUEL ) + y(lful)) - Ve=0. (13)

It is obvious that if a system is 1ss in #, then it is GAS uniformly in all constant inputs, that is,
for some ff € 4%, the following holds for all trajectories with constant inputs:

(2, & wl <Pl ) Vi=0

Also note that (1ss in @) = (Diss). The converse is in general false. This can be seen through the
following argument. Suppose Diss implies 1SS in #. Then we would have

(158) = (D1ss) = (1ss in #)

and hence, (1ss) = (1ss in u). But this is false, as one can see that the linear system x = —x + u is
1SS but not 1SS in .
It is also clear that, for any £>0,

(DF1ss) = (1ss in constant u)

Again, the converse implication is in general false as shown by examples in Section 9. Using
similar arguments as in the proof of Lemma 3.1, we get the following:

® System (1) is 1ss in # if and only if the auxiliary system
x=f(x,2z), z=v (14)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1035-1056
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is state-independent-input-to-output stable, i.e. s1tos (see Reference [13]) with v as inputs and
x as outputs; and
® System (1) is IsS in constant inputs if and only if the auxiliary system

x=f(x,z), z=0 (15)
is output-to-state-stable, i.e. 0ss (see Reference [11]) with z as outputs.

Applying Theorem 1.2 of Reference [14] in conjunction with Remark 4.1 in Reference [14] to
the s1tos property for system (14), we get the following:

Proposition 5.1
System (1) is 1ss in @ if and only if there exists a smooth Lyapunov function V' : R" x R" — R~
satisfying the following:

® for some o,d € A ~,

)<V po)<a() YxeR', Yy eR” (16)

® for some y € 4 ~, and some continuous, positive definite function o,

ov ov
Vx, o) Z 1l ) = ™~ (x, po) S (x, o) + £ (x, po)py < — oV (x, ) (17)
for all x e R” and all u, u; € R".

Observe that if one restricts the set where the input functions take values to be a bounded set %
(as in the case of Reference [9]), then the Lyapunov characterization in Proposition 5.1 is
equivalent to the existence of a smooth Lyapunov function V satisfying (16) for some o, a € #
such that for some o € 4, and o € A,

0 0
)+ 5t < = 275 )+ )

for all £ e R, all y, € %, and all u; € R". Such a Lyapunov estimate was used in [9] to analyze
the asymptotic behaviour of systems with slowly varying parameters.

Applying Theorem 2 of Reference [11] to the oss property for system (15), we have the
following:

Proposition 5.2
System (1) is 1ss with respect to constant inputs if and only if it admits a smooth Lyapunov
function 7 :R" x R™ — R, such that

® for some o,d € A ~,
(|G, WD <V(x, w<a(V(x,pl) VxeR’, VueR" (18)

® for some o€ A ,0€ A,

ov
5 &S )< — V1) + o(|ul) 19)
for all x e R", u e R™.
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Remark 5.3
It may also be interesting to consider the Diss property with different indexes on different
components of the inputs. For instance, for a system

X = f(x,u,v) (20)

with (u, v) as inputs, one may consider the property that for some f e #' ¥, y,€ # and y, € A,
it holds that

be(e, & u, )l < BACL ) + 7, (laell) + vo([loll) + (1121 ey

One can also get a Lyapunov characterization for such a property by using the same argument
as in the proof of Theorem 1 with the 10ss results. For instance, a system as in (20) satisfies
property (21) if and only if there exists a smooth Lyapunov function ¥ such that

® for some o,a € A ,

(&, vo)) S V(E, vo) < all(&, vo)l)

® for some o € %, some p,, p, € A, it holds that
oV ov
o (x, vo) £ (x, g5 vo) + Em (5, vo)1 < — a(V(x,v0)) + p, (o) + pu(Ivol) + pp(Ivi])

for all x, uy, vo and v;.

6. APPLICATION OF Diss TO THE ANALYSIS OF CASCADE SYSTEMS

An interesting feature of 1ss, which makes it particularly useful in feedback design, is that the
property is preserved under cascades, (see Reference [15]). Unfortunately, this is not the case for
the weaker notion of integral 1ss, as remarked in Reference [1] (but, see Reference [16] for
related work). Interestingly, however, although Diss is also a weaker property than 1ss, it is
preserved under cascades, as shown in this section.

For a system

X = f(x,v,u)

with (v, u) as inputs, we say that the system is D*1ss in v and D'1ss in u if there exist f € # % and
v € A such that the following holds along any trajectory x(z, &, v, u) with initial state &, any input
(v, u) for which v e W% and u e Wh™:

(e, & v, )l < BAEL 1)+ yUlel™) + (™) ve=0

Lemma 6.1
Consider a cascade system

x = f(x,z,u)
z=g(z,u)

where x(-) and z(-) evolve on R" and R™, respectively, the input u takes values in R”, and where
£ is locally Lipschitz and g is smooth. Let k>0. Suppose that the z-subsystem is D1ss with u as
input, and that the x-subsystem D**!1ss in z and D*1ss in u. Then the cascade system (22) is D*1ss.

(22)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1035-1056
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Proof
By assumption, there exist ff, € #" ¥ and 7y, € # such that, along any trajectory z(¢) of the z-
subsystem with input u, it holds that

201 < B(EO), 1) + 7|l Ve=0 (23)
and there exist some f5, € #' ¥ and y, € # such that, for any trajectory x(¢, v, u) of the system
x = f(x) U’ u),

(2, &, 0, )| < B ()], 2) + (ol + 7, (lul™) - Ve=0 (24)

To prove Lemma 6.1, we need to find a suitable estimate for the x-component of solutions of
(22). For this purpose, we define by induction for 1 <i<k + 1:

0
gi(a,bo,bl,... i 1)_ gl 1 ( b0)+z gi— 1 j+1

where g (a, by) = g(a, by). It can be seen that ¢;(0,0,...,0) = 0 for all 0<<i<k, hence, there exists
some o¢; € A such that

gi(as bOs D) bi*l) < O-i(|a|) + Gi(|b[i_l]|)

Again, by induction, one can show that, along any trajectory z(¢) of the z-subsystem of (22) with
an input u € W5 it holds that
d j (i=1)
4720 = 9i(n(1),d(®),d(t), ...,d"" (1))
for all 1<i<k + 1. It then follows that
24D < o (D) + a1ty (25)

for some ¢ € . It then follows from (24) and (25) that, for some p € ¢, it holds that along any
trajectory (x(z),z(¢)) of (22),

(D)< B (x(0), 1) + p(llzll) + p(llul ™) Ve=0 (26)

Applying a standard argument to (26) and (23) as in the proof of the result that a cascade of 1ss
systems is again 1ss, one can show that system (22) is Df1ss.
To be more precise, (26) implies that

@< B, (/D1 5) + p(lEllya) + o) V=0 @7)

along any trajectory of (22). Fix an input u and pick any trajectory (x(¢),z(¢)) of (22) with the
input u. Let x; = x(¢/2). We also have

t
prl <. (161.5) + pUzllog) + el ) V10

Hence, there exist some fy, B. and some j € # (which depend only on By, p) such that

t ~ ~ .
Be(betl.5) <BEL D + Bllllos 0 + A, ) (28)

for all 1>0. By (23), |2()| < B.(1z(0)], 0) + 7.(||u||"™) for all 7>0, hence,
B(llzllo /2y ) < B=(12(0)], £) + -([ul M) V=0 (29)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1035-1056
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for some ﬂ_z e A% and some y. € . With (29), one sees from (28) that for some [§ e A ¥ and
some 7, € 4, it holds that

B, (w1, 5) <BllEl 0+ L) )+ Fulllll ) (30)

for all #=0. Since

2l <B(EO), £/2) + 7.l Vi=1/2
it follows that for some ﬁz e A& and some j, € &, it holds that

P12l 2.0) < B=12O), 1) + 5=l ) Ve=0 (3D
Combining (26), (30) and (31), one sees that there exist some ff € #".% and some y € 4" such that

(O < BOO)] + 12(0)], ) + p(llull ™) V=0
Note that the choice of f and y was made independent of the trajectory of (22). Together with

(23) this shows that (22) is DFiss. O

Remark 6.2

Observe from the above proof that to show that system (22) is D*iss, the assumption that
requires g be smooth can be relaxed to requiring that g be 4* if k> 1, or to requiring that ¢ be
locally Lipschitz in the case when k£ = 0.

Applying Lemma 6.1 to the special case of £ = 1, one gets the following:

Corollary 6.3

Consider a cascade system as in Lemma 6.1, where f and g are ¥' maps. Suppose that the x-
subsystem is Diss with (z,u) as inputs that the z-subsystem is Diss with u as inputs, then the
cascade system (22) is Diss with u as inputs.

Applying Lemma 6.1 to the following autonomous system:
X = fl(x,2)

(32)
z=g(2)

where f is locally Lipschitz, and ¢ is smooth, one sees that the system is Gas provided that the z-
subsystem is GAs and the x-subsystem is D*1ss with z as inputs for some k= 0.

It is by now a standard result that a system (32) is GAS if the x-subsystem is 1ss and the z-
subsystem is GAS. Now one sees that the 1ss property of the x-subsystem can be relaxed to DfIss.
This result can be further improved by only requiring the Df1ss property hold for small signals
produced by the z-subsystems.

For 6 > 0, we define the saturation function sats by

- r if |r]<o 33)
sats(r) =
’ sign(r)0 otherwise

For z = (z1,22,...,2z») € R", we define sats(z) == (sats(z1), sats(z2), ..., sats(z,)).
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Proposition 6.4
A forward complete system as in (32) is GAS provided that for some é > 0 and for some £ >0, the
system

x = f(x,sats(z)) (34)

is DF1ss and that the z-subsystem is GAS.

Proof

The local asymptotic stability property of (32) follows directly from the local asymptotic
stability property of the x and z subsystems. Thus we only need to show the global attraction
property, in particular, the convergence property of x(¢) for any trajectory (x(¢),z(¢)) of (32).

First of all, the forward completeness assumption guarantees that x(¢, £, z) is defined on [0, 00)
for any trajectory of the x-subsystem with initial state £ and external signal z.

Pick any trajectory (x(¢),z(¢)) of (32). Since the z-subsystem is GAs, there is some 7 > 0 such
that |z(z)| <0 for all t=T. Consequently, (x(¢),z(f)) is also a trajectory of (34) with the z-
subsystem for all #>T7. Since system (34) cascaded with the z-subsystem is GAs, it follows that
x(t) converges to 0. O

7. AN ISS RELATED INTERPRETATION OF DFiss

Definition 7.1
A smoothly invertible 1SS filter is an 1SS system

w=gw,d) (35)
with w(?),d(f) € R", where g : R" x R" — R" is a smooth map for which there exists a smooth
map G:R" x R" - R" such that G(vo, g(vo, v1)) = vi and g(vg, G(vg,v1)) = v; for all vy, v;.

The main result in this section is the following characterization of DfIss:

Theorem 3
Let &k be a positive integer. The following facts are equivalent:

1. System (1) is D¥1ss.
2. There exists a smoothly invertible 1ss filter

=901, 1 (36)
such that the system

X = fx,n)

=90, 1 (37)

is D¥liss.
3. For each smoothly invertible 1ss filter as in (36) the cascade system (37) is D¥~!iss.

Proof
The implication (iii) = (ii) is obvious. Let us consider (ii) = (i). Since system (37) is D !Iss,
there exist some ff € 4% and some y € # such that along any trajectory (x(¢),#(¢)) of (37), it
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holds that
()] < B(x(0)] + [n(0)], £) + y(|Id][*~ )
<PRKO), 1) + BolInlD + y(lldl*= ) (38)

where fy(s) = f(s,0). Let G be the smooth function as in Definition 7.1 for the function ¢ in
system (37).

Observe that any trajectory x(¢) of (1) with an input n € W%, (x(¢), 5(t)) is a trajectory of (37)
with the input d € W5 defined by d(t) = G(y(t), 1(t)).

Notice that ¢(0,0) = 0 implies G(0,0) = 0. Thus, by continuity of G, there exists y, € #
such that G(a, b) <y,(lal) + y,(|b|). Take any trajectory x(¢) of (1) with an input € W%, and let
d(1) = G(n(1),7(1)). Then

lldll<poClinll) + yollAll) (39)

Hence, in the case when k& = 1, that is, when system (37) is 1ss, (38) combined with (39) implies
that

()1 < B2Ix(O)], ) + Bo2lmID + yolllnlD + voCllal) (40)

This shows that system (1) is Diss. To consider the more general case for k=2, we consider
inductively the following functions defined by

i
0G,_1
Gi(aO:alan-,ai:aHl):Z l'

=0 o

(GOaal:---:ai)aj+1
with Go(ag,ay) .= G(ag,a;). Observe that for each i, G;(0,...,0) =0, and hence, there exists
some y; € # such that

|Giag, a, . .., ai1)| <7y,(ja™ 1))

where al = (ag, ai, ..., a;).
By induction, one can show that for any trajectory 7(z) of the n-subsystem of (37) with the
input d € W*=1> it holds that, for any 0<i<k — 1,

d(t) = Gi(n(0), (@), ..., 1" (@)
Consequently, one has
[1d]1% 1 < Il
Thus, for any trajectory x(z, £, 1) of (1), it holds that, with d = G(n,#),
(e, & ml < BRIEL 1) + BoIInll) + (1)
<B2IEL 1) + BolnlD) + Fxllnll™)

where §; = yoy,. Hence, system (1) is D*Iss.
To complete the proof of Theorem 3, it only remains to show the implication (i) = (iii). But
this implication is an immediate consequence of Lemma 6.1. O
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8. ARE Diss SYSTEMS ALWAYS ISS?

In this section we will discuss an example of a Diss system which is not 1ss. This shows that Diss
is indeed strictly weaker than 1ss. First, however, we show that Diss and 1ss are equivalent for
scalar systems.

Proposition 8.1
A one-dimensional system in the form of (1) is 1ss if and only if it is DIss.

Proof
Clearly, we only need to show one direction of the implication. Let a one-dimensional system (1)
be Diss. Then, there exists a smooth function 7 : R x R" — R~ such that

Xl + gD <V Cx, po) <allxl + [pol)  Vix, po) € R x R™ (41)
for some o, o € A, and
oV ov
== 06, p10) S (x, o) + =— iy < — allxl) + 7ol + L), Vo, V(. 1) (42)
ax a‘uO
for some o,y of class # . In particular, with y; = 0, (42) yields

0
(5 o) 5 ) < = 1) + 7 @)

This implies that there exists a /# o, gain margin y (for instance y = o~ 'o2y) such that

1 20D = S (5 0) 5 ) < — ) (#4)

where & is of class # . If V is independent of u,, this would already provide an 1ss-Lyapunov
function for the system, and the 1ss property would follow. For the general case, let
7o(x) = V(x,0). From (41), one sees that

) <N <ax) Vx

and from (44), one sees that
DVo(x) f(x,0)< —a(lx]) Vx (45)

Since both DVj and f(x,0) are scalar functions, it follows that DV(x) #0 for all x+0. Since the
0-input system x = f(x,0) is GAS, it follows that x f(x, 0) <0 for all x#0. This together with (45)
implies that xDV(x) <0 for all x#0. We will complete the proof by showing the following:

Il = x(uol) = DVo(x) f (x, p1g) <O (40)

for all x#0, from which it follows that ¥} is an 1ss-Lyapunov function for the system.
Suppose (46) fails for some xy #0. Applying the intermediate value theorem to the continuous
function DVy(xg) f(xo, 1) with the property that DFVy(xo)f(x9,0)<0, one sees that there exists
some [y for which y(|ig|) <|xo| such that DVy(xo) f(x0, fto) = 0. It then follows from the fact that
DVy(xp) #0 that f(xo, 1) = 0. This is impossible since it contradicts (44). Hence, (46) holds
for all x. U
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Remark 8.2
Applying Theorem 3 and Proposition 8.1, one sees that for a scalar system as in (1), the
following are equivalent:

1. The system is ISS.

2. For some smoothly invertible 1ss filter as in (36), the corresponding cascade system (37) is
ISS.

3. For each smoothly invertible 1ss filter as in (36) the corresponding cascade system (37) is
ISS.

In what follows we show by example that Proposition 8.1 in general fails in higher
dimensions.

Example 8.3
Take any 2 x 2 matrix ® with the property that ® is Hurwitz but ®' + ® has at least one
positive eigenvalue (where AT denotes the transpose of 4). An example of such a matrix is

-1 4

-1 -1

Let 4 be such an eigenvalue of (@7 + @), and let v; be a unit eigenvector of ® corresponding to 1.
For 0 e R, let U(0) be defined by

b =

cos(f)  sin(0)
u) = 47
©) [—sin(@) cos(@)] “7)
Notice that U(0)' U(0) = 1. Consider now the system:
x = ("X)UO) U)X (48)

where 0(-) is taken to be the input to the system.

To see that this system is not 1ss, we will show that there is some input which is bounded and
for which the solution of (48) with x(0) = (0, 1)’ is not defined for all > 0.

To define this input, we proceed as follows. We start by writing the eigenvector v; in polar
form: v; = (cos ¢y, sin ¢), with 0< ¢, <2n. Viewing the system away from zero as a system on
R?\ {0}, we consider the feedback law 0(x) := ¢ — ¢, where, using polar coordinates, x; =
rcos ¢ and x, = rsin ¢. In defining the feedback, we may assume that arguments are taken in
the following range: 0<¢ <2n. However, the choice is irrelevant, since only trigonometric
functions of 0 appear in the system description.

In principle, there is no reason for a solution to exist for (48), under this feedback law, since
the feedback law is discontinuous. However, again from periodicity of the equations,
substitution into the right-hand side of (48) results in a smooth differential equation. Thus
there is a unique solution, defined on some maximal interval [0, Tj,.y), starting from the initial
state x(0) = (0, 1)’. We consider the input » which coincides with 0(x(¢)) on the maximal interval
[0, Thmax), and equals some arbitrary value, let us say zero, for ¢ > Tp.¢. This input is bounded (by
47). We now show that r = |x(¢)| /" o0 as t /" Thax-

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1035-1056



1050 D. ANGELIL E. D. SONTAG AND Y. WANG

Transforming to polar coordinates, we have that along trajectories of (48):

2r = 2(x"x)xTU(0) T DU(0)x = 2r*(cos ¢ sin p)U(0) ' DU(0) (COS;f)
Sin

-0
=r*(cos(¢p — 0) sin(¢p — 0))¥ ( cos(y )>

sin(¢p — 0)
where ¥ = ® + @', and

é X1 X2 — X2X|
=72

2
X7 + x5

= (=sin¢p cos p)UO)DPU(0) <C.OS ¢ )
sin ¢

-0
=r(sin(0 — ¢) cos(6 — ¢))D (COS(d) )>

sin(¢p — 0)

Thus, away from the equilibrium x = 0, we have that the system (48) on R\ {0} is, up to a co-
ordinate change, the same as the following system which evolves on R.o x S':

L coso— 0y sing— oy <07 (49)
r==<r - 1 -
2 sin(¢p — 0)
. cos(¢p — 0)
¢ = r*(sin(0 — ¢) cos(0 — ¢))D (50)
sin(¢ — 0)
With the feedback law 0 = ¢ — ¢, Equation (49) becomes
! A
r:§r3v1T Yo, :§r3 (51)
Thus r diverges monotonically to infinity in finite time, as claimed.
Nevertheless we claim that (48) is Diss. For this purpose, consider the system
x = (x)UO)YdU)x
0=—-0+d (52)

Here d takes value in R and plays the role of an exogenous input, whereas 6 is a component of
the extended state [, 0]'. By virtue of the main result in Section 7, the Diss property for (48) is
equivalent to the 1ss property for (52). Pick as a candidate Lyapunov function:

W(x,0) = x"UO) PUO)x + k6> (53)
where P = P’ > 0 is the solution of the Lyapunov equation
O'P+ PO =1, (54)
Notice that
Imin( PRI + KO S W (x,0) < Amax (P + k02 (55)

where Amin and Amax denote the largest and smallest eigenvalues of P, respectively.
Thus W is proper. Taking derivatives of W along any trajectory (x(¢),0(f)) of (52)
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yields
d
3, V&0, 0(0) = (O P[UO@) PUO)x(2) " UO0) PUO0))x(0)

+x(0"UO0) PUO@)UO(0) " U O(0)x(0))]

+ {ZX(I)T U(@(t))TPa% U(0(0)x(1) + 2k9(t)} (—0(1) + d(1)) (56)
Since U(w) is orthonormal for all w € R, it follows from (54) that
U(w)"PU(0)U(w) " ®U(w) + U(w) " ®TU(0)U(w) " PU(w) = —1, (57)

for all w. Let ¢ > 0 be such that |U(w) P(0/0w)U(w)|<c for all w, where |4| denotes the operator
norm of 4 € R**?. Then

[2x(t)T U(H(t))TPa% UO(t)x(t) + 2k0(t)} (—0(t) +d(1))
<2l (0()] + 1d(8)]) — 2k0(2)* + 2k0(1)d(2)

<O+ 421001+ 1O ~ K0P + ko)’

<% x()[* + 8¢20(1)* + 8c2d(1)* — kO(1)* + k d(1)° (58)
Combining (56)—(58), one sees that
% W(x(®),0(0)< — % ()" — (k — 8¢*)0(1)” + (8¢* + k)d(1)

along any trajectory of (52). It then can be seen that if £ > 8¢, W is an 1ss-Lyapunov function
for system (52). Consequently, system (52) is 1Ss as we wanted to show.

9. MORE EXAMPLES

It is clear that one has the following implications for each k>1:
18s = DFIss = 1ss in constant u

Below we show by examples how the converse implications may fail. For this purpose, we first
show the following.

Lemma 9.1

Consider a locally Lipschitz map f:R" — R”.

1. If the system X = f(x) is GAS, then the system X = f(x 4 u) is 1SS in constant u.
2. If the system x = f(x) 4 u is 188, then the system x = f(x + u) is Diss.

Proof
(i) Suppose that the system z = f(z) is GAS. Then, there is some f, € 4% such that

20| < Bo(1(0)], ) Vi=0 (59)
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holds for every trajectory z(-) of the system. Let u(z) = n be a constant input, and consider a
trajectory x(z) of the system X = f(x 4 u). Let z(f) = x(¢) + u(z) Then z(¢) is a trajectory of
z = f(z). Hence, z(-) satisfies (59). Combining this with the fact that |x(¢)| < |z(f)| + ||u]|, we get

(DI < Bo(12(O), 2) + llull < fo2Ix(O), 2) + Bo(2lul, 2) + [lul]
< BoI(O)], 2) + y([[ul])

where y(s) = fy(2s,0) + s. This shows that the system is 1SS in constant inputs.
(i1) Suppose that system z = f(z) + u is 1ss. Then, for some f, € #' ¥ and some y, € %, it
holds that

|22, &, )| < Bo(I€, ) + po([ful])

for the trajectory z(z, &, u) of the system with initial state z(0) = £ and input u. Take a trajectory
x(t,&,u) of the system X = f(x+u) for some input ue W™, Let z(t) = x(t, &, u) + u(t).
Obviously, z(+) is a solution of z = f(z) + u. Hence,

|z(2, &, )| < Bo(12(0)], ) + yo(llzl])
Arguing as in the proof of (i), it can be seen that
be(t, &, )l < Po(2IEL 1) + poCllzel]) + p([ful])
where y(s) = f,(2s,0) + s. Hence, the system is DIss. O

To show that (1ss in constant u) = DFiss, we first show the following.
Lemma 9.2

There exists a smooth system x = f(x) in R? with the following properties:

1. The origin is globally asymptotically stable for x = f(x).
2. For each a > 2 there exists an input « such that:

o u“is smooth, periodic, and u“ as well as all its derivatives are bounded in norm by 1;
@ the solution of

a
x=fx+u'(n), x0)= <0> (60)
is x(t) = (acos t,asin t).
Proof
We fix a smooth non-increasing function y : [0, c0) — [—1, 0] such that y(+) = —r on [0, 1/2], and
y(r) = —1 for all ¥>1. In terms of this y, we define the following system:

()

x| = x| — X2
[2, 2
X7+ x5
y((5+33)
Xp=—"— 72 x, +x;

/.2 2
X7 + x5
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Note that this is a smooth system on R?, since y(\/x% +x§)/ x? +x}=—1 for x ~ 0 (the
dynamics are, in fact, linear near 0). In polar co-ordinates, we have
F=90) §=-1

so the origin is indeed globally asymptotically stable. Observe that near the origin we have
i= —r, but for |x|>1 we have 7 = —1. This ‘slowing down’ will allow us to obtain the desired
result.

For each a > 2, we define the input u, as follows:

u‘f(t) \/ a*—1 Zin t—cos ¢
ua(t) — —
M%(f) _sinthy/a®—1cost

and observe that du¢/dt = 4, dug/dt = —uf, and (u$)* + (u$)* = 1. These facts imply that u®
and all its derivatives are bounded by 1.

The form x%(¢) = (a cos t,asin t)’ for the solutions of (60) may be verified by substitution into
the equation: one needs only to check that

y(\/ (acost + ul()) + (asin ¢ + ud()))

\/(a cost+ u‘f(t))2 + (asint + ug(t))2

(acost+ui(t)) — (asint + u5(t)) = —asint

2y (acos 1+ (0 + (asint + u§(0))?)

\/(a cost+ u’f(t))2 + (asint + u‘;(t))2

(asint 4+ u5(t)) + (acos t + uj(t)) = acost

As (acost,asint) has constant norm « > 2 and u has unit norm, the vector x 4+ « has norm
always bigger than one, so the two multipliers of the form y(r)/r reduce to —1/r. In summary, it
suffices to verify that

_asint= (acost + i) ~(asin -+ ul(0)
\/(a cost+ u‘l’(t))2 + (asint + u‘2’(t))2
in ¢+ u4(t
acost = (asin? + uy(%)) + (acost+ ui(t)
\/(a cost+ u‘l’(t))2 + (asint + ug(t))2
with the above choice of u”. It can be checked that this is indeed the case. O

Note that in the above example, |[u*|[¥) = 1 for all £ >0. Hence, the system x = f(x + u) is not
DFiss for any k>0. To see this, suppose that the system is D¥1ss for some & >0. Then there exist
some ff € A% and ¢ € A such that

k@< B O)], 1) + o(|u W) = fla, 1) + a(1)
for any a > 2. Consequently,

lim sup |x“(¢)| < a(1)

t—00

for any a>2. This is a contradiction since |x*(f)| = a for all a > 2.
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Also note that since the system X = f(x) as in the example is GAS, the system x = f(x + u) is
Iss in constant inputs. Thus, the lemma provides an example where a system is ISS in constant
inputs but fails to be D1ss for any k>0.

Below we modify the system to get a system that is Diss but not 1ss. Thus we obtain an
alternative to the counterexample in Section 9.

Let f be as defined in Lemma 9.2 and consider the system

z=(2)f(2) +u (61)
where @(r) = /1 +12>r. Let V(z) = (z} + z%)/Z. One has

(/2 +233)
DV (NS () +u) = (1) ————— " +z- u<yp(\/zh + B +2-u

|z |
It follows that

P(I2))z] (2Dl
2 )

lu| <
Consequently, system (61) is 1ss. According to Lemma 9.2, the system
x = o(x +ul) f(x 4 u) (62)

is D1ss. Below we show that system (62) is not 1sS. To see this, consider, for each a > 2, the input
u* defined by @t“(¢) = u(at). Let X*(¢t) = (a cos at, a sin at). One has:

® |i,(1) =1 and |X(1)] = a.
® For any a>2, X%(t)-a°(f) = —1 and
X0 + (O = [P +230) - 3 (1) + 1 () = ~1
Hence, o(|X“(¢) + #*(?)|) = a.
Since X“(f) = x*(at) and @ (¢t) = u,(at), and since x“(¢) is a solution of (60), it follows that X(¢) is a
solution of the equation
X(1) = af (X(0), @(2))

Combining this with the fact that ¢(|x“(r) + #“(¢)|) = a, one sees that X“(¢) is a solution of (62)
with the input @#. It follows from the fact that |#“(¢z)] = 1 and |X(¢)| = « that it is impossible for
system (62) to be IsS.
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APPENDIX A: SMOOTH APPROXIMATION TO MEASURABLE, ESSENTIALLY
BOUNDED FUNCTIONS

We need in the text several routine smooth approximation results; for ease of reference, we
provide proofs here.

Let ¢ be measurable, essentially bounded on [a, b]. Then there exists a sequence of measurable
simple functions {¢;} that converges to ¢ almost everywhere on [a, b] such that ||¢,[|<[l¢]| (c.f.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1035-1056



INPUT-TO-STATE STABILITY 1055

[17, Theorem 4.13]), (where || - || stands for the L., norm on [a, b]). Furthermore, it is also easy to
see that for every measurable simple function p, there exist a sequence of measurable piecewise
constant functions {p;} that converges to p almost everywhere on [a, 5], and the {p;} can be
chosen so that [|p || < ||p|| for all j (see, for instance, Remark C.1.2 in Reference [18]). In turn, for
each piecewise constant function ¥ : [a, /] — R, one can find a sequence of continuous functions
{{/;} that approaches  almost everywhere with the property that [|y/||<|y[|. Finally, by the
Weierstrass theorem, each continuous function ¢:[a,b] > R can be approximated by a
sequence of polynomial functions {c;} uniformly on [a, b]. Since the convergence is uniform, one
sees that lim;_,, ||g;]| <|[|o||. Combining the above arguments together, we have the following
small variation of Remarks C.1.1 and C.1.2 in Reference [18]:

Lemma A.1
Let ¢ :[a,h] > R be measurable, essentially bounded. Then there exists an equibounded
sequence {¢;} of smooth functions such that

® ¢, > ¢ae. onla,b]

® limsup,_ [lo;[<ll¢l; and

® by the Lebesgue dominated convergence theorem, lim;_, ||(pj — ¢|l; =0, where || - [|; is the L;
norm on [a, b].

Observe that the above approximation result also holds for functions from [a, b] to R".
Let k>1. Suppose that u e W5™(a,b). Let {p;} be a sequence of smooth functions that
approaches ¢ = u® as in Lemma A.1. Define 1nduct1vely, fori=1,2,...,k

t
o0 =@+ [ oo as
a
where (1) = ¢;(¢). Let u;(t) = @/(2). It can be seen that, for i = 1,... .k, u;-") = ¢k~1. Since

t
0~ 01< [ o)~ 0l ds<lle, - ol

a
it follows that uy‘ D 4®=D yniformly on [a, b]. Processing inductively, one shows that, for
i=0,1,...,k—1, {uy)} converges to u) uniformly on [a, b]. It then follows from the uniform
convergence that lim;_, ||u(’)|| = lim;_, lu®|| for all i = 0,1, ...,k — 1. Hence, we have shown
that, for k=1, if ue W’“*(a b), then there exists a sequence of smooth functions {u;} that
converges to u uniformly with the property that lim sup,_, . ||u j||[k <||u|*!. Combining with the

case of £k = 0 as stated in Lemma A.1, we get the following:

Corollary A.2
Let £>0. Suppose that u € W*™(a, b). Then there exists an equibounded sequence of smooth
functions {u;} that converges to u pointwise on [a, b] with the property that

: k k
lim sup [Ju;][* < Jluf|"
Jj=00
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