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Abstract

Given a 2-coloring of the vertices of a regular n-gon P , how many parallel lines are
needed to separate the vertices into monochromatic subsets? We prove that bn/2c is a
tight upper bound, and also provide anO(n log n) time algorithm to determine the direction
that gives the minimum number of lines. If the polygon is a non-regular convex polygon,
then n − 3 lines may be necessary, while n − 2 lines always suffice. This problem arises
in machine learning and has implications about the representational capabilities of some
neural networks.

1 Introduction

Let P be a regular polygon on n vertices. Given a 2-coloring of the vertices of P , how many
parallel lines do we need to separate the vertices of P into monochromatic subsets? In other
words, what is the smallest number m(n) of parallel lines that always suffices to partition the
vertices of P into m(n) + 1 monochromatic subsets? Observe that an adversary picks the
coloring of the vertices of P and we (the algorithm) choose the direction of lines. We show in
this paper that m(n) =

⌊
n
2

⌋
. This bound is clearly tight since if the vertices of P are colored

alternately black and white, then n/2 parallel lines are necessary. We present two different
proofs of this fact. The first proof is somewhat shorter but it is non-constructive. The second
proof also leads to an O(n logn) time algorithm.

This problem arises in machine learning. Briefly, for the class of neural nets having a single
hidden layer consisting of threshold units and two inputs, but allowing direct connections from
inputs to outputs, we show that the Vapnik-Chervonenkis (VC) dimension of the class is at
least 4k+ 3, where k is the number of hidden units. This provides an improvement by a factor
of two over the corresponding result for nets that allow no such direct connections (Baum 88).
In the context of learning theory, this has implications about the representational capabilities
of the two types of nets. A different, worse-case, comparison, is given in (Sontag 89), which
also shows a factor of two, and relates all this to sigmoidal responses.

A natural extension of the geometric problem is to consider the 2-coloring of arbitrary
points in the plane. We show that even if the points form the vertices of a convex (but non-
regular) polygon, n− 3 parallel lines may be sometimes necessary. The upper bound is n− 2
unless all the points are collinear, in which case n− 1 lines are necessary and sufficient.

This abstract is organized as follows. In Section 2, we give the main result of this paper: a
proof of the bn/2c bound for a regular n-gon along with an algorithm to find the direction of
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these lines. Section 3 presents the application of the geometric problem to neural-net theory.
Section 4 outlines some extensions and generalizations of the geometric problem and makes
some concluding remarks.

2 The Main Section

Let P be a convex regular n-gon in the plane with vertices p1, p2, . . . , pn. Let ~l be a directed
line through the center of P , with orientation in the range from 0 to π such that the orthogonal
projections of the pi’s onto~l are distinct. Let π(~l) denote the permutation of the pi’s determined
by the order of their projections along ~l. Denoting the set of all distinct permutations π(~l) by
Π, we clearly have |Π| = n.

Let c : {p1, p2, . . . , pn} → {B,W} be a 2-coloring of the vertices with colors black and white
and let b represent the number of black vertices, and w the number of white.

2.1 The First Proof

For a given ordered pair of points pi, pj , there is exactly one permutation in which pj immedi-
ately succeeds pi. The total number of monochromatic ordered pairs over all the permutations
is b(b − 1) + w(w − 1), or b2 + w2 − n. The expected number of pairs of adjacent elements
with the same color in an arbitrary permutation is b2+w2−n

n . Thus, at least one line ~l defines a
permutation π(~l) that has at least

⌈
b2+w2

n

⌉
− 1 pairs of adjacent elements with the same color.

But then, taking any collection of n− 1 lines perpendicular to ~l and separating the vertices of
the polygon from each other, we can remove at least

⌈
b2+w2

n

⌉
− 1 of them without creating a

strip that contains vertices of both colors. Thus at most

n− 1− (

⌈
b2 + w2

n

⌉
− 1) ≤

⌊
n

2

⌋
separating lines are needed.

2.2 The Second Proof

Given a line ~l, the subscripts of the points in the permutation π(~l) are given by two interleaved
sequences, one ascending and one descending. Away from the ends of the subscript permuta-
tion, the subscripts follow the pattern . . . , i, k − i, i+ 1, k − i− 1, . . . , where k is a parameter
that completely characterizes π(~l). (All subscript arithmetic is modulo n.) The ends of the
subscript permutation are given by the equation 2i ≡ {k or k + 1} (mod n), depending on
whether k is odd or even. The number of color differences between neighbors in π(~l) is the
same as the number of lines perpendicular to ~l needed to partition the polygon vertices into
monochromatic slabs.

To simplify our counting arguments, we consider the palindromic permutation π(~l)π(−~l)
given by concatenating π(~l) with its reversal. This sequence is composed of two full-length
(length n) ascending and descending subscript sequences, interleaved as specified by the pa-
rameter k. In particular, the junction between π(~l) and its reversal follows the pattern of the
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interior of π(~l). The palindromic sequence has exactly twice as many color differences between
neighbors as π(~l), even when considered as a cyclic sequence.

Let D(i, j) be a function that is 1 if c(pi) 6= c(pj) and 0 otherwise. Then the number of
neighbor differences in π(~l)π(−~l) is

n∑
i=1

D(i, k − i) +
n∑
i=1

D(i, k + 1− i),

that is, the sum of two convolutions. Note that the average value of a convolution is 2bw/n:

n∑
k=1

n∑
i=1

D(i, k − i) =
n∑
i=1

n∑
k=1

D(i, k − i) = 2bw.

Hence there is some k such that the number of neighbor differences in π(~l)π(−~l) is at most
4bw/n. It follows that the number of parallel lines needed to partition the polygon vertices is
at most b2bw/nc ≤ bn/2c.

2.3 The Algorithm

We can use the Fast Fourier Transform algorithm to compute the sum
∑n
i=1D(i, k − i) for

every value of k in O(n logn) time, then find the value of k that gives the minimum number
of slabs in additional O(n) time.

In particular, let

ai =
{

+1, if c(pi) = B,
−1, otherwise.

Then D(i, j) = 1
2(1− aiaj), and

n∑
i=1

D(i, k − i) =
n

2
− 1

2

n∑
i=1

aiak−i.

We compute the convolution
∑
aiak−i for every value of k using the FFT (see (AHU 74)),

where the underlying field is the integers modp, for some prime p > 2n of the form p = rn+1.
Linnik’s “large sieve” proves that such a prime exists and has only O(logn) bits (and hence is
suitable for computation); see (Linnik 41) or (Bombieri 74).

3 Application to Neural Networks

Let N be a positive integer (soon to be restricted to N = 2), and let H : R → R denote the
“hardlimiter” or “Heaviside” function: H(x) = 0 if x ≤ 0 and H(x) = 1 if x > 0. We say
that f : Rn → R is a (single hidden layer) k-neuron net (with possible direct connections from
inputs to outputs, and N input neurons) if there are real numbers w0, w1, . . . , wk, τ1, . . . , τk
and vectors v0, v1, . . . , vk ∈ RN such that, for all x ∈ RN ,

f(x) = w0 + v0 · x +
k∑
i=1

wiH(vi · x− τi)

where the dot indicates inner product.
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Theorem 3.1 Fix N = 2. Then there is some set S of 4k + 3 points in the plane with the
following property: for each possible 2-coloring of S, there exists some k-neuron net f with the
property that f(x) > 0 on the elements of one color and f(x) < 0 on the elements of the other
color.

Theorem 3.1 says that the VC (Vapnik-Chervonenkis) dimension of the set of all k-neuron
nets with possible direct connections is at least 4k+3; see for instance (Baum and Haussler 89)
for the basic terminology on VC dimension. We conjecture that for general N a lower bound
of about 2kN is achievable.

The proof of Theorem 3.1 is quite simple at this stage. Pick any k, and consider the
particular set S consisting of the vertices of the convex regular (4k + 3)-gon in the plane.
Assume that a 2-coloring of S is given. ¿From the main result we can conclude that there
is some unit vector ν (for instance, the one that gives the orientation of ~l) so that the real
numbers ν · x are arranged into at most 2k + 2 monochromatic intervals (the “color” ν · x is
that of x). This reduces our problem to the case of finding a k-net with one input (that is,
N = 1,) which separates 2k+ 2 bicolored disjoint intervals, and this is done in turn in (Sontag
89).

4 Extensions and Concluding Remarks

A natural extension of our geometric problem is to consider arbitrary point sets. We can con-
struct a non-regular convex n-gon for which m(n) ≥ n−3. Our construction uses exponentially
spaced points on a parabola. This bound is close to the worst possible, since if n points are in
general position, we always have m(n) ≤ n− 2. (If all points are collinear, m(n) = n− 1.) We
believe that n− 2 is the true upper bound for points in general position.

An interesting open question is to extend the regular n-gon construction to three or more
dimensions. We now want to find a set for which any 2-coloring can be separated into monochro-
matic subsets by a small number of parallel hyperplanes. In three dimensions, we would like to
know if there is a configuration S of n points such that for any 2-coloring of S, bn/3c parallel
planes suffice to separate the points into monochromatic slabs. (This would give as a corollary
a VC dimension of at least 6k + 5 when N = 3.)
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