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INVITED EXPOSITORY ARTICLE

This paper is another in the continuing series of expository papers that were invited by the editors. These
papers undergo the same refereeing procedure as do research papers submitted directly by the authors, although
the refereeing guidelines are modified to suit the largely expository nature of the paper. Due to the rapid recent

technical development of a number of areas in control and optimization, many of the seminal papers are quite
specialized and are readily accessible to a limited group of experts only. Moreover, the original motivations and
practical importance of the ideas are sometimes difficult to find in the mathematical development. The purpose
of these papers is to bring the ideas, techniques, and applications of a few selected areas to the attention of a
wider audience, so that their basic importance can be more easily and widely appreciated.

CONTROLLABILITY OF NONLINEAR DISCRETE-TIME SYSTEMS:
A LIE-ALGEBRAIC APPROACH*

BRONISLAW JAKUBCZYK’ AND EDUARDO D. SONTAG$

Abstract. This paper presents a geometric study of controllability for discrete-time nonlinear systems.
Various accessibility properties are characterized in terms of Lie algebras of vector fields. Some of the results
obtained are parallel to analogous ones in continuous-time, but in many respects the theory is substantially
different and many new phenomena appear.
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1. Introduction. This paper deals with questions of controllability for discrete-time
nonlinear systems

(1) x(t+ 1)=f(x(t), u(t))

for which the control variables u and state variables x take continuous values. Systems
of the type (1) but with discrete-valued states and controls have long been studied in
automata and sequential machine theory, but the continuous case has only recently
become the subject of serious investigation as far as controllability properties are
concerned. Our objective here is to survey a number of known results and to present
new characterizations involving geometric ideas.

The study of controllability questions for the better known continuous-time
analogue of (1), the differential equation

(2) :( t) qb(x( t), u( t)),

has been the subject of a concentrated research effort, as documented, for instance,
in the survey papers [2] and [7], the text [8], and the exposition [35]. It is known, for
instance, that the set accessible from any given state x, that is to say, the set of points
reachable from x, contains a smooth submanifold of the state space and is in turn
contained in a submanifold of the same dimension. Thus, for instance, the cusp in
Fig. 1 cannot be an accessible set for any system of the type (2). More interestingly
perhaps, this dimension can be computed from the rank of certain matrices formed
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2 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

FIG. 1. Impossible reachable set.

by taking iterated Jacobians of the various vector fields 4’(’, u) evaluated at the state
x. These Lie-theoretic characterizations are "direct" in that they do not involve
integration of the differential equation, and they are closely related to more classical
geometric material related to Frobenious’ theorem.

(Certain technical hypotheses are of course required for the validity of the above
and other assertions that we will make here; for purposes of providing an informal
introduction we shall not make them precise yet; however, as a general rule, real-
analyticity of f and 4’ and the assumption that states and controls take values in
Euclidean space n and m, respectively, are more than sufficient.)

Discrete control systems (1) are of interest for various reasons. Of course in many
areas difference equation models are more natural than differential equations, but our
interest has been motivated more by the problem of modeling physical systems under
digital control via sampling. Recall that sampling is the process under which the state
of a continuous time system is measured at discrete instants, and control actions are
taken also at discrete instants. Figure 2 illustrates a typical approach to computer
control. A discrete-time algorithm observes the state (or more generally, the outputs)

,/
u(t) x(t)

Continuous-time physical
system

Computer
FIG. 2. Digital control configuration.
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DISCRETE-TIME CONTROL 3

of a physical system, through an analogue-to-digital converter. Typically this observa-
tion is made at periodic time instants 6, 26,. --. On the basis of this observation the
controller decides upon a control value u to be applied during the next period of
length 6. This value is converted to analogue form and is held constant during that
next period. So the controls applied to the physical system are restricted to be 6-sampled
controls, constant on intervals [k, (k+ 1)] (Fig. 3). The main point here is that, as
far as the control algorithm is concerned, the physical system is a discrete-time system
described by an equation of type (1), where f(x, u) is the solution of the differential
equation (2) at the end of an interval of length assuming that the initial state was x
and control was held constantly equal to u.

3 23 33 43 53

FIG. 3. O-sampled control.

This description of sampling is oversimplified in many respects. For instance,
analogue/digital conversion involves a quantization of the values of x into a discrete
number of steps. Constant controls values may be smoothed out by a filter before
being applied to the system. Multirate strategies, in which the sampling period is varied
in a fixed set, may also be used. And the time involved in the algorithm actually
computing the value of the control is sometimes nontrivial and must be included in
the model as well. But even without these complications, the study of discrete-time
control systems appears naturally.

Another area in which results from discrete-time nonlinear control theory are of
importance is in the study of Markovian systems (1). There, the variables u(t) are
random, and together with the transitions f they characterize the probabilistic behavior
of the process x(.). Accessibility conditions play a central role in establishing the
existence and smoothness properties of equilibrium distributions; see for instance 15]
and [16].

Yet another source of discrete-time control systems, related to but different from
sampling, arises when numerically approximating the solution of a system (2). For
instance, a Euler approximation with stepsize h gives the recursion

x(t + 1) x(t)+ hqb(x(t), u(t)).

These motivations notwithstanding, discrete-time systems have been studied much
less than their continuous counterparts, and it has long been felt that their properties
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4 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

may diverge considerably from those of the latter. Regarding control and observation
problems, the paper [26] and the monograph [27] considered various aspects of
discrete-time systems defined by polynomial evolution equations. However, the general
theory remained, until recently, much weaker than that possible in the more classical
continuous time case, for which a large body of knowledge, as described above, is
now available.

One of the main difficulties in the general discrete-time case is due to the possible
noninvertibility of the one-step transition maps

x---f(x, u),

which means that semigroups tend to appear where groups would appear in the
continuous case, so less algebraic structure is available. Accessible sets with singularities
such as the curve in Fig. 1 can then easily appear.

An important observation, however, is that--due to the time-reversibility of finite-
dimensional differential equationsmfor those discrete-time systems that arise through
sampling these transition maps, obtained by integrating (2) over an interval of length
6 with control =-u, are invertible. More precisely, each of these maps is a diffeomor-
phism (possibly not everywhere defined) of the state space. This is analogous to the
situation in classical dynamical system theory, where one studies time-one diffeomor-
phisms and Poincar6 maps associated to differential equations. Invertible discrete-time
systems are often also obtained in numerical schemes for discretizing continuous-time
models, if mesh sizes are chosen small enough.

In this paper we shall restrict our attention to invertible systems, for which the
maps f(., u) are assumed to be diffeomorphisms. For such systems we derive several
characterizations of accessibility and we study the geometric structure of accessible
sets. As an example, we provide a theorem that shows that, at least from equilibrium
states, a picture such as that in Fig. 1 can never hold for these sets. (Precise statements
of results are given later.) As with continuous-time systems, we also give Lie-theoretic
characterizations of accessibility. These characterizations have the advantage that they
do not require the computation of arbitrary iterates of the transition map, save for
those iterates corresponding to just one value of the control value set.

The basic fact that underlies our approach is that one has an analogue for difference
equations of the infinitesimal information obtained in the continuous-time case by
taking derivatives with respect to time. One uses here derivations with respect to control
values. This idea can be traced back to the paper [9], the first to deal in detail with
general invertible discrete nonlinear control systems, although in the context of reali-
zation theory rather than controllability problems. For the latter, and for the source
of the closest related material to that presented here, the credit goes to Fliess and
Normand-Cyrot ([3], [25]), who originally proposed the definition in this manner of
Lie algebras associated to discrete-time systems. This is analogous to associating a Lie
algebra action to any given Lie group action. Other work along those lines was carried
out in [11], [32], [17], [29], and related papers. A particularly important line of work
is that pursued in [18], [20], [22], as well as by other authors (see, e.g., [5]), who have
shown how to frame a large number of problems of control design (decoupling,
noninteracting control, immersion, and so forth) in this geometric formalism; we shall
not deal with such questions in this paper, however. For other recent references on
geometric discrete-time control, see, for instance, the following papers as well as
references given there: [1], [6], [10], [12], [14], [19], [24], [28].

We close this introduction with the precise statement of a simplified version of
one of our main results to illustrate the nature of our contribution. Assume that the
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DISCRETE-TIME CONTROL 5

system (1) is analytic, in the sense that f is analytic, and invertible, meaning that each
of the maps

f =/(., u): " --> "
is a global diffeomorphism of" for each control value u; for simplicity assume further
that the control values are arbitrary real numbers, u U := .

Denote by f0 the kth power of fo with respect to composition, and define the
following vector fields depending on u:

0
f f+v(x),X;(x) =Uv :o

fu+v(x),XX(x)
,=o

and more generally for each integer k and for = ,f =f,, fS=f,

f((Ad Xu)(X)=
0

fof f+,o x),

where - -, + if +, -, respectively. These vector fields were introduced in
[11], [17], [20], and [21].

In analogy with standard continuous time notions of accessibility, we call the
system (1) forward accessible from the state x " if its attainable set from x has a
nonempty interior. Similarly, we say that (1) is backward accessible from x it its
backward attainable set from x, the set of points controllable to x, has a nonempty
interior. Finally, we say that the system is forward-backward accessible or transitive
from x if its orbit through this state (the smallest positive and negative-invariant set
containing x) has a nonempty interior. The orbit turns out to be a submanifold, so
forward-backward accessibility is equivalent to this orbit being an open subset of the
state space.

By an equilibrium state x we mean one that satisfies f(x, 0)=0. Part (c) of the
following theorem had already been stated in [11] (see also Theorem 7 in [20]) but
parts (a) and (b) are totally new. The theorem is a specialization to analytic systems
and equilibrium states of much more general results to be discussed later.

THZOZM 1. efollowing statements hold for any analytic system (1) and equili-
brium state x:

(a) System (1) is forward accessible from x if and only if
dim Lie {ad Xk O, u U}(x) n.

(b) System (1) is backward accessible from x if and only if
dim Lie {Ad Xlk O, u U}(x) n.

(c) System (1) is forward-backward accessible from x if and only if
dim Lie {Ad X:[k Z, u U, }(x) n.

It is an easy corollary of this theorem that all three conditions (forward, backward,
and forward-backward accessibility) coincide for analytic systems and equilibrium
initial states. This gives a generalization of the well-known Chow Theorem in the
continuous-time theory. More generally, the dimension of the corresponding (forward,
etc.) accessible sets are given by the dimensions of the above subspaces, from which
it follows that the (forward) accessible set is an open subset of a manifold (the orbit);
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6 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

therefore, the cusp in Fig. 1 cannot be a forward accessible set. Later we give an
example for which this cusp appears as the union of three orbits, corresponding to
the origin and each of the two smooth branches.

Note that the conditions in Theorem 1 involve iterated compositions of transitions
corresponding to only one control--arbitrarily taken as the zero control. The "naive"
conditions that one can give based on the implicit function theorem for the above
accessibility properties, reviewed below, would involve compositions of all transition
mappings, as well as, for backward and forward-backward accessibility of their (pos-
sibly hard to compute) inverses. Moreover, in the particular case when the. system has,
for instance, the form

x(t + 1)= x(t)+ g(x(t), u(t))

with g(x, 0)-= 0, the "Ad’s" become all the identity and no compositions at all need
be computed.

In this paper, we present an exposition, including complete proofs, of the known
transitivity (positive and negative-time accessibility) facts, as well as of new results
for the substantially different (positive-time) forward accessibility problem. We also
clarify the relationship between a large number of forward and/or backw..ard controlla-
bility notions. Another topic studied is the role played by various continuous time
systems derived mathematically from the original discrete time model, and we show
how to view the more classical results for continuous-time systems as a particular case
(essentially when "time" is thought of as a control) of our theory. Finally, we provide
an application of our accessibility characterizations to the sampled control of con-
tinuous systems; the resulting explicit eigenvalue condition, which generalizes the
classical (linear system) sampling theorem, illustrates the power of the techniques
developed. An illustrative example is included towards the end of the paper, which
ends with a brief description of the alternative approach due to Normand-Cyrot.

2. Basle lefinitions. We start by introducing basic notation and definitions. As
stated previously, time takes integer values, 7. We introduce the following notations
for the effect of shift operators:

x+(t) x(t+ 1) ancl x-(t) x(t- 1).

In this way we can write equation (1) in the more compact form, with f/ =f
x+ =f+(x, u), x(t) 6 , u(t) .

The state set Z is a connected differentiable manifold of dimension n. To simplify the
notation we first assume that the control is scalar, meaning that is a subset of
contained in the closure of its interior,

U clos int ,
such that 0 U. Later we show how to generalize everything to the case where LI is a
subset of a more general manifold.

The system is of class C ’ if the manifold Z is of class C, Hausdorff, second
countable, and the function f:Z U-Z is of class C, meaning, to be precise, that
there exists a C extension of f to an open neighborhood of Z in Z x. When
k oo we say simply smooth; for k co, analytic.

Associated to each such system there is a family of maps

fu =f(’, u): - ?K, u U.
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DISCRETE-TIME CONTROL 7

DEFINITION 2.1. The system (1) is invertible if for each u in an open neighborhood
of U the map f, is a global diffeomorphism of X.

Invertibility can be weakened in various ways. For instance, many results can be
obtained under the assumption of local invertibility at x, meaning that for each u U
f, is a local diffeomorphism at x, i.e., rank (Of,/Ox)(x) n, or the assumption that this
holds for every state, local invertibility of the system. The paper [10] shows how a
condition called submersibility is in fact enough to define many of the concepts that
we use in this paper.

To any invertible system one can associate an inverse or reversed-time system with
equations

(3) x-=f-(x,u),

where f-(x, u)--fl(x). By the implicit mapping theorem, this is again of class C k,
and its inverse is the original system.

Unless otherwise stated, every system appearing in this paper will be assumed to be
invertible. Furthermore, until 6, controls are scalar.

The maps f, and their inverses fl can be considered as "one step forward maps"
(respectively, "one step backward maps"). Ifwe apply a sequence of controls ul, , Uk
then we obtain the composition of these maps denoted by

(4) f,,,..-,.,, =Lk L,.

Allowing backward as well as forward steps we obtain a larger family of maps

where each of el,..., ek takes a value +/-1.

We shall denote by A-(x) the set of points attainable from x in k forward steps,
and by A+(x) the set of points attainable from x in any nonnegative number of forward
steps. Replacing forward steps by backward steps we obtain other sets, A-(x) and
A-(x), which consist of points controllable to x in k steps, and controllable to x in
any nonnegative number of steps, respectively. Finally, the set of points attainable
from x in any number of positive and negative steps is called the orbit of x and is
denoted by A(x).

DEFINITION 2.2. The system (1) is forward (backward) accessible from x if its
attainable set A+(x) (respectively, A-(x)) has a nonempty interior. It is called transitive

from x (orforward-backward accessiblefrom x) if its orbit A(x) has a nonempty interior
(and so it is necessarily open).

Finally, the system is forward (backward) accessible if it is forward (backward)
accessible from any x X, and it is called transitive if it is transitive from any x .

Observe that there is a straightforward criterion for accessibility of the discrete
time system, based on the rank of the following map. For each fixed state x and integer
k define

6,.(u) := f. ,(x),

where u (u,. ., Uk) takes values in the kth Cartesian product k. Notice that the
attainable set A-(x) is by definition equal to the image of this map. The following
proposition says that this set is of nonempty interior if and only if the linearization
along some trajectory starting from x is controllable.
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8 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

PROPOSITION 2.3. Let (1) be smooth. For any fixed x and k, the interior of the
attainable set A-(x) is nonempty if and only if

sup {rank 0 }ou O,(u)
u n

and thus

sup{rank0 }Oubk,(u) uUg, k > 1 =n

is necessary and sufficient for forward accessibility of system (1) from x.

Proof If there is a point u at which the rank of the map Pk, is equal to n, we
may assume without loss of generality that u is in the interior of U, because of the
hypothesis that U c clos int U. It then follows from the implicit function theorem that
the image of this map has a nonempty interior. Thus, the attainable set A-(x) has a
nonempty interior. (Only that the system is of class C is used for this implication.)

Conversely, if the rank of the map q’k,, is less than n at each u [U, then every
element of A-(x) is a critical value of Pk, as a map defined on an open subset of k.
It follows by Sard’s theorem that the image of U under this map is of empty interior
and is of measure zero under the measure induced by any Riemann metric on (the
Euclidean metric in [n). Therefore, the attainable set A-(x) must have an empty
interior and it is even of measure zero.

The second statement follows from the first because a countable union of sets of
measure zero again has measure zero.

REMARK 2.4. Since the orbit A(x) is the (countable) union of the images of the
maps (5) we can use an analogous argument to give a criterion for transitivity from
x, using the maps (5) rather than (4) to define a family of maps playing the role of
the Ok,x’ S.

The above proposition and remark might appear to give satisfactory criteria for
forward accessibility and transitivity. Unfortunately, this is not the case. Although for
simple systems they may be used to decide whether a given system is forward accessible
or not, for more complicated sytems explicitly computing the functions Ok, may be
highly nontrivial, since composition is hard to deal with computationally. As an
example, consider for instance the problem of obtaining a general formula for the nth
composition of the quadratic function g(x) ax + bx + c with itself or that of comput-
ing the function Ok, if f(x, U)= g(X)+XU. The problem becomes even more serious
in the case of deciding the transitivity of the system, as this requires also finding the
inverse maps f needed for computing the composed maps (5). One approach here
is to develop a calculus for these compositions, as in the work of Monaco and
Normand-Cyrot; see the last section. But in any case, even for classes such as that of
bilinear systems, Proposition 2.3 doesn’t seem to provide much useful information
regarding accessibility properties.

Also, from a purely theoretical point of view, Proposition 2.3 is of little interest.
This is because it gives too limited an insight into the geometry of our systems and it
provides an even more limited tool for their study. The maps appearing in the criteria
do not have much algebraic and geometric structure.

The main aim ofthe next section is to introduce a sort of"infinitesimal description"
of the discrete-time system. This is done by introducing certain vector fields associated
to it. By doing so we immediately get a powerful tool and a rich algebraic and geometric
structure based on the Lie product of vector fields. In particular, the accessibility
properties of the system can be studied using natural Lie algebras of vector fields
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DISCRETETIME CONTROL 9

associated to the system. The idea of introducing vector fields corresponding to
infinitesimal perturbations of control values is a natural generalization of the concept
of actions of Lie groups, and it was originally proposed in the context of nonlinear
control in [3]. These vector fields also find natural applications in the study of
controllability properties and the feedback linearizability of sampled systems
([29], 12]).

3. Vector fields associated to the system. We associate the following four families
of vector fields to our discrete time system (1), one vector field for each u U"

o
X(x)=
v+(x)

o
Ov

f’ f+(x),
v=O

u+v(X),

.+ L(x),

fu+v fl(x)
v=O

The partial derivatives here are well defined in the interior of U; therefore, they are
also uniquely defined on the boundary of U because of continuity. The geometric

f f

FIG. 4 (a) FIG. 4 (c)

7
u+3u

FIG. 4 (b) FIG. 4 (d)
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10 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

meaning of these vector fields is illustrated by Fig. 4, and the interrelations between
them are explained in the next proposition. These vector fields were also introduced
in [17], [20], and [21], using somewhat different terminology. The last section will
explain the relation between the different notations.

The special case in which the function f happens to correspond to the flow of a
vector field Z, that is, f(x, u)=exp (uZ), will be important later when discussing
continuous time systems within our framework. In that case all of the above vector
fields are in fact independent of u, and they provide the same information about the
system. This is because by the semigroup property of flows it holds that fu+ =fu f
f, fu, so that X+ -X Z Y+ Y. These equalities help us to understand why
the continuous time theory is considerably simpler than the discrete one.

Note that applying these definitions to the inverse system (3) instead of system
(1) gives the same vector fields except that the pluses are changed for minuses and
vice versa.

Given a vector field Y and a control value u, we can define another vector field
from Y by applying a change of coordinates given by the diffeomorphism f,,

(Ad, Y)(x) (dfu(x)) -1 g(fu(X)).
Here dfu stands for the differential of f, with respect to x. Using the diffeomorphisms
(4), we may also define

(Aduk...Ul Y)(x) (dfu,...ul(x)) -i Y(f,,k...,,(x)),
and, applying the even more general family of diffeomorphisms (5),

(6) (Ad e’’’l Y)(x) (d/,.il,,,..., .,,(x))- Y(f,:::’,(x)).
Clearly, the operators "Ad" so defined are linear operators acting on vector fields Y,
and we have that

(7) Adk, V=Ad,-.- Adk Y.Uk’"U Uk

(Note the reversal of indices.) We will use the abbreviated notation Ado Y for Ado...o Y
with u=0 repeated k-times, if k>0, and for Ado-).i-I Y, if k <0. Additionally,
Ado

o Y Y. With this notation we have that

O
f-d ’ f-’ f,+,ofo(X)(Ad X+ )(x)

Ov v=0

(see Fig. 5) and, more generally,

O
f-1 -1(Adu ,X,+o)(X)

Ov =o
Ilk f fuo+vfu"’ul(X)

Since our system is assumed to be invertible, we could apply all definitions to the
inverse system (3) instead of (1). Then all the pluses in the superscripts change for
minuses and Adu changes for AdX1, and vice versa. Therefore, we will have the following
fact, which we shall use repeatedly.

REVERSION PRINCIPLE. Any general property ofsystems of the type (1) that can be
expressed in terms of the above defined vector fields is preserved if we change the pluses
in the superscripts for the minuses and each Adu for Ad21, and vice versa.

Remark 3.1. Some of the above defined vector fields can be equivalently defined
as follows:

0
x.+(x) (d/. (x))-’ L(x),

(Adu..., X,+o)(X) (dfuk ,,(x)) -1 +X,o(f,,...u,(X)).

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



DISCRETE-TIME CONTROL 11

3+ f
AdX f o

0 f0 0

X 0

f

f

FIG. 5. Ad X,+,.

u+Ou

Since the inverses fl do not appear, the right-hand sides now make sense for locally
invertible systems. Those of our results that can be stated exclusively in terms of the
above vector fields will also hold for locally invertible systems. Furthermore, criteria
stated in their terms can be checked without computing the inverse of any diffeomor-
phism; only matrix inversions are required. For instance, take the system with , U
[-1, 1], and equations

+
Xx +2x+usinx.

Since for each fixed value of u the right-hand side is strictly increasing, this is an
invertible system. We obtain here that

sin xX+u (X)
3x2 + 2 + u cos x

in the natural coordinates.
The basic interrelations between the vector fields X+, X, Y+, Y are given by

the following proposition.
PROPOSITION 3.2. The following equalities hold for each u U.
(a) X+=-Y+u, X-=-Y-.
(b) X+=-AdX, Y+=-AdY.
Proof To prove (a), we differentiate with respect to u the equality

f-of(x)= x

and we get

v+.(x)+X+.(x)=O.

The second equality in (a) follows from the first by the reversion principle.
On the other hand, differentiating with respect to v the equality

f’ oL+v(x) =fS’ oL+ of’ oL(x)

we get X+ Adu Y, which together with (a) gives (b). The proof of the last equality
now follows by the reversion principle. [3
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12 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

Later in the paper it will be very useful to have a formula for the derivative with
respect to u of a vector field Y transformed by the diffeomorphism fu. It was noted
in [25], [11], [17], [18] that this derivative can be easily expressed via the above
introduced vector fields and the Lie bracket; in fact, the next two propositions appear
as the first steps in the proof of Theorem 3 on page 26 of 17] and of Lemma 3 in 18].

Here and further we shall use the standard notation Y, Z] for the Lie bracket of
the vector fields Y and Z which, in ", is given by Y, Z] OZ/Ox Y-0 Y/OxZ. We
also denote ad Z(Y) [Z, Y] and the kth iteration of the operator ad Z, adk Z(Y)
ad Z... ad Z(Y). The flow of the vector field Y is denoted by exp (tY).

PROPOSITION 3.3. Thefollowing equalities holdfor any vectorfield Z and any u c k]:

0
Ad. Z ad X+(Ad. Z)

Ou

and

0
Ad’ Z ad X(Ad’ Z).

Ou

Proof It is enough to prove each of the equalities locally, so we shall assume that
we are in En. We have that

0
Adu Z

0

ou - t=o 0-fS’ exp (tZ)of.(x)

,=o (uf-’) f,.f-’ exp (tZ) f,(x)

0
+

Ot t=0

d(f’ exp (tZ) f)(x)(df,(x))-’ uf(x
(0 V+/Ox)(x) Adu Z(x) + (0Ad, Z/Ox)(x)X+(x)

IX/ Ad,Z](x),

where we use the equality X+= -Y+.
The second equality follows from the first by the reversion principle, replacing f,

byf
In the next proposition and in the rest of the paper we shall use the following

notational convention. Given a family of vector fields {Y]a cA}, we denote by
Lie{Y]c cA} the Lie algebra generated by this family of vector fields and by
Lie Y]a c A}(x) the subspace of the tangent space at x generated by the vector fields
in this Lie algebra.

PROPOSITION 3.4. For analytic systems and connected U,

and

k+lAdok X+(x) c Lie {Ado X-lu c U}(x)

-k-1 +Ad-k X-(x) c Lie {Ado Xulu c U}(x)

for each x c , each u c U, and each integer k.
In the proof of this proposition we shall use the following lemma. This lemma is

in fact about identities on free Lie algebras; we give a somewhat informal statement
to avoid having to introduce considerably more machinery.
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DISCRETE-TIME CONTROL 13

LEMMA 3.5. For any r >--0 there are coefficients al," ap [ and bl," bq
independent of x and u such that

O 0 + X Mr’+Ad, X =awhere YLie X,ouX,,. Ou

Ad X bZ where Z Lie X2 X XX Mr’-.
OU OU

Moreover, these coecients, as well as the expressions of each Z and in terms of
the generators of the corresponding Lie algebra of vector fields, are independent of
the particular system.

Proo From Proposition 3.2 it follows that the assertions are true for r 0. Assume
that the first of them is true for r k From Proposition 3.3 it follows that

0k 0k 0k+
Ad, X ad X Ad, X-+ Ad, k+ X-.(8)

Ou Ou k Ou k Ou

In general for parametrized vector fields A,, Bu we have that

0__[A,,B,]= 0
A, B, + A,,-uBOu

Thus it follows from the induction assumption that the left side term in (8) is a linear
combination of elements in Mk+l’+ and so is the first term on the right. Therefore, the
second element on the right is a linear combination of elements in Mk+’+u and the
assertion is true for r k + 1.

The second part of the proposition follows from the first and the reversion
principle.

Proof of Proposition 3.4. In the proof we shall use the following corollary to the
Taylor formula for an analytic, vector valued function g defined on a connected set
U containing the origin" span {g(u)[u 3} span {g(i)(0)li _>- 0}. We have

k +span {AdoX,, uU}(x)=Adospan X+,r->_0 (x)
oblr u=0

cAdo Ado Lie X ,r=>0. (x)
0 blr u=o

k+lLie {Ado X[u 3}(x).

Here the inclusion follows from Lemma 3.5 (apply Ad, to both sides of the second
equation and then evaluate at u-0); the first and the third equality follow from
Taylor’s formula.

The second assertion of the proposition is a consequence of the first and the
reversion principle.

Note that it is not claimed in Proposition 3.4 that, for instance, X+. is in the Lie
algebra generated by the vector fields Ado X. The statement pertains only to the
equality of the associated distributions, that is, of the tangent spaces at each point.

4. Aeessibility criteria. To state our criteria we shall need the following families
of vector fields"

+F+ {Ad,k...u, X,olk >- O, Uo, Uk U},

F- A,- X-olk > O, Uo Uk U},

F={Adk’’ k>0, Uo uU e,...,e=+/-l,o’=+/-}Uk...Ul
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14 BRONISLAW JAI’UBCZYK AND EDUARDO D. SONTAG

As previously, for a family of vector fields A, we denote by Lie {A} the Lie algebra
of vector fields generated by A, by A(x) the linear space spanned by the vectors at x
given by the vector fields in A, and by Lie {A}(x) the linear space of tangent vectors
at x given by the vector fields in the Lie algebra.

The following theorem gives criteria for accessibility of smooth systems. It will
be one of the main results of this paper.

THEOREM 2. The following properties hold for any smooth system (1).
(a) The system isforward accessible ifand only ifany ofthefollowing two equivalent

conditions hold"

dimF+(x)=n Vx, or dim Lie{F+}(x)=n VxX.

(b) The system is backward accessible ifand only ifany ofthefollowing two equivalent
conditions hold"

dimF-(x)=n /xe, or dim Lie{F-}(x)=n /x

(c) The system is transitive ifand only ifany ofthefollowing two equivalent conditions
hold"

dimF(x)=n lxe, or dim Lie{F}(x)=n

To state a stronger version of our result, valid for analytic systems, we need the
following Lie algebras of vector fields:

kL+ Lie {Ado X+[k>=O, ue U},

L- Lie {Ado X-lk <- O, u U},

L Lie {Ado X;lk e 77, u e U, cre { +, }}.

The following inclusions are evident:

L+cLieF+, L-cLieF-, LcLieF.

In terms of this data, we now state another one of our main results. As remarked
earlier, the transitivity case had been stated before ([11], [20]). Even for that case,
however, we believe that this paper contains the first complete proof.

THEOREM 3. The following properties hold for any analytic system (1) with con-
nected U"

(a) The system is forward accessible if and only if
dim L+(x) n for any x

(b) The system is backward accessible if and only if
dim L-(x) n for any x

(c) The system is transitive if and only if
dimL(x)=n for any x

Remark 4.1. As a consequence of Proposition 3.4, if we were to take in the
definition of the Lie algebra L only r +, or alternatively, only r -, a smaller set
of vector fields may result, but the conclusions in the theorem would hold equally well.

There is a pointwise version of the above results. An equilibrium point Xo is
one such that f(xo, O)= O.

THEOREM 4. The following properties hold, if is connected"
(a) A smooth system (1) is transitivefrom x ifand only if dim F(x) n (equivalently,

dim Lie {F}(x) n). An analytic system (1) is transitivefrom x ifand only if dim L(x) n.
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DISCRETE-TIME CONTROL 15

(b) An analytic system (1) is forward (respectively, backward) accessible from an
equilibrium point Xo if and only if dim L+(xo)= n (respectively, dim L-(xo)= n).

The proofs of all these results are given later after we develop some further theory.
The second part of Theorem 4 will be strengthened as a consequence of the

following proposition.
PROPOSITION 4.2. If the system is analytic, U is connected, and Xo is an equilibrium

point, then

t+(Xo) -(Xo)= (Xo).

Proof Since L+(xo)C L(xo), it is enough to show that L+(xo) has the same
dimension as L(xo) to conclude that they are equal. Pick a basis of the latter and
assume that the elements in the basis involve vector fields of the form Adok X+, with
the possible k bounded below by the integer k*. (Recall Remark 4.1 to the effect that
we may always assume that or-- + in the definition of L.) Applying the operator

Adk*

to these vector fields, we obtain vector fields in L/. As Xo is an equilibrium point, the
operator Adk* preserves the tangent space at Xo and we obtain a set of linearly
independent vectors in L/(xo), as desired. The argument for L- follows by the reversion
principle.

The above theorem and proposition immediately imply the following corollary.
COROLLARY 4.3. Assume that the system is analytic, is connected, and Xo is an

equilibrium point. Then forward accessibilityfrom Xo, backward accessibilityfrom Xo, and
transitivity from Xo are all equivalent properties.

We will prove the above theorems by splitting them into (somewhat stronger)
sufficiency and necessity results.

Define the following families of vector fields"

X+u oi 0
=X+ x-,i=x

otli OU

TI-IEOREM 5. The following statements hold for any smooth system (1).
(a) If

(9) dim Lie {F+}(x) n for all x

then the system is forward accessible.
(b) If Xo is an equilibrium point and if

(10) dim Lie {Adok X-’i]k >= O, i>= 0}(Xo)= n,

then the system is forward accessible from Xo.
(c) The same statements holdfor backward accessibility if we replace F+ for F- and

X+’ for X’
Proof (a) Let us fix an x e X. Let p and v*,. , vp* be such that the rank of the

Jacobian of the map

(11)

* Becauseis maximal (over all p >0 and v,..., vp ) at v*,..., vn.
we may assume that these are in the interior of . Let W be a neighborhood of
(v*,..., vp*) on which this rank is maximal and such that the image S of W under
the above map is a submanifold. Since S_ A+(x), it is enough to show that the
dimension of S is equal to n, from which it will follow that S is an open subset of
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16 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

+We now prove that each vector field of the type Ad,k..., X, is tangent to S. It
will follow then that all the Lie brackets of these vector fields are tangent to the
submanifold S. This, together with assumption (9), will imply that S is of dimension n.

Assume that the vector

tz := (Aduk...ul X+u/,)(y)
is not tangent to S at y =f,,...,(x), for some ul," , uk+l (for convenience we denote
Uo by uk+ now) and some (v,..., vp) W. Again, we may assume that these are all
in the interior of U. Thus

0
fu+, fu,+l+V f,...,,(Y)

0t) v=o

is not tangent to S and therefore also

0
fu+,+v fuk...Ul L...v, (dfu+,...u,)(y)lz

0t v=o

is not tangent to the submanifold fu+,...,,,(S). But this means that the rank of the
Jacobian map of the mapping

(Vl, , v,, u,,..., u+,)-L+,...,,...,(x)
is at least dim S + 1 for this sequence v, , vp, u, , u+, contradicting maximal-
ity of the rank. It follows that the vector field Ad. X+ must indeed be tangent"/’gl /3k+l

to S.
(b) The idea of this part of the proof is the same as in part (a) except that now

the rank assumption is made at one point only. Thus, we have to construct the manifold
S in a neighborhood of Xo so that n linearly independent vector fields in the Lie algebra
(10) are linearly independent in this neighborhood and tangent to this manifold.

Let V be a coordinate neighborhood of Xo such that there are n vector fields in
the Lie algebra (10) which are linearly independent on V. Suppose that these vector
fields involve only k =< k*. Let V c V denote the open ball of radius e centered at Xo.
Fix 6 so that V c V and denote by r the supremum of the possible ranks of those
maps (11) with p -> 1 and x Xo for which all the points of the trajectory

xi =fi...,(Xo), i= 1,..., p,

lie in V. Note that re is nondecreasing with e. Let r=inf{rlO<e<6} and let
e*:= sup {elf= r}. Note that e*>0. Take 0< o- < e* such that all trajectories starting
from V stay in V, for the next k* + 1 steps, under the constant control u 0. Let the

*).corresponding supremum of ranks defining r r be achieved at p and (v*, ,
We define our manifold S as previously, where W is a neighborhood of

(v*,..., vp*) such that all trajectories corresponding to controls in W lie in V. By
an analogous argument as for (a) we see that the vector fields Ad,...,, X, are tangent
to S, provided that k =< k* and Uo, , u are close enough to zero so that our trajectory
does not leave V,, and so the rank cannot increase over r (cf. the definition of o-).
Taking u u =0 and the derivative (o/Ouo) at u* we conclude that the vector
fields Ado X-’i are tangent to S. Therefore, their Lie brackets must be tangent to S,
also. Because of our choice of the neighborhoods, there are n linearly independent
vector fields among those Lie brackets and so S is an open subset of Z.

Statement (c) follows from (a) and (b) and the reversion principle.
The above proof, part (a), gives a somewhat stronger result, actually, which we

state below for further use.
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DISCRETE-TIME CONTROL 17

COROLLARY 4.4. If y is a point forward reachable from x with maximal rank
(in the sense of the ranks of maps (11)), then the condition dim Lie {F+}(y) n implies
that the system (1) is forward accessible from x.

We are now ready to establish a converse to Theorem 5.
THEOREM 6. (a) If system (1) is of class C and forward accessible from x, then

dim r+(x) n.

(b) If system (1) is analytic, forward accessible from x, and U is connected, then

dim L+(x)= n.

(c) Analogous results holdfor backward accessibility with F/, L/ replaced by F-, L-.
Remark 4.5. The case when U is a nonconnected subset of R can also be treated.

Assume that U is a disjoint union of connected subsets of R, each of which is in the
closure of its interior. Then (b) also holds but we have to choose a subset Uo c U which
has at least one point in each of these sets. Then

L+ Lie (Aduk x+l k >- o, u , Ill, IIk J0}

must be used in this case as the definition of L+.
ProofofTheorem 6. (a) If the system is accessible, then it follows from Proposition

2.3 that, for some k-> 1 the rank of the map k,x is equal to n at some point. This
means that the following vectors span an n-dimensional space, for some sequence
Ill, IIk"

Hence, also the vectors

0

OUiLk...Ul(X), i--- 1,’’’, k.

(d/,...,,(x))-’ouL...,,(x)
which can be equivalently written as

0
f-1 --1

tli_ "ill of f,+, f,,_,. ,(x)= Ad,. ,. ,X+.bliOv v=o

i= 1,. ., k, span an n-dimensional space and statement (a) follows.
(b) The proof will be based on a reduction to continuous time systems, as done

in [29] for the transitivity problem.. A different proof, not involving such a reduction,
is provided in a later section. If our system is accessible from x, then it follows from
Proposition 2.3 that there exists a k such that the rank of the map

(u,,. ., u)-,L...,,(x)
is equal to n at some point (Ul*,"" ", Uk*), and so its image contains an open set V.
Then W =f-(V) is also open and x W. We will show that W is contained in the
orbit through x of the Lie algebra L+ (cf. [34]), which we denote by Orbt+ (x). This
will imply that the orbit is of dimension n and from a theorem of Nagano ([23], [34])
it will follow that dim L+(x)= n.

Let y W. We will show that y Orbt (x) by showing the equivalent fact: x
Orb/+ (y). We have that

x=f-1 f-d)o fko( (y),,, Y gl,u, gk,u,
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18 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

where

gi, u, f’+’f,--,’o fio.
Denote Yk Y, and

Yi-1 gi,ui(Yi), k, 1.

We have that Yo x. It is enough to show that Yi-1E OrbL+ (Yi), for 1, , k.
Denote

y(u) f-d,+, f-, Ofo(Yi)"

Then, for u E [0, ui], y is a curve in joining yi with Y-I; its tangent vector at u is

0

ou /(u) ov f,+l -1 ’--1 yu+(,)/(u)).f.+ f f- y(u Ado

As y(0) y and U is connected, it follows that Yi-1 ’)/(Ui) belongs to the orbit through
y of the family of vector fields Ad-1Y+, u e U. Since Y+ -X+, it then follows that
yi_l belongs to the orbit through y of the family Ad-1 +X, uU. 1

Remark 4.6. If U is not connected, then the result still holds with the modified
definition of the Lie algebra L/ as given in the remark following Theorem 6. The
necessary modifications in the above proof are as follows. We choose elements
vl, ", vk e Uo so that V belongs to the same connected component of U as u/*. Then
we define

W=fl f-,l( V).
Then we have that

X= gl,u, g,,k (Y), gi, u, fl_l...v f-,’ oL,
Finally, we take the curve

y(u) =fl_,..., f-l f,...,(y,),

with u in the interval joining u and vi. Differentiation with respect to u now gives
the vector fields in the modified Lie algebra L+ as defined in the remark following
Theorem 6.

To obtain criteria for transitivity using Theorems 5 and 6, we may apply the
following trick which reduces the transitivity problem to the forward accessibility
problem.

Define U as the disjoint union of two copies of U denoted by U+ and U-. Consider
a system

(12) x+=f:(x, u), x(t)3, u(t) EU+/-=U+yoU-

where f+/-(x, u)=f(x, u) if u e o+ and f+/-(x, u)=f-(x, u)=f-dl(x) if u As the
control set U has two components, we define its Lie algebra of our new system L+

using the definition in Remark 4.6 with Uo {0+, 0-}, where 0+e U+ and 0-e U- are
two copies of 0 e U. Of course, there is no difficulty in embedding the new control set
again in the reals. The following proposition is then clear.

PRoeosIrON 4.7. (a) The Lie algebra L+ of the system (12) is equal to the Lie
algebra L of the original system (1).

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



DISCRETE-TIME CONTROL 19

(b) The family of vector fields F+ for system (12) is equal to the family F defined
by system (1).

(c) The forward accessible set of system (12) is equal to the orbit of system (1).
We may now complete the proofs of all the theorems in this section.

Proof of Theorem 2. Statement (a) follows immediately from Theorems 5 and 6,
part (a). Statement (b) follows analogously from part (c) of these theorems. Finally,
statement (c) is the consequence of statement (a) via the above reduction of the
transitivity problem to the forward accessibility problem and Proposition 4.7. [3

Proof of Theorem 3. Statement (a) follows from Theorem 5 (a) and the inclusion
L+ c Lie {F} (sufficiency), and from Theorem 6(b). Statement (b) follows analogously
from statements (c) of these theorems. Finally, statement (c) is the consequence .of
statement (a) via the above reduction trick and Proposition 4.7. [3

Proof of Theorem 4. (a) In the smooth case the "if" part follows from Corollary
4.4 by the above reduction procedure and Proposition 4.7 as, for system (12) the point
x is attainable from itself with full rank. The analytic case follows from the smooth
case by the inclusion L(x)c Lie {F}(x).

The "only if" part follows from Theorem 6 and Proposition 4.7 via the above
reduction.

(b) The "only if" part is the consequence of Theorem 6. To prove the "if" part
suppose that there are n linearly independent vectors in L+(xo). Each of them can be
taken in the form

(13) ad (Adol X-I ad (Ado.-1X+ +,,,, )(Ad0" Xu)(Xo).
If we take the partial derivatives of these vectors with respect to ul,’’’, Up at zero,
we obtain vectors which appear in the Lie algebra in (10). From the Taylor formula
it follows then that the rank condition in (10) is also satisfied and Theorem 5 implies
the result.

5. Nonaccessible systems. In this section we will briefly discuss nonaccessible and,
more generally, nontransitive systems. The following "orbit theorem" is crucial in
understanding such systems. The theorem has a long history starting with results of
Chow, Nagano [23], Sussmann [34], and Stefan [33] in the continuous time case. In
the discrete time case, analogous results to those in continuous time were provided in
[9], [32], [11], and [29], the latter containing also a proof of a more abstract result
dealing with a general notion of action on manifolds. These papers should be consulted
for details of the proof, which we omit.

THEOREM 7. Any orbit A(x) of the smooth system (1) is an immersed submanifold
of with at most countably many connected components, whose tangent space is given by

TyA(y)= F(y)

at each y A(x). In the analytic case we have that

TyA(y L(y

holds also.
As the attainable set from x lies in the orbit from x, there is no chance for forward

or backward accessibility from x if there is no transitivity from x (that is, the orbit is
not of full dimension). In this case it is reasonable to ask whether the attainable set
has a nonempty interior in the orbit. In the case of analytic continuous time systems
the answer is always positive, as proved by Sussmann and Jurdjevic [36]. The following
theorem generalizes this result to discrete time systems.
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20 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

THEOREM 8. If Xo is an equilibrium point of an analytic system (1), then each of
the attainable sets A+(xo) and A-(xo) has a nonempty interior in the orbit A(xo).

Proof If we restrict our system to the orbit then the problem reduces to proving
that the system is forward (backward) accessible from Xo, if it is transitive from Xo.
But this follows immediately from Theorem 4 and Proposition 4.2. [3

Remark 5.1. The above theorem provides an analogue of what is sometimes called
the positive form of Chow’s lemma for continuous time systems. In fact, the proof is
related to that of the continuous time case. However, there is an interesting subtlety
that appears here. Contrary to the continuous situation, it is not true now that the
assumption that Xo is an equilibrium state can be relaxed. In the paper [29, Remark
9.15], an example is given of an analytic system on X , with A , and a state x ;
such that A(x)=, but the system is not forward accessible from this x. In fact, the
system in question arises from the sampling of a continuous time system.

We now give the basic outline of how such an example arises. A real-analytic
function of one variable

g(x)

is first constructed, with the property that

Ig’(x)l--< 1 for all x

and whose zeros are exactly at the nonnegative integers 0, 1, 2,. .. Now the system
is given by equations

with

x+-- 1 + x + ug(x)

U=(-1, 1)

as control value set. Observe that this system is indeed invertible, since for each fixed
u the right-hand side is a strictly increasing function of x. Furthermore, for each x the
set

{x,l+x, 2+x,. .}

is included in A+(x). When x is a nonnegative integer, this is precisely A+(x), while
for any other x one can reach an open set in one step, and hence A+(x) is of dimension
1. Since each nonnegative integer x can be reached from, say, -1, it follows that
A(x) A(-1) has dimension 1, so by connectedness, the orbit through each point is all
of X=, even though A+(0), A+(1), are discrete.

These remarks probably mean that the notion of transitivity is in the discrete time
case too weak to be of interest.

The following families ofvector fields will help us to better understand the geometry
of the attainable sets A+(x) and A-(x) and, in particular, to estimate their dimensions.
Define

A={AdX+[0 <i <k-1 uU}, L=LieA+

and

A {Ad X]O_< i=< k- 1, u U}, L Lie A{.

For any family of vector fields A, let OrbA (X) denote the orbit of this family
passing through x. This orbit has a natural structure of immersed second countable
submanifold ([34], [33]). Further, the orbit of Lie A coincides with the orbit of A.
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DISCRETE-TIME CONTROL 21

and

PROPOSITION 5.2. For any smooth system with connected control set U we have that

A-(x) c OrbA. (y), for any y A(x),

A-(x) c OrbA. (y), for any y A-(x).

Proof It is enough to prove the first inclusion as the second will follow from the
reversion principle. It is also enough to show this inclusion for any particular y in
A(x), since for any other y this will be implied by the general equality Orb (y)=
Orb (z) for any z e Orbs(y). Our argument will be similar to that used in the proof
of Theorem 6(b). Take

y =fok(X)
and

z =fuk...u,(X) =fuk ful of-k(y).
We have to show that z Orb. (y). The point z can be written in a different way as

z gk,uk gl,u,(Y),
where

gi, fko-’ f f-k+i-1 i= 1, k.

Taking zo=y, zi gi,,,(zi-1), i= 1,..., k, it is enough to show that zi Orba. (zi-1).
Consider the curve yi(u)=gi,,(zi-1), which joins z_l with z when u[O, ui]. The
tangent vectors to this curve are given by

0 0
fo-’ of,+ of; of-k(y,(u))

Ad-k Y-(Ti(u))-- -Ad-k X-(i(u)).

As -k + 1 _-< i-k =< O, it follows that the above curve lies in the orbit of the family A
and the proof is complete. [3

From the above proposition we immediately conclude the following necessary
conditions for accessibility.

COROLLARY 5.3. If an analytic system with connected U is forward accessible from
x, then

dim L-(y) n for any y A+(x).
Similarly, if it is backward accessible from x, then

dim L+(y) n for any y A-(x).

Proof The first statement follows directly from the first inclusion in Proposition
5.2 and the inclusions

U a-(x)= a+(x), OrbA. (x)c OrbL- (x).

The second statement follows analogously. V]

We now turn to yet another reason why our Lie algebras of vector fields emerge
in studying controllability properties of discrete time systems. We will consider our
system in another (time-dependent) system of coordinates. This is basically the same
as the "local" dynamics defined in the references [18] and [20] in the context of
invariant distributions for nonlinear discrete-time systems.
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22 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

Consider the usual system x(t + 1)=f(x(t), u(t)) and introduce the time-depen-
dent change of variables

x(t) fto(Z(t)),

where f is the tth power of fo (in the sense of composition). In the new coordinates
our system becomes time-dependent and takes the form

(14) z(t+ 1)= g(t, z(t), u(t)),

where

g(t, z, u)=f’-l f fto(Z).

What is simpler about the new system is that it has the "doing nothing" option, as
g(t,., 0)=id. As a consequence, if the control set U is connected then so are the
attainable sets of system (14)" A+(x), A-(x), and A(x). In that case the next point on
the trajectory, z(t + 1), can be connected with the previous one, z(t), by the smooth
curve y(u) g(.t, z(t), u), where u [0, u(t)] if u(t) > 0 and u [u(t), 0] if u(t) < 0. As

Oy/Ou(u) =Og/Ou(t, z(t), u)

0
(ft-, of.+,, f-’ of)+l(T(U))

Ov v=o

Ad+1 Y(y(u)),

we see that the point z(t) lies in the orbit through z(t + 1) of the family of vector fields

Ad+ Y, u e U. Since Y; =-X, it follows by induction that for t_-<-I any point
z(t) on a trajectory of system (14) starting from z(0) lies in the orbit through z(0) of
the family of vector fields A{, where k---t and so also in the orbit through z(0) of
the Lie algebra L. By the reversion principle, or by the above argument applied for
t>0, it also follows that any point z(t) of any trajectory of system (14) starting from
z(0) lies in the orbit through z(0) of the family of vector fields A, with k t, and so
also in the orbit through z(0) of the Lie algebra L.

Because of our change of coordinates x( t) fo(Z( t)) it follows that a point x(t)
on any trajectory of the original system (1) starting from Xo, lies in the image under
the map fok of the orbit Orb. (Xo) if k > 0 (respectively, the image of Orb7 (Xo),
if < 0, k =-t). Thus, we have the following proposition.

PROPOSITION 5.4. If the control set U is connected then, for any k > O, we have the
inclusions

and

A-(x)c f(Orb/,+ (x))=f0k(OrbL. (X))

A-(x) cfk(Orb7 (x)) =f’(OrbL. (x)).

The orbits of discrete time systems can be expressed via the orbits of the Lie algebra L
according to the formula

a(x) fok(Orb/ (x)).

Proof The first two inclusions follow from the argument above. It also follows
from the above consideration that the vector fields in L are tangent to the orbit A(x)
(cf. Theorem 7). Thus, Orb/ (x)c A(x). As the maps fok preserve the orbit A(x) and
the family of vector fields L, it follows that the inclusion "" holds. On the other
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DISCRETE-TIME CONTROL 23

hand, the computation preceding the proposition also shows that any two points which
can be joined by a (forward or backward) step of the discrete time system can also
be joined by a trajectory of a continuous time system

2 h(x, u), where h(x, u)= Ado X+(x)
and a (forward or backward) jump by fo. It is well known that each trajectory of a

continuous time system lies in a single orbit of this system. It follows then that any
trajectory of the above system lies in an orbit of the family of vector fields L, and so
the inclusion "c" follows.

The relation between the inclusions in Propositions 5.2 and 5.4 can be further
clarified by the following relation between the Lie algebras L and L.

PROPOSITION 5.5. For an analytic system the distributions spanned by the Lie

algebras L- and L- are related by the change of coordinates given by the diffeomorphism
fo, i.e.,

(Ado L-)(x) L-(x), and (Adg L-)(x) L-(x) Vx .
Proof Since the operator Ado is a homomorphism of the Lie algebra of vector

fields, it follows that

Ado L Lie {Ad X[1 -<_ iN k}.

From Proposition 3.4 it follows that

(Ad X-g)(x) Lie {Ad- X+]u U}(x) Vx.

Thus, all the vector fields Ad X;, i= 1,..., k are tangent to the orbit of the Lie
algebra L and so

+(15) (Ado L)(x)c L(x) VxeN.

The reversion principle and the above inclusion yield

(Adg L-)(x) c L-(x) Vx N.

Applying the operator Ado to both sides of the above inclusion gives the converse
inclusion to (15) and proves the first equality in the proposition.

The second equality follows from the first and the reversion principle.

6. Nonscalar controls. All our previous results can be extended, without difficul-
ties, to the case of multidimensional controls. The basic modification needed is that,
whenever derivatives with respect to u are used in the scalar control case, partial
derivatives with respect to the components of u should be used in the multicontrol case.

We assume that the control set U is a subset of " and satisfies the assumption
U c clos int U. Additionally, we assume that any two points in the same connected
component of U can be joined by a smooth curve lying entirely in int U (except of
endpoints, possibly). We denote u (u 1,... u m) and v (vl,... v").

The vector fields X+ defined at the beginning of 3 should now be redefined as
follows"

Or" v=o

y--t-one for each i= 1 ..., m. Analogously, we define X,,, ,, and Y,.
The Lie algebras F/, F- and F are now defined as

F+ {Ad,..., X,o,ilk >-_ O, 1 <= <= m, Uo, u [LJ},
F-= {Ad Ul X-o lk >= O l <- <- m, Uo, Uk kl},

F {Ad..., ..., +}.blk...bl Xuo,iik >= O, 1 <--_ <--_ m, Uo, blk [, El, ek -+- 1, cr
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24 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

We also redefine the Lie algebras L+, L-, and L as follows. We choose a subset
03o c 03 which has at least one point in each connected component of 03. In particular,
if the set 03 is connected and 0 03 we can take 03o {0}. We define

L+ Lie {Aduk...u, X+,ilk >= O, 1 <= <= m, u 03, ul, , Uk 03o},

L-= Lie {Adu- u, lX-d,ilk>=0,1<=i<=m,u03, u, uk030},

L=Lie{Adk’X[k>O,l<i<m,uU,u, uk03o e e=+l or=+}.
k.

THEOREM 9. With the above definitions of the Lie algebras F+, F-, F, L+, L-, and
L, all the theorems stated in the preceding two sections remain true.

The proof of the multicontrol versions are completely analogous to the scalar
case. The main modifications needed are the replacement of derivatives with respect
to u by partial derivatives with respect to the components of u, and the replacement
of parameterizations of curves by u with parameterizations by components of u. We
leave the details to the reader.

7. From discrete time to continuous time systems. In this section we have two goals.
The first is the description of one manner in which the study of continuous time systems
can be reduced to that of discrete time systems. The second is the development of a

technique, based on expansions of the previously defined families of vector fields,
which gives added power to the use of these vector fields and their associated Lie
algebras. As an illustration of the use of this technique, we provide a short proof of
part (b) of Theorem 6 which is independent of Nagano’s theorem and of the orbit
theorem. In this manner, not only does the discrete time theory become independent
of continuous time techniques, but in fact it becomes itself a basis for the accessibility
theory for the latter, via the reduction also described here.

To show how continuous-time systems can be viewed as a special case of discrete
time systems, we consider a continuous-time system of the form

(16) =h(x,v),

where x(t) Z and v(t) V is the control. We assume that the controls are piecewise
constant (this assumption does not affect the controllability properties of the system
we are studying). For the convenience of having all the maps defined everywhere we
assume that our system is complete. We introduce the discrete-time system

(17) x+=f(x, u), x(t)6Z, u(t)03=+x V, +=[0,),
where u=(t, v) and f(x, u)=exp(th(., v))(x). In this way, going forward by time
with a constant control v for the continuous-time system corresponds to a forward
step using the control u (t, v) for the discrete time system. Analogously, going
backward by time with the control v corresponds to a backward step with u (t, v).
This implies that the forward (respectively, backward) attainable sets as well as the
orbits of both systems (16) and (17) coincide. Thus both systems have identical
controllability properties.

It is convenient to endow V with the discrete topology. The set 03 + x V can
be viewed then as the disjoint union of copies of +. We compute the Lie algebras
L+, L-, and L corresponding to system (1 7) according to the remark following Theorem
6. We choose the subset 03o {(0, v)lv V} c 03. Then fo id and we can easily compute
that

X+=h(’,v)=-X, for u=(t,v).

Strictly speaking, the present set 03 is not an allowable control set, since it is not
a subset of ". However, the arguments in previous sections can be repeated as long
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DISCRETE-TIME CONTROL 25

as we use in the definition of X,+ and X only differentiation with respect to but not
differentiation with respect to v. Finally, we obtain

L+= L-= L= Lie {h(., v)lv V}.

Our aim now is to prove a discrete time version of the well-known Baker-
Campbell-Hausdorff expansion formula for a vector field Y transformed by the flow
of a vector field Z:

1
Adu Y= =o -.. adkZ(Y)"

This is classical when Ad, corresponds to f, exp (uZ), for which X+ Z =-X.
Assume now that f is of the general form f =f(x, u); we wish to generalize the above
formula.

LEMMA 7.1. For analyticfand Y we have thefollowing expansions, for u sufficiently
close to zero,

’ adX ..adXAd, Y +, + Ado Y dye" dye,
=0

Ad Y ad X- Ad-1 Ydv... dv
=0

where the series converge pointwise at each x .
Iff and Y are of class C only, then we have the formula

kIoIo IOi(18) Adul Y= Y ad X,, ad X,, Ado Y dvi" dVl + R,
i=0

where

R, ., +, Ad+, Y dvk+

(Note the subscript "0" in Ad: Y in each of the above formulas except for the
one for the reminder term Rk.)

In order to prove the above lemma we shall first prove the following estimate.
Below we shall denote by I] the absolute value of 0, if 0 is a scalar, and the "max"
norm ]qs] max {1011,"", 10.l}, if 0 is a vector ---(tl, On).

LEMMA 7.2. Let x be a point in . If Yo, Y are real analytic vector fields on
a subset of " containing x that have complex analytic continuations (denoted by the
same letters) to the closed polydisc D D, {z Xl] <-_ r, IZn X] <-- r}, then

(19) lad Y. ad Y2(Y,)(x)l<-_suplY(z)] .suplY(z)l(2/r)-’k.
zD zD

Proof. Before we prove the estimate in the lemma, we shall derive the following
estimate. Let be a real analytic function which has a complex analytic extension to
the polydisc D. Then the iterated derivative of along the vector fields Y,. ., Y
can be estimated by

(2o) lYe... Y(x)l<-supl6(z)]sup]y(z)l "’sup[Y(z)l(k/r) .
zeD zeD zeD

To prove this estimate we use a method of Sussmann [34] (proof of Lemma 4.2) which
reduces the problem to Cauchy inequalities. Consider the complex analytic vector
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26 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

fields zl Y1,’’ ", ZkYk defined on D, where z,..., z are complex parameters in the
unit disc {z]]z] _-< 1}. Let exp (tziY) denote the flow of ziY in C". Then

b exp (tZl Y1)’’’ exp (tkZkY,)(X)

is a well-defined analytic function on the unit polydisc Iz] <_-1,..., ]z _<-1, if

(21) ]til<-_r(ksuplY(z)lzo)-1, i=1,...,k

(as the concatenation of the trajectories of Zl Y1,"" ", zkY starting from x does not
leave D if fi,..., tk satisfy the above inequalities). From the Cauchy inequality we
obtain then that the iterated derivative at the origin of this function with respect to
Zl," ", z is estimated by the supremum of this function on the unit polydisc. This
gives the inequality

I(tY)
zGD

If we take the maximal values of t, , tk in the inequalities (21), the above gives (20).
The estimate in (20) gives the inequalities

(22) [Yk""" Yqc/)(x)] <- sup Y(z)l sup Y(z)[ k’r-t’+l,
zD zD

for 4i--x and i,..., i any permutation of 1,..., k. These inequalities imply the
estimate in (19) as the left-hand side of this estimate can be replaced by the components
of the vector field given by ad Y... ad Y4 and each such component consists of
2- terms of the form as in (22) (this follows from the definition of the Lie bracket
as a commutator).

Proof of Lemma 7.1. Integration of the first equation in Proposition 3.3 between
0 and u gives

IoAd Y= Ado Y+ ad X+(Ad Y) dr.

Replacing Ad Y on the right by this expression yields

’ ad (Ad, Y) do2 dv.AduY AdoY+ adX+(AdoY) dv+ adX+ +
Vl D2

Repeating such a replacing k times gives the ’+ case of formula (18). The "- case
follows by the reversion principle.

To prove the first formula of the lemma we shall now use the estimate in Lemma
7.2. Our families of vector fields X+ and Ad. Y are analytic with respect to x and u.
Let us fix an x K. Then there exist an r > 0 and a Uo such that both families have
complex analytic extensions to the complex polydisc D in C with the (real) center
at x and radius r for all u [0 u0]. Denote

C sup IX+(z)[, D= sup [Adu Y(z)[.
D,ue[O,uo] D,ue[O,uo]

Lemma 7.2 gives the following estimate for Rk(x) with, if u [0, Uo],

IR(x)l<-(2/r)g(k+ )+C+’D dVk+l
0

CDuo(2Cuo/r), (k+ 1)g+

(k+ 1)!
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DISCRETE-TIME CONTROL 27

From Stirling’s formula,

lim (27rk)1/2ekkk(k!)-l= 1,
k->

it follows then that Rk(X) tends to zero as k tends to infinity. This implies that the
first series in the lemma converges.

The second formula follows from the first by the reversion principle.
Both expansions in Lemma 7.1 can be combined to obtain a more general

expansion. In order to have a compact expression for this expansion we introduce the
following notation. Define the following linear operators acting on vector fields Y or,
more generally, on smooth families of vector fields Y.) depending on u

Io Io Ioo,
ad X, ad X, Y. dv dr)l,adI"iY.):

and ad i:,Oy.)= y,, where tr is either + or -. With this notation, formula (18) in
Lemma 7.1 takes the form

k

Ad+lu Y= ad Iu"i Ad’ Y+ad I+’k+lu Ad<. Y.
i--0

Finally, using analogous techniques as above, one can also establish the for-
ward/backward version of the above.

LEMMA 7.3. Iffand the vectorfield Yire analytic, then thefollowing expansion holds:

lO’k, ik ,iAd, Y= ad_, Ad-.. ad Iu Ado’ Y,Uk...u
i1>0, .,ikO

where tr is the sign ofe, j 1, , k, and the series converges pointwisefor small enough
’S.

From this we can draw the following conclusions.
COROLlaRY 7.4. If the system is analytic and U is connected, then

L+(x) r+(x), -(x)= t-(x), L(x)= r(x),

for any x .
Again, the result is valid also in the nonconnected case provided that one modifies

the definitions of the Lie algebras as explained in Remark 4.5.
Because of Corollary 7.4, part (b) is equivalent to part (a) in Theorem 6. This

provides the promised direct proof of part (b) of Theorem 6.

8. Sampling. In this section, we explain briefly how some of our results can be
applied to the sampling problem. More details are given in the conference paper [31].
For other related facts about sampling, the reader should consult [19] and [21].

When a continuous-time system is digitally controlled, decisions are often restricted
to be taken at fixed times 0, 6, 26,. 6 > 0 is the sampling time. Under what is often
called zeroth-order hold sampled control, the resulting situation can be modeled
through the constraint that the inputs applied be constant on intervals of length 6. It
is thus of interest to characterize the preservation of basic system properties when the
controls are so restricted. For controllability, this problem motivated the results in the
classical paper of Kalman, Ho, and Narendra [13]. This studied the case of linear
systems and established that controllability when sampling at intervals of length 6 is
preserved if 6(A-/z) is not of the form 2kri for any pair of distinct eigenvalues of
the A matrix. The dual version of this result, for observability, is basically the classical
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28 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

Nyquist-Shannon sampling theorem from digital signal processing, and is often sum-
marized by the statement that controllability (or observability) is preserved provided
that one samples at more than twice the natural frequencies of the system. We sketch
here how a similar result can be obtained for certain nonlinear systems, using the
accessibility conditions given above. This is an improvement over the result in [30],
where only the case of bilinear systems was treated, and more importantly, where only
transitivity conditions were obtained.

Let ga denote the class of all continuous time systems E of the type

(23) Fx q- 2 uigi(x),
i=1

where F is an n by n matrix and the coordinates of all the gi are polynomials of degree
at most d. For instance, :o is the class of all linear systems (the gi’s are constant
vectors), while :1 is the class of bilinear systems. Here x(t) E" and u(t) E for each
t; n is the dimension of the system, m the number of independent controls. We shall
study controllability properties of (23) from the initial state Xo 0. Nonequilibrium
initial states can also be studied, but we restrict ourselves to the equilibrium case,
always reducible to Xo 0, for simplicity. We let f(x)= Fx be the linear vector field
corresponding to the matrix F.

We shall say that the naturalfrequencies of the system (23) are the imaginary parts
of the eigenvalues of F, and let l)(E, 0), or just 12, be the set of these numbers (counted
with multiplicities). Note that since F is real, -tof whenever to 12. For each
nonnegative integer j we denote by 3j the set of all linear combinations

1
Z p(oi(24)

k i=1

with k any nonzero integer, to1,..., ton the natural frequencies, and the pi’s non-
negative integers satisfying

pi=2j+2.
i=1

Note that if , is the largest of the to (equivalently, the largest absolute value of these),
each element of j is in magnitude bounded by (2j + 2),l.

Denote the set of states of the continuous time system : that can be reached from
0 in time T>0, using arbitrary (measurable locally integrable) controls u(.) by Ar.
We shall say that the system (23) is (forward) accessible from 0 if AT" has nonempty
interior for some T> 0. Let to > 0 be any real number. We shall say that Z is to-accessible
from O, or accessible under sampling at frequency to from O, if the set of states Ar
reachable from 0 in time T using controls sampled at that frequency has a nonempty
interior. A control u(. defined on an interval [0, T] is said to be sampled at frequency
to (in radians/sec) if and only if T is an integer multiple of 8 := 2rr/to, say T r6, and
there are vectors

l)l, Dr

such that u(t)=-v on the interval [(i-1)6, i6). Thus accessibility under sampling
corresponds to forward accessibility for a discrete time system derived from the
corresponding Z and to. With this definition it is clear that to-accessibility for even a
single to implies accessibility. The following theorem from [31] provides a converse
to this fact. The corollary is immediate from the theorem and the discussion given
above about the largest frequency a.
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DISCRETE-TIME CONTROL 29

THEOREM 10. Assume that , e d is accessiblefrom O. Ifw > 0 is not in jfor any
j <= d, then E is also to.accessible.

COROLLARY 8.1. Accessibility is preserved under samplingfor systems in .d provided
that the sampling frequency be larger than 2d / 2 times the largest natural frequency of
the system.

The reader is referred to [31 for the details of the reduction of the above theorem
to the results given earlier in this paper. However, we wish to at least sketch this
reduction here. For each fixed 3, the vector fields X+ can be explicitly described using
a Lie expansion formula ([4], see also [25], and especially [19], [21])"

Xo+, 0 _f e(f+ege (x).
0e e=o

(We will be interested here only on the case u 0.) Under suitable assumptions, which
are satisfied for the class of systems considered here, this can also be written as

O(adf)(g,),

where as earlier adf is the operator adf(h)= [f, h] and for each fixed real number ,
O is the entire function

e_ 1
O(z) :=

Finally, one also has a formal expression, for each fixed 3,

Ado e ao f.
This expression can be made rigorous when acting on polynomial vector fields such
as those that appear in the classes ;d. Thus the Lie algebra L+, for each fixed 3,
contains the Lie algebra/+ generated by the vector fields

{O(ad f)(gl)," O(ad f)(gm), eadfo(ad f)(gl), eadfo(adf)(gm),

ekadfo(ad f)(gl), ekadfo(ad f)(gm), },

which equals the span of the vector fields

{gl,""", g,, [f, g],""", [f, g,],""", adkf(gl), adkf(gm), "}

when 3 is as in Theorem 10 (see [31] for details). It follows that /+ coincides with
the strong accessibility Lie algebra associated to the original continuous time system,
which has full rank at the origin due to the accessibility assumption. Then Theorem
4 gives the desired result.

9. An example. Consider the following invertible polynomial system with X R3.
X+--X(Z2+I)2

(25) y+ y(Z2 " 1 )3
+

Z Z+ U,

where we are using the superscript + to denote time shift, and we denote coordinates
as (x, y, z). Calculating, we obtain that X+= -2z(z2+ 1)-1Z-X and X =(0, 0, -1)’,
where Z is the vector field
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30 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

for each u 6 . Since the basic vector fields X,+ and X turn out to be independent of
u in this example, we drop the subscripts u from now on. Further,

(26) Ado X+ -12yz( 2_}_ 1)- 2X+ + X-,

from which it follows that

span {X+, Ado X+} span {X+, X-}.
The identity Ado X-=-X+ (of. Proposition 3.2(b)) implies that

Ado X+ 2 Ado X+- X- span {X+, X-},
so the linear span of the set of all generators of L+, {Ado X+, k => 0}, coincides with
the span of X+ and X-. Similarly, applying Adff to both sides of (26),

Ad X- X+- 2 Adff X+ X+ + 2X-,
so the span of the {Ado X-, k<=0}, the generators of L-, is again the same. Finally,

[X+, X-] 2(1 z)(z2+ 1)-Z,
from which it follows that {X-,X+,[X+,X-]} and {X-,Z} span the same C
submodule of vector fields. The latter set is involutive, and we conclude that, for this
example,

L+=L-=L.
Thus the orbits have dimension 2 through each point except at those points with
x y 0, where Z vanishes, and there the dimension is 1. The tangent spaces are given
by the vectors O/Oz and 2xO/Ox+3yO/Oy. The forward and backward accessible sets
contain open subsets of each orbit, by the equality of these Lie algebras.

Of course, in this very simple example one can analyze the system directly. The
initial states (Xo, Yo, Zo) with Xo yo=0 are such that the only possible directions of
movement are those in which z changes, as is clear from the equations (25), consistently
with the above conclusion about tangent spaces. The points where exactly one of Xo
or Yo is nonzero are also easy to analyze. Take now a point with both Xo and Yo nonzero.
Consider the set C consisting of all points (x, y, z) with

ygx3-- xy2.
This is the cross product of a cusp with a line. The forward accessible set consists of
all (x, y, z) in C with sign y sign yo for which Ixl->-IXo[ and [yl->-lyol. The backward
accessible has both these inequalities reversed, and the orbit consists of the branch of
C with just sign y sign Yo. Note how each such set C, an algebraic variety, can be
stratified into three submanifolds, which turn out to be its singular set (the orbit of
(0, 0, 0)), the orbit of (Xo, Yo, Zo), and the orbit of the "conjugate" point (Xo, -Yo, zo).
See Fig. 6 for a picture of a typical cross-section with constant z.

Thus in this example both the forward-accessible set and the orbit from each point
are open subsets of an irreducible algebraic variety. More generally, similar behavior
may be expected when dealing with invertible polynomial systems and equilibrium
initial states. We conjecture that the orbit is an open subset of the quasi-reachable set
in the sense of [26] and [27]. This is an algebraic variety, and it can be computed
explicitly, via Jacobians of the n-step transition map. Note that polynomial invertible
systems may exhibit highly nonlinear behavior, such as in the case x/= x3+x+ u,
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A+(x ,Y /

-(Xo, (

//(Xo, Yo)

Orbit of (Xo, Yo

Orbit of (Xo,-Yo)

FIG. 6. Forward and backward accessible sets in example (x0, yo > 0).

where the inverse of the transition mapping is not even rational. We plan to study
such systems in greater depth in the future.

10. An alternative formalism. We now briefly describe the formalism due to
Monaco and Normand-Cyrot; the thesis [25] and the papers [17]-[22], as well as the
references given there, should be consulted for details.

Their approach is based on the introduction of certain operators and the formal
relations that these satisfy. As a first step, one writes the system equations as

x+=x+f(x,u)

so that the new "f" is our f(x, u)- x. Thus now f indicates what the increment is,
rather than the new state, making things more analogous to differential equations.
(This is similar to the introduction of the forward difference operator in numerical
analysis.)

For simplicity we shall assume again that inputs are scalar, and also that ".
Thus we may identify functions F:"-" (in particular, the functions F-f(., u))
with vector fields, in the usual coordinate system for

F= --.
i=1 OXi

We will work purely formally, since the intent is merely to point out the relations
with the alternative notations in the papers mentioned above. Formally then, one
introduces the operators on smooth functions

0kL: F,(.)...F,,(.)
il,’"i OXi OXi

and the complete series

1
LFkz,:= + 2 .

Now one can obtain similar series for compositions and inverses of the dynamics map.
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32 BRONISLAW JAKUBCZYK AND EDUARDO D. SONTAG

Further, the vector fields that we use can be expressed then as

3

v=O
AS(.,.+ A(.,.)(Id)l,

X (x)
v=O

-1

v=O

-1AS(.,.) As(.,.+)(Id)l,

v=O
f(.,.) Af(.,i,+,>)(Id)lx,

Adk X< x -v v=O

Af(.,o)Af(.,u+v) Af(.,u)Af(.,o)(Id)lx

and many properties of these vector fields can be obtained from the corresponding
expansions.

The reader is directed to the above references for details on how these expansions
can be very useful in studying, among others, problems of disturbance decoupling,
sampling, Volterra expansions, linearization, and realization.
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