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Abstract: In this paper the input-to-state stability (iss) property is studied for
discrete-time nonlinear systems. We show that many iss results for continuous-
time nonlinear systems in earlier papers (Sontag, 1989; Sontag, 1990; Sontag and
Wang, 1996; Jiang et al., 1994; Coron et al., 1995) can be extended to the discrete-
time case. More precisely, we provide a Lyapunov-like sufficient condition for iss,
and we show the equivalence between the iss property and various other properties.
Utilizing the notion of iss, we present a small gain theorem for nonlinear discrete
time systems. ISS stabilizability is discussed and connections with the continuous-
time case are made. As in the continuous time case, where the notion iss found wide
applications, we expect that this notion will provide a useful tool in areas related to
stability for nonlinear discrete time systems as well.
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1. INTRODUCTION

The notion of input-to-state stability (for short,
iss) for nonlinear control systems was proposed by
one of the authors (Sontag, 1989; Sontag, 1990)
and has been used in the stability analysis and
control synthesis of nonlinear systems by several
authors – see, e.g., (Sontag, 1989; Sontag, 1990;
Sontag and Wang, 1996; Tsinias, 1993; Kazakos
and Tsinias, 1994; Praly and Jiang, 1993; Jiang et
al., 1994; Coron et al., 1995; Krstić et al., 1995).
Basically, iss gives a quantitative bound of the

1 Supported in part by US Air Force Grant F49620-98-1-

0242
2 Corresponding author. Supported in part by NSF Grant

DMS-9457826

state trajectories in terms of the magnitude of the
control input and their initial conditions.

The purpose of this paper is to study the iss

property for discrete-time nonlinear systems. We
show that many iss results for continuous-time
nonlinear systems in earlier papers (Sontag, 1989;
Sontag, 1990; Sontag and Wang, 1996; Jiang et
al., 1994; Coron et al., 1995) can be extended to
the discrete-time case. Among these extensions,
we prove that various equivalent characterizations
of the iss condition proposed in (Sontag and
Wang, 1996) also hold for discrete-time nonlin-
ear systems. It is also shown that iss small gain
theorems in (Jiang et al., 1994; Coron et al., 1995)
are extendable to the discrete-time setting. How-
ever, new phenomena arise in the extension from
continuous-time to discrete-time. For continuous-



time affine systems, continuous stabilization im-
plies iss stabilization by means of state-feedback
change u = K(x) + v. For discrete-time affine
or nonaffine systems, a more complex feedback
transformation of the form u = K1(x)+K2(x)v is
in general required. The construction of the feed-
back terms K1 and K2 turns out to be nontrivial;
nevertheless, we show that they can be explicitly
obtained, for a class of feedback linearizable sys-
tems.

Section 2 starts with basic definitions and states
some preliminary results for iss systems. Section
3 gives some equivalent definitions of iss, and
closes with the statement of the main theorem.
Section 4 proposes a nonlinear small gain theorem
for discrete-time interconnected systems. Section
5 proves the important fact that continuous stabi-
lization implies iss stabilization. An illustration is
given via a class of feedback linearizable systems.

2. BASIC DEFINITIONS AND RESULTS

We consider general nonlinear systems:

x(k + 1) = f(x(k), u(k)), (1)

where states x(k) are in Rn, and control values
u(k) in Rm, for some n and m, for each time
instant k ∈ J+, the set of all nonnegative integers.
We assume that f : Rn×Rm → Rn is continuous
and satisfies f(0, 0) = 0.

Controls or inputs are functions u : J+ → Rm.
The set of all such functions with the supremum
norm ‖u‖ = sup{|u(k)| : k ∈ J+} <∞ is denoted
by lm∞, where |·| denotes the usual Euclidean norm.
For a given system, we often consider the same
system but with controls restricted to take values
in some subset Ω ⊂ Rm; we use MΩ for the set of
all such controls. We use Id to denote the identity
function.

For each ξ ∈ Rn and each input u, we denote by
x(·, ξ, u) the trajectory of system (1) with initial
state x(0) = ξ and the input u. Clearly such
a trajectory is defined uniquely on J+, and for
each u and each k ∈ J+, x(k, ξ, u) depends on ξ
continuously.

Recall that a function γ : R≥0 −→ R≥0 is a K-
function if it is continuous, strictly increasing and
γ(0) = 0; it is a K∞-function if it is a K-function
and also γ(s) →∞ as s→∞; and it is a positive
definite function if γ(s) > 0 for all s > 0, and
γ(0) = 0. A function β : R≥0 ×R≥0 −→ R≥0 is a
KL-function if, for each fixed t ≥ 0, the function
β(·, t) is a K-function, and for each fixed s ≥ 0,
the function β(s, ·) is decreasing and β(s, t) → 0
as t→∞.

Definition 2.1. System (1) is (globally) input-to-
state stable (iss) if there exist a KL-function
β : R≥0 × R≥0 −→ R and a K-function γ such
that, for each input u ∈ lm∞ and each ξ ∈ Rn, it
holds that

|x(k, ξ, u)| ≤ β(|ξ| , k) + γ(‖u‖) (2)

for each k ∈ J+. 2

Note that, by causality, the same definition would
result if one would replace (2) by

|x(k, ξ, u)| ≤ β(|ξ| , k) + γ(‖u[k−1]‖) (3)

where k ≥ 1 and, for each l ≥ 0, u[l] denotes the
truncation of u at l; i.e., u[l](j) = u(j) if j ≤ l,
and u[l](j) = 0 if j > l.

Definition 2.2. A continuous function V on Rn is
called an iss-Lyapunov function for system (1) if

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|) (4)

holds for some α1, α2 ∈ K∞, and

V (f(ξ, µ)) − V (ξ) ≤ −α3(|ξ|) + σ(|µ|), (5)

for some α3 ∈ K∞, σ ∈ K.

A smooth iss-Lyapunov function is one which is
smooth. 2

Observe that if V is an iss-Lyapunov function
for (1), then V is a Lyapunov function for the
0-input system x(k + 1) = f(x(k), 0).

Proposition 2.3. If system (1) admits an iss-
Lyapunov function, then it is iss.

The converse of this result, as well as a con-
verse Lyapunov theorem regarding uniform global
asymptotic stability for systems with disturbances
taking values in compacts, are also true, and will
be proved in a forthcoming paper.

Sketch of the proof of Proposition p-liss-iss. As-
sume that system (1) admits an iss-Lyapnov func-
tion V . Let αi (i = 1, 2, 3) and σ be as in (4)
and (5). First observe that (5) can be rewritten
as

V (f(ξ, µ)) − V (ξ) ≤ −α4(V (ξ)) + σ(|µ|),

for all ξ and µ, where α4 = α3 ◦α−1
2 . To prove the

lemma, one needs the following:

Lemma 2.4. For any K∞-function α, there is a
K∞-function α̂ satisfying the following:

• α̂(s) ≤ α(s) for all s ≥ 0; and



• Id− α̂ ∈ K. 2

We now return to the proof of Lemma 2.3. For the
K∞-function α4, let α̂4 be a function picked as in
Lemma 2.4. We then have

V (f(ξ, µ))− V (ξ) ≤ −α̂4(V (ξ)) + σ(|µ|).(6)

Fix a point ξ ∈ Rn and pick an input u.
Let x(k) denote the corresponding trajectory
x(k, ξ, u) of (1). Let c be any number in (0, 1), and
consider the set defined by D = {ξ : V (ξ) ≤ b},
where b = α̂−1

4

(
σ(‖u‖)
c

)
.

Claim: If there is some k0 ∈ J+ such that x(k0) ∈
D, then x(k) ∈ D for all k ≥ k0.

Proof. Assume that x(k0) ∈ D. Then V (x(k0)) ≤
b, that is, c α̂4(V (x(k0))) ≤ σ(‖u‖). By (6),

V (x(k0 + 1))≤−(1− c)α̂4(V (x(k0)))

+α̃4(V (x(k0))) + σ(‖u‖)

where α̃4 = Id − c α̂4. Observe that α̃4 ∈ K
because Id−α̂4 ∈ K. Combining this fact with the
assumption that V (x(k0)) ≤ b, one can show that
V (x(k0+1)) ≤ −(1−c)α̂4(V (x(k0))+b ≤ b. Using
induction, one can show that V (x(k0 + j)) ≤ b for
all j ∈ J+, that is, V (x(k)) ∈ D for all k ≥ k0. 2

We now let j0 = min{k ∈ J+ : x(k) ∈ D} ≤
∞. Then it follows from the above conclusion
that V (x(k)) ≤ γ̂(‖u‖) for all k ≥ j0, where
γ̂(r) = α̂−1

4 (σ(r)/c). For k < j0, it holds that
c α̂4(V (xk)) > σ(‖u‖), and hence, V (x(k + 1)) −
V (x(k)) ≤ −(1− c)α̂4(V (x(k))). We let β̂(s, k) be
the solution of the scalar difference equation

z(k + 1) = z(k)− (1− c)α̂4(z(k))

with initial condition z(0) = s. Observe that,
for any s > 0, the sequence z(t) decreases to
zero (it never crosses zero, because Id − α̂4 ≥
0); thus, β̂ is a KL-function. It follows, by in-
duction on k, that V (x(k)) ≤ β̂(V (x(0)), k)
for all 0 ≤ k ≤ j0 + 1. Thus, V (x(k)) ≤
max{β̂(V (ξ), k), γ̂(‖u‖)}. From this one gets (2)
with β(s, r) = α−1

1 (β̂(α2(|ξ|), r)) and γ(s) =
α−1

1 γ̂(s). 2

Remark 2.5. From the proof of Lemma 2.3, one
sees that if the iss-Lyapunov function satisfies the
inequality V (x(k+1))−V (x(k)) ≤ −α(V (x(k)))+
σ(‖u‖), with the property that Id−α ∈ K, then for
any 0 < c < 1, the function (α−1

1 ◦ α−1)(σ(s)/c)
can be taken as a gain function of the system.
That is, for any 0 < c < 1, there is a KL-
function β such that |x(k, ξ, u)| ≤ β(|ξ| , k) +
(α−1

1 ◦ α−1)(σ(‖u‖)/c)K for all ξ and all u. 2

3. EQUIVALENT NOTIONS OF ISS

In this section we show that, as in the continuous
time case, there are various notions that are
equivalent to iss.

3.1 Asymptotic Gains

Consider system (1). We say that the system has
K-asymptotic gain if there exists some γ ∈ K such
that

lim
k→∞
|x(k, ξ, u)| ≤ lim

k→∞
γ(|u(k)|) (7)

for all ξ ∈ Rn.

We say that system (1) is uniformly bounded-input
bounded-state (ubibs) stable if bounded initial
states and controls produce uniformly bounded
trajectories, i.e., there exist twoK-functions σ1, σ2

such that

sup
k
|x(k, ξ, u)| ≤ max{σ1(|ξ|), σ2(‖u‖)} (8)

Again, by the causality property of the system,
the above is equivalent to σ1(s) ≥ s and

|x(k, ξ, u)| ≤ max
0≤j≤k−1

{σ1(|ξ|), σ2(|u(j)|)} (9)

It is not hard to see that if a system is iss, then
it is ubibs and it admits a K-asymptotic gain.
The converse is also true. It will be proved after
we introduce another related notion in the next
section.

3.2 Robust Stability Margins

As in the case of continuous time systems, there
turns out to be also an interesting connection
between the iss and the robust stability.

By a (possibly time-varying) feedback law for a
system (1) we will mean any function w : J+ ×
Rn −→ Rn such that for each fixed k, w(k, ·) is a
continuous function.

Let ρ be anyK∞ function. For any d ∈MΩ with Ω
as the closed unit ball in Rm, we view the system

x(k + 1) = f(x(k), d(k)ρ(|x(k)|)) (10)

as a system x(k + 1) := g(x(k), d(k)) with time-
varying parameters d ∈MΩ. We use xρ(k, ξ, d) to
denote the solution to (10) corresponding to the
initial state ξ and the disturbance signal d.

We will say that the system (1) is robustly stable
if there exists a K∞ function ρ (called a stability
margin) such that system (10) is globally asymp-
totically stable uniformly in d. To be more precise,



this means that there exists β ∈ KL such that the
following holds for all trajectories of (10):

|xρ(k, ξ, d)| ≤ β(|ξ| , k)

for all k ≥ 0, all d ∈ MΩ.

Note that for a nonlinear gas system, in general
only small perturbations can be tolerated while
preserving stability. The requirement ρ ∈ K∞ is
thus nontrivial.

Following the same steps as in Section V of (Sontag
and Wang, 1996), one may show the next result:

Lemma 3.1. System (1) is iss if and only if it is
robustly stable. 2

(As a matter of fact, the proof turns out to be
far simpler, because a key technical point, that
asymptotic stability of systems with disturbances
is equivalent to uniform asymptotic stability, is
much easier in discrete-time.)

The following lemma provides a key link in
our main results. Its proof is analogous to the
proof of the corresponding continuous time result
in (Sontag and Wang, 1996, Section V)).

Lemma 3.2. If system (1) is ubibs and if it admits
K-asymptotic gain, then it is robustly stable. 2

To close this section, we summarize our results in
this section:

Theorem 1. Consider system (1). The following
are equivalent:

(1) It is iss.
(2) It is ubibs and it admits K-asymptotic gain.
(3) It is robustly stable.

Proof. We have: [1 ⇒ 2] (clear by Defini-
tions), [2 ⇒ 3] (see Lemma 3.2), [3 ⇒ 1] (see
Lemma 3.1). 2

4. NONLINEAR SMALL GAIN THEOREMS

In this section, we will discuss the iss property for
interconnected systems of the following type:

x1(k + 1) = f1(x1(k), x2(k), u1(k)),
x2(k + 1) = f2(x1(k), x2(k), u2(k)), (11)

where for i = 1, 2 and for each k ∈ J+, xi(k) ∈
Rni , ui(k) ∈ Rmi , and fi : Rn1×Rn2×Rmi → Rni
is continuous.

It turns out that, in the continuous time case, iss

small gain theorems are very powerful in treat-
ing stability problems for such interconnected

systems. The first such results were obtained
in (Jiang et al., 1994). Later the proofs of the main
results were considerably simplified, using asymp-
totic gains, in (Coron et al., 1995); in conjunction
with the results in (Sontag and Wang, 1996) this
gives iss results. In (Jiang et al., 1996), a small
gain theorem was presented in terms of Lyapunov
functions. By following the continuous-time ap-
proach used in (Coron et al., 1995, Sec. 4), one
can get the following small theorem. For the
interconnected system (11), we assume that both
of the subsystems are iss. To be more precise, we
assume that, for the following systems,

x1(k + 1) = f1(x1(k), v1(k), u1(k)), (12)

x2(k + 1) = f2(x2(k), v2(k), u2(k)), (13)

the trajectories satisfy

|x1(k)| ≤max
{
β1(|ξ1| , k), γx1 (‖v1‖), γu1 (‖u1‖)

}
|x2(k)| ≤max

{
β2(|ξ2| , k), γx2 (‖v2‖), γu1 (‖u2‖)

}
Theorem 2. Assume that systems (12) and (13)
are iss, with γx1 (γx2 (s)) < s (or, γx2 (γx1 (s)) < s) for
all s > 0. Then, the interconnected system (11) is
iss with (u1, u2) as input. 2

The above small gain theorem can also be stated
in terms of iss-Lyapunov functions. Assume that
both subsystems in (11) admit iss-Lyapunov func-
tions. Let V1 (respectively, V2) be an iss-Lyapunov
function of (12) (respectively, (13)). That is, there
exist class K∞-functions αij, σi, ρxi and ρui (1 ≤
i, j ≤ 2) such that αi1(|ξ|) ≤ Vi(ξ) ≤ αi2(|ξ|), and

V1(f1(ξ1, ξ2, µ1))− V1(ξ1) ≤ −σ1(V1(ξ1))

+ρx1 (V2(ξ2)) + ρu1 (|µ1|), (14)

V2(f2(ξ2, ξ1, µ2))− V2(ξ2) ≤ −σ2(V2(ξ2))

+ρx2 (V1(ξ1)) + ρu2 (|µ2|). (15)

In view of Lemma 2.4, we may assume that Id −
σi ∈ K for i = 1, 2.

Theorem 3. Assume that systems (12) and (13)
admit iss-Lyapunov functions V1 and V2 respec-
tively that satisfy (14)-(15), with Id − σi ∈ K for
i = 1, 2. If there exists a K∞-function ρ such that
σ−1

1 ◦ (Id + ρ) ◦ ρx1 ◦ σ−1
2 ◦ (Id + ρ) ◦ ρx2 < Id, then

the interconnected system (11) is iss with (u1, u2)
as input.

5. ISS-STABILIZABILITY

Consider system (1). We say that the system is
continuously stabilizable if there is a continuous



function w : Rn → Rm with w(0) = 0 such
that under the feedback u = w(x), the closed-loop
system

x(k + 1) = f(x(k), w(x(k)))

is globally asymptotically stable (gas), i.e., there
exists some KL-function β(·, ·) such that the fol-
lowing holds for all trajectories of the system:

|x(k, ξ)| ≤ β(|ξ| , k)

for all k ≥ 0.

We say that system (1) is continuously iss stabiliz-
able if there exist a continuous map w : Rn → Rm
with w(0) = 0 and an n×n matrix Γ of continuous
functions, invertible for each x, such that under
the control law u = w(x) + Γ(x)v the closed-loop
system

x(k + 1) = f(x(k), w(x(k))

+ Γ(x(k))v(k)) (16)

is iss (with v as new input).

Clearly, if a system is iss-stabilizable, then it is
stabilizable. By following the approach used in
the continuous case (see (Sontag, 1990)), one can
prove the following:

Theorem 4. System (1) is continuously stabiliz-
able if and only if it is iss-stabilizable. 2

Remark 5.1. In contrast to the continuous case,
the construction of an issstabilizing control law
is far from explicit even for affine systems. Nev-
ertheless, it is shown in the next section that an
alternative and simple design of iss controllers is
possible for a class of feedback linearizable sys-
tems. 2

5.1 Feedback Linearizable Systems

The main purpose of this section is to illustrate
our main results in the preceding section via feed-
back linearizable systems. As done in (Sontag,
1989) for continuous-time, we derive explicit for-
mulas for the special case of such systems. Both
continuous- and discrete-time linearizable systems
have been fairly studied in the recent control
literature, see, e.g., (Isidori, 1995; Nijmeijer and
van der Schaft, 1990; Sontag, 1998) and refer-
ences therein. It is worthing noting that a large
body of research papers on nonlinear adaptive
control have been based on globally feedback lin-
earizable systems, see the recent texts (Krstić
et al., 1995; Marino and Tomei, 1995) and the
references cited therein.

We restrict ourselves to systems (1) which are
affine in u, that is,

x(k + 1) = a(x(k)) + b(x(k))u (17)

A system (17) is said to be globally feedback lin-
earizable if there exist a state-coordinate change,
that is, an isomorphism φ : Rn → Rn which
vanishes at zero,

z = φ(x) (18)

and a regular state-feedback transformation

u = ϑ1(x) + ϑ2(x)v (19)

with ϑ2(x) a globally invertible matrix, such that
system (17) is brought to a linear controllable
system

z(k + 1) = Az(k) + Bv (20)

Take any constant matrix K0 so that A+BK0 is
asymptotically stable. The linear feedback v(k) =
K0z(k) globally asymptotically stabilizes the lin-
ear system (20) and therefore its original nonlinear
system (17). In addition, the feedback v(k) =
K0z(k) + w(k) makes the closed-loop system

z(k + 1) = (A+ BK0)z(k) + Bw(k)

iss (with respect to w). This can be seen through
the following:

|z(k)| ≤ λmax(A +BK0)k|z(0)|

+
|B|

1− λmax(A+ BK0)
‖w‖ (21)

where λmax(A+BK0) denotes the spectral radius
of A +BK0.

Since φ is a global isomorphism and vanishes at
zero, there exist two class K∞-functions φ̂1 and
φ̂2 such that

φ̂1(|x|) ≤ |φ(x)| ≤ φ̂2(|x|) (22)

This together with (21) and (18) implies that

|x(k)| ≤ φ̂−1
1

(
2λmax(A +BK0)kφ̂2(|x(0)|)

)
+ φ̂−1

1

(
2|B|

1− λmax(A+ BK0)
‖w‖

)
(23)

Therefore, system (17) is made iss with a feed-
back law u = ϑ1(x(k)) + ϑ2(x(k))K0φ(x(k)) +
ϑ2(x(k))w(k).

By analogy with the case of continuous-time sys-
tems (Sontag, 1989), we would ask whether or not



it is possible to render system (17) iss using a
nonlinear feedback of the form

u = K(x) + w (24)

where K : Rn → Rm is continuous with K(0) = 0.

First of all, we point out that, similar as in
the continuous time case, a linear feedback does
not necessarily produce a system which is iss

with respect to additive disturbances occuring
at the level of real control input u. More pre-
cisely, when taking K as the linearizing feedback,
i.e. K(x(k)) = ϑ1(x(k)) + ϑ2(x(k))K0φ(x(k)),
the corresponding closed-loop system x(k + 1) =
a(x(k)) + b(x(k))(K(x(k)) +w) may fail to be iss

with respect to the signal w.

As an illustration of this important point, we
consider a discrete-time scalar system

x(k + 1) = x(k)3 + (|x(k)|+ 1)u (25)

which is globally rendered linear by a nonlinear
feedback of the form

K(x) = − x3

|x|+ 1
+

1
|x|+ 1

v. (26)

A further choice of v(k) = 1
2
x(k) gives a feedback

law that globally asymptotically stabilizes system
(25). However, this linear feedback controller does
not make the closed-loop system iss with respect
to additive disturbances w at the true control
input u:

x(k + 1) =
1
2
x(k) + (|x(k)|+ 1)w. (27)

Indeed, letting w = 1 in (27) yields that the
solutions x(k) with x(0) = 0 of (27) diverge to
+∞ as k→ +∞.

To compare with the continuous time case, a nat-
ural question to ask is if there is any feedback that
make the closed-loop system iss? Unfortunately,
in contrast to the continuous time situation, there
does generally not exist a feedback of the form
(24) that produces an iss system. As a counterex-
ample, we still consider system (25).

The system (25) in closed-loop with (24) is as the
following

x(k + 1) = G(x(k)) + (|x(k)|+ 1)w(k)

with G(x(k)) = x(k)3 + (|x(k)|+ 1)K(x(k)). Now
consider the signal w(k) given by:

w(k) =
{

1 if G(x(k)) ≥ 0,
−1 if G(x(k)) < 0.

It can be seen that with such a choice of w,
|x(k + 1)| ≥ |x(k)|+ 1, and hence, x(k+ 1)→∞.

The above argument shows that the system fails
to be iss no matter what G is. Observe that this
is still true even if G is dead-beat stable, i.e., G
is such a function that every trajectory of x(k +
1) = G(x(k)) can reach the origin in finite time
(e.g., G(x) ≡ 0).
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