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In recent work by Angeli and the authors, it was shown that the stability and global behaviour of strongly
monotone dynamical systems may be profitably studied using a technique that involves feedback decom-
positions into ‘well-behaved’ subsystems. The present paper generalizes the approach, so that it applies
to a far larger class of systems. As an illustration, the techniques are used in the analysis of a nine-
variable autoregulatory transcription network. Also, extensions to delay and reaction diffusion systems are
considered.

Keywords: monotone systems; multistability; gene regulatory networks; reaction diffusion equations;
delay equations

AMS Subject Classifications: 34C12; 92B99; 93C10; 35K57; 35B35

1. Introduction

The work of Hal Smith on monotone systems constitutes a deep and beautiful contribution to
pure mathematics, as well as to mathematical biology and specifically the analysis of biochemical
networks. In this paper, written on the occasion of Hal’s 60th birthday, we present new theoretical
results regarding the detection of multiple stable states in a class of monotone feedback systems,
and we illustrate our results with an application to a model of a transcriptional gene and protein
network.

1.1. Monotone systems

Monotone dynamical systems have been present in the mathematical literature for many years,
in systems of ordinary and partial differential equations. The simplest example of a monotone
system is that of a differentiable cooperative dynamical system

ẋ = g(x), (1)
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122 G.A. Enciso and E.D. Sontag

which is characterized by the property that ∂gi(x)/∂xj ≥ 0 for all i �= j and all x in the domain
of definition. More generally, monotone systems are associated with positive feedback among
the variables x1, . . . , xn, a property that can be verified by looking at a simple signed digraph
associated to the system (see Section 2).

During 1980’s, M. Hirsch performed a general study of monotone dynamical systems in papers
such as [20, 21]. In what is arguably the most important result available for abstract monotone
systems, he showed that almost all bounded solutions of a strongly monotone system (definitions
below) are convergent towards the set of equilibria [21]. Under mild additional smoothness and
boundedness assumptions, almost every solution of the system (1) converges towards one of its
equilibria. The book by Smith [36] is the standard introduction to the study of monotone dynamical
systems; see also the recent comprehensive breatment of the theory in [22].

1.2. Multistability

A multistable system is one that admits several discrete, alternative stable steady-states. Multi-
stable systems, and associated phenomena of hysteresis and oscillations, are central to molecular
systems biology. Indeed, it has been frequently noted that even relatively simple gene and pro-
tein signaling networks have the potential to produce multistability [5, 17–19, 27, 34, 38, 43, 44].
Among the earlier works are those using bistable system models as a mechanism to explain
the lambda phage lysis-lysogeny switch as well as the hysteretic lac repressor system [30, 32].
In the current systems biology literature, one finds bistability in studies of the production of
self-sustaining biochemical memories of transient stimuli [28, 45], the generation of switch-
like biochemical responses, especially in MAPK cascades in animal cells [3, 4, 8, 16] the
rapid lateral propagation of receptor tyrosine kinase activation [33], the establishment of cell
cycle oscillations and mutually-exclusive cell cycle phases in organisms such as Xenopus and
S. cerevisiae [11, 31, 35], models of Drosophila development based on steady states of morphogen
expression [24], and many other processes.

1.3. Monotone decompositions

A general strategy for the detection of multistability, advanced by one of the authors and Angeli
in [1, 2], is the analysis of gene regulatory networks that either are themselves monotone or can be
studied using monotone systems ideas. The present paper will be solely concerned with monotone
dynamical systems themselves. In [2], the authors consider a monotone dynamical system (1),
and inspired by concepts from control theory, they carry out a decomposition procedure which
is akin to replacing one of the variables in the expression for g(x) by a real parameter u (see the
definitions below, and the example in Section 6). The study of the resulting parametrized system

ẋ = f (x, u) (2)

then allows them to derive conclusions about the original system (1).
More precisely, [2] considers a parametrized system (2), together with a function h(x), such

that ẋ = f (x, h(x)) = g(x) forms the original system (1). Several monotonicity conditions are
assumed, which are satisfied e.g. if ∂fi/∂xj ≥ 0 for all i �= j , ∂fi/∂u ≥ 0 for all i, and h′

i (u) ≥ 0
for all i. Furthermore, it is assumed that Equation (2) satisfies a steady state response property:
for every fixed value v, the system ẋ = f (x, v) converges globally towards some state X(v).
Then a plot of the function k(u) = h(X(u)) is sufficient to establish the number of equilibria
of the original system (1) and whether each equilibrium is stable or unstable. Namely, to each
equilibrium e of Equation (1) there corresponds an associated fixed point ue of k(u), and e is
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Journal of Biological Dynamics 123

Figure 1. (a) The steady state response curve k(u) and its fixed points. It follows from this graph that there are two
stable equilibria and one unstable equilibrium of Equation (1). (b) In this case, the steady state response function is not
well defined, and it is interpreted instead as a bifurcation curve. The dotted line represents an unstable branch of this curve
(see Section 3). For the corresponding monotone system there are, once again, two stable equilibria and one unstable
equilibrium (Theorem 4.6).

linearly stable if and only if k′(ue) < 1; see Figure 1a. These results were generalized in the
paper [13] to allow for a multidimensional input vector u.

The contribution of the current paper is to provide a generalization of these results to the case
where a single-valued steady state response X(u) does not necessarily exist. Thus, we consider
an arbitrary monotone dynamical system (1), under mild regularity and boundedness conditions
often satisfied for gene regulatory networks, and we provide an analysis of the number of its
equilibria and their stability properties in terms of a graph such as that given in Figure 1b. The
steady state response ‘functions’ X(u) and k(u) are now interpreted as bifurcation graphs on the
parameter u. The multivalued function k(u) is assumed to be locally differentiable around certain
points, and in fact it can be regarded informally as a collection of branches, which may be stable
or unstable depending on the local stability of the system (Figure 1b).

Our main result is Theorem 4.6, which essentially states that the linearly stable equilibria e of
Equation (1) correspond to the fixed points ue of the multivalued function k(u) such that both
k′(ue) < 1 and (ue, ue) lies on a stable branch of k(u). Using generic convergence results, almost
every solution of the system (1) converges towards one of its stable equilibria – therefore the type
of information obtained by this argument constitutes a general analysis of the dynamical behaviour
of this system. Thus our main result, Theorem 4.6, is in effect a statement about linear control
systems, and its application to nonlinear monotone systems is straightforward in the context of
the current literature.

A recent result by Malisoff and de Leenheer [29] has been previously published which extends
the negative feedback results of [1] to multivalued functions, in a similar way as we extend the
positive feedback results of the paper [2].

1.4. Robustness and uncertainty

A most important feature of our approach is that, as illustrated above, one may deduce the number
and location of equilibria, and their stability, from the analysis of the fixed points (and slopes) of
multivalued bifurcation graphs. This means that the system’s asymptotic behaviour is preserved
under changes of parameters and even the general form of the vector field, as long as the number
of fixed points is unchanged and their slopes remain within appropriate bounds.

This robustness of conclusions makes the combination of graphical and theoretical approach, as
used here and in [1, 2], a very useful tool for sensitivity analysis, akin to the use of graphical tools in
classical control theory. It also allows one to address the ‘data-rich/data-poor’ dichotomy [39, 40]
pervasive in systems biology: while, on one hand, fairly good qualitative network, graph-theoretic,
knowledge is frequently available for signaling, metabolic, and gene regulatory networks, on the
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124 G.A. Enciso and E.D. Sontag

other hand, little of this knowledge is quantitative at the level of precision demanded by most
mathematical tools of analysis. It is often hard to experimentally validate the form of the non-
linearities used in reaction terms, and even when such forms are known, to accurately estimate
coefficients (parameters). Therefore, analysis techniques that use relatively small amounts of
quantitative information are especially useful in that context. This is especially so when the quan-
titative information is the ‘response’ to possible constant inputs. In biological problems, a constant
input may represent, for example, the concentration of a certain extracellular ligand in a signaling
system, or the level of expression of a constitutively expressed gene. Steady-state responses (dose
response curves, activity plots, etc.) are very frequently available from experimental data, espe-
cially in molecular biology and pharmacology, for instance, in the modelling of receptor-ligand
interactions.

1.5. Outline of the rest of the paper

In Section 2, we provide definitions of various general concepts involved. In Section 3, we formally
define the functions referred to as monotone bifurcation graphs, and we introduce their relevance
to the stability of a given dynamical system. Section 4 contains the proof of the main result,
Theorem 4.6. Section 5 considers a particular case of this framework, in which a one-dimensional
reduction of the system is possible. In Section 6, these results are applied to a nine-dimensional
cooperative gene network. Section 7 addresses the generalization of Theorem 4.6 to reaction diffu-
sion and time delay systems. TheAppendix contains a technical result on cascades of nonmonotone
systems.

2. Definitions

Let K ⊆ R
n be a cone, by which is meant a set that is nonempty, convex, closed under mul-

tiplication by positive scalars, and pointed (i.e. K ∩ (−K) = {0}). It will also be assumed that
K is closed and has nonempty interior. The cone K induces the partial order given by: x ≤ y iff
y − x ∈ K, and the stronger order x 	 y iff y − x ∈ int K. It will also be said that x < y if x ≤ y

and x �= y. A commonly used order is that induced by a tuple s = (s1, . . . , sn), where si = ±1 for
every i, and defined by x ≤s y iff sixi ≤ siyi for every i. These cones are referred to as orthant
cones. The cooperative cone is defined by the tuple s = (1, . . . , 1).

An autonomous system ẋ = f (x) is said to be monotone with respect to ≤ if x ≤ y implies
x(t) ≤ y(t) for all t , where x(t), y(t) are the solutions of the system with initial conditions x, y,
respectively. It is strongly monotone if x < y implies x(t) 	 y(t) for all t > 0.

A matrix A ∈ Mn×n is said to be monotone with respect to the order ≤ if x ≥ 0 implies Ax ≥ 0.
We also say A ≥ 0 as a shorthand notation. The matrix A is strongly monotone if x > 0 implies
Ax 
 0. The matrix A is (strongly) quasimonotone with respect to ≤ if the linear system ẋ = Ax

is (strongly) monotone with respect to this order. The leading eigenvalue of A, or s(A), is the
eigenvalue with the largest real part among all eigenvalues of A. If A is quasimonotone, then
the Perron–Frobenius theorem guarantees that s(A) is a real number and that there exists an
eigenvector v > 0 of A associated to s(A). For a full statement of this theorem for quasimonotone
matrices, see [12], and for the classic statements for monotone systems, see for instance [36].

One can form the digraph associated to ẋ = f (x) by writing a positive (negative) arc from xi

to xj if ∂fi/∂xj ≥ 0 (∂fi/∂xj ≤ 0), with the strong inequality holding at least at some state x.
We write no arc if ∂fi/∂xj ≡ 0. Note that not every system allows for the construction of such a
digraph – if it does, we call it a sign-definite system. A system is monotone with respect to some
orthant cone if and only if the digraph of the system has no closed chains with negative parity.
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Figure 2. The signed digraph associated to system (7) in the case N = 3.

Thus for instance, the system associated with the digraph in Figure 2 is monotone, and it would
still be monotone if both arcs p1 → r2, p2 → r3 had a negative sign. In the case of orthant cones,
a sufficient condition for strong monotonicity is that the Jacobian be an irreducible matrix, for
all x. This happens, in particular, provided that the partial derivatives ∂fi/∂xj (x), for all i �= j

all have a constant sign (everywhere zero, everywhere positive, or everywhere negative) and the
adjacency graph is strongly connected.

We denote by E the set of equilibria of Equation (1), and by Es ⊆ E the set of equilibria whose
linearization has all eigenvalues on the closed left half of the complex plane.

3. Monotone decompositions

Consider a given C1 dynamical system ẋ = g(x) over the state space X ⊆ R
n. A monotone

decomposition of the system is a tuple (f, h), where the C1 function f defines a parametrized
dynamical system on the state space X,

ẋ = f (x, u), (3)

u is a parameter which may take values on U ⊆ R
m, and there exist cones KX ⊆ R

n, KU ⊆ R
m

generating orders ≤X, ≤U on R
n and R

m, such that

1 g(x) = f (x, h(x))

2 ẋ = f (x, u) is monotone, for every fixed u (D)
3 u1 ≤ u2 implies f (x, u1) ≤ f (x, u2), for every fixed x

4 h : X → U is a C1 function such that x1 ≤ x2 implies h(x1) ≤ h(x2).

The last three conditions are defined with respect to the orders ≤X, ≤U .
As stated in Angeli and Sontag [1] the following lemma holds.

LEMMA 3.1 If ẋ = g(x) allows for a monotone decomposition, then it is monotone with respect
to KX.

We will, without loss of generality, refer to the original system as

ẋ = f (x, h(x)). (4)
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126 G.A. Enciso and E.D. Sontag

3.1. Bifurcation graphs

We define now the bifurcation graphs associated with a decomposition (3) (under the further
assumptions 1.– 4. stated after the Equation). They constitute a portrait of the equilibria of this
parametrized system for every given value of u, reminiscent of a bifurcation analysis (see, for
instance, the bifurcation diagrams in Strogatz [41], Chapter 3). For each u ∈ U , let:

k(u) = {h(x) | f (x, u) = 0},
and define the function ks , so that it captures the ‘stable’ points of the graph,

ks(u) = {h(x) | f (x, u) = 0, s(∂xf (x, u)) ≤ 0}
Note that k and ks are set-valued functions, k, ks : U → U . The function k generalizes the

steady state response function h(X(u)) described in the introduction. A fixed point of k is a value
y such that y ∈ k(y), i.e. f (x, y) = 0 and y = h(x) for some x (similarly for ks). The bifurcation
graphs of the system are the graphs of the functions k and ks in U × U , seen as relations.

3.2. Linearization of the system

Given an equilibrium e of Equation (4), we linearize the decomposition (3) around this point to
create the system

ẋ = Ax + Bu, (5)

where A = ∂xf (e, h(e)), B = ∂uf (e, h(e)), and we also introduce the matrix C = h′(e). It
follows from the chain rule that ẋ = (A + BC)x is the linearization of Equation (4) around e. To
highlight the dependence of the matrices A, B, C on e, they will be denoted as Ae, Be, Ce when
necessary. It can be verified that this system is a monotone decomposition of ẋ = (A + BC)x in
the sense above. In particular, A is a quasimonotone matrix, and B ≥ 0, C ≥ 0; see [2, Theorem 6]
of for details.

3.3. Fixed points of k and equilibria

A key component in the argument that follows is the next lemma. We will say that the system has
property (H) if,

For every x1, x2 ∈ E, x1 �= x2, it holds thath(x1) �= h(x2). (H)

The following simple remark will be used often and is stated here as a lemma.

LEMMA 3.2 Consider a monotone decomposition (3). Then the function x → h(x) is a surjective
correspondence between equilibria of Equation (4) and fixed points of k. If condition (H) is
satisfied, then this is a bijective correspondence.

Proof If e is such that f (e, h(e)) = 0, and letting v = h(e) then v ∈ k(v) by definition of k. It is
also clear that this correspondence must be surjective. Condition (H) says that the map x → h(x)

is injective on equilibria; thus the result holds. �

We close this section with an analysis of the Jacobian of k around equilibria. Given a point (a, b)

such that b ∈ k(a), we say that k is single valued around (a, b) if there exist open neighbourhoods
S, T around a, b, respectively, such that graph(k) ∩ (S × T ) is the graph of a single valued
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function. From now on, we will always assume that that the bifurcation graph k is single valued
around its fixed points (y, y).

LEMMA 3.3 Let e be an equilibrium of Equation (4) such that det A �= 0, and let k be single
valued and differentiable in a neighbourhood of (v, v), v := h(e). Then k′(v) = −CA−1B at this
point.

Proof Define v := h(e). Since det A �= 0, the implicit function theorem yields a function σ :
S → X defined on an open neighbourhood S of v such that σ(v) = e and f (σ(u), u) = 0 for all
u ∈ S. The function u → h(σ(u)) can be thought of as a branch of k that intersects (v, v). Let
A, B, C be as above. It follows by the chain rule thatAσ ′(v) + B = 0, and henceσ ′(v) = −A−1B.

The assumption that k is single valued around (v, v) allows us to conclude that k(u) = h(σ(u))

in a neighbourhood of this point. Hence locally k′(v) = h′(e)σ ′(v) = −CA−1B. �

In the case m = 1, note that k is locally a scalar function, and −CA−1B is a real number.
In the following section, we study the relationship between −CA−1B and A + BC in this

context, in order to draw conclusions about the stability of the equilibria of the original system
(4) by looking at the functions k and ks .

4. Stability of equilibria

We begin by stating several results which are standard, at least in the cooperative case, and we
provide two short proofs for the sake of clarity. Consider matrices A ∈ Mn×n, B ∈ Mn×m, C ∈
Mm×n, where Mk×l is the space of all matrices with k rows and l columns.

LEMMA 4.1 Assume that A is nonsingular. Then A + BC is nonsingular if and only if CA−1B + I

is nonsingular.

Proof Recall that for P ∈ Mn×m and Q ∈ Mm×n arbitrary, it holds det(I + PQ) =
det(I + QP). Then det(A + BC) = det(A) det(I + A−1BC) = det(A) det(I + CA−1B), and
the conclusion follows. �

For the following result, see also [2, Lemma 6.6], and the book by Bellman [6].

LEMMA 4.2 Let A be a quasimonotone, Hurwitz matrix. Then −A−1 ≥ 0.

Proof Consider x0 ≥ 0, and let x(t) be the solution of the dynamical system ẋ = Ax such that
x(0) = x0. By quasimonotonicity it holds x(t) ≥ 0, for every t ≥ 0. The result follows from the
equation

−x0 =
∫ ∞

0
x ′(t)dt = A

∫ ∞

0
x(t)dt.

�

The following lemma will also be used below. For an excellent resource on this general subject
for the cooperative case, we recommend the book by Berman and Plemmons [7].

LEMMA 4.3 Let A be strongly quasimonotone with respect to K, and let B ≥ 0 with respect to
K, B �= 0. Then s(A + B) > s(A).
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128 G.A. Enciso and E.D. Sontag

Proof This follows e.g. by Theorem 1.1 of Thieme [42]. �

The following proposition is essentially a reference to Theorem 2 in [13], in this more general
context. Recall that a matrix is called Hurwitz if all its eigenvalues have strictly negative real part.

PROPOSITION 4.4 Let B ≥ 0, C ≥ 0, and A quasimonotone. Then A + BC is Hurwitz if and
only if A is Hurwitz and −CA−1B − I is Hurwitz.

Proof Let A + BC be Hurwitz, so that A is Hurwitz as well since s(A) ≤ S(A + BC) – this
inequality is a standard result for the cooperative cone, and it follows e.g. from Theorem 1.1
of [42] in the abstract cone case. Then −CA−1B − I is nonsingular by Lemma 4.1, and therefore
Hurwitz byTheorem 2 of [13]. Conversely, letA and−CA−1B − I be Hurwitz.Then, in particular,
−CA−1B − I is nonsingular. By Theorem 2 of [13] once again, A + BC is Hurwitz. �

See Section 2 of [7] for more information about the stability of quasimonotone matrices of
similar form, and see also the book by Farina and Rinaldi [15].

The following proposition establishes a general relationship between the two matrices A + BC

and −CA−1B − I , eliminating the nonsingularity condition in [13].

PROPOSITION 4.5 Let B ≥ 0, C ≥ 0, and let A be quasimonotone and Hurwitz. Then

sign s(A + BC) = sign s(−CA−1B − I ).

Proof By Lemma 4.2 it holds −A−1 ≥ 0, and therefore −CA−1B − I is a quasimonotone
matrix. Thus s(−CA−1B − I ) is a well-defined real number.

Given that A is Hurwitz, it follows by Proposition 4.4 that s(A + BC) < 0 if and only if
s(−CA−1B − I ) < 0. We will show that it also holds that

s(A + BC) ≤ 0 ←→ s(−CA−1B − I ) ≤ 0,

which immediately implies that s(A + BC) = 0 ↔ s(−CA−1B − I ) = 0. Hence s(A + BC) >

0 if and only if s(−CA−1B − I ) > 0, and this will complete the proof.
Let s(A + BC) ≤ 0, and let ε > 0. Define Aε = A − εI , so that Aε + BC is Hurwitz.Applying

Proposition 4.4 with A replaced by Aε , it holds that −CA−1
ε B − I is a Hurwitz matrix. As ε

tends towards zero, A−1
ε converges to A−1, using the nonsingularity of these matrices. Therefore

s(−CA−1
ε B − I ) converges towards s(−CA−1B − I ), so that s(−CA−1B − I ) ≤ 0.

Similarly, let s(−CA−1B − I ) ≤ 0. Given ε > 0, it holds that −CA−1B − I − εI =
−CA−1B − (1 + ε)I is Hurwitz. So is therefore the matrix −C[(1 + ε)A]−1B − I . Applying
Proposition 4.4 as before, we obtain that (1 + ε)A + BC is Hurwitz, for every ε > 0. By the
same continuity argument, s(A + BC) ≤ 0. �

For the remainder of this section, we assume that the set X is order convex, i.e. if a ∈ X, b ∈ X,
and a ≤ c ≤ b, then c ∈ X. We assume also that the cone K has nonempty interior.

THEOREM 4.6 Consider a C1 strongly monotone system with bounded orbits, which is decom-
posed in the form of Equation (3) under assumptions 1.– 4. For every equilibrium e of Equation (4),
let the linearization around e be strongly monotone, and assume s(Ae) �= 0. Then almost
every solution of the system converges towards an equilibrium e such that s(Ae) < 0 and
s(−CeA

−1
e Be) ≤ 1.

Proof We can apply Theorem 7 of [14], which in this context states that given a C1 strongly
monotone system with bounded orbits and strongly monotone linearizations, almost every solution
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converges towards an equilibrium e in Es (e is dependent on the initial condition). Now let A, B, C

be Ae, Be, Ce, respectively. Given an equilibrium e of the system, if s(A) > 0 then s(A + BC) > 0
by Lemma 4.3 in the Appendix. If s(A) < 0, then A is Hurwitz and it follows that s(A + BC) ≤ 0
if and only if s(−CA−1B − I ) ≤ 0 by Proposition 4.5. This is equivalent to s(C(−A−1)B) ≤ 1
by definition. �

Several remarks concerning the above result are at hand.

Remark 1 In the case m = 1, by Lemma 3.3, the conclusion is equivalent to the almost-
everywhere convergence towards the equilibria e such that h(e) is a fixed point of ks and
k′
s(h(e)) ≤ 1. This geometric interpretation is probably the most useful aspect of this theorem.

Remark 2 The assumption that the system has strongly monotone linearizations is used to
conclude that a generic solution converges towards some element of Es (as opposed to merely
towards the set of equilibria Es). The same conclusion follows from assuming that the system has
countably many equilibria.

Remark 3 Another variation can be given for systems in which some equilibria satisfy s(A) = 0.
This is conceivable in applications, for instance, in the event of the diagonal in the bifurcation
graph intersecting the boundary between a stable and an unstable branch. Also, one could have
s(A) = 0 at the origin, although this is unlikely in systems with linear decay terms. In either case,
one can allow for such equilibria in the result by concluding that almost every solution converges
towards an equilibrium e such that either s(A) = 0 or s(A(e)) < 0, s(C(−A−1)B) ≤ 1. Moreover,
one can rule out that s(A + BC) ≤ 0 for some of those equilibria: if it holds that BC �= 0 and
A + BC has strongly monotone linearization, then 0 = s(A) < s(A + BC) by Lemma 4.3 in the
Appendix.

Remark 4 An important variation of this result concerns the case in which the only equilibrium
without a strongly monotone linearization is zero. This case is encountered, for instance, in
cooperative gene regulatory network models with Hill function nonlinearities. To get around this
problem in the cooperative case (assuming one might have uncountably many equilibria), one
can prove that the improved limit set dichotomy is still satisfied for this system, by following the
same argument as in the proof of Theorem 2.16 of [20], observing that the origin cannot be part
of any omega limit set with more than one element by the limit set nonordering property. Then
the same proof of Theorem 7 in [14] can still be verified to hold for this system, and the same
conclusion in Theorem 4.6 above holds.

Theorem 7 of [14] is only one of several results strengthening the original argument by Hirsch
[20]. It differs from other results in that it does not make assumptions on the countability of E,
that it concludes the generic convergence towards a point in Es (as opposed to E), and that it can
be generalized to infinite dimensions (which will be essential in later sections of this paper).

5. System reduction

We now come to the subject of defining a new system which preserves some of the properties of
the original one, while being in some sense simpler to study. In the case of strongly monotone
systems, the relevant properties are the number and location of the equilibria, as well as their
stability properties.
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Consider the particular case in which the bifurcation function k(u) on R
m is single-valued,

s(A) < 0 around each equilibrium, and condition (H) is satisfied. Then the equilibria of the
system

u̇ = k(u) − u

are in bijective correspondence with those of the original system, by Lemma 3.2. Moreover, the
linear stability of the equilibria is preserved under this correspondence, by Proposition 4.5. It
follows in this sense that this m-dimensional system is a reduction of the original system – see
[13] for a more detailed discussion of this particular case.

Even for general set-valued k, a different, stronger reduction is sometimes possible, in the
sense that the reduced system is one-dimensional. We say that a set function γ is injective∗ if
γ (x1) ∩ γ (x2) = ∅ whenever x1 �= x2. Notice that if γ is injective∗, then the inverse γ −1 is a well
defined single-valued function. If the set function γ is single valued around a point (a, b), then
its differentiability can be naturally defined locally around that point.

LEMMA 5.1 Let γ : U ⊆ R → PR be an injective∗ set function, which is both locally single
valued and differentiable around its fixed points. Define g(x) := x − γ −1(x). Then:

(1) the function g is single-valued.
(2) x ∈ γ (x) if and only if g(x) = 0.
(3) consider a fixed point x ∈ γ (x) such that γ ′(x) �= 0. Then g′(x) ≤ 0 if and only if

0 < γ ′(x) ≤ 1.

Proof The proofs of the first two statements are evident by definition. To see the third statement,
note that (γ −1)′(x) is locally well defined around (x, x) by the inverse function theorem. It holds
g′(x) ≤ 0 iff 1 ≤ (γ −1)′(x), and (γ −1)′(x) = 1/γ ′(x) using the chain rule and the expression
γ −1(γ (z)) = z. Finally, 1 ≤ 1/γ ′(x) iff 0 < γ ′(x) ≤ 1. �

We will see below how the injectivity of bifurcation functions for strongly monotone systems
is satisfied.

LEMMA 5.2 Under the assumptions of Theorem 4.6, (H), and m = 1, let it also hold that

(1) k is injective∗
(2) k is locally single valued and differentiable around its fixed points
(3) k′(x) �= 0 for any fixed point x

(4) k′(x) < 0 for every fixed point x such that x �∈ ks(x).

Then there is a bijective correspondence between the equilibria of the system (3) and those of

u̇ = u − k−1(u). (6)

Moreover, the local stability of the equilibria is preserved under this correspondence.

Proof The correspondence between the equilibria of the closed loop and Equation (6) is clear
by Lemmas 3.2 and 5.1. By Theorem 4.6 and its interpretation for one-dimensional systems
(Remark 1), the locally stable equilibria are those corresponding to fixed points u of k(u) for
which 0 < k′(u) (by assumption 3.) and k′(u) ≤ 1. These are exactly those points which are
linearly stable in Equation (6), by Lemma 5.1. �
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6. An autoregulatory transcription network

We consider as an application the following gene network, where we apply our arguments with
m = 1. Consider a cycle of N proteins p1, . . . , pN , each of which with its respective messenger
RNA ri . We denote the extranuclear concentration of the protein pi by qi . Let each protein
promote the transcription of its own mRNA, as in the model proposed in [9] in the case of
nitrogen catabolism. Let also each protein pi promote the transcription of pi+1, or that of p1 in
the case of pN . The full system has the form

ṗi = Kimp,i (qi) − Kexp,i (pi) − a2ipi

q̇i = T (ri) − Kimp,i (qi) + Kexp,i (pi) − a3iqi, i = 1, . . . , N, (7)

ṙi = H(pi, pi−1) − a1i ri ,

where all constants involved are positive, and p0 is identified with pN throughout. See Figure 2
for an illustration. The model in [9] lets the transcription factors w, y be inhibitory, and hence
does not fit the present analysis from here on. Nevertheless note that by replacing (p1, q1, r1),
(p2, q2, r2) and (p3, q3, r3) by (y, ψ, Y ), (z, ζ, Z), (w, ω, W), respectively, one obtains a very
similar structure as in Equation (7) for the main downstream subsystem of that model.

The exact form of the functions H, T , K is relatively unimportant, as long as each of their
partial derivatives are positive (except possibly at the origin). For the sake of the argument, we
use the following functions, including a multivariate Hill function H(x, y):

H(x, y) = A1x
m + A2y

n

A1xm + A2yn + B1
, T (r) = A4r

B2 + r
, Kimp(q) = Kiq, Kexp(p) = Kep.

Note that the double use of A1 and A2 is necessary for H to be increasing with respect to x, y.
It is also a consequence of a quasi steady state analysis as in [25].

The decomposition considered uses the input variable λ:

ṗi = Kimp,i (qi) − Kexp,i (pi) − a2ipi, i = 1, . . . , N,

q̇i = T (ri) − Kimp,i (qi) + Kexp,i (pi) − a3iqi, i = 1, . . . , N,

ṙi = H(pi, pi−1) − a1i ri , i = 2, . . . , N,

ṙ1 = H(p1, λ) − a1i r1,

h(p, q, r) = pN. (8)

A routine verification shows that this decomposition satisfies the conditions 1.– 4. in the
definition, using the standard cooperative orders in R

n and R
m.

Recall that A, B, C denote the matrices which linearize the open system, in this case of
Equation (8).

PROPOSITION 6.1 Almost every solution of Equation (7) converges towards those equilibria e

such that s(A) < 0, s(C(−A−1)B) ≤ 1.
Suppose (H) holds. Then almost every solution of Equation (7) converges towards the equilibria

e corresponding to fixed points h(e) of ks such that k′
s(h(e)) ≤ 1.

Proof We prove the first statement. The boundedness of the solutions of Equation (7) follows by
a straightforward argument, using the boundedness of the Hill nonlinearities (proof: the values of
each of the variables pi converge towards an interval [0,M] for some large enough M regardless
of initial condition, due to the boundedness of the function Kimp,i and the decay rate a2ipi . Use
this information to bound the values of the variable qi . Bound the values of ri in a similar way).
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132 G.A. Enciso and E.D. Sontag

Also, every equilibrium e 
 0 of the system has a strongly monotone linearization: each of
the nonlinearities of the system has positive derivative given positive arguments, therefore the
digraph associated to the linearization around e is still given by Figure 2.

Furthermore, it holds that e �
 0 implies e = 0. For instance, if e is an equilibrium such that qi =
0 for some i, then necessarily ri = pi = 0. If ri = 0, then either pi = 0 or pi−1 = 0. Similarly,
if pi = 0, then qi = 0, ri = 0 and ri+1 = 0. By iterating these arguments the claim follows.

In particular, it follows that every nonzero equilibrium has a strongly monotone linearization.
If s(As) �= 0 at every equilibrium e and if the linearization around e = 0 is strongly monotone
(or not an equilibrium), then the result follows from Theorem 4.6.

If the linearization around the origin is strongly monotone but s(Ae) = 0 for some equlibria
e, notice that linearizing around each such equilibrium it holds BC �= 0 – otherwise A = A +
BC and A would also be strongly quasimonotone, a contradiction by construction. It follows
s(A + BC) > 0, by Lemma 4.3. Therefore almost no solution converges towards e (see, [37,
Lemma 2.1]). The conclusion of Theorem 4.6 follows as in Remark 3.

In the case that the origin e = 0 does not have a strongly monotone linearization, it holds
s(Ae) < 0 at this point, as is clear by looking at the linearization around the origin. The result
follows using Remark 4, given after the proof of Theorem 4.6.

The second statement follows directly from the first, together with Lemmas 3.2 and
Lemma 3.3. �

See Figure 3 for a numerical example of this result. This figure shows a numerical computation
of k and ks for some specific values of the parameters. The theorem predicts that most solutions of
the closed-loop system (7) should converge to one of the states that correspond to the intersection
of the green and the blue curves (given that the slopes of the blue curves have value less than one
in the graph). Note that there are four such intersections (one at zero, one at an intermediate value,
and two on the two almost-overlapping branches), and hence there are four stable steady states.
Moreover, and this is a most important feature of our approach, this conclusion persists even if
the very special parameter values used in the example are varied across broad ranges, as long as
the qualitative graphical picture (i.e. the number of blue fixed points and their slopes) remains
unchanged. This robustness of conclusions makes our combination of graphical and theoretical

Figure 3. A numerical computation of k, ks for Equation (7) in the case N = 2, using the parameters
m1 = m2 = 4; n1 = n2 = 1; Ki1 = Ki2 = 1/6; Ke1 = 1/15; Ke21/12; a11 = a12 = 1; a21 = 1/10; a22 = 1/12;
a31 = a32 = 1/6; A11 = A12 = 1; A21 = A22 = 1; A41 = A42 = 10; B11 = B12 = 16; B21 = B22 = 10. (a) The
function k, with the unstable branches in red. (b) The function ks after removing unstable branches.
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approach a very useful tool for sensitivity analysis, akin to the use of graphical tools in classical
control theory.

In the rest of this section, we will take a closer look at the bifurcation curve k(λ) and how to
determine its stable branches and to ensure property (H), the main results being Proposition 6.5
and Corollary 6.7. We will also show that for N = 1, a one dimensional reduction of the system
is possible.

Note that this system is a cascade of N three-dimensional subsystems with a single input each.
Let us concentrate on one of these subsystems, which we write as

ṗ = Kiq − Kep − a2p

q̇ = T (r) − Kiq + Kep − a3q (9)

ṙ = H(p, λ) − a1r.

In order to study this ‘core’ system, we consider λ to be a fixed constant, rather than an input. To
compute the bifurcation graph of this system, note that it is itself a strongly monotone system,
and that it can be studied using the previous results by decomposing it as the closed loop of

ṗ = Kiu − Kep − a2p

q̇ = T (r) − Kiq + Kep − a3q, h(p, q, r) = q, (10)

ṙ = H(p, λ) − a1r.

which contains the single input u.

LEMMA 6.2 Let λ be a fixed constant. Then the system (9), when decomposed according to
Equation (10), satisfies property (H).

Proof Suppose that (p1, q1, r1), (p2, q2, r2) are two equilibria of the system (9) such that q1 =
q2. From the first equation in Equation (9) we deduce that p1 = p2, and therefore also r1 = r2.
This implies the statement. �

Note that for every value of u there exists a unique equilibrium of Equation (10). Let k̂(u)

denote the concentration of the variable q at this equilibrium. Thus k̂(u) is the bifurcation graph
of the system (9) decomposed as in Equation (10), given a constant value of λ. One can compute

k̂(u) = c1T (c2H(c3u, λ)) + c3c4u,

where c1 = 1/Ki + a3, c2 = 1/a1, c3 = Ki/Ke + a2, c4 = Ke/Ki + a3.

LEMMA 6.3 Let λ be a fixed constant. The equilibria of the system (9) are in bijective corre-
spondence with the fixed points of k̂(u). The exponentially stable (resp. exponentially unstable)
equilibria of Equation (9) correspond to the fixed points k̂(u) = u such that k̂′(u) < 1 (resp.
k̂′(u) > 1).

Proof The correspondence of the equilibria follows by Lemma 3.2. The correspondence of their
stability follows after linearizing around each equilibrium by Proposition 4.5 and Lemma 3.3. �

Having studied the core system (9) for a fixed value of λ, we let now λ vary over a range of
values to compute the bifurcation graph k(λ) of the open loop of Equation (8). In the case N = 1,
this can be done by setting equal to zero the LHS of system (9), obtaining

C1p = T

(
1

a1
H(p, λ)

)
, (11)

for C1 := (Ke + a2)(Ki + a3)/Ki − Ke > 0. Then k(λ) is the set of p satisfying this equation.
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134 G.A. Enciso and E.D. Sontag

For general N , k(λ) consists of the steady state values of pN in Equation (8) given the constant
value λ. Thus while k̂(u) is single valued and typically sigmoidal, k(λ) may be multivalued and
have stable and unstable branches.

LEMMA 6.4 For N = 1, the function k(λ) is injective∗.

Proof Note that ∂û/∂λ > 0, and that therefore for every fixed u, there can be at most one λ such
that k̂λ(u) = u. The injectivity follows by definition of k(λ). �

PROPOSITION 6.5 System (8) satisfies condition (H) for general N ≥ 1.

Proof This is a direct consequence of Lemmas 6.2 and 6.4: let (p1
i , q

1
i , r

1
i ), (p2

i , q
2
i , r

2
i ) be

two different equilibria such that p1
N = p2

N . Let j be the least index such that (p1
j , q

1
j , r

1
j ) �=

(p2
j , q

2
j , r

2
j ). We can view the system associated to Hi as a closed loop of the form of Equation (10),

and use as constant λ the value p1
i−1 = p2

i−1, or p1
N = p2

N if i = 1. From Lemma 6.2 it follows that
p1

j �= p2
i . But from Lemma 6.4 it follows that p1

i+1 �= p2
i+1. Inductively, it must follow p1

N �= p2
N ,

which is a contradiction. �

Using the bifurcation graph k(λ) in the case N = 1, one can create the bifurcation graph of the
open loop (8) for general N by composing the (multivalued) graphs ki(λ) of every subsystem.
This is further detailed in the appendix, where it is proved that the stable branches of k(λ) are
the compositions of the stable branches of the ki(λ). Recall that we denote by ks(λ) the stable
bifurcation graph of the system.

We now show that for N = 1 there exists a one-dimensional reduction of the three-dimensional
system (7).

LEMMA 6.6 For N = 1, the stable (resp. unstable) branches of k(λ) are strictly increasing (resp.
decreasing).

Proof If (p, q, r) is an equilibrium of (9) for a fixed λ, then q = cp for a positive constant c

by the first equation of Equation (9). It holds in general that k̂λ(ck(λ)) = ck(λ) by definition of
k̂(u), k(λ). By the chain rule it holds

∂

∂λ
k̂λ(k(λ)) = ck′(λ)

(
1 − ∂

∂u
k̂λ(k(λ))

)
.

The left-hand side is positive as mentioned above. Thus if ∂/∂uk̂λ(k(λ)) > 1 (i.e. on an unstable
branch of k(λ)), it holds that k′(λ) < 0. Similarly on a stable branch. �

COROLLARY 6.7 For N = 1, there exists a bijective correspondence between the equilibria of
Equation (7) and those of λ̇ = λ − k−1(λ), which preserves local stability properties.

Proof Follows from Lemma 5.2, using Proposition 6.5 and Lemmas 6.4 and 6.6. �

We define now an expression for the function k−1(λ), in the case N = 1. Recall that for a given
λ, k(λ) is the set of p satisfying Equation (11). Evidently for a fixed λ, k(λ) can have several
values – but given a fixed value of p, one can find an expression for λ by expanding and solving
this equation, obtaining

λ = [C1(B2A1 + A1/a1)p
m+1 − A1A4p

m + B1B2C1p]1/n[A2 − C1(B2A2 + A2/a1)p]−1/n.

This expression is none other than k−1(p).
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7. Introducing diffusion or delay terms

Because of the strong structure imposed by the monotoncity conditions, the stability properties of
monotone systems are preserved after the addition of delay or diffusion terms. This phenomenon
is made precise in [36], and it is used here to extend Theorem 4.6 to such cases.

In order to address statements about ‘almost every’ state in infinite-dimensional systems, we
will use the following measure-theoretic concept of ‘sparseness’due independently to Christensen
and Yorke et al. [10, 23]. A Borel measurable subset A of a Banach space B is said to be shy if
there exists a compactly supported (nonzero) Borel measure μ on B such that μ(A + x) = 0 for
every x ∈ B. In finite dimensions, the concepts of shyness and zero Lebesgue measure coincide.
Given a set W ⊆ B, we also say that a set A is prevalent in W if W − A is shy.

For both the delay and reaction diffusion systems, denote by 
t the time evolution operator
after time t . Fix t0 > 0, and assume that t0 > r in the delay case, where r is the maximum delay
in the system. Define Ěs as the set of equilibria e such that ρ(
′

r (e)) ≤ 1. It is a standard result
that this definition does not depend on the specific value of t0.

We will continue to denote by Es the set of equilibria e of the finite-dimensional system (3) for
which s(A + BC) ≤ 0. Once again, we assume that the set X is order convex and that the cone
K has nonempty interior.

7.1. Reaction diffusion systems

Let Equation (3) be a strongly cooperative system with strongly monotone linearizations around
equilibria, defined on X0 = R

n or X0 = (R+)n. Consider the reaction diffusion system with
Neumann boundary conditions

vt = D�v + f (v, h(v)). (12)

Here D is a diagonal matrix with non-negative entries, the domain 
 ⊆ R
p is convex with smooth

boundary, and the state space used is X = C(
, X0). We use the variable v instead of the usual
u to prevent confusion with the input notation (we will nevertheless use x as the space variable
in this section). For details on the existence and uniqueness of solutions for this system, see, for
instance, Theorem 7.3.1 in Smith [36].

If the state e is an equilibrium of Equation (3), then the constant function ê is an equilibrium
of Equation (12). But, unlike the delay case (see below), there may be equilibria of Equation (12)
which do not correspond to equilibria of Equation (3), i.e. which are not uniform in space. A
theorem by Kishimoto and Weinberger [26] guarantees, for strongly cooperative reaction diffusion
systems on a convex domain, that a spatially nonuniform equilibrium must be linearly unstable.
This is a key ingredient in the following result, which uses the notation following equation (5).

THEOREM 7.1 Let Equation (3) be a strongly cooperative system with bounded solutions, and
such that every equilibrium e has a strongly monotone linearization, and s(A(e)) �= 0. Then
almost every solution of the reaction diffusion system (12) converges towards the spatially uniform
equilibria ê such that s(A(e)) < 0 and s(C(−A−1)B) ≤ 1.

Proof By Corollary 7.3.2 and Theorem 7.4.1 of [36], system (12) is well defined on X and
strongly monotone. Consider the following independent statements.

First, by the proof of Theorem 9 in [14], for almost every initial condition v(x) ∈ X (in the
sense of prevalence) there exists v̄(x) ∈ Ěs such that 
t(v) → v̄ as t → ∞ (under the supremum
norm).
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136 G.A. Enciso and E.D. Sontag

Second, by the main result in [26], every element of Ěs is of the form ê, for some equilibrium
e of Equation (3). Moreover, by Remark 7.6.1 of Smith [36], an equilibrium ê of Equation (12) is
in Ěs if and only if e is in Es . Therefore the function e → ê is a bijection between Ěs and Es .

Third, the argument in the proof of Theorem 4.6 applies for system (3) to conclude that Es

consists of the equilibria e such that s(A(e)) < 0 and s(C(−A−1)B) ≤ 1.
The conclusion follows by combining the results of the last three paragraphs. �

Given the modularity of this proof, any of the remarks after the proof of Theorem 4.6, which be
used to provide a slight generalization of that theorem, can in turn be used to prove an analogue
generalization of the result above. For instance, in the case m = 1, the equilibria of Equation (12)
correspond to the fixed points u0 of ks(u) such that k′

s(u0) ≤ 1, etc.

Example. Consider the gene network from our previous application with the addition of diffusion
terms for each variable. The system has the form

ṗi = dpi�pi + Kimp,i (qi) − Kexp,i (pi) − a2ipi

q̇i = dqi�qi + T (ri) − Kimp,i (qi) + Kexp,i (pi) − a3iqi (13)

ṙi = dri�ri + H(pi, pi−1) − a1i ri ,

where all diffusion coefficients are non-negative. A realistic biological example might assume
dqi > 0 for some i, all other diffusion coefficients having value zero.Assume for simplicity that the
derivatives at zero of all nonlinearities involved are larger than zero, so that the linearization around
the origin of Equation (7) is strongly monotone. Also assume for simplicity that s(A(e)) �= 0 for
every equilibrium e in (7). Then Theorem 7.1 can be used to describe the dynamics of the reaction
diffusion system. Using the correspondence ê → e → h(e) between equilibria of the reaction
diffusion system and fixed points of the bifurcation graph k, we further have:

COROLLARY 7.2 Almost every solution of the reaction diffusion system (13) converges towards
the equilibria ê corresponding to fixed points h(e) of ks , such that k′

s(h(e)) ≤ 1.

7.2. Delay systems

Consider a C1 delay system

ẋ = F(xt ) (14)

defined in the set X of states φ ∈ C([−r, 0], X0), where X0 = R
n or X0 = (R+)n for simplicity.

The usual definitions of monotonicity can be made using the cooperative coneK = {φ ∈ X|φ(s) ∈
(R+)n for all s}. Practical conditions for characterizing strong monotonicity with respect to K are
the assumptions (I), (R), (M) described in detail in Chapter 5 of [36].

Let x̂ ∈ X denote the constant function with value x, for x ∈ X0. One can associate to the delay
system the finite-dimensional system ẋ = F̂ (x), where F̂ (x) = F(x̂). This system is strongly
cooperative whenever Equation (14) is (in the sense of Theorem 5.3.4 of Smith [36]), and it will
be written in the form of Equation (3) to apply the results from the previous sections. It is a
basic result from the theory of delay systems that e → ê is a bijective correspondence between
equilibria of Equation (3) and those of Equation (14).

The key result is Corollary 5.2 of [36], which ensures that an equilibrium ê of Equation (14) is
exponentially unstable if and only if the corresponding equilibrium e of its undelayed system (3)
is exponentially unstable.
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THEOREM 7.3 Let Equation (14) be a C1 strongly cooperative system with bounded solutions and
strongly monotone linearizations around equilibria, and for every equilibrium ê let s(A(e)) �= 0
in Equation (3). Then almost every solution of the delay system converges towards an equilibrium
ê such that s(A(e)) < 0 and s(C(−A−1)B) ≤ 1.

Proof Consider the following independent statements below.
First, it can be verified that the delay system satisfies the hypotheses of Theorem 7 in [14].

Therefore for almost every initial condition φ (in the sense of prevalence) there exists e ∈ Ěs such
that 
t(φ) → e as t → ∞ (using the supremum norm).

Second, by Corollary 5.2 of Smith [36], the function e → ê is a bijection between Es and Ěs .
Third, given the hypotheses on Equation (14), it follows that the undelayed system (3) is

also strongly monotone with strongly monotone linearizations around equilibria. We use the
argument in Theorem 4.6 to conclude that Es consists of the equilibria e such that s(A(e)) < 0
and s(C(−A−1)B) ≤ 1.

The conclusion follows by combining the results of the last three paragraphs. �

Example. Consider the gene network from our previous application with the addition of tran-
scriptional and translational delays for each protein, which we denote by σi and τi respectively.
The system has the form

ṗi = Kimp,i (qi) − Kexp,i (pi) − a2ipi

q̇i = T (ri(t − τi)) − Kimp,i (qi) + Kexp,i (pi) − a3iqi i = 1, . . . , N, (15)

ṙi = H(pi(t − σi), pi−1(t − σi)) − a1i ri ,

Assume for simplicity that the derivatives at zero of all nonlinearities involved are larger than
zero, so that the linearization of Equation (7) around the origin is strongly monotone. Also
assume for simplicity that s(A(e)) �= 0 for every equilibrium e in Equation (7). Then we can
use Theorem 7.3 to characterize the dynamics of the delay system. Using the correspondence
ê → e → h(e) between equilibria of the delay system and fixed points of the bifurcation graph
k, we further have the following.

COROLLARY 7.4 Almost every solution of the delay system (15) converges towards the equilibria
ê corresponding to fixed points h(e) of ks such that k′

s(h(e)) ≤ 1.
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Appendix Stable equilibrium descriptors

LEMMA A1 Consider a (not necessarily monotone) cascade

żi = gi(z1, . . . , zi ), i = 1, . . . , N. (A1)

Then a tuple of vectors (z̄1, . . . , ¯zN ) is an exponentially stable equilibrium if and only if for every i, z̄i is an exponentially
stable equilibrium of

żi = gi(z̄1, . . . , z̄i−1, zi ). (A2)

Proof The proof is obvious from the fact that the characteristic polynomial of the cascade is equal to∏n
i=1 charpoly (∂gi/∂zi ). �

Consider now a series of N single input, single output systems

żi = fi(zi , ui ), i = 1, . . . , N,

yi = hi(zi ) ∈ R, i = 1, . . . , N,
(A3)

which are coupled as a cascade by ui = yi−1, i = 2, . . . , N . Define as before the set functions Si(u) := {hi(z̄i )|z̄i is an
exponentially stable equilibrium of żi = fi(zi , u)}.

Given functions f : A → P(B), g : B → PC, we compose in the natural way to form the function g ◦ f : A → PC:

(g ◦ f )(a) = {c ∈ C|there exists b ∈ B such that b ∈ f (a), c ∈ g(b)}.

LEMMA A2 Define for the cascade above the output h(z1, . . . , zN ) := hN(zN ) and the stable output set function S. Then
S = SN ◦ · · · ◦ S1.

Proof Consider a fixed ū1 ∈ R. Given a vector (z̄1, . . . , z̄N ), define ȳi := hi(z̄i ), i = 1, . . . , N , ūi := ȳi−1, i =
2, . . . , N . Then h(z̄1, . . . , z̄N ) = ȳN ∈ S if and only if (z̄1, . . . , z̄N ) is an exponentially stable equilibrium of the cascade.
But by Lemma A1, this is equivalent to the exponential stability of z̄i in Equation (A2) for every i, where

g1(z1) := f1(z1, ū1),

gi (z1, . . . , zi ) := fi(zi , hi−1(zi−1)), i = 2, . . . , N.

This is in turn equivalent to ȳi ∈ Si(ūi ), i = 1, . . . , N , which is equivalent by definition of composition to ȳN ∈
SN ◦ · · · ◦ S1(ū1). �
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