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Abstract

For feedback loops involving single input, single output monotone systems with well-defined I/O characteristics, a recent
paper by Angeli and Sontag provided an approach to determining the location and stability of steady states. A result on global
convergence for multistable systems followed as a consequence of the technique. The present paper extends the approach to
multiple inputs and outputs. A key idea is the introduction of a reduced system which preserves local stability properties.
© 2004 Published by Elsevier B.V.
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1. Introduction

The study of stability properties for systems hav-
ing multiple steady states is of great importance,
as such systems possess a “memory” of past states,
and, as components of larger systems, can act as
switches, or underlie relaxation oscillators. A result
on global convergence for multistable systems was
presented in the article[3]. That work presented a
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reduction principle for unity feedback loops involving
single input, single output models which admit a well-
defined I/O characteristic and satisfy a monotonicity
condition. The reduction was to a discrete-time one-
dimensional iteration.
This note is a follow-up, where we extend the result

to the multivariable case. The key idea is to introduce
a continuous-timereduced system which preserves
local stability properties. This reduced system is often
easier to analyze than the original one, since its dimen-
sion equals the number of inputs (or outputs), which
is typically very small. Model reduction is a powerful
analysis tool in differential equations and control the-
ory. The two most used approaches are those involv-
ing energy considerations, where only the “largest”
components, as measured in an appropriate norm, are
kept (see e.g.[5]), and classical time-scale separation
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(singular perturbation techniques). The approach pro-
posed in[3], and extended here, is completely differ-
ent to these two.
In this paper, we deal with systems with inputs and

outputs, as usual in control theory[17]:

ẋ = f (x, u), y = h(x), (1)

with u(t) ∈ U andy(t) ∈ Y , but we assume that the
input- and output-value spaces coincide (U = Y is a
subset of some Euclidean spaceRm; states evolve in
some subsetX ⊆ Rn). We assume thatU =Y because
our goal is to analyze the stability properties of the
closed loop system

ẋ = f (x, h(x)), (2)

which arises under unity feedback. More general
feedback interconnections can be reduced to a unity
feedback configuration for purposes of applying these
techniques (see for instance the discussion in[1]).
We illustrate with an example how to rewrite a given
system in a form suitable for application of our theory.
The main assumptions are that the open-loop sys-

tem (1) is monotone with respect to conesKm, Kn,
andKm in the input-value, state, and output-value
spaces, and that it admits a nondegenerate I/S char-
acteristickX : U → X. We denote the corresponding
(nondegenerate) I/O characteristic ask=h◦kX : U →
U . In our main result we will establish a connection
between (1) and the reduced system:

u̇ = k(u) − u. (3)

Theorem 1. Let (1) be a monotone system that ad-
mits a nondegenerate I/S characteristickX and an
I/O characteristic k with nondegenerate fixed points,
and assume that the closed loop system(2) is strongly
monotone. Then the function̄u → kX(ū) forms a bi-
jective correspondence between the locally asymptoti-
cally stable points of the monotone systemu̇=k(u)−u

and those of(2).Furthermore, almost all bounded so-
lutions of(2) converge to one of these asymptotically
stable points.

This reduction allows to study the global stability
properties of the full system (1) in terms of the re-
duced system, which has, in general, much lower di-
mensionality than (1). In[3], a result was proved that
is equivalent to this one for the special case of scalar
inputs and outputs (m = 1). This scalar result was

formulated in terms of adiscrete-timecondition in-
volving derivatives ofk. One of the main contributions
of the present paper is the re-interpretation of that con-
dition in terms of the reduced-ordercontinuous-time
system (3). This re-interpretation is crucial to the gen-
eralization that we gave in Theorem 1. Theorems 1 and
2 are the exact counterparts of Theorem 3 and Lemma
6.6 of [3], respectively, even though the statements
are written somewhat differently. The main theorem is
of use in a number of applications, especially in bio-
logical signaling networks with multiple steady states
and/or presenting hysteresis effects; see[1–4,18].
One of the most interesting implications of this

methodology lies in the fact that the mappingk can
be often obtained from experimental data (“dose
response” curves in pharmacology, for example), even
when knowledge of the system (1) is poor because
of uncertainty in the form of equations, or unknown
or unmeasurable parameters. Provided that general
qualitative knowledge about the system is available
(insuring the appropriate assumptions for the system
to apply), one can then mathematically conclude sta-
bility from the input/output data provided byk. This
is discussed in detail in[1,18].
The organization of this paper is as follows. Af-

ter stating some basic definitions, we first establish
a number of preliminary results about positive matri-
ces, followed by the local version of the result (linear
systems). Theorem 1 will then follow by combining
this local result with a global convergence theorem
due to Hirsch. After this, we discuss an example, and
we study sufficient conditions for closed-loops to be
strongly monotone.

2. Definitions

LetK ⊆ Rn be acone, by which wemean a set that
is nonempty, convex, closed under multiplication by
positive scalars, and pointed (i.e.K∩(−K)={0}).We
will also assume thatK is closed and has nonempty
interior (it is “proper”). The coneK induces the partial
order given by:x�y iff y − x ∈ K, and the stronger
orderx>y iff y − x ∈ intK. We also say thatx <y

if x�y andx = y.
Assume given a system (1), where the state space

X ⊆ Rn is the closure of an open set, the input- and
output-value setU is also the closure of an open set,
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and f andh are continuously differentiable. We also
assume given two proper conesKn ⊂ Rn andKm ⊆
Rm. By an input we mean a measurable essentially
bounded mapu : R+ → U and write “u�v” for two
inputs provided thatu(t)�v(t) for almost all t. (We
abuse notation and use letters such asu to denote both
an input value—element ofU—or an input, depending
on the context.)
System (1) ismonotone with respect toKn,Km

if h is a monotone function, that isx�y implies
h(x)�h(y), and the flow preserves the order, i.e., the
following property is satisfied:

For any two inputsu, v such thatu�v, and
any two initial conditionsx1, x2 ∈ X such that
x1�x2, it holds thatx(t, x1, u)�x(t, x2, v) for
all t�0.

Here,x(t, x0, u) is thesolutionof system(1)with initial
conditionx0, evaluated at timet, and the relations�
are defined as in the previous section for each cone, and
interpreted as�U or �X in the obvious manner. Sys-
temswith no inputs can be seen as a particular case (us-
ing an input value space consisting of just one point);
such a system is monotone ifx1�x2 impliesx(t, x1)�
x(t, x2) for all t. We will always understand “for allt”
to mean for all timest belonging to the common do-
main of definition of the solutions involved. The reader
is referred to[16] for a comprehensive introduction to
the theory of monotone systems; see also[10].
A system of the form (1) is said to bestrongly mono-

tone if u�v, x1<x2 implies x(t, x1, u)>x(t, x2, v)

∀t . We also assume in this case thatx>y implies
h(x)>h(y) (we say thath itself isstrongly monotone).
It is useful to be able to test monotonicity directly in

terms of vector fields. In[2], two characterizations are
provided, one in terms of nonsmooth analysis and valid
for abstract monotone dynamics (even with respect
to arbitrary partial orders), and a second one, quoted
next, based upon a generalization to systems with in-
puts of the concept of quasi-monotonicity, the latter of
which was introduced by Schneider and Vidyasagar,
and used later by Volkmann (see[15,19]). System (1)
is monotone if and only if

x ∈ X, u ∈ U, h ∈ Kn,

v ∈ Km, � ∈ K∗
n, and�(h) = 0

⇒ �(f (x + h, u + v) − f (x, u))�0, (4)

whereK∗
n = {� ∈ (Rn)∗|�(x)�0 ∀x�0}.

When the state space and input value space are con-
vex, we can rewrite this condition as follows:

x ∈ X, u ∈ U, h ∈ Kn,

v ∈ Km, � ∈ K∗
n, and�(h) = 0

⇒ �(fx(x, u)h + fu(x, u)v)�0, (5)

wherefx andfu denote the Jacobians off with respect
to thex andu variables, respectively (see[12] for an
analogous observation for systems with no inputs). As
an illustration, we show that the autonomous system
(3) is monotone, wherek : U → U is any monotone
function. By condition (4), it is enough to note the
following. If u�v, and� ∈ K∗ such that�(u)=�(v),
then

�(k(v) − v) − �(k(u) − u) = �(k(v) − k(u))�0.

2.1. Characteristics

We say that (1) has a well-definedinput to state
characteristickX : U → X if for every constant in-
put u(t) ≡ u ∈ U , x(t, x0, u) converges tokX(u) for
every initial conditionx0 ∈ X. In that case we refer
to k = h ◦ kX as the system’sinput to output charac-
teristic. We will also assume throughout in this text
that the characteristickX is nondegenerate, that is,
detfx(kX(u), u) = 0 for everyu ∈ U .
We say thatk has nondegenerate fixed pointsif

det(k′(ū)−I ) = 0 (i.e.,k′(u) has no eigenvalues equal
to one) for each̄u fixed point ofk (not to confuse with
the previous definition).
Suppose given a system (1) which is both mono-

tone and admits an I/O characteristick. Then k is a
monotone function.This is proved as follows. Pick
any two elementsu�v in U, and consider the corre-
sponding constant inputsu(t) ≡ u and v(t) ≡ v as
well as an arbitrary initial statex0. By monotonicity,
x(t, x0, u)�x(t, x0, v). Letting t tend to infinity, we
conclude thatk(u)�k(v).
We finally turn to the question of showing that sys-

tem (3) has well defined and unique solutions. Note
that the functionkX is defined as a level curve of
f (x, u), where the latter function can be extended in
the first variable to an open domain coveringX × U ,
from the definition of differentiability on a closed do-
main. By the implicit function theorem, and using the
nondegeneracy hypothesis, we have thatkX itself is a
continuously differentiable function on the state space,
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boundary points included. Composing with the output
functionh, after applying similar remarks, we see that
k(u) isC1 onU and its boundary points. Thus system
(3) has unique, maximally defined solutions.

3. Preliminaries on positive matrices

We begin with a definition. Given a coneK ⊆
Rn, ann × n matrixA is calledinverse-positive with
respect toK if for everyx ∈ Rn,Ax�0 impliesx�0.
We note first that an inverse-positive matrixA must
be invertible: ifAx = 0, then alsoA(−x) = 0, which
implies x ∈ K, −x ∈ K, andx = 0. Also, it is easy
to see thatA−1K ⊆ K, and that these two conditions
imply inverse-positivity.
We quote the following results without proof from

Plemmons et al.[6, pp. 113 and 10], respectively.
(That reference also calls inverse positive matricesK-
monotone.) By aHurwitzmatrixM, wemean, as usual,
one for which Re�<0 for any eigenvalue� ofM, and
we denote by�(M) the spectral radius of a matrixM.

Lemma 1. LetA=�I−B, �>0,and assumeBK ⊆
K. Then the following conditions are equivalent:

(1) A is inverse-positive.
(2) �(B)< �.
(3) −A is Hurwitz.

Lemma 2. Let A = �I − B, �>0, BK ⊆ K, and
suppose that A is invertible andAx >0 for somex?0.
Then A is inverse-positive.

4. Linear systems

Consider a linear systeṁx = Ax + Bu, y = Cx

that is monotone and admits well defined (and neces-
sarily nondegenerate) I/S and I/O characteristics. We
close the system by unity feedback, lettingu = y =
Cx, thus forming an autonomous dynamical system.
It is easy to compute the I/O characteristic from the
equationAx + Bu = 0 for a fixedu ∈ U , namely
k(u) = −CA−1Bu. Thusk′(0) = −CA−1B; this will
be important for the statement of the following theo-
rem, which is equivalent to Lemma 6.6 in[3] (see also
the remark after the proof).

Theorem 2. Let ẋ = Ax + Bu, y = Cx, with A ∈
Rn×n, B ∈ Rn×m, C ∈ Rm×n, be a linear system that
admits an I/O characteristic k and is monotone with
respect to conesKn andKm in the input-value and
state spaces. Assume thatdet(I +CA−1B) = 0.Then
A+BC is Hurwitz iff−(I +CA−1B) is Hurwitz. In
other words, the closed loop system is exponentially
stable iff the linear systeṁu=k(u)−u is exponentially
stable.

Proof. The unity-feedback system is given byẋ=(A+
BC)x. The hypotheses of monotonicity and existence
of characteristic on the linear system are equivalent
to the following requirements: (i) the positivity cone
Kn is positively invariant for the systeṁx =Ax; (ii)
BKm ⊆ Kn; (iii) CKn ⊆ Km; and (iv)A is a Hur-
witz matrix. See[3,8] for a proof of this equivalence
and other properties of monotone (positive) linear sys-
tems.
SinceA + BC is such thatẋ = (A + BC)x is

monotone, there exists a Perron–Frobenius eigenvalue
for A + BC, that is, a number� ∈ R with maxi-
mal real part among the eigenvalues ofA+BC, such
that (A + BC)v = �v for somev >0. (This is stan-
dard; see for example[3, Lemma 6.2].) Also, it holds
that −CA−1B K ⊆ K, sincek is a monotone in-
creasing function. By the Perron–Frobenius theorem
there exists a real eigenvalue� = �(−CA−1B)− 1 of
−CA−1B − I with maximal real part; the nondegen-
eracy hypothesis implies that� = 0.
Observe thatA+BC is Hurwitz if and only if�<0,

and−I − CA−1B is Hurwitz if and only if �<0.
So we must prove that�<0 if and only if �<0.
By multiplying on both sides byCA−1 we obtain:
(I +CA−1B)Cv = �CA−1v. We prove that� = 0: if
� were zero, then det(I + CA−1B) = 0 would imply
Cv = 0 andAv = (A + BC)v = 0, contradicting the
fact thatA is a Hurwitz matrix. Note also thatCv�0
andCA−1v = − ∫ ∞

0 CeAtv dt�0.
Suppose first thatCv?0. By continuity of the inte-

grand, we conclude thatCA−1v>0. If �<0, we can
apply Lemma 2 (with “�” = 1, “B” = −CA−1B, “A”
= I + CA−1B, and “x” =Cv) to conclude thatI +
CA−1B is inverse-positive, and therefore, by Lemma
1, that−(I + CA−1B) is Hurwitz.
Conversely, if−(I + CA−1B) is Hurwitz, then,

once again appealing to Lemma 1, we know
that I + CA−1B is inverse-positive. Then, from
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(I + CA−1B)(−�−1)Cv = −CA−1v, we conclude
that (−�−1)Cv >0 or �<0.
Finally, let us consider the general case,Cv�0. We

show the existence of anm× n matrixP with Px?0
for eachx >0: sinceKn is closed and pointed, there
must be some(n − 1)-dimensional hyperplaneH ⊆
Rn whose intersection withKn is {0}. Letting w ∈
Rn have norm equal to 1 and be perpendicular toH,
we have without loss of generalityx ·w>0, for every
x >0. Let nowB be a basis ofRn consisting of an
orthonormal basis ofH, together withw. ThenB itself
is orthonormal.
We can define a linear transformationP : Rn →

Rm by freely defining the value ofP at each of the
elements ofB, and we do so by settingP(w)?0 and
P(b) = 0 for all otherb ∈ B. Given x >0, one can
write x as linear combination of the base elements,
and the coefficient associated with eachb ∈ B is b ·x.
SinceP(b)=0 except forb=w, our assertion follows
from

P(x) = P((x · w)w) = (x · w)P (w)?0.

Let nowC� = C + �P , for �>0 small enough so
that det(I + C�A

−1B) = 0. Thus we can repeat the
procedure above with this new matrix, and we have,
for ��, �� denoting the stability modulus ofA+BC�
and−(I + C�A

−1B) respectively, that�� <0 if and
only if �� <0. By continuity of eigenvalues on both
sides of the equivalence under continuous changes in
matrix entries, the result follows, taking into account
that� = 0,� = 0. �

The second conclusion of Lemma 6.6 in[3] also
holds here in a multidimensional version: since� =
0,� = 0, and�<0 iff �<0, it must hold that�>0
iff �>0. That is, there exists a positive eigenvalue of
A+BC if and only if there exists a positive eigenvalue
of −(I + CA−1B).
Recall that if a linear system is asymptotically sta-

ble, then all of its eigenvalues must have negative real
part, and the system is therefore exponentially stable.
From the proof of the previous theorem we can de-
duce a similar property for monotone systems, that we
explicitly state below.

Lemma 3. Let ẋ=F(x) be a monotone system under
some proper cone, F(x̄) = 0, and det�F/�x(x̄) =

0. Thenx̄ is asymptotically stable if and only if it is
exponentially stable.

Proof. We prove the only nontrivial direction: letx̄ be
an asymptotically stable equilibrium, which implies
that the real parts of all eigenvalues of the matrixA=
det�F/�x(x̄) are smaller or equal than zero (see for
instance[17, Corollary 5.8.7]). By monotonicity ofA,
there is a Perron–Frobenius eigenvalue� associated
to it, that is, a real eigenvalue such that Re� is larger
than the real part of any other eigenvalue ofA; see
[3, Lemma 6.2]. But by hypothesis� = 0—thus�<0
and exponential stability follows.�

5. Proof of Theorem 1

Now we are ready to prove the main result. In the
case thatm=1, the condition that̄u be a stable equilib-
rium of the reduced system (3) is equivalent to asking
thatk(ū)= ū andk′(ū)−1<0, since by nondegener-
acyk′(ū)−1 = 0. This is just the conditionk′(ū)<1
used in[3].

Proof of Theorem 1. Much of the proof is identical
to that of Theorem 3 in[3]; the supporting Lemmas 6.4
and 6.5 in that paper were actually proven for finite-
dimensional inputs. For̄u an equilibrium point of (3),
that isk(ū)=ū, let the linearization of the open system
aroundū andkX(ū) be denoted aṡx =Ax +Bu, y =
Cx. The hypotheses of Lemma 3 are satisfied both
for ū in the reduced system and forx̄ = kX(ū) in the
closed loop system, by nondegeneracy of fixed points
in the former, and since detA+BC = 0 in the latter;
see the proof of Theorem 2. We therefore have thatū

is asymptotically stable in the reduced system if and
only if it is exponentially stable in the reduced system
(by Lemma 3), if and only if̄x is exponentially stable
in the closed loop system (by Theorem 2), if and only
if x̄ is asymptotically stable in the closed loop system.
The important generic convergence result proven by

Hirsch in the late 1980s can be stated in our frame-
work as follows: given an autonomous system that is
strongly monotone with respect to some proper cone,
almost every initial condition with bounded solution
has a limit set contained in the set of equilibria; see
[9, Theorem 7.8]. In the case that the set of equilibria
is discrete, as it is here, we can conclude that almost
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every bounded solution converges to an equilibrium
point.
Let � ∈ R be the Perron–Frobenius eigenvalue as-

sociated withA+BC after linearizing around an un-
stable equilibrium point̄x. By unstability and since
we know� = 0, we have�>0; thusx̄ is a hyperbol-
ically unstable equilibrium of the closed loop system,
and it follows (see[3,13]) that the set of initial condi-
tions that converge toward̄x in the closed loop system
has measure zero. Thus almost all bounded solutions
converge to one of the equilibria corresponding to a
locally exponentially stable steady state of the reduced
system, as stated.�

Note that under the present hypotheses merely
asymptotic stability is actually ruled out: an equilib-
rium point is either exponentially stable, or unstable
with some eigenvalue with positive real part.
This theorem provides a way to describe the behav-

ior of a complex monotone system in terms of a po-
tentially much simpler, associated system. Form=2 a
graphical analysis as in[1,3] is also possible, by plot-
ting the vector fieldk(u) − u on the input space, and
observing which equilibria appear to be stable (see
example below).
In the case that (3) is itself strongly monotone and

has bounded solutions, one can actually apply Hirsch’s
theorem to it and deduce that almost all trajectories
converge toward one of the stable steady states. The
question arises as to whether the analogy between the
two systems could be carried further: if the output
function h were surjective, does it hold thatx(t, x0)
converges tox̄ if and only if u(t, h(x0)) converges
to h(x̄)? In other words, do the basins of attraction
of each stable point correspond to each other, as the
stable points do? Unfortunately this is not true, as the
example below will illustrate.

6. An example

We illustrate the main result with an example of
a coupled biological circuit. An important class of
proteins, referred to astranscription factors, regulate
transcription of messenger RNA by promoting (or in-
hibiting) the binding of the enzyme RNA polymerase
to the DNA sequence. An autoregulatory transcription
factor regulates the production of its own messenger

p1

p2

r2

r1

Fig. 1. Interconnections for system (6). The dotted lines indicate
where the interconnections will be cut and replaced by inputs.

RNA. Transcription factors are very common, and of-
ten more than one is necessary for RNA polymerase
to initiate transcription. For a mathematical analysis
of the simple autoregulatory circuit, see[16].3

Let p1, p2 be two autoregulatory transcription fac-
tors, andr1, r2 their corresponding messenger RNAs.
We will couple the circuits by assuming that the pro-
teins are also needed to regulate each other’s transcrip-
tion. The dynamics of the circuit is thus expressed as
follows:

ṗi = airi − bipi,

ṙi = gi(p1, p2) − ciri ,
i = 1,2. (6)

We assume that bothg1(p1, p2) andg2(p1, p2) are in-
creasing functions of bothp1 andp2, as well as posi-
tive and bounded. The interconnections are illustrated
in Fig. 1. In particular, note that all the solutions of
this system are bounded.
We analyze the dynamics of this system by cutting

the arcs as indicated in the figure, and we arrive to the
following controlled system with two inputs:

ṗi = aiui − bipi,

ṙi = gi(p1, p2) − ciri ,
i = 1,2. (7)

which is monotone under the usual positive or-
thant cone. If we fix the input(u1, u2), the system
converges toward the pointpi = (ai/bi)ui, ri =

3 The standard model in[16, p. 58]is in fact another interesting
application of Theorem 1: by cutting the arcxn → x1 as explained
in our example, the results in[16, Section 4.2], follow by looking
at the fixed points ofk(u) = �−1

1 . . . �−1
n g(u). Furthermore, the

local stability of each equilibrium is determined by the slope of
k(u) at each corresponding fixed point.
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(1/ci)gi((a1/b1)u1, (a2/b2)u2), which constitutes the
value of kX at the point(u1, u2). Note that the arcs
cut in Fig. 1 are chosen so as to leave the digraph
with no directed loops in order for the characteris-
tic to be well defined, while minimizing the number
of inputs. Also, two cuts are the minimum since
there are two disjoint, directed loops in the digraph.
Since we want the closed loop to be (6), we need
h(p1, p2, r1, r2) = (r1, r2), which when composed
with kX yields

k(u, v) =
(
1

c1
g1

(
a1

b1
u1,

a2

b2
u2

)
,

× 1

c2
g2

(
a1

b1
u1,

a2

b2
u2

))
.

Under mass action kinetics assumptions, a quasi-
steady state analysis (see[11]) yields for thegi the
general formgi = �̂i (p

mi

1 p
ni
2 )/(K̂i + p

mi

1 p
ni
2 ). The

coefficientsmi, ni describe the cooperativity with
which the proteins bind to the DNA sequence. For in-
stance, if twop1 proteins bind to each other (forming
a dimer) before acting on the DNA sequence ofpi ,
thenmi = 2. It is a reasonable assumption that the
cooperativity of a protein is the same for both DNA
sequences, that ism1 = m2 = m, n1 = n2 = n. We
set for simplicitym= 2, n= 1. The remaining coeffi-
cientsK̂i, �̂i are determined by the way the proteins
bind to the particular DNA sequence and how they
aid the polymerase enzyme. We havek(u1, u2) =
(�1(u21u2)/(K1 + u21u2),�2(u

2
1u2)/(K2 + u21u2)),

where�i=�̂ic
−1
i , Ki=K̂ia

−2
1 b−2

1 a−1
2 b−1

2 .Apart from
the trivial solution (0,0), the equationk(u1, u2) =
(u1, u2) can be rewritten asK1 + u21u2 = �1u1u2,
K2u2 + u21u

2
2 = �2u21u2. We solve foru1 in the first

equation above and replace in the second equation,
obtainingK1u

2
1 = (�2u21 − K2)(�1 − u1)u1. From

Fig. 2 we see that there might be only one nonnega-
tive solution ofk(u1, u2) = (u1, u2) (i.e., the trivial
solutionu1 = 0), or there may be three nonnegative
solutions, in the case thatK1,K2 are comparatively
small. Theorem 1 can be used here to establish a cor-
respondence between these points and the equilibrium
points of (6), which sends stable states (of the system
u̇=k(u)−I ) to stable states of (6). Thus, by verifying
that there are two stable points and one unstable point
in u̇ = k(u) − I , we will have shown that the same
holds for (6). SeeFig. 3 for an illustration of this in

Fig. 2. The solutions of the equationk(u1, u2) = (u1, u2).

Fig. 3. The vector field�(u) = k(u) − I , using parameter values
�1 = 4, �2 = 2, K1 = 4, K2 = 5.

the particular case�1 = 4,�2 = 2,K1 = 4,K2 = 5;
note that additional solutions may appear outside the
positive quadrant.
Given the simple form of the output functionh(x)=

(r1, r2), any basin of attraction oḟu=k(u)−I will cor-
respond inX (underh−1) to a rather rigid set, namely
that of every(p1, p2, r1, r2) such that(r1, r2) is in the
basin. It is clear that the basins of attraction of (6) don’t
have this form — this limits the analogy between (6)
and its reduced system.
On the other hand, the same procedure can be ap-

plied for cones that are not necessarily the positive
orthant: for instance if, in the above example, each
protein promoted its own growth andinhibited each
other’s growth, thenKn=R+×R−×R+×R− would
make (6) strongly monotone.
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7. Cascades and strong monotonicity

In the paper[3], it is shown that a monotone
controlled system which is weakly transparent and
strongly excitable, or strongly transparent and weakly
excitable, has a closed loop which is strongly mono-
tone (definitions below). This is used as a conve-
nient sufficient condition for the corresponding hy-
pothesis of the main result, here Theorem 1. One
drawback of the setup of that paper is that it is not
robust under cascading, in the sense that a cascade
of weakly transparent and excitable systems is not
necessarily weakly transparent nor weakly excitable.
In what follows, we strengthen these definitions so
as to address this point. One possible application
is the introduction of “pseudo-delays” in the sys-
tem by adding a cascade of systems of the form
�żi = vi − zi, vi+1 = zi, i = 1,2, . . . . Note that this
cascade respects both the monotonicity and the char-
acteristic of the original system. The introduction of
true delays in the loop also does not affect our con-
clusions; this can be shown by appealing to Corollary
5.5.2 in [16], which asserts that the stability proper-
ties of equilibria in a strongly monotone delay system
do not change when the delays are ignored. See[7]
for further discussion.
We say that a system of the form (1) issign definite

if for eachi = j , it holds that�fi/�xj (x, u)��0 for all
(x, u) ∈ X×U , where the relation�� stands for either
“<”, “>”, or “=”, and of course different signs are
allowed for different pairs(i, j). Similarly for partial
derivatives�fi/�uj (x, u) for all i, j , and for partial
derivatives ofh. One can then define a signed digraph
by using the input and the state variables as nodes, as
usual. It can be shown that a sign definite autonomous
system is monotone with respect to some orthant cone
iff every undirected cycle in its digraph has an even
number of “−”’s, and that in that case, it is strongly
monotone if the digraph is strongly connected. See[3].
In what follows, we say that a monotone sys-

tem (1) is partially excitable if for any x1�x2,
arbitrary inputsu1, u2, and anyt0>0, the follow-
ing properties hold: (1)u1<u2 a.e. on(0, t0) im-
plies x(t, x1, u1)< x(t, x2, u2), t ∈ (0, t0), and
(2) u1>u2 a.e. on(0, t0) implies x(t, x1, u1)>
x(t, x2, u2), t ∈ (0, t0). We also say that (1) is
strongly excitableif u1<u2 a.e. on(0, t0) implies
x(t, x1, u1)>x(t, x2, u2), t ∈ (0, t0). Further, we

will say that (1) ispartially transparentif for arbitrary
inputsu1�u2 and initial conditionsx1, x2 one has (1)
x1<x2 implies h(x(t, x1, u1))<h(x(t, x2, u2)), and
(2) x1>x2 implies h(x(t, x1, u1))>h(x(t, x2, u2)).
It is strongly transparentif x1<x2 impliesh(x(t, x1,
u1))>h(x(t, x2, u2)), for all t >0 for which the so-
lutionsx(t, xi, ui) are defined. Note that the first con-
dition for partial excitability and the second condition
for partial transparency correspond to the notions of
weak excitability and weak transparency, respectively,
in the terminology of[3] (borrowed from[14]).
In particular partial excitability (transparency) im-

plies weak excitability (transparency). But the con-
verse is not true: in the cooperative case, if there are
arcs from a fixed input to every single state, but no
arcs from other inputs whatsoever, then the system
is weakly excitable but not partially excitable since
u1<u2 does not implyx(t, 	, u1)< x(t, 	, u2). Sim-
ilarly for transparency. The valid implication allows
us nevertheless to quote Theorem 2 from[3] in our
present terminology:

Proposition 1. A monotone system(1) that is par-
tially excitable and partially transparent has strongly
monotone feedback loop provided that it is also either
strongly excitable or strongly transparent.

It has also been shown in[3] that in the case of or-
thant cones and sign definite systems, there are sim-
ple conditions on the digraph of the system that imply
transparency and excitability statements. For instance,
if there exists a directed path from every input variable
(from every state variable) to every state variable (to
every output variable), then the system is strongly ex-
citable (strongly transparent).We show a similar result
for the definitions above, which complements Theo-
rems 4 and 5 of[3].

Lemma 4. Let (1)be a sign definite controlled system
that is monotone under some orthant cone. If from ev-
ery input(from every state) there exists a path towards
some state(towards some output), and if towards ev-
ery state(towards every output) there exists a path
from some input(from some state), then the system is
partially excitable(partially transparent).

Proof. These results follow from an adaptation of the
proofs of Theorems 4 and 5 in Appendix A of[3].
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Consider first partial excitability: by Case 2 of Lemma
A1 of [3], since every input variableuj reaches some
xi through a directed path,u1<u2 a.e. on (0, t0)
implies thatx(t, 	, u1)< x(t, 	, u2) for any 	, t ∈
(0, t0). By monotonicity,x(t, x1, u1)�x(t, x2, u1)<

x(t, x2, u2). As to the second assertion, the proof
given for Theorem 4 in[3] actually shows that if
every xi is reachable from someuj , then for any
	: u1>u2 ⇒ x(t, 	, u1)>x(t, 	, u2). The state-
ment for x1�x2 follows by monotonicity. A similar
argument is valid for transparency: given an in-
put u and assuming	1< 	2, there is i such that
{t�0 | xi(t, 	1, u)< xi(t, 	2, u)} ∩ [0, �) has nonzero
measure for every�>0, see sketch of proof of
Theorem 5 in[3]. If yi is reachable fromxi , then
hj (x(t, 	1, u))<hj (x(t, 	2, u)), t >0. The state-
ment for u1�u2 follows by monotonicity, and
from the fact that everyxi reaches someyj . By the
same token, since everyyj is reached by somexi ,
x1>x2 implies hj (x(t, x1, u1))>hj (x(t, x2, u2)),

t >0. �

Now consider, instead of system (1), a cascade of
the form

ẋi = fi(x
i, ui), ui+1 = hi(x

i), i = 1 . . . N. (8)

We will refer to the subsysteṁxi =fi(x
i, ui), ui+1=

hi(x
i), as (8.i).

Lemma 5. Suppose that the cascade system(8) is
monotone, and that each subsystem(8.i) is both par-
tially excitable and partially transparent. Then(8) is
partially excitable and partially transparent. Further,
if (8.1) is strongly excitable, then (8) is strongly ex-
citable. If (8.N) is strongly transparent, then (8) is
strongly transparent.

Proof. Consider any pair of initial conditions
x1 = (xi1)i < x2 = (xi2)i of the closed loop system,
and let xi1(t), x

i
2(t), i = 1 . . . N be the correspond-

ing induced inputs,u2j (t) = h1(x
1
j (t)), . . . , u

N
j (t) =

hN−1(xN−1
j (t)), u1j (t) = uN+1

j (t) = hN(xNj (t)), j =
1,2, the corresponding outputs on a maximally de-
fined interval (from now on we will restrict ourselves
to this interval). In particular, note thatxij (t) is the

solution of the open systeṁxi =f (xi, uij ) with initial

condition xij and inputuij (·), j = 1,2, i = 1 . . . N .

The monotonicity of (8) is clear since it is the closed
loop of a cascade of monotone systems, under positive
feedback. By monotonicity we thus havexi1(t)�xi2(t),
and consequentlyui1(t)�ui2(t), for everyt�0.
We prove the partial excitability of the cascade:

if u11<u12 on some interval(0, t0), then x12 <x12 on
that interval by partial excitability of (8.1). But this
in particular implies thatx1(t) = x2(t) on this inter-
val, hencex1(t)< x2(t). If, on the other hand,u11>u12
on (0, t0), thenx12>x12 on that interval by partial ex-
citability of (8.1), u21>u22 by partial transparency of
(8.1), and so on, so that by inductionxi1(t)>xi2(t) for
all i by partial excitability of (8.i) for every i, and so
x1>x2. The proof for partial transparency is very sim-
ilar.
Now suppose that (8.i) is strongly excitable, and let

u11<u12. By strong excitability we havex11>x12, and
by partial transparency and excitabilityx21(t)>x22(t).
Continuing as before, we havex1(t)>x2(t). The last
assertion is proven in a similar way.�

Corollary 1. Let System(8)bemonotone and let each
(8.i) be partially excitable and partially transparent.
Let one of these two conditions also be strong, for
some(8.i). Then the closed loop system obtained by
settingu1 = uN+1 in (8) is strongly monotone.

Proof. By the previous lemma, cascade (8) is itself
partially excitable and partially transparent. If (8.1) is
strongly excitable or if (8.N) is strongly transparent,
the conclusion follows by the previous lemma and the
previous proposition. If (8.i) is strongly excitable for
i >1, change the order of the cascade by eliminating
(8.1) . . . (8.i − 1) and appending them after (8.N)
in the natural way. Note that the closed loop system
remains the same, and apply the previous argument.
A similar proof applies to the second statement of the
Corollary. �
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