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Finite-dimensional open-loop contrel generators for non-linear systems

EDUARDO D. SONTAG?

This paper concerns itself with the existence of open-loop control generators for
non-linear (continuous-time) systems. The main result is that, under relatively mild
assumptions on the original system, and for each fixed compact subset of the state
space, there always exists one such generator. This is a new system with the property
that the controls it produces are sufficiently rich to preserve complete controllability
along non-singular trajectories. General results are also given on the continuity and
diflerentiability of the input-to-state mapping for various p-norms on controls, as
well as a comparison of various non-linear controllability notions.

1. Introduction
In this paper we consider non-linear finite-dimensional systems of the type

28 = f(x(2), u(1)) (1.1)

where x(t) is the state, and wu(t) is the control, at time t. (More precise definitions are
given later.) An open-loop control generator for such a system is a new system,
described by equations

(1.2)
u(t) = Q(w(1))

This is a system with no controls but with an output map whose values are in the
input space to (1.1). For any initial condition w(0) of (1.2), there is (at least for small
enough times t) a generated control u(t) = Q(w(t)), where w( - ) is the solution of (1.2)
with initial condition w(0). For any initial state x(0) for the original system, this
control gives rise to a trajectory.

It is often the case in systems problems that such models are used for control
generation; for instance, when dealing with tracking and the study of responses to
ramps (polynomials of degree at most 1), one introduces the control generator with
dynamics

e = P(w(r))}

w, =0, w,=w,

and output u(f) = w,(t). Different initial conditions w, (0), w,(0) will give rise to all
possible ramps.

A natural question to ask is: if the system (1.1) is known to be completely
controllable, does there exist also a system as in (1.2) with the following property: for
each state x4, and x,, there should exist some initial condition w(0) and time T such
that the control w( + ) is well defined for ¢ in [0, T] and so that the trajectory induced
by w on the original system takes x, into x, at time 7. Even more interestingly, one
may demand that all these trajectories be non-singular in the sense of optimat control,
or equivalently, that the time-varying linear systems obtained by linearizing along the
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obtained trajectories be themselves completely controilable. This last requirement is
important if linear-feedback techniques are to be applied in order to regulate for small
perturbations along the trajectories in question,

In this paper, we provide a positive answer to the above question. Some technical
conditions are imposed, some of which are probably not essential (Assumption 2.1
below) and could be dropped if the proof is based on a different argument, as
suggested later. Other assumptions, dealing with properties of the Lie algebra of
vector fields generated by the control fields f( -, u), are unavoidable, as shown by
counterexamples later.

A companion paper to the present one (Sontag 1987 b) starts with the assumption
that such a control generator exists, and provides a ‘universal’ method for regulation
along trajectories obtained as described above. The notion of a control generator is
essential in the proofs given there, since all arguments depend on having a suitable
parametrization of trajectories. Given a control generator, trajectories can be indeed
parametrized by @(0), x(0) and T. The paper (Sontag 1987 b) deals with *psecudolineari-
zation' properties of non-linear systems, in the sense of work by Rugh (1983), Baumann
and Rugh (1986) and by Reboulet and Champetier (1984), Champetier er al. (1985).
These authors have dealt with the study of families of linearizations of non-linear
systems around different operating points, and in particular the problem of obtaining
compensators with the property that all closed-loop linearizations have the same
dynamic behaviour. In contrast, Sontag (1987 b) studies linearizations along trajectories
of non-linear systems. The basic resuit there, when coupled with the theorem proved
here, establishes the following fact: provided that a system satisfies certain reasonable
assumptions, it is possible to affect any desired state transfer using a suitable open
loop signal generator, and to regulate for small deviations from the corresponding
trajectories using linear control design techniques. The desired regulator has a form
independent of the open-loop trajectory, which is fed on-line. An explicit form for the
controller, as well as experimental results inciuding the control of angular velocity of a
rotating satellite, are given by Sontag (1987 a).

Central to both the results here and in Sontag (1987 b) is a study of those
trajectories of a given system along which the linearization (as a time-varying linear
system) is controllable. Such non-singular trajecrories play a central role in the
construction of precompensators. If a system is controllable, that is, if we may go from
any state to any other state, one may expect that it should also be true that one can
affect transfers in a non-singular manner. Unfortunately there is no ‘Sard theorem’
in infinite dimensions (controls belong to an infinite dimensional space) that would
allow such a conclusion. We shall prove, however, that such non-singular con-
trollability indeed holds, if (and only if) the given system satisfies a certain non-
degeneracy property. (Roughly, there must be no periodic autonomous subsystems.)
Sufficient conditions for this to happen are that there be no finite escape times and
that the state space be simply connected, or that there be some equilibrium state for
the system.

After setting up definitions and the statement of the main result, we provide
various results dealing with the continuity and differentiability of the input-to-state
mapping for various p-norms on controls. These results are needed later, but we have
not been able to find them in the literature in the generality needed. Later, we provide
a comparison of various non-linear controllability notions; these results should also
be of interest in themselves. Finally, we give in the last section the proof of the main
theorem.
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2. Definitions and statement of the main theorem
A system Z is described by a set of controlled ordinary differential equations

x(t) = f(x(¢), (1)) (2.1)

where for each ¢, x(¢) is in the state space Sz, which we take to be an arbitrary
open subset of R", and u(?) is in the control-value space Uz, which for simplicity we
take to be an euclidean space R™, m an integer. We assume that the dynamics map
f:8z x Ug—= R" is real-analytic, and that the following property holds.

Assumption 2.1
There is a continuous function ff:Sz— R such that

1/u(&, )1l < BCE)

for all £ e S; and all pe Uz. (By || f, || we denote the norm of the jacobian of f with
respect to u, for any fixed operator norm.)

We often omit the argument ¢. The system is polynomial if each component of f is a
polynomial and rational if each component of f is a rational function having no poles
on Sz x Ug. Itis autonomous if f is independent of u; autonomous systems will be used
in order to model control generators.

Other definitions of a system could be used. Generalizing the results to systems on
manifolds would be straightforward but notationally somewhat cumbersome; on the
other hand, the generalization of the resuits given here to smooth but non-analytic
systems would be an interesting topic for further research,

We need to define carefully the notion of control. A u:[0, T] — Uy for which there
is a compact subset K = K, of Uy such that u(t) € K for almost all ¢ is an admissible
control; the defining property says that u is essentially bounded, and T=T, is the
length of u. Given any such u and any £ € E, the unique absolutely continuous solution
x( +) of (2.1) with x(0) =¢ at time ¢ < T, if defined, is denoted by x(t) = y(t, &, u).
A pair (x, u) of functions on an interval [0, T], with ¥ an admissible control and
x satisfying (2.1), i.e,,

x(t) = (¢, x(0), u)

for all t € [0, T, is an admissible trajectory on [0, T]. If w has length T and £ is such
that there exists an admissible trajectory (x, 1) on [0, T] with x(0) = £, we say that u
can be applied to £. If there is an admissible trajectory on [0, T] with initial x(0) = &,
and final x(T) = £,, we say that £, can be controlled to &, in time T, or that &, can be
reached from &, and that u steers &, to &,. If there is some T > 0 such that &, can be
controlled to £, in time T, we just say £, can be controlied to £,.

The variational system of = along the admissible trajectory (x, u) is the lineariz-
ation of E along this trajectory, that is, the linear time-varying system D, = defined as
follows (strictly speaking, time-varying systems are riot ‘systems’ with our definition):

A8 = fo(x(1), w(0) A1) + L(x(2), u(e))ufe), t€[0,T] (22)

where f,, f, denote jacobians of f with respect to the first n variabies and the last m
variables respectively, and where A(f) € R” and v(t) € R™ for all t. The original system =
is linearly controllable along (x, u) if (2.2) is (completely) controllable in [0, T], i.e. for
each 4, and 2, in R” there is an essentially bounded v such that, solving (2.2) with this
v and with initial condition A(0) = 4, results in A(T) = 4,. Linear controllability along
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a given (x, u) is equivalent to the map a(u) := Y( T, &, u) having full rank at u, seen as a
map on an appropriate space of controls (see below).

Assume that we are now given both a system Z as in (2.1) and an autonomous
system €, with state space S, € R" and dynamics denoted by P, as well as an analytic
map Q:5,— Uz. We shall use Q| = to denote the system obtained by feeding the
output of Q as a control to E, and think of the corresponding combination as an

autonomous system

= P

af (©) } (2.3)
¢=f( Q)

with state space S, x S5. Consider a pair (wy, Xo) € S % Sg. For smail enough times
T >0, the solution (w(t), &(t)) of (2.3) with w(0) = w, and &(0) = x, is defined on the
interval [0, T]. We shall say that (w,, xo) is non-degenerate iff for some such 7, = is
lineariy controllable along the ensuing admissible trajectory (£, Q(w)) of =, and
denote the set of such pairs by ND(Q]Z). We also call the trajectory (w, £) non-
degenerate if (wg, xq) is. It is easy to see that ND(QJZ) is an open set, and that
(w(t), E(2)) is again in ND(Q2|Z), for each ¢t < T (see Sontag 1987 b).

Finaily, we say that the system = is complete if for every £ € Sz, every T> 0, and
every admissible control u, the solution (¢, &, u) is well-defined for all t < 7, i.e. every
control can be applied to every state; it is controllable iff for each £, and &, in Sz, &,
can be controlled to &,. An equilibrium point for Z is a pair (&, ), £ € Sg, p € Ug, such
that f(& u) =0.

Theorem 2.1: Main theorem

Assume that the system Z is controllable and that, either it has some equilibrium
point, or it is complete and Sz is simply connected. Let C be any compact subset of S;.
There exists then an autonomous polynomial system 2, a polynomial map @, and a
compact subset @ of ND(Q| =) such that the following property holds. For each ¢,
and &, in C there is a T> 0 and an admissible trajectory (w, £) of the system (2.3) with
E(0) =&, and &(T) =&, such that (w(z), &(t)) € O for all t e [0, T.

Controllability (and Assumption 2.1) alone are not sufficient to ensure the desired
conclusions. A counter-example will be provided later. Note that systems with a non-
simply connected state space appear naturally in robotics, when there are workspace
obstacles.

Assumption 1 is made mainly for simplicity of exposition, and it can be relaxed
considerably. In any case, most types of systems can be modelled in this way.
Certainly, the usual case of systems linear in controls is included. More general non-
linearities can also be included if there are control bounds. For instance, a system with
J{x,u)=u+u? and |u| < I can be modelled by

S(x, v) =sin (v) + sin?(v)

where Uz = R and Assumption 2.1 is satisfied. Similarly, open-constraint sets can be
included: for instance if u above is restricted to the interval |u| <1 then we may
reparametrize controls as :

u=|—]arctan(v)
4
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In any case, the need for Assumption 2.1 is most probably due only to our method of
proof; one could rewrite all our treatment using instead ‘almost uniform’ convergence.
This would be less elegant than using p-convergence as below, but would afford
greater generality.

We make the following notational convention in order to save space: to display
column vectors, we use also the alternative notation

(a,:...:a,) (2.4)

(note the :) instead of
a,

a,

If the a; are scalars, this is the same as the transpose of the row vector (a,, ..., a,), but
we will mostly deal with cases in which the g, are themselves column vectors, in which
case (2.4) would correspond to, in more usual but cumbersome notation, (a5, ..., a,).

3. Approximation results

We need next a number of approximation results. Section 3.1 deals with continuity
properties and differentiability of the input/state map, and § 3.2 develops a construc-
tion related to standard proofs of the Stone—Weirstrass theorem.

3.1. Continuous dependence theorems

The results in this section are probably known at the ‘folk’ level, but we have been
unable to find a suitable reference in the form needed for this paper, so we give a self-
contained presentation.

A system = will be fixed for the rest of this section. A real number T > 0 will be also
fixed. We let LY, be the Banach space of all essentially bounded measurable functions
[0, T]— Uz = R™, endowed with the sup norm

|4l o, := ess sup {Ju(t)l, r € [0, T]}

where [y is the euclidean norm in R™—any other norm could be used instead. (We
also use the notation |{| for the euclidean norm in the state space Sz € R™) Since the
interval of definition is finite, the spaces L] (p-integrable functions), p 2 1, all contain

L7, . We shali be interested in the latter space viewed as a subspace of each L7; to avoid

confusion, we use a different notation. Thus, B} will denote L7, with the norm

T [
llulip = {JA lu(e)[* dt}
0

for any p = 1. For simplicity of statement, we also let B7, be the same as L7, (with the
sup norm), It is a standard fact that whenever 1 < p < ¢ < oo, then

lhall, < ¢y llullg
for all ue L7, for some constant ¢, . In fact,

;= Tipy(Lig)

will do. Conversely, il | < p < g < oo and if k is a given constant, then there is another
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constant ¢, such that
lullg < ez llullf

whenever |ju||, < k.
(Proof. Write |ul* = [u]?~Plu|? < k7" ?|u|” and integrate.)

Thus, as long as one remains in a bounded subset of L7 all the p-topologies
(p < o0) are equivalent.

Recall that the continuous mapping f: D— N,, where D is an open subset of the
normed space N,, and N, is another normed space, is (Fréchet) differentiable at a
point & € D iff there is a linear mapping Df(&): N, = N, such that

/() = 1 (&) = DA (x = Il = olllx — &)

The derivative of f is the mapping Df:D— (N, N,) sending ¢ into Df(£). One
defines second derivatives of f via derivatives of Df, and so on inductively. A smooth f
is one that has derivatives of all orders. We shall say that f has full rank at £ iff fisa
submersion there, i.e. Df({} is onto. The normed spaces By, p < oo, are not Banach—
they are dense in the respective L) —but we shall apply the implicit function theorem
to differentiable mappings B — R". This will present no difficulty because such a map
already has full rank when restricted to an appropriate finite-dimensional subspace,
and the implicit function theorem can be applied to the restricted map.
The following situation will arise below. Assume that

f:8.x Uz—»R"

is a C? map, and that K, < Sz is a given compact convex set such that, for some
constant X,

1 40S Wl <k (3.1

whenever £ € K, and g e Ug. When [ has linear growth in u, as assumed for the map
defining the dynamics of Z, this property will hold for all compact sets K,. We have
the following observation.

Lemma 3.1

Assume that f, K, k are as above. Pick a compact subset K, € Ug. Then, there
exist constants M and N such that, if £,ne K,, pe K,,ve Ug, and 1 < p <2, then

(b) if glx, u) == f(x, u) = f(&, 1) — fe(&, ) (x — &) —ful&, p)(u — p), then

lg(n, v)I < N{IE — nl” + | — v}

Proof

Property (a) is obtained by separately bounding |f(&, u} — f(n, #)| and |f(n, )
— f(n, v}|, and by using property (3.1) and the mean-value theorem. We now prove
property (b). Assume first that |4 — v| < 1. Then v is in the compact set

Ky:={v|v—ul<1 forsome ueck,}
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By Taylor’s formula with remainder (recall that f is twice differentiable), we known
that, for £, nin K, and g, ve K,,

lg(n, W< alé —nl* + blu—v?

for some constants a, b (which depend on K, and K,, and hence on K,). Since
ju—vj<1and p <2, this means also that

lg(n, v)I < alé —nl? + blu— v (3.2)

Next note that g,(x, u) = fi(x, u) — f.({, 1), so that g also satisfies (3.1) (with 2k
instead of k). We can then apply part (a) to g to conclude that, for n, i, v as in the
statement,

lg(n, v) — g(n, w)l < M| —v|

for a constant M’ that depends only on K. If |u—v| > 1, then also [u—v|' "? < I, s0
|gt — v] < |u — v|P. Thus

lg(n, )1 < lgln, 1l + lg(n, v) — gln, Wl < alg — nl? + M|~ ?
Choosing N := max {a, b, M}, the result follows. O

For the given system Z, let 2 be the set of triples
L &Euwel0, T] xSz x LT,
for which the solution y(t, &, u) is defined for all 0 < v < ¢. It is a standard fact that 9 is
open, and that y(t, -, ) is smooth on
D= {(x, w)|(t,x,u)eP forall 0Kt}

for each t. (See for instance Grasse 1981, Theorem 2.9 and Proposition 2.11.) We shall
need differentiability and continuity with respect to p-norms, p < o0, as well.

Lemma 3.2
Pick any 1 € p < o0, and consider 2 as a subset of Sg x B7. Then £ is open and
the mapping
a:@T_'SEh a(cs u):: II/('T; f: u)

is continuous. If p > 1, then a is also differentiable, and in that case

Da(g, u)[ 4o, v]

is the solution A(T) of the variational equation (2.2), where x(t) =y(t, &, u) and
A0) = 4q. In particular, «(Z, - ) has full rank at u if and only if Z is linearly control-
lable along (x, u). (Thus the full rank property is independent of the particular p > 1))

Proof

We first assume that §; = R" and that the map f defining the evolution is defined
on all of R" x R™ and is globally Lipschitz, meaning that there is a constant M such
that

LG 1) — fn, vl € M{IE — | + |1 — vi}
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for all & nin R™ and all g, v in R™. In this case, solutions are always defined, so that
PDr=R"x By. Assume that (x,u) and (y,v) are both admissible trajectories. We
have that, foreach 0t < T,

x(1) — y(t) = L {/(x(1), u(7)) — f($(1), v())} d7 + x(0) — ¥(0)

By the Lipschitz condition,

T
Ix(1) = WD)l < M L 1x() — y(1)| dt + |x(0) — O)| + M|lu — vl

By the Bellman—Gronwall lemma, we conclude that
[x(t) — ¥(1)] < exp Mt {|x(0) — y(O)| + Mlu—v]|, }
for all 0 € t € T Thus, for each 1 € p € oo there are constants a, b such that

(e, & w) — (e, n, D)l <all —nl + bllu—vl, (3.3

forall {,pin R", allw, vin By, and all0<t< T
Assume now that Sz and f are arbitrary. Pick any element (&, u) in &, Choose
open neighbourhoods ¥ and #; of { such that

YeSclos ¥, € W, =55

Let 0:R”— R be any smooth function which is identically 1 on clos (¥7%) and vanishes
outside #,. Consider the system obtained with Sz = R", same Uz, and [ replaced by

h(&, 1) =& (& 1)

Since f has linear growth in u, h does also, and hence since @ has compact support we
are in the situation of (@) in Lemma 3.1, thus h is globally Lipschitz. So the arguments
in the previous paragraph apply to the system with dynamics h(&, u). We let ¢ be the
transition map i for this system. By (3.3), there is then a neighbourhood #; of ¢ and
an £> O such that @(t, n, v) is in ¥, for all 0 <t < T whenever n € %, and [lu — |, <e.
Since A( +, i) and f( -, y) coincide on ¥, it follows that y(r, , v) solves the original
differential equation, i.e. it equals @({t, n, v) for these t, 5, v. In particular, @1 contains a
neighbourhood of (£, u) and is therefore open. Continuity of « follows from (3.3).

We now prove differentiability when p > 1. Let (x, u) be an admissible trajectory,
and

A() = f(x(1), (1)),  B(t) = f,(x(1), u(1))

Pick a convex compact neighbourhood ¥ of { = x(0) and any  in ¥;. For any other
control v (of length T) sufficiently near to u in B}, let (z, v) be the trajectory that
results when applying v to 5. By continuity, we may choose a suitable neighbourhood
of uso that this trajectory always stays in a given compact convex neighbourhood of £
in Sg,say K. Let K, be any compact set such that the (essentially bounded) control u
satisfies u(t) € K, for almost all t. Let 3(t) == z(t) — x(t) and v(¢) == v(t) — u(r). From
part (b) of Lemma 3.1 it follows that, if 1 < p <2 then

3(1) = A(DS(1) + B(n)u(1) + (1)
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where
l(0)] < N{[8(2)* + ju(e)”}

for a suitable constant V. Thus, if A solves (2.2) with A4(0) = 4(0) = 4, = & — n, it follows
that

T

8(T)=XMT) + J. (T, 1) (1) dr

0
So

T
(T) - ATH<M { j 6()* dt + IIUII’,Z}
0
for some constant M. Applying (3.3) to the first term there results that there is a
constant M’ such that
18(T) — A T) < M'{|Ac]* + [lull; + llvll7} (34

Since p> 1, it follows that |8(T)— AT)| is indeed o{|ig| + ||v]|,), as required to
establish differentiability. If instead 2 < p, we consider (3.4) for the case p=2. Since

loliz < clivll,
for some constant, it follows that |6(T) — A(T)| is majorized by an expression
M"{|2* + 2{lv]13}

again as desired. O

Remark 3.1
The differentiability result is false if p = 1. For instance, consider the system

x=sin’u
with Sz = Uz =R, and the controls u, on [0, 1] with
u(t)=1 on [0,g] and u(t)=0 for t>¢

Let also u =0, x =0, and x,:= solution when applying u, to 0. Note that u,— u when ¢
— 0. The differential of u( + ) — (T, 0, u) as a map on B}, il it exists, would have to be
the mapping which is identically zero. Thus differentiability would mean that |x,(T)| is
o(||lu,ll,) as e = 0. Since |x(T)| = ¢ = ||u.|;, this is false. (Note that, on the other hand,
for p> 1 one has for this example that

1
lull,=e''®

and there is no contradiction.)

Remark 3.2

For p < o the linear growth condition is essential. Otherwise, not even continuity
holds. Indeed, take any finite p and consider the equation x = u%, where g>p is
arbitrary. Pick any r with ¢ > (1/r) > p. The control u,, defined now by

u(t)=e"" for t<e
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and zero otherwise, has ||u,||,— 0 as ¢ —0, but the corresponding solution x, has

lx.()=¢"""—> o0

3.2. Approximation of PC controls by polynomial controls
We fix a T > 0 and an integer o. For any elements vy, ..., v, in Ug, and for any real
numbers 0 =54 <5, < ... <s,<s,,, =T consider the piecewise constant admissible
control on [0, 7] defined as follows:
U(S1s s Sg3 V0, s Vs t) =0y il 5, <t <54y, i=0,...,0
Let {Q,{t)} be any fixed sequence of polynomial kernels of degree 2n, that is, each @, is
a polynomial of degree 2n and the following properties hold.

Foreach >0, 0,—0 as n— oo, uniformlyon |t > 48, te [T, T] (3.5)
T

j Q. (tydr=1, foralln (3.6)
-T

Q.(t) >0, forallteRandalln 3.7

For instance, we may take
Qu(t) = ky(T? = 12)"

where the k, are appropriately chosen constants. Consider now the convolution:

T
Pl Sty eees Say Doy vney Do ) 1= J Gt —DU(Sy, ...y So3 Vgy ores Uy T) dT (3.8)
0

as a function on 1 €[0, T] with values in R™. (Integration of vector functions is
understood componentwise.) If we expand

Q. (t—s5)= Z q,(t)s’
then p,(1) equals

[o]

a 2n
Z ,:Z qut: —si” ‘)] v; (3.9)

Thus p, is a (vector) polynomial in (s, ..., S;; Ug, ---, Uy; £), Of degree 2n in t. The
expression in the right-hand side of (3.8) can be written as

T
j Qa(TIU(Sy, on'y 8y3 Vgy aery Vgs £ — ) dT
-T

if we identify u with its extension to ( — oo, c0) obtained by setting ¥ = 0 outside [0, T7].
Let |u| denote the euclidean norm of u € R™, and fix any p 2 1. Note that

”pn(sl, cees Sg3 Doy voey By ‘) Tu(sls cees Sg3 Doy eeey Vg .)":
T
=J- [PaS15 00 553005 +oes Vgs ) = H(S 1oy Sgi Vgs s U3 )17 (3.10)
o

By property (3.6), we may write

T
U(S )y ees Sy Py veis Uy L) = J‘ Gu(S)U(S1, oeey 555005 es Ugs 1) dS
-T
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so the expression in {3.10) is bounded above by
T
l

Assume that we are now given a sequence (s,,..., s,) as above, a real number
with T>6>0, and a te[0, T] which does not belong to any of the intervals
[s;—6,5;+8),foranyi=0,1,...,06 + |.(Where s,:=0ands, ., := T.) Forany z such
that |t] < 4, it follows that w(sy, ..., Sg; Uy «ees Ugs £ — T) = U(S15 .. 543 Vgy -+ Ugs ), @and
hence the inside integral of {3.11) can be replaced by the integral over |t] > § (as long
as ¢ is of this type). Since the differences

T »
J QTS 1, ey Sgs Vs woes Vg £ — T) — U(S(, cvvy Sq3 Ugs s Vg3 1)} d| dt
T

3.11)

[U(S 1y oees Sas Ugs cevs Vs E—8) — U{S1, ey g3 Ugs --v» Ugs )]

are always bounded by ¢, := 2 - max {|vj|}, it follows that for such ¢ the term inside the
integral is bounded by

{c, jl,Qn(r) dt}?

where J, is

[-T -d]uls, T]

When ¢t is not in any of the above intervals, the inside term is in any case bounded by
{¢,}*, and the set of such exceptional ¢ has a measure of at most (¢ + 2)4. We conclude
that the expression in (3.11) is majorized by

(0 +2)8(c,)? + {c1 [,,07) dr}?
By property (3.5), the lollowing result holds.

Lemma 3.3

For any 1<<p<o, p,s1,...,5,00,....,0,; ) converges in By to
U(Sy, .euy Sg3 D, +-05 Vg3 * ). This convergence is uniform on the real numbers 0 < s, < ...
<5,< T, and is also uniform on the vectors vy, ..., v, on compact subsets of Ug*".

The result is of course false for p= oo, since a limit of polynomials in L7 is
necessarily continuous. For this reason we have introduced the spaces By, p # co. An
alternative approach would be based on the notion of ‘almost uniform’ convergence,
for which a similar result can be proved.

4. Several controllability notions
We next introduce various very natural strong notions of controllability, and
eventually prove that they are all in fact equivalent.

4.1. Non-singular controllability

Let a system Z and a T > 0 be fixed. We shall say that a control u on [0, T] non-
singularly (or, ns-) steers  into { iff u can be applied to £ and the resulting trajectory
(x, u) 1s such that x(T) = { and Z is linearly controllable along { x, u). We also say that
u can be ‘non-singularly applied’ to £. If such a u exists, £ can be ns-controlled into {. If
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every ¢ can be non-singularly controlled to every other {, the system Z is ns-
controllable. The notion of ns-controllability is transitive in the following strong sense.
Assume that £ can be ns-controlled to x and that # can be controlled to { (not
necessarily non-singularly). Then it is also true that £ can be ns-controlled to {. This is
because if w is the concatenation of a control u (of length T) which ns-steers £ into n
with a control ¢ (of length S) which steers » into {, then w is a control (of length T + S)
which ns-steers £ into {—the differential of (T + S, &, - ) is full rank already at those
variations v which are zero on [T, T + S].

A particular type of non-singularity is as follows. Assume that the control u is
piecewise constant, u = u(sy, ..., 5, Ug, -.., U, * ), of length T and it steers the state ¢
into {. We shall say that u pcns- (piecewise constant non-singularly) steers ¢ to { il the
mapping

(Vos o os Vo) YT &, u(Sy 5 oery Sgi Vou eves Vai * ) 4.1)

defined on a neighbourhood of (v, ..., v},), has differentiai of full rank at (v, ..., ¢},). In
that case, u also ns-steers & and (. This is because the mapping in (4.1) is the
composition of the linear bounded map

US™ = L, (Yo, wors Vo) (51, s 505 Vo ooy Vs *) (42)

with (T, &, - ), hence the latter must have full rank at u. As above, we define £ to be
pens-controllable to { if such a u exists, and the system = is pens-controllable if this
happens for any pair of states. This notion is also transitive in the sense discussed
above.

4.2, Strong normal controllability

We shall say that the control u of length T strongly normally (or, sn-) steers the
state ¢ to the state { in time T iff there exist an integer o, elements vy, ..., v in Ug, a
neighbourhood ¥; of {, and a smooth mapping

BV -R’

such that, for each z e ¥, if f(z) =(s,,...,5,) then 0 <s, < ... <s, < T, the control
u(f(2); vy, ..., 1ys ) of length T, steers ¢ into z in time T, and u(B({); vg, .., 055 *) = u.
The state ¢ can be sn-controlled to { (in time T) if such a u exists. The system Z is sn-
controllable iff for each &, { in Sz there is a T > 0 such that £ can be sn-controlled to {
in time T. This notion is closely related to that of normal controllability given by
Sussmann (1976); the qualifier ‘strong’ refers to the fact that the controls u are
required to (locally) all have a uniform length T. As with the other definitions, if & is
sn-controllable into # and # is controllable into {, then £ is sn-controllable into {.

Remark 4.1
For particular states and controls, sn- and ns-controllability are (for systems not
linear in controls) different. For example, consider the system (with Uz = Sz =R)

Xx=x+1—sin (u)
and £=0,[=2exp(L)—1), T=1,vp,=mn/2, v, = —x/2, s=1/2, and
flzy=14+In2—In(2+ z2)
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for z near {. Then

nf2 f0<s<1/2
u=
—n2 if1/2<s<1

sn-controls ¢ to {. But it does not do so nonsingularly, since along the corresponding
trajectory the linearization is the autonomous system x= x. The corresponding
notions for systems (rather than individual controls) do coincide (proved below). The
situation is closed related to that in the context of orbit theorems for non-linear
continuous time systems (see Sontag 1986), where different topologies are induced for
the same state space depending on whether one takes the finest topology that makes
all motions continuous with respect to switching times or instead with respect to
control values.

Remark 4.2

Controllability is by itself not equivalent to sn-controllability. For instance
consider the system with Ug =R, Sz =R?—{(0,0)}, and with equations in polar
coordinates:

6=1, F=ru

The system is controllable (any state can be steered to every other state in time at
most 27). But the set of states reached in precisely time 7 is a half-line, and hence has no
interior. Note that the state space is not simply-connected, and that there are no
equilibrium points. The ‘clock’ coordinate 8 is responsible for the pathological
behaviour of this example.

Let # be the Lie algebra associated to Z. This is the smallest Lie algebra of vector
fields on Sz which contains the vector fields

{f(. ), ueUg}
For any £ € S;, we associate the following subset of the tangent space at £:
Z(8)={X(), X e £}

If Z is controllable, then it is a well-known fact that % has full rank (i.e. dim #() = n)
at all £. (See Isidori 1985 for many basic results on the Lie algebraic aspects of control
systems.) The ideal of # generated by all the differences

{f( ".u)_f( ',V), .Ll,VGUg}

is the zero-time algebra #°. Similarly, we introduce the spaces .#°(£) as above. It
follows from the definitions that, for any fixed pe Uz, Z£() is the span

L(8) =2°(8) +span {f(¢, )} (4.3)

for all & & Sg. It is also known that (because of controllability), #° has constant rank,
so that there are only two possibilities: either dim £9(§) is always
nor it is always n — 1. In the latter case, a local change of coordinates can always be
found which results in dynamics with an autonomous coordinate

x(8) = fi{x,)

Thus there is (locally) a ‘clock’ as in Remark 4.2. When there is an equilibrium point
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S{E, ) =0, (4.3) together with the constancy of rank, gives that #° has full rank,
meaning that #°(¢) has rank = at every point. When instead Sz is simply connected
and the system is complete, this is also true by a result of Elliot (see Elliot 1971,
Sussmann and Jurdjevic 1972). We summarize then with a proposition.

Proposition 4.1
If the system Z is as in the statement of Theorem 2.1, then #° has full rank.

We shall prove that the full rank of #° is sufficient for the conclusions of the
theorem to hold. This rank condition is also necessary, because the conclusions imply
that the system is ns-controllable, and this will be shown below to be equivalent to the
rank condition.

If T>0,eSz,and 0<s5, < ... <s5,< T, we let

A:,...,s,(é) = {'1[’(7: é: u(SI, ey Sa; Doy euy Da; '))|005 LEXE) Da'e U."':'.} (44)

Note that, by the implicit function theorem, if ¢ can be pcns-controlled to some other
state {, then some set as in (4.4) has a non-empty interior. We remark below that the
converse is also true. Let Ap.(&) denote the union of all sets as in (4.4), for all possible
T >0, i.e. the set of states reachable from ¢ using piecewise constant controls.

Controllability using arbitrary controls is equivalent to controllability using just
piecewise constant controls. The next lemma is well-known (see for instance,
Sussmann 1979, Theorem 1).

Lemma 4.1
If Z is controllable, then Apc(&) = Sz for all &.

4.3. A fixed-point argument

We shall need an argument based in the Brouwer fixed point theorem that has
been used repeatedly in control theory (‘Bronovsky—Lobry lemma’), and which is
also used in the main step of the proof of the preservation of controllability under
sampling (see for example, Sontag 1983). An abstract version is provided by Grasse
(1981), Lemma 3.2, (see also Lee and Markus (1968), pp. 251-252), which we
reproduce here in somewhat weaker form. Choose any norm in R".

Lemma 4.2

Let % be a topoiogical space and let H:% — R" be continuous. Assume that for
some ( in R" there is a neighbourhood ¥~ of { and a continuous map §:% — % such
that H(f(z)) = z for all zin ¥", Then, there is an ¢ > 0 and an open neighbourhood ¥~
of { such that, for any mapping

h:w >R
with ||h(x) — H(x)|| <& for all x, necessarily ¥ < h(#).

Let 2, () denote the set of states that can be reached from ¢ using polynomial
controls of length T and degree at most k in ¢.
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Lemma 4.3

If & can be sn-controlled to { in time T, then there exists a k such that { is in the
interior of &, (&)

Proof

Assume that £, {, u, T, vg, ..., b, B, ¥} are as in the definition of sn-steering.
Restricting ¥ il necessary, we will assume that it is compact. Let % :=f(77), a
compact subset of R’ which contains A({) =s° =(s9, ..., s9). Let

H:')’If—»P", (Sl’ Cees SG)HIJ/(T; ‘fv u(SU cees Sy Vs ey Uy .))

Thus we are in the situation of Lemma 4.2, with ¥ = ¥7; let &, ¥~ be as in the
conclusions there. We now construct a sequence of mappings {Hy} from %" into R"
which converges uniformly to H, and with the property that the image of each Hy is
included in the set of all states reachabie from £ using polynomial controls of degree at
most 2N. So for n large enough one of these images contains ¥, and the lemma
follows.

Consider, for the above v, ..., v,, the mapping

(Sls reey SG)HH(SI, vy SaaBgs ey Ugs .)

see as a map from % into (for instance) B7. This is continuous (but is not
differentiable). Let K be the image of %  under this mapping. Thus K is a compact
subset of the open subset of B} consisting of all the controls (of length T) that can be
applied to £. Thus there exists a & > 0 such that every admissible control p which is at
a distance less than 4 from K can also be applied to &. For each positive integer N > 1,
let

HN(sla teey Sa) = '10(’1: 69 pN(Slv ey Sa; Uy o5 Dy ‘))

where the polynomials py are asin § 3.2. Since the py converge to u uniformly on the s;,
for N large enough they can be applied to . We take the subsequence of the H, that
consists of such large N. Since i is continuous on BY, we conclude that the H,, indeed
converge uniformly to H. O

Lemma 4.4

If for some k, T the interior of &, (&) is nonempty, then there exist s,, ..., s, such
that AT (£) has a non-empty interior.

Proof
This is again proved as a corollary of Lemma 4.2, as follows. Let H{(a,, ..., a,) be
the state reached when applying to & the control (of Iength T)

i a;tt (4.5)

This is defined and continuous on an open subset of R™ (the control must be
applicable to ¢). It is also smooth, since we may see H as the composition of the
(linear, bounded) mapping that sends (ag, ..., a,) into the element (4.5) of L7, followed
by the mapping (T, £, - ). The image of the smooth map H contains by assumption
an open set. Since the domain of H is a finite-dimensional separable manifold, we may
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apply Sard’s theorem to conclude that its differential is full rank at some point.
Applying the implicit function theorem, and restricting the domain of H appro-
priately, we are again in the situation of Lemma 4.2.

Now we approximate H by mappings Hy constructed as follows. For each N and
each (a,, ..., a,), consider the piecewise constant (sampled} control in L7, which has in
the interval {kT/N, (k + 1}T/N] the value of (4.5) at (say) kT/N. These converge
uniformly to (4.5), and hence are admissible and can be applied to & for N sufficiently
large. Then Hy(a,, ..., a,) is by definition the application of this control to &. Thus Hy
contains an open neighbourhood of { for large enough N, and this proves the lemma
(with o =N — 1). g

4.4, All notions are equivalent

The following shows that the controllability notions introduced in this section are
very natural. The set of all states to which ¢ can be steered in time exactly Tis A7 ().

Proposition 4.2

Assume that the system = is controllable, Then the following properties are all
equivalent.

(ay £° has full rank.

(b} There exist &, { in Sg such that ¢ can be sn-controlled to (.
(¢} E is sn-controllable.

(d) There exist £, { in Sz such that £ can be ns-controlled to (.
(e) 2 is ns-controllable.

(f) There exist &, { in Sg such that £ can be pens-controlled to (.
(g) E is pens-controllable.

(h) Some set as in (4.4) has non-empty interior.

(i) Some set AT () has non-empty interior.

(j) Some set &  has non-empty interior.

Proof

We pointed out above that (g) implies (e). That (b) implies (j) is proved in
Lemma (4.3), while Lemma (4.4) shows that ( j} implies (h).

The ‘transitivity’ properties discussed earlier establish that (b} is equivalent to (¢),
(d) is equivalent to (e), and ( /) is equivalent to (g). Note also that (/) trivially implies
().

The equivalence between (i} and (a} was proved by Sussmann and Jurdjevic
(1972); see for instance Sontag (1986) for a somewhat more general result.

If (a) holds, then Lemma 4.1 together with (Sontag, 1983, Lemma 2.2), implies that
(b} holds.

The implicit function theorem, applied to the map YT, &, -) on LT, gives that (d)
implies (i}.

Finally, statements (/') and (h) are equivalent. Indeed, we have already remarked
that pcns-controllability implies that some set as in (4.4) has a non-empty interior.
Conversely, assume that such a given set has a non-empty interior. The map (4.1) is
smooth (composition of the linear bounded map in (4.2) with (T, £, - )), and its image
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is AT . (£). Since the domain is a separable finite-dimensional manifold (open subset
of Ug*1), we may apply Sard’s theorem to conclude that (4.1) must be full rank at
some point, i.e. & can be pcns-controlled to some (. O

5. Proof of Theorem 1.1

In this section we prove that the conclusions of the theorem follow from ns-
controllability of the system. From the remarks in the previous section, this will be all
that is needed in order to prove the theorem. The following is the main technical step
needed. It establishes basically that if the system is ns- (or pcns-, or sn-) controllable,
then one can transfer states non-singularly using polynomial controls. We know [rom
Proposition 4.2, part ( j), that we can do so using polynomial controls. An application
of Sard’s theorem will then ensure that from each state we can go nonsingularly and
polynomially into some other state. But in order to transfer to a predetermined state it
is necessary to concatenate this resulting control with another control, and the
concatenation will in general not be polynomial but at best a spline, So a different
argument, again based on the above fixed-point theorem, is needed.

Proposition 5.1

Assume that £ and { are in S¢ and that £ is pcns-controllable into { in time T. There
exist then an integer p, a compact subset K of U ', and neighbourhoods #; and %/
of ¢ and £ respectively, with the foilowing properties.

(a) Let u be the control v, + ... + v,t” of length T, where (v,, ..., v,) is in K. Pick
any x € #,. Then u can be applied to x, and = is linearly controllable along the
ensuing trajectory.

(b) If xe W, and z € ¥, then there exists some u as above, such that u steers x
into z.

Proof
Let £, {,u, T, sy, ..., S5 Vg, -+, U, D& as in the definition of pcns-steering. Let

3 9gs

H(VO’ rery Va) = w(T; é; u(sli LR sa; VOa cers va; : ))

defined on a neighbourhood of v, ..., v,. Note that u ns-steers ¢ into {, as discussed
earlier. There is by the implicit function theorem applied to H a neighbourhood ¥/ of
{ and a smooth

B:.V&_.[R(u+1)m

with H(f(z)) =z on ¥, By continuous differentiability of ¥(T, -, -) there is a
neighbourhood & of u (say, in B7), and a neighbourhood ¥} of ¢, such that each
ve s/ can be applied nonsingularly to each x in ¥,. Let % be a compact
neighbourhood of (v, ..., b,) such that u(s, ..., s,; Vg, ..., Vs *) is in &/ whenever
(vo5 .--» ¥,) is in % . Consider H as a map restricted to %", and restrict ¥~ = ¥/ so that
maps into %". We apply Lemma 4.2 to obtain an ¢, ¥ as there. Let #;:= ¥"". For each
x € ¥; and all large N,

Hx.N(v09 LR} va) = '1[/(7; X, pN(sla LERE] Sa; vO’ saey VO; * ))

(notations as in § 3.2) is well-defined on #7, and py(s,, ..., S, Vo, ---» Vo3 * ) Can be
nonsingularly applied to x. The H, y converge uniformly to H as x> ¢ and N - o0.
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Thus there are a neighbourhood % of £ and an N large enough that
W, S H n (W) (5.1)
and
Pa(Sys s 543 Vg, -5 Vg3 * ) can be non-singularly applied to x (5.2)

for all x € %, and all (v, ..., v,) in #". By (5.1), if x € #; and z € %] then z is in the
image of H, . Finally, let p:=2N and

K::{(uo,...,ua)l for some  (vg,...,V;) €W, Pn(Si,..es Ss} Vos-mes Vo) 1)

This set is compact, because the coeflicients of py are continuous functions of the v,—
see (3.9). The result then follows from this construction.

We may now complete the proof of the theorem. Assume then that the system Z is
sn-controllable, and apply the above proposition to it.

Fix ¢, {, and corresponding p, K, %, and %/. Choose also an open neighbourhood
¥, of & with the property that its closure clos(¥7) is contained in #7. Similarly, pick an
open neighbourhood ¥; of { with clos(¥}) € #,. Consider the mapping

giREeTm L pm et
oty iuy) = (g gt + 1 ugt? + L+ u,)
This is (linear and) continuous. Let y be the last component of this map,
x(ug:...iu,) = (Ut + ... +u,)

Then, 2(K) is a compact subset X of {L7 }**!, and &, := x(K) is also compact. By the
conclusions of Proposition 5.1, each control function w € o, is admissible for the
system = and can be applied to each x € #. Thus

[0, T] x clos (¥7) x X,
is a compact subset of the domain of . Consider now the mapping
(t, x, w)—(a(w) (1), (1, X, x(w)))
defined on this compact set. This is the composition of the continuous map
(6, x, W)= (£, (W), (-, x, x(W)))
into [0, T] x A& x C°([0, T], R") with the continuous evaluation mapping
{t, ¢, O—((1), &(1))

(defined for ¢ on the subspace of continuous functions in L7,). Thus its image O
consisting of all those (¢:y) e R®* '™ x §; such that

3te(0,T], xeclos(¥;), weKe™' with v=a(w)(t) and y=y(t, x, x(w))

is also compact,
Let C be the compact set in the statement of the theorem, Now cover C x C by sets
of the type ¥ x ¥;. Let ¥; x ¥7;,i=1, ..., s be a finite subcover, and let subscripts %’
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be used for the associated data as above. Write @; instead of 0, ,,, and let p be the
largest of the p;, T the largest of the T,. Introduce

Q:={R"}? x Ug=R"#*D
Finally, let
Plwg:...iw,):=(0:wq:...2w,_,)
Qwe:...:w,)=w,
These are the maps defining the open-loop controt generator. Foreach i =1, ..., s, let
Op:={(0:...:0:0:x) € Q x Sg|(v:x) € O}

where there are p — p; blocks of zeros. Each of these is a compact set, so that their
union

O:=0{0,i=1,..,s}
is also.

We now prove that this set @ indeed satisfies the properties in the conclusions of
the theorem. We first show that @ is included in ND(Q| E). For this it is sufficient to
show that each @; < ND(Q|Z). So fix i, and drop for the rest of this paragraph the
indices i—all data will refer to this i. The elements of @' are of the form (0:...:v:y)
with

v=a(w)(t) and y=y¥(s, x, x(w))
for
te[0,T], weKr*!, xeclos(¥;) (£=¢&)

This is the same as the solution (w(t), &(t)) at time ¢ of

éolt) =0

(bp(t) :mp— 1

&) = fEQ), @, (1))

that starts at w(0) =w and &(0) = x. As remarked earlier, ND(Q]Z) is forward-
invariant. Thus it is sufficient to establish that (w, x) is in ND{Q | Z). But x € %/, and
w=(uq:...:u, as all block components u; in K. Thus (w, x) is indeed non-degenerate,
by the conclusions of Proposition 5.1.

Finally, take any (x, z) € C. Then there is some i such that (x, z) is in ¥; x ¥, and
hence is in %] x %", Thus there is a sequence w in K such that y(w) (ns-) steers x into
z, and by construction, so that (a(w)(¢):&(1)) is in @ for all ¢t € [0, T;]. a
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