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Finite-dimensional open-loop control generators for non-linear systems 

EDUARDO D. SONTAG? 

This paper concerns itself with the existence of open-loop control generators for 
non-linear (continuous-time) systems. The main result is that, under relatively mild 
assumptions on the original system, and for each fixed compact subset of the state 
space, there always exists one such generator. This is a new system with the property 
that the controls it produces are sufficiently rich to preserve complete controllability 
along non-singular trajectories. General results are also given on the continuity and 
differentiability of the input-to-state mapping for various p-norms on controls, as 
well as a comparison of various non-linear controllability notions. 

1. Introduction 
In this paper we consider non-linear finite-dimensional systems of the type 

where x(t) is the state, and u(t) is the control, at time t. (More precise definitions are 
given later.) An open-loop control generator for such a system is a new system, 
described by equations 

This is a system with no controls but with an output map whose values are in the 
input space to  (1.1). For any initial condition w(0) of (1.2), there is (at least for small 
enough times t) a generated control u(t) = Q(w(t)), where w( - ) is the solution of (1.2) 
with initial condition w(0). For any initial state x(0) for the original system, this 
control gives rise to  a trajectory. 

It is often the case in systems problems that such models are used for control 
generation; for instance, when dealing with tracking and the study of responses to 
ramps (polynomials of degree at most I ) ,  one introduces the control generator with 
dynamics 

and output u( t )  = w,(t). Difierent initial conditions w,(O), o,(O) will give rise to all 
possible ramps. 

A natural question to  ask is: if the system (1.1) is known to be completely 
controllable, does there exist also a system as in (1.2) with the following property: for 
each state x, and x,  , there should exist some initial condition o(0) and time T such 
that the control w( . ) is well defined for r in [0, TI and so that the trajectory induced 
by w on the original system takes x, into x ,  a t  time 7: Even more interestingly, one 
may demand that all these trajectories be non-singular in the sense of optimal control, 
or equivalently, that the time-varying linear systems obtained by linearizing along the 
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obtained trajectories be themselves completely controllable. This last requirement is 
important if linear-feedback techniques are to  be applied in order to regulate for small 
perturbations along the trajectories in question. 

In this paper, we provide a positive answer to  the above question. Some technical 
conditions are imposed, some of which are probably not essential (Assumption 2.1 
below) and could be dropped if the proof is based on a different argument, as 
suggested later. Other assumptions, dealing with properties of the Lie algebra of 
vector fields generated by the control fields I( a ,  u), are unavoidable, as shown by 
counterexamples later. 

A companion paper to  the present one (Sontag 1987 b) starts with the assumption 
that such a control generator exists, and provides a 'universal' method for regulation 
along trajectories obtained as  described above. The notion of a control generator is 
essential in the proofs given there, since all arguments depend on having a suitable 
parametrization OF trajectories. Given a control generator, trajectories can be indeed 
parametrized by o(O), x(0) and T. The paper (Sontag 1987 b) deals with 'pseudolineari- 
zation' properties of non-linear systems, in the sense of work by Rugh (1 983), Baumann 
and Rugh (1986) and by Reboulet and Champetier (1984), Champetier et al. (1985). 
These authors have dealt with the study of families of linearizations of non-linear 
systems around different operating points, and in particular the problem of obtaining 
compensators with the property that all closed-loop linearizations have the same 
dynamic behaviour. In contrast, Sontag (1987 b) studies linearizations along trajectories 
of non-linear systems. The basic result there, when coupled with the theorem proved 
here, establishes the following fact: provided that a system satisfies certain reasonable 
assumptions, it is possible to affect any desired state transfer using a suitable open 
loop signal generator, and to regulate for small deviations from the corresponding 
trajectories using linear control design techniques. The desired regulator has a form 
independent of the open-loop trajectory, which is fed on-line. An explicit form for the 
controller, as well as experimental results including the control of angular velocity of a 
rotating satellite, are given by Sontag (1987 a). 

Central to both the results here and in Sontag (1987 b) is a study of those 
trajectories of a given system along which the linearization (as a time-varying linear 
system) is controllable. Such non-singular trajectories play a central role in the 
construction of precompensators. If a system is controllable, that is, if we may go from 
any state to  any other state, one may expect that it should also be true that one can 
affect transfers in a non-singular manner. Unfortunately there is no 'Sard theorem' 
in infinite dimensions (controls belong to  an infinite dimensional space) that would 
allow such a conclusion. We shall prove, however, that such non-singular con- 
trollability indeed holds, if (and only ir) the given system satisfies a certain non- 
degeneracy property. (Roughly, there must be no periodic autonomous subsystems.) 
Sufficient conditions for this to  happen are that there be no finite escape times and 
that the state space be simply connected, or that there be some equilibrium state for 
the system. 

After setting up definitions and the statement of the main result, we provide 
various results dealing with the continuity and differentiability of the input-to-state 
mapping for various p-norms on controls. These results are needed later, but we have 
not been able to  find them in the literature in the generality needed. Later, we provide 
a comparison of various non-linear controllability notions; these results should also 
be or interest in themselves. Finally, we give in the last section the proof of the main 
theorem. 
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Finite-dimensional open-loop control generators 539 

2. Definitions and statement of the main theorem 
A system Z is described by a set of controlled ordinary differential equations 

where for each t, x(t) is in the state space S,, which we take to be an  arbitrary 
open subset of Rn, and u(t) is in the control-value space U,,  which for simplicity we 
take to be an euclidean space !Rm, m an  integer. We assume that the dynamics map 
J: S, x U,+ U?" is real-analytic, and that the following property holds. 

Assumption 2.1 
There is a continuous function P:S,+ !R such that 

for all 5 E Sa and all p E U s .  (By 11 J,II we denote the norm of the jacobian of J with 
respect to u, for any fixed operator norm.) 

We often omit the argument t. The system is polynomial if each component of J is a 
polynomial and rational if each component off is a rational function having no poles 
on S, x U, .  It is autonomous if J is independent of u; autonomous systems will be used 
in order to  model control generators. 

Other definitions of a system could be used. Generalizing the results to  systems on  
manifolds would be straightforward but notationally somewhat cumbersome; on the 
other hand, the generalization of the results given here to smooth but non-analytic 
systems would be an interesting topic for further research. 

We need to  define carefully the notion of control. A u: [0, T I  -+ U E  for which there 
is a compact subset K = K, of U ,  such that u(t) E K for almost all t is an admissible 
control; the defining property says that u is essentially bounded, and T =  T,  is the 
length of u. Given any such u and any 4 E E, the unique absolutely continuous solution 
x( ) of (2.1) with x(0) = 5 at time t < 7; if defined, is denoted by x(t) = $(t, 5, u). 
A pair (x, u) of functions on  an  interval [O, TI, with u an  admissible control and 
x satisfying (2.1 j, i.e., 

for all t E [0, TI, is an admissible trajectory on [0, TI. If u has length T and 5 is such 
that there exists an admissible trajectory (x, u) on [0, TI with x(0) = 5, we say that u 
can be applied to 5. If there is an  admissible trajectory on [0, TI with initial x(0) = 5, 
and final x(T) = t,, we say that 5, can be controlled to 5, in time 7; or that 5, can be 
reached Jrom 5, ,  and that u steers [, to  5,. If there is some T >  0 such that 5, can be 
controlled to 5, in time 7; we just say 5, can be controlled to 5,. 

The variational system o f f  along the admissible trajectory (x, u) is the lineariz- 
ation of Z along this trajectory, that is, the linear time-varying system D,.,Z defined as 
follows (strictly speaking, time-varying systems are not 'systems' with our definition): 

where J,, J, denote jacobians of J with respect to the first n variables and the last m 
variables respectively, and where I(t) E R" and v(t) E U?" for all t. The original system Z 
is linearly controllable along (x, u) if (2.2) is (completely) controllable in [0, TI, i.e. for 
each I, and I, in Rn there is an  essentially bounded v such that, solving (2.2) with this 
v and with initial condition I(0) = I, results in I (T)  = I,. Linear controllability along 
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a given ( x ,  u) is equivalent to the map a(u)  := $(7; 5, u) having full rank at u, seen as a 
map on an appropriate space of controls (see below). 

Assume that we are now given both a system 3 as in (2.1)  and an autonomous 
system R,  with state space S, E R' and dynamics denoted by P, as well as an analytic 
map Q : S , +  U , .  We shall use R J Z  to denote the system obtained by feeding the 
output of R as a control to E, and think of the corresponding combination as an 
autonomous system 

with state space S ,  x S,. Consider a pair ( w , ,  x,) E S ,  x S,. For small enough times 
T >  0, the solution ( w ( t ) ,  5 ( t ) )  of (2.3)  with w ( 0 )  = w, and ( ( 0 )  = x ,  is defined on  the 
interval [O, T I .  We shall say that ( w , ,  x , )  is non-degenerate iff for some such 7; E is 
linearly controllable along the ensuing admissible trajectory ( 5 ,  Q ( w ) )  of Z, and 
denote the set of such pairs by N D ( R l 3 ) .  We also call the trajectory ( w ,  5) non- 
degenerate if (w,, x, )  is. It is easy to see that N D ( R 1 Z )  is an open set, and that 
( w ( t ) ,  5 ( t ) )  is again in N D ( R l 3 ) ,  for each t < T (see Sontag 1987 b). 

Finally, we say that the system Z is complete if for every 5 E S,, every T r  0 ,  and 
every admissible control u, the solution $ ( t ,  5,  u) is well-defined for all t  < 7; i.e. every 
control can be applied to every state; it is controllable iff for each 5 ,  and 5 ,  in S,, 5 ,  
can be controlled to 5 , .  An equilibrium point for 3 is a pair (5 ,  p) ,  5 E S,, p  E U,,  such 
that f ( 5 ,  p) = 0 .  

Theorem 2.1: Main theorem 
Assume that the system is controllable and that, either it has some equilibrium 

point, or it is complete and S, is simply connected. Let C be any compact subset of S,. 
There exists then an autonomous polynomial system R,  a polynomial map Q ,  and a 
compact subset U of N D ( 0 l Z )  such that the following property holds. For each 5 ,  
and 5 ,  in C there is a T > 0 and an admissible trajectory ( w ,  5 )  of the system (2.3)  with 
t ( 0 )  = r ,  and 5 ( T )  = r 2  such that ( w ( t ) ,  5 ( t ) )  E 5 for all t E [0,  77. 

Controllability (and Assumption 2.1) alone are nor sufficient to ensure the desired 
conclusions. A counter-example will be provided later. Note that systems with a non- 
simply connected state space appear naturally in robotics, when there are workspace 
obstacles. 

Assumption 1 is made mainly for simplicity of exposition, and it can be relaxed 
considerably. In any case, most types of systems can be modelled in this way. 
Certainly, the usual case of systems linear in controls is included. More general non- 
linearities can also be included if there are control bounds. For instance, a system with 
f ( x ,  U )  = u + u2 and lul< I can be modelled by 

/(x, V )  = sin ( v )  + s inz(v)  

where U, = R and Assumption 2.1 is satisfied. Similarly, open-constraint sets can be 
included: for instance if u above is restricted to the interval lul < 1 then we may 
reparametrize controls as 

u = - arctan ( v )  (3 
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Finite-dimensional open-loop control generators 541 

In any case, the need for Assumption 2.1 is most probably due only to our method of 
proof; one could rewrite all our treatment using instead 'almost uniform' convergence. 
This would be less elegant than using p-convergence as below, but would afford 
greater generality. 

We make the following notational convention in order to save space: to display 
column vectors, we use also the alternative notation 

(note the :) instead of 

If the ai  are scalars, this is the same as the transpose of the row vector ( a , ,  ..., a,), but 
we will mostly deal with cases in which the ai  are themselves column vectors, in which 
case (2.4) would correspond to, in more usual but cumbersome notation, (a;, ..., a:)'. 

3. Approximation results 
We need next a number of approximation results. Section 3.1 deals with continuity 

properties and differentiability of the inputlstate map, and jj 3.2 develops a construc- 
tion related to standard proofs of the Stone-Weirstrass theorem. 

3.1. Continuous dependence theorems 
The results in this section are probably known at the 'folk' level, but we have been 

unable to find a suitable reference in the form needed for this paper, so we give a self- 
contained presentation. 

A system Z will be fixed for the rest ofthis section. A real number T> 0 will be also 
fixed. We let L",e the Banach space of all essentially bounded measurable functions 
[0, TI -P U, = Rm, endowed with the sup norm 

where 1j~1 is the euclidean norm in Rm-any other norm could be used instead. (We 
also use the notation 151 for the euclidean norm in the state space S ,  E Rn.) Since the 
interval of definition is finite, the spaces LT (p-integrable functions), p 3 1, all contain 
L", We shall be interested in the latter space viewed as a subspace of each LT; to avoid 
confusion, we use a different notation. Thus, B; will denote L",ith the norm 

for any p 2 1. For simplicity of statement, we also let B z  be the same as L x w i t h  the 
sup norm). It is a standard fact that whenever 1 < p < q < a, then 

for all u E L z ,  for some constant c , .  In fact, 

- T(l/P)'[l/q) 
1 - 

will do. Conversely, if 1 d p < q < co and if k is a given constant, then there is another 
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constant c2 such that 

(Proof: Write luIq = I u ~ ~ - ~ I u I ~  < kq-PI~IP and integrate.) 

Thus, as long as one remains in a bounded subset of L",U the p-topologies 
(p < co) are equivalent. 

Recall that the continuous mapping f :  D +  N,, where D is an open subset of the 
normed space N , ,  and N, is another normed space, is (Frechet) differentiable a t  a 
point 5 E D iff there is a linear mapping Df(5) : N ,  -+ N2 such that 

The derivative o f f  is the mapping Df:D+ L(N,, N,) sending 5 into Df(5). One 
defines second derivatives off via derivatives of DL and so on  inductively. A smooth f 
is one that has derivatives of all orders. We shall say that f hasfull rank at 5 iff f is a 
submersion there, i.e. Df (5) is onto. The normed spaces BF, p < a, are not Banach- 
they are dense in the respective L;-but we shall apply the mplicit function theorem 
to differentiable mappings BF+ R". This will present no difficulty because such a map 
already has full rank when restricted to an  appropriate finite-dimensional subspace, 
and the implicit function theorem can be applied to the restricted map. 

The following situation will arise below. Assume that 

is a C2 map, and that K ,  E S, is a given compact convex set such that, for some 
constant k, 

llh(5, p)Il 6 k (3.1) 

whenever 5 E K ,  and p E U,.  When f has linear growth in u, as  assumed for the map 
defining the dynamics of Z, this property will hold for all compact sets K, .  We have 
the following observation. 

Lemma 3.1 
Assume thatf ,  K , ,  k are as  above. Pick a compact subset K, E U,.  Then, there 

exist constants M and N such that, if 5, q E K , ,  p E K2,  v E U,,  and 1 < p < 2, then 

Proof 
Property (a) is obtained by separately bounding 1 f ( 5 ,  p) - f (q, p)I and I f  (q, p) 

- f(q, v)l, and by using property (3.1) and the mean-value theorem. We now prove 
property (b). Assume first that Ip - vl < 1. Then v is in the compact set 

K,:={vllv-ul<l for some U E K , ]  
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Finite-dimensional open-loop control generators 543 

By Taylor's formula with remainder (recall that f is twice differentiable), we known 
that, for 5, a in K ,  and p, v E K g ,  

IMa, v)lC alt  - a12 + blp - vI2 

for some constants a, b (which depend on K ,  and K,, and hence on K,). Since 
(p  - vJ C 1 and p C 2, this means also that 

Next note that g.(x, u) = Ju(x, u) -/.(5, p), so that g also satisfies (3.1) (with 2k 
instead of k). We can then apply part (a) to g to conclude that, for a, p, v as in the 
statement, 

for a constant M' that depends only on K, .  If ( p  - v l >  1, then also Ip - v ( ' - ~  < I ,  so 
- V I  C Ip - vlP. Thus 

Id% v)l C Ida. p)I + Ig(rl, 4 -g(a, p)l < a15 - alZ + M'Ip - v12 

Choosing N := max {a ,  b, M'), the result follows. 

For the given system E, let 9 be the set of triples 

( t ,  5, u) E CO, TI x S= x LZ 

for which the solution $(r, 5, u) is defined for all 0 < T < t. It is a standard fact that 9 is 
open, and that $(t, ., ) is smooth on 

9, := {(x, u) I (r, x, u) E 9 for all 0 < r < t) 

for each t. (See for instance Grasse 1981, Theorem 2.9 and Proposition 2.1 I.) We shall 
need differentiability and continuity with respect to p-norms, p < co, as well. 

Lemma 3.2 
Pick any 1 < p < co, and consider 9, as a subset of S g  x B ; .  Then 9, is open and 

the mapping 

is continuous. If p > 1, then u is also differentiable, and in that case 

is the solution A(T) of the variational equation (2.2), where x(t) = $(t, 5, u) and 
%(O) =I, .  In particular, a(5, . ) has full rank at u if and only if is linearly control- 
lable along (x, u). (Thus the full rank property is independent of the particular p > I.) 

Proof 
We first assume that SE = R" and that the map f defining the evolution is defined 

on all of R" x Rm and is globally Lipschitz, meaning that there is a constant M such 
that 
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for all 5, q in U?" and all p, v in lRm. In this case, solutions are always defined, so that 
9, = U?" x B r .  Assume that ( x ,  u)  and ( y ,  u) are both admissible trajectories. We 
have that, for each 0 < t  d 7; 

By the Lipschitz condition, 

By the Bellman-Gronwall lemma, we conclude that 

for all 0 < t  < 7: Thus, for each 1 < p  d cc there are constants a, b  such that 

. for all 5 ,  q in U?", all u, v in B r ,  and all 0 d t  d T 
Assume now that S ,  and f are arbitrary. Pick any element ( 5 ,  u)  in 9,. Choose 

open neighbourhoods ft and $4 of 5 such that 

Let 0 :  U?" + U? be any smooth function which is identically 1 on clos (5) and vanishes 
outside $6. Consider the system obtained with SfE = R", same LIE, and f replaced by 

Since f has linear growth in u, h does also, and hence since 8 has compact support we 
are in the situation of ( a )  in Lemma 3.1, thus h  is globally Lipschitz. So the arguments 
in the previous paragraph apply to the system with dynamics h ( 5 , p ) .  We let 4 be the 
transition map $ for this system. By (3 .3 ) ,  there is then a neighbourhood $6 of 5 and 
an E > 0  such that +( t ,  q, o) is in -V, for all 0 < t  < T  whenever q E qe and IIu - oil, < E .  

Since h( -, 11) and f (  ., p) coincide on  Vc, it follows that $ ( t ,  7, v )  solves the original 
differential equation, i.e. it equals d ( t ,  q, v )  for these t ,  q, o. In particular, 9, contains a 
neighbourhood of ( 5 ,  u)  and is therefore open. Continuity of a follows from (3 .3 ) .  

We now prove differentiability when p  > 1. Let ( x ,  u )  be an admissible trajectory, 
and 

Pick a convex compact neighbourhood Ye of 5 = x ( 0 )  and any q in fc. For any other 
control v  (of length T )  sufficiently near to u in B r ,  let (z, v)  be the trajectory that 
results when applying v to q. By continuity, we may choose a suitable neighbourhood 
of u  so that this trajectory always stays in a given compact convex neighbourhood of 5 
in S E ,  say K ,  . Let K ,  be any compact set such that the (essentially bounded) control u  
satisfies u( t )  E K 2  for almost all t .  Let 6 ( t )  := z ( t )  - x ( t )  and v ( t )  := v ( t )  - u( t ) .  From 
part ( b )  of Lemma 3.1 it follows that, if 1 d p <  2 then 
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Finite-dimensional open-loop control generators 

where 

for a suitable constant N. Thus, if l solves (2.2) with 1.(0) = 6(0) = lo = 5 - q,  it follows 
that 

for some constant M. Applying (3.3) to the first term there results that there is a 
constant M' such that 

Since p >  I, it follows that )6(T) -i.(T)I is indeed o(lio( + IIvllp), as required to 
establish differentiability. If instead 2 < p, we consider (3.4) for the case p = 2. Since 

llullz Q cllullp 

for some constant, it follows that 16(T) - l(T)I is rnajorized by an  expression 

M"{I~.OI2 + 2Ilull3 

again as desired. 

Remark 3.1 
The differentiability result is false if p = 1. For instance, consider the system 

with S,  = U, = R, and the controls u, on [0, 1 1  with 

u,(t) = 1 on [O, E] and u,(t) = 0 for t > E 

Let also u = 0, x = 0, and x, := solution when applying u, to 0. Note that u, + u when E 

-0. The differential of u( . ) -t +(T, 0, u) as a map on B : ,  if it exists, would have to be 
the mapping which is identically zero. Thus differentiability would mean that Ix,(T)I is 
o(IIu,II I )  as 6-0. Since Ix,(T)I = E = IIu,II1, this is false. (Note that, on the other hand, 
for p > 1 one has for this example that 

I I ~ , I l p = & l ' P  
and there is no contradiction.) 

Remark 3.2 
For p < co the linear growth condition is essential. Otherwise, not even continuity 

holds. Indeed, take any finite p and consider the equation i= u4, where q > p is 
arbitrary. Pick any r with q > (l /r) > p. The control u,, defined now by 
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and zero otherwise, has Ilu, llp-+O as  6-0, but the corresponding solution x, has 

3.2. Approximation of PC controls by polynomial controls 
We fix a T > 0 and an integer cr. For any elements uo, ..., u, in Us, and for any real 

numbers 0 =so < sl < ... < s, < s,., = 7; consider the piecewise constant admissible 
control on [0, TI defined as follows: 

Let {QJt)} be any fixed sequence of polynomial kernels of degree 2n, that is, each Q, is 
a polynomial of degree 2n and the following properties hold. 

For each 6>O, Q,-0 as n +  co, uniformly on It[ >6,  t E [-7; 7'l (3.5) 

Q,(T) dr = 1, for all n J -T 
Q,(t) > 0, for all I E R and all n (3.7) 

For instance, we may take 
Q,,(t) := k,(Tz - 1')" 

where the k, are appropriately chosen constants. Consider now the convolution: 
P T 

as a function on t E [O, TI  with values in Rm. (Integration of vector functions is 
understood componentwise.) If we expand 

then p.(t) equals 

Thus p, is a (vector) polynomial in (s,, ..., s,; u,, ..., u,; t ) ,  of degree 2n in t. The 
expression in the right-hand side of (3.8) can be written as 

if we identify u with its extension to ( - co, co) obtained by setting u = 0 outside [0, TJ 
Let lul denote the euclidean norm of u E Rm, and fix any p > 1 .  Note that 

By property (3.6), we may write 
r1  
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Finite-dimensional open-loop control generators 547 

so the expression in (3.10) is bounded above by 

soT I s-TT Q ( ) { (  , . s ;  u . u ;  t - T) - u ( s l . .  s u 0 . ,  u ;  t)} d 

(3.1 1) 

Assume that we are now given a sequence (s,, ..., so) as above, a real number 6 
with T >  6 > 0, and a t E [0, TI which does not belong to any of the intervals 
[si - 6, si + 61, for any i = 0, 1, ..., u + 1. (Where so := 0 and so+, := T.) For any T such 
that 1x1 < 6, it follows that u(s,, ..., s,; u,, ..., v,; t - T) = u(s,, ..., s,; u,, ..., o,; t), and 
hence the inside integral of (3.1 1) can be replaced by the integral over I T [  > 6 (as long 
as t is of this type). Since the differences 

are always bounded by c, := 2 max {Iu;~}, it follows that for such t the term inside the 
integral is bounded by 

{cl jJ,Q.(d drIP 

where J ,  is 

C-7; -61uC6, TI 
When t is not in any of the above intervals, the inside term is in any case bounded by 
{c ,}~ ,  and the set of such exceptional t has a measure of at most (u + 2)6. We conclude 
that the expression in (3.1 1) is majorized by 

(0  + W(c1 )P + {ci ~J,Q.(T) dzlP 

By property (3.5), the following result holds. 

Lemma 3.3 
For any 1 < p < co, p (  . so; u 0  u ;  ) converges in BF to 

u(s,, ..., s,; u,, ..., u,; -). This convergence is uniform on the real numbers 0 < s, < ... 
< s, < T, and is also uniform on the vectors u,, ..., u, on compact subsets of U;". 

The result is of course false for p = co, since a limit of polynomials in L",s 
necessarily continuous. For this reason we have introduced the spaces BY, p # co. An 
alternative approach would be based on the notion of 'almost uniform' convergence, 
for which a similar result can be proved. 

4. Several controllability notions 
We next introduce various very natural strong notions of controllability, and 

eventually prove that they are all in fact equivalent. 

4.1. Non-singular controllability 
Let a system 9 and a T >  0 be fixed. We shall say that a control u on [0, T I  non- 

singularly (or, ns-) steers 5 into [ iff u can be applied to 5 and the resulting trajectory 
(x, u) is such that x(T) = [and Z is linearly controllable along (x, u). We also say that 
u can be 'non-singularly applied' to 5. If such a u exists, 5 can be ns-controlled into (. If 
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every 5 can be non-singularly controlled to every other c, the system Z is ns- 
controllable. The notion of ns-controllability is transitive in the following strong sense. 
Assume that 5 can be ns-controlled to q and that q can be controlled to [ (not 
necessarily non-singularly). Then it is also true that 5 can be ns-controlled to [. This is 
because if w is the concatenation of a control u (of length T) which ns-steers 5 into q 
with a control u (of length S) which steers 11 into [, then w is a control (of length T + S) 
which ns-steers 5 into [-the differential of $ (T+ S, 5,  . ) is full rank already at those 
variations v which are zero on [7; T +  S]. 

A particular type of non-singularity is as follows. Assume that the control u is 
piecewise constant, u = u(s,, ..., s,; o,, ..., I),; .), of length T and it steers the state 5 
into [. We shall say that u pcns- (piecewise constant non-singularly) steers 5 to c if the 
mapping 

defined on a neighbourhood of(& ..., ub), has differential of full rank a t  (I&, ..., ub). In 
that case, u also ns-steers 5 and [. This is because the mapping in (4.1) is the 
composition of the linear bounded map 

with $(7; 5,  - ), hence the latter must have full rank at u. As above, we define 5 to be 
pcns-controllable to [ if such a u exists, and the system Z is pcns-controllable if this 
happens for any pair of states. This notion is also transitive in the sense discussed 
above. 

4.2. Strong normal controllabiliiy 
We shall say that the control u of length T strongly normally (or, sn-) steers the 

state 5 to the state [ in time Tiff there exist an  integer a, elements ub, ..., ub in V o ,  a 
neighbourhood 5 of c, and a smooth mapping 

such that, for each z E 3, if b(z) = (s,, ..., s,) then 0 < s, < ... < s, < 7: the control 
u(/l(z); I),, ..., I),; - )  of length T, steers 5 into z in time T, and u(p([); o,, ..., o,; a )  = u. 
The state 5 can be sn-controlled to [ (in time T)  if such a u exists. The system Z is sn- 
controllable iff  for each 5,  c in S, there is a T >  0 such that 5 can be sn-controlled to [ 
in time 7: This notion is closely related to that of normal controllability given by 
Sussmann (1976); the qualifier 'strong' refers to the fact that the controls u are 
required to (locally) all have a uniform length 7: As with the other definitions, if 5 is 
sn-controllable into q and q is controllable into [, then 5 is sn-controllable into c. 

Remark 4.1 
For particular states and controls, sn- and ns-controllability are (for systems not 

linear in controls) different. For example, consider the system (with U, = S, = R) 

1 = x + 1 -sin (u) 

and 5 = 0, c = 2(exp (i) - I), T = 1, ub = 4 2 ,  u', = - n/2, s = 112, and 
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Finite-dimensional open-loop control generators 

for z near [. Then 

sn-controls 5 to [. But it does not d o  so nonsingularly, since along the corresponding 
trajectory the linearization is the autonomous system P = x .  The corresponding 
notions for systems (rather than individual controls) do  coincide (proved below). The 
situation is closed related to that in the context of orbit theorems for non-linear 
continuous time systems (see Sontag 1986), where different topologies are induced for 
the same state space depending on  whether one takes the finest topology that makes 
all motions continuous with respect to switching times or instead with respect to 
control values. 

Remark 4.2 
Controllability is by itself not equivalent to sn-controllability. For instance 

consider the system with U ,  = R, S, = R2 - { ( O ,  O)}, and with equations in polar 
coordinates: 

The system is controllable (any state can be steered to every other state in time at 
most 2n). But the set of states reached in precisely time Tis  a half-line, and hence has no 
interior. Note that the state space is not simply-connected, and that there are no 
equilibrium points. The 'clock' coordinate 0 is responsible for the pathological 
behaviour of this example. 

Let Y be the Lie algebra associated to 2. This is the smallest Lie algebra of vector 
fields on S, which contains the vector fields 

For any 5 E Sg, we associate the following subset of the tangent space at 5: 

If is controllable, then it is a well-known fact that Y has full rank (i.e. dim Y(5) = n) 
at all (. (See Isidori 1985 for many basic results on the Lie algebraic aspects of control 
systems.) The ideal of Y generated by all the differences 

is the zero-time algebra Yo. Similarly, we introduce the spaces Yo(()  as above. It 
follows from the definitions that, for any fixed p E U, ,  Y(5) is the span 

for all 5 E S,. It is also known that (because ofcontrollability), Yo has constant rank, 
so that there are only two possibilities: either d imY0(5)  is always 
n or it is always n - 1. In the latter case, a local change of coordinates can always be 
found which results in dynamics with an  autonomous coordinate 

a,([) =f1(x1) 

Thus there is (locally) a 'clock' as in Remark 4.2. When there is an  equilibrium point 
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550 E. D. Sontag 

J(5, p) = 0, (4.3) together with the constancy of rank, gives that Yo has full rank, 
meaning that Yo(()  has rank n a t  every point. When instead S,  is simply connected 
and the system is complete, this is also true by a result of Elliot (see Elliot 1971, 
Sussmann and Jurdjevic 1972). We summarize then with a proposition. 

Proposition 4.1 
If the system Z is as in the statement of Theorem 2.1, then Yo has full rank 

We shall prove that the full rank of Yo is sufficient for the conclusions of the 
theorem to hold. This rank condition is also necessary, because the conclusions imply 
that the system is ns-controllable, and this will be shown below to be equivalent to the 
rank condition. 

If  T > 0 , 5 ~ S , , a n d O < s , <  ... <s,<T,welet  

Note that, by the implicit function theorem, if ( can be pcns-controlled to some other 
state 5, then some set as in (4.4) has a non-empty interior. We remark below that the 
converse is also true. Let A,,(() denote the union of all sets as in (4.4), for all possible 
T > 0, i.e. the set of states reachable from 5 using piecewise constant controls. 

Controllability using arbitrary controls is equivalent to controllability using just 
piecewise constant controls. The next lemma is well-known (see for instance, 
Sussmann 1979, Theorem I) .  

Lemma 4.1 
If E is controllable, then A,,(() = S, for all (. 

4.3. A fixed-point argument 
We shall need an argument based in the Brouwer fixed point theorem that has 

been used repeatedly in control theory ('Bronovsky-Lobry lemma'), and which is 
also used in the main step of the proof of the preservation of controllability under 
sampling (see for example, Sontag 1983). An abstract version is provided by Grasse 
(1981), Lemma 3.2, (see also Lee and Markus (1968), pp. 251-252), which we 
reproduce here in somewhat weaker form. Choose any norm in R". 

Lemma 4.2 
Let 7Y be a topological space and let H : W +  R" be continuous. Assume that for 

some 5 in U?" there is a neighbourhood Y of 5 and a continuous map /I: Y -+ 7Y such 
that H(/I(z)) = z for all z in Y. Then, there is an e z 0 and an  open neighbourhood Y' 
or 5 such that, for any mapping 

with llh(x) - H(x)II < E for all x, necessarily Y' E h(7Y). 

Let 9Jk.,(() denote the set of states that can be reached from ( using polynomial 
controls of length T and degree at most k in t. 
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Finite-dimensional open-loop control generators 55 1 

Lemma 4.3 
If 5 can be sn-controlled to [ in time 7: then there exists a k such that i is in the 

interior of Pk,,([). 

Proof 
Assume that 5, i, u, T, u o ,  ..., o,, b, YrC are as in the definition of sn-steering. 

Restricting 7'; if necessary, we will assume that it is compact. Let .W:= o ( q ) ,  a 
compact subset of R" which contains /?(i) = s o  = (sy, ..., s:). Let 

Thus we are in the situation of Lemma 4.2, with Y =  ̂yS; let E ,  V' be as in the 
conclusions there. We now construct a sequence of mappings {H,} from W into R" 
which converges uniformly to H, and with the property that the image of each H ,  is 
included in the set of all states reachable from 5 using polynomial controls of degree at 
most 2N. So for n large enough one of these images contains V,  and the lemma 
follows. 

Consider, for the above u,, ..., u,, the mapping 

see as a map from 7Y into (for instance) B';. This is continuous (but is not 
differentiable). Let K be the image of W under this mapping. Thus K is a compact 
subset of the open subset of B'; consisting of all the controls (of length T) that can be 
applied to 5. Thus there exists a 6 > 0 such that every admissible control p which is at 
a distance less than 6 from K can also be applied to t;. For each positive integer N 2 1, 
let 

where the polynomials p, are as in 5 3.2. Since the p, converge to u uniformly on the si, 
for N large enough they can be applied to t;. We take the subsequence of the H, that 
consists of such large N. Since $ is continuous on B';, we conclude that the H, indeed 
converge uniformly to H. 0 

Lemma 4.4 
If for some k, T the interior of gk,,(5) is nonempty, then there exist s,, ..., s, such 

that A: ,,,, (5) has a non-empty interior. 

Proof 
This is again proved as a corollary of Lemma 4.2, as follows. Let H(a,, ..., a,) be 

the state reached when applying to 5 the control (of length T) 

This is defined and continuous on an  open subset of Rmk (the control must be 
applicable to t;). It is also smooth, since we may see H as the composition of the 
(linear, bounded) mapping that sends (a,, ..., a,) into the element (4.5) of L",ollowed 
by the mapping $(7; 5, 0 ) .  The image of the smooth map H contains by assumption 
an open set. Since the domain of H is a finite-dimensional separable manifold, we may 
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apply Sard's theorem to conclude that its differential is full rank a t  some point. 
Applying the implicit function theorem, and restricting the domain of H appro- 
priately, we are again in the situation of Lemma 4.2. 

Now we approximate H by mappings H, constructed as  follows. For each N and 
each (a,, ..., a,), consider the piecewise constant (sampled) control in L",hich has in 
the interval [kT/N, (k + l)T/N] the value of (4.5) a t  (say) kT/N. These converge 
uniformly to (4.5), and hence are admissible and can be applied to 5 for N sufficiently 
large. Then H,(uo, ..., a,) is by definition the application of this control to 5. Thus H, 
contains an  open neighbourhood of [ for large enough N, and this proves the lemma 
(with u = N - I). 0 

4.4. All notions are equivalent 
The following shows that the controllability notions introduced in this section are 

very natural. The set of all states to which 5 can be steered in time exactly T is AT((). 

Proposition 4.2 
Assume that the system Z is controllable. Then the following properties are all 

equivalent. 

(u) 2'' has full rank. 

(b) There exist 5, [ in S ,  such that 5 can be sn-controlled to c. 
(c) Z is sn-controllable. 

(d) There exist 5, [ in SE such that 5 can be ns-controlled to [. 
(e) Z is ns-controllable. 

(f)There exist 5, [ in Sh such that 5 can be pcns-controlled to [. 

(g) Z is pcns-controllable. 

(h )  Some set as in (4.4) has non-empty interior. 

(i) Some set AT(() has non-empty interior. 

( j )  Some set Pk., has non-empty interior. 

Proof 
We pointed out above that (g) implies (e). That (b) implies ( j )  is proved in 

Lemma (4.3), while Lemma (4.4) shows that ( j )  implies (h). 
The 'transitivity' properties discussed earlier establish that (b) is equivalent to (c), 

(d) is equivalent to (e), and ( f )  is equivalent to (g).  Note also that ( h )  trivially implies 
(9 .  

The equivalence betkeen ( i )  and (a) was proved by Sussmann and Jurdjevic 
(1972); see for instance Sontag (1986) for a somewhat more general result. 

If (a) holds, then Lemma 4.1 together with (Sontag, 1983, Lemma 2.2), implies that 
(b )  holds. 

The implicit function theorem, applied to the map $(T, 5, . ) on L z ,  gives that (d) 
implies (i). 

Finally, statements (f)  and (h) are equivalent. Indeed, we have already remarked 
that pcns-controllability implies that some set as in (4.4) has a non-empty interior. 
Conversely, assume that such a given set has a non-empty interior. The map (4.1) is 
smooth (composition of the linear bounded map in (4.2) with $(T, 5, . )),and its image 
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Finite-dimensional open-loop control generators 553 

is A1(,,,,,,(5). Since the domain is a separable finite-dimensional manifold (open subset 
of Ug"), we may apply Sard's theorem to conclude that (4.1) must be full rank at 
some point, i.e. 5 can be pcns-controlled to some (. 0 

5. Proof of Theorem 1.1 
In this section we prove that the conclusions of the theorem follow from ns- 

controllability of the system. From the remarks in the previous section, this will be all 
that is needed in order to prove the theorem. The following is the main technical step 
needed. It establishes basically that if the system is ns- (or pcns-, o r  sn-) controllable, 
then one can transfer states non-singularly using polynomial controls. We know from 
Proposition 4.2, part ( j ) ,  that we can d o  so using polynomial controls. An application 
of Sard's theorem will then ensure that from each state we can go nonsingularly and 
polynomially into some other state. But in order to transfer to a predetermined state it 
is necessary to concatenate this resulting control with another control, and the 
concatenation will in general not be polynomial but at best a spline. So a different 
argument, again based on the above fixed-point theorem, is needed. 

Proposition 5.1 
Assume that 5 and (a re  in Sh and that 5 is pcns-controllable into [ in time 7: There 

exist then an  integer p, a compact subset K of Ugf ', and neighbourhoods 7G and W; 
of 5 and [ respectively, with the following properties. 

(a) Let u be the control v, + ... + vPtP of length 7; where (v,, ..., v,) is in K. Pick 
any x E Wt. Then u can be applied to x, and E is linearly controllable along the 
ensuing trajectory. 

( b )  If x E 7Yg and z E W; then there exists some u as above, such that u steers x 
into z. 

Proof 
Let 5,  i, u, T, s,, ..., s,, u,, ..., u, be as in the definition of pcns-steering. Let 

defined on  a neighbourhood of v,,  ..., 0,. Note that u ns-steers 5 into i, as discussed 
earlier. There is by the implicit function theorem applied to H a neighbourhood Y< of 
( and a smooth 

p : q + R ( a + l ) m  

with H(p(z)) = z  on 5. By continuous differentiability of $(T, -, - )  there is a 
neighbourhood a! of u (say, in B';), and a neighbourhood ^yS of 5, such that each 
v ~ d  can be applied nonsingularly to each x in 5. Let W be a compact 
neighbourhood of (u,, ..., 0,) such that u(s,, ..., s,; v,, ..., v,; - )  is in a! whenever 
(v,, ..., v,) is in W .  Consider H a s  a map restricted to W, and restrict Y = Yc so that p 
maps into W .  We apply Lemma 4.2 to obtain an e,  Y' as  there. Let %( := Y'.  For each 
x E Ye and all large N, 

(notations as  in 8 3.2) is well-defined on W, and p,(s,, ..., s,; v,, ..., v,; - ) can be 
nonsingularly applied to x. The H,,, converge uniformly to H as x -+ 5 and N -+ CQ. 
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Thus there are a neighbourhood $5 of 5 and an N large enough that 

% E Hx.~(^W) (5.l) 

and 

pN(s1, ..., s,; vO, ..., v,; ) can be non-singularly applied to x (5.2) 

for all x E "/Y; and all (v,, ..., v , )  in W .  By (5.1), if x E -W; and z E W; then z is in the 
image of H,,,. Finally, let pa= 2N and 

K = ( p 0  p 1 for some (v,, ..., v,) E W ,  pN(sl, ... , so;  vO, ..., v,; t) { 

This set is compact, because the coefficients of p, are continuous functions of the vi- 
see (3.9). The result then follows from this construction. 

We may now complete the proof ofthe theorem. Assume then that the system Z is 
sn-controllable, and apply the above proposition to it. 

Fix 5, [,and corresponding p, K, $4 and l̂Y;. Choose also an open neighbourhood 
Vt of 5 with the property that its closure clos(%) is contained in W;. Similarly, pick an 
open neighbourhood 5 of ( with c l o s ( 5 )  E %. Consider the mapping 

a(uo: ... : u p ) : = ( u o : u o t + u , :  ... :uo tP+  ... +up)  

This is (linear and) continuous. Let x be the last component of this map, 

x(uo: ... :up) :=(uotP+ ... +UP) 

Then, a(K) is a compact subset X of {L",p+ ', and Xp := x(K) is also compact. By the 
conclusions of Proposition 5.1, each control function o E Xp is admissible Tor the 
system B and can be applied to each x E Wt. Thus 

[O, q x clos (Ye) X Xp 

is a compact subset of the domain of $. Consider now the mapping 

defined on this compact set. This is the composition of the continuous map 

into [0, TI x X x CO([O, TI,  R") with the continuous evaluation mapping 

(defined for 4 on the subspace of continuous functions in L",. Thus its image Otl 
consisting of all those ( u :  y) E 'Irn x SH such that 

3 t E [O, TI,  x E clos (%), w E K P + l  with v = a(w)(t) and y = I,+([, x, ~ ( w ) )  

is also compact. 
Let C be the compact set in the statement of the theorem. Now cover C x C by sets 

of the type % x 5. Let < x Y ; ,  i = 1, ..., s be a finite subcover, and let subscripts 'i' 
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Finite-dimensional open-loop control generators 555 

be used for the associated data as above. Write Oi instead of US,.li, and let p be the 
largest of the pi ,  T the largest of the T .  Introduce 

Finally, let 

These are the maps defining the open-loop control generator. For each i = 1, ..., s, let 

where there are p - pi blocks of zeros. Each of these is a compact set, so that their 
union 

8:= u { O i ,  i =  1 ,  ..., s }  

is also. 
We now prove that this set 8 indeed satisfies the properties in the conclusions of 

the theorem. We first show that U is included in N D ( R J E ) .  For this it is sufficient to 
show that each 0; G N D ( R 1 Z ) .  So f ix  i, and drop for the rest of this paragraph the 
indices i-all data will refer to this i. The elements of 8' are of the form ( 0 :  ... : o: y)  
with 

v = a ( w ) ( t )  and Y = $ ( t ,  x ,  ~ ( w ) )  

for 
t E [O, TI,  w E K P +  x E CIOS (%) ({ = ti) 

This is the same as the solution ( o ( t ) ,  { ( t ) )  at time t of 

that starts a t  o ( 0 )  = w and {(O) = x.  As remarked earlier, N D ( R 1 E )  is forward- 
invariant. Thus it is sufficient to establish that ( w ,  x )  is in N D ( R 1 E ) .  But x E W; ,  and 
w = ( u ,  : ... : u p  as all block components ui in K .  Thus (w ,  x )  is indeed non-degenerate, 
by the conclusions of Proposition 5.1. 

Finally, take any ( x ,  z )  E C.  Then there is some i such that ( x ,  z )  is in < x Y;,  and 
hence is in %( x W;.  Thus there is a sequence w in K such that ~ ( w )  (ns-) steers x into 
z ,  and by construction, so that ( a ( w ) ( t )  : { ( t ) )  is in 0 for all t E [0 ,  TI. 0 
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