
Neurocomputing 15 (1997) 225-248

NEUROCOMPUTINC

Using Fourier-neural recurrent networks to fit sequential
input/output data

Renke Koplo@*, Eduardo D. Sontagb

‘Department ofMathematics and Statistics, Wright State Universily Dayton, OH 45435, USA
“Department ojh4athematics, Rutgers University, New Branwick, NJ 08903, USA

Received 3 April 1995; accepted 28 January 1997

Abstract

This paper suggests the use of Fourier-type activation functions in fully recurrent neural
networks. The main theoretical advantage is that, in principle, the problem of recovering
internal coefficients from input/output data is solvable in closed form.

Keywords: Recurrent neural networks; Identification; Nonlinear dynamics

1. Introduction

Neural networks provide a useful approach to parallel computation. The subclass
of recurrent architectures is characterized by the inclusion of feedback loops in the
information flow among processing units. With feedback, one may exploit context-
sensitivity and memory, characteristics essential in sequence processing as well as in
the modeling and control of processes involving dynamical elements. Recent theoret-
ical results about neural networks have established their universality as models for
systems approximation as well as analog computing devices (see e.g. [16,13]).

The use of recurrent networks has been proposed in areas as varied as the design of
control laws for robotic manipulators, in speech recognition, speaker identification,
formal language inference, and sequence extrapolation for time series predictions.
In spite of their attractive features, recurrent networks have not yet attained as much
popularity as one might e%pgct, compared to the feedforward nets so ubiquitous in
other applications. One important reason for this is that training (“learning”)

*Corresponding author. Email: rkoplon@math.wright.edu.

0925-2312/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved
PI1 SO925-23 12(97)00008-8

226 R. Koplon, E.D. SontaglNeuvocomputing 15 (1997) 225-248

algorithms for recurrent nets suffer from serious potential limitations. The learning
problem is that of finding parameters that “fit” a general form to training (experi-
mental) data, with the goal of obtaining a model which can subsequently be used for
pattern recognition and classification, or for extrapolation of numerical values.

Various learning methodologies for recurrent networks have been proposed in the
literature, and have been used in applications. All algorithms attempt to achieve the
optimization of a penalty criterion by means of steepest descent, but due to memory
and speed constraints, they usually only involve an estimate of the gradient. They
differ on the approximation used, and thus on their memory requirements and
convergence behavior. Among these are “recurrent back propagation”, “backpropa-
gation through time”, and the “real time recurrent learning” algorithm. In complex
applications involving large models, it is difficult to simultaneously achieve good
convergence speeds and reasonable accuracy.

It has been pointed out by many authors that the field of control theory, with its
emphasis on dynamics and optimization, is naturally related to recurrent nets. It was
shown that at least some algebraic issues such as testing for identifiability and
observability of system parameters can be handled analogously to the case of linear
systems (see [l-3]). In a related context, recurrent net models have been proposed,
and used by many authors, for adaptive control and system identification applications
(see e.g. [lo, 121). In this paper, we propose a control theory-based technique for the
initial estimation of weights. Most implementations of recurrent network learning
algorithms assume a random initialization of weights. We suggest instead the use of
nontrivial techniques from nonlinear synthesis, based on mathematical developments
that have taken place during the past few years, for the initial choice of such weights.

1.1. Comparison with linear systems

Historically, linear systems have been used to approximate various nonlinear
systems since the parameters can be identified easily. Linear system identification is
a well-established and widely used tool; see for instance [9]. In broad ranges of
operation, linearity is a reasonable simplification, as the success of the linear theory
attests to. However, linear systems are limited. Most real world processes are in-
herently nonlinear. In many areas, linear simplifications are not valid, which means
that nonlinear approaches must be tried.

In searching for a canonical form for approximating all nonlinear systems, we
would like a class of nonlinear dynamical systems that is representationally rich, like
recurrent neural nets, but at the same time parameter-identifiable, like linear systems.
At the very least we want a class for which realization (noise-free identification)
algorithms are simple, and an algebraic structure theory similar to that available for
linear systems is possible.

Motivated by this need to broaden the scope of the linear theory, and to utilize the
advantages of neural nets, this paper aims to describe the development of techniques
for parameter reconstruction in a class of nonlinear systems that we call Fourier-
neural recurrent networks. The main departure from current practice in neural net-
works is that we suggest the use of sine and cosine activations (or, more precisely,

R. Koplon, E.D. SontagjNeurocomputing 15 (1997) 225-248 227

because it makes the theoretical development far simpler, a complex-exponential)
rather than the “sigmoids” that are used in most applications. This allows the design
of parameter identification methods in closed-form. Within the resulting mathemat-
ical class of system models, parameter reconstruction can be accomplished in a theor-
etically justified and methodical fashion, at least in the noise-free case and if the
responses to appropriate regularly spaced inputs can be obtained.

This work is a first step towards an eventual theory of identification from noisy data
for such systems. Viewing a system outside our class as a “noisy version” of a recurrent
net, just as is routinely done when using linear techniques for nonlinear plants, may
allow this approach to be broadly applicable. The approximation theorems in
[15, 173, justify such potential applications. In those papers, sigmoidal activation
functions are used, but the theory can be adapted to the complex exponential
activation functions used here.

1.2. The approach here

The approach taken here is inspired by the major developments in [l] (for
continuous-time) and [2] (for discrete-time) that internal coefficients or “weights” of
a recurrent net can be determined from external dynamical behavior in an essentially
unique manner. Even though intrinsically nonlinear, the actual implementation of the
algorithm involves a number of subtasks that are routinely carried out in linear
identification theory, an area of control engineering that has had major practical
successes, as remarked above.

We show that the parameters of an exp-system can be identified using a technique
that avoids all the pitfalls of gradient descent, at least assuming low noise and
a judicious choice of test inputs (“learning with queries”). Section 7 describes a pre-
liminary computer implementation of the algorithm described in Section 5 utilizing
averaging in order to handle a small amount of noise. Section 7 also includes
simulation results.

2. Main results

We first define general dynamic systems, since many concepts can be defined at that
level of generality, and then specialize to recurrent networks.

A discrete-time initialized input/output dynamical system consists of a state space
% with an initial state x0, an input value space a!, an output value space Y, and
a transition functionf: % x ??L --f L4? that computes the state at time t + 1 from the state
and input values at time t. There is also an output function h : X -+ Y that assigns an
output value to the current state. The equations are written as

x(t + 1) =f(x(O, n(r)), y(r) = 4x(t)).

The dimension of the state space !K is called the dimension of the system.
The system model that we deal with here, a recurrent neural network with one input

and one output, can be seen as a nonlinear input/output system with a state x E C”,

228 R. Koplon, E.D. SontaglNeurocomputing 15 (1997) 225-248

a scalar input, and a scalar output. Let CJ be a fixed nonlinear function, which we call
an activationfunction. Let A E C’xn, B E @“’ I, C E @i xn. Recurrent neural networks are
described by equations

x(t + 1) = &4x(t) + Bu(t)), Y(l) = Wt), x(O) = x0, (1)

where a(x) = (a(~~), . . . , 0(x,))‘. We use G(X) = exp(ix) as the activation function and
call a system as in (1) with this activation function an exp-system or Fourier-neural
recurrent network, denoted E = (A, B, C),. We use the subscript x0 to denote the
system with initial state x0, when necessary, xX0.

This choice of o as an activation function is very natural, since we obtain in this
manner a dynamic extension of Fourier analysis. Moreover, the choice of this o is
critical to our results. Indeed, our method depends in an essential way on being able to
transform sums into products, a property which uniquely (among continuous func-
tions) forces us to consider this activation. (A small variation would consist of using
real as opposed to complex exponentials, but this seems less interesting as it leads to
highly unstable dynamics.) The idea of using Fourier-type activations has already
appeared before in the neural network literature; see for instance [S] for an ap-
plication in the content of feedforward nets and function approximation.

Before stating our main result, dealing with identification of the parameters, we
need to briefly address the question of observability, that is, the possibility of
determining the internal state from input/output data, for this class of systems. Notice
that if the initial state x0 is unknown, it too is a parameter that should be identified.
A control system is said to be observable if given any two distinct initial states, x0 and
zo, there is a finite sequence of inputs that causes the two systems, XX0 and C,,, to have
a different output. We will look at this standard notion of observability rather than
the perhaps more desirable notion of actually determining the unknown initial state. If
our goal is to be able to simulate the input/output behavior of the system, we do not
need to identify the unknown initial state. It is enough to measure the initial output
and to be able to determine the state at time 1, as well as the parameters A, B, and C.
Nevertheless, we characterize observability for this class of systems.

Lemma 2.1. Let C = (A, B, C), be an exp-system such that
a. the components bI, . . . , b, of B are nonzero and a(bl), . . . , a(b,) are distinct, and
b. the entries of C are all nonzero.

Then E is observable if and only if

ker CnA-‘(Z”) = (0). (2)

This is proved in Section 3. Condition (2) is easily seen to be generic. Indeed, for any
fixed nonzero k E @“, the (n + 1) x (n + 1) matrix

has full rank for all A and C except those that are described by the zero set of an
analytic function. Thus all nonzero k E if” are avoided for (A, C) in the complement of

R. Koplon, E.D. SontaglNeurocomputing 15 (1997) 225-248 229

a countable union of such sets. The two assumptions in the theorem are important for
proving the sufficiency part of our result, because they allow certain matrices to be
inverted.

The following technical condition will be used in the identification theorem. Let
B =(b1, . . . , b,)’ E @” and assume again that o(b,), . . . , a@,) are distinct. Let

o(b,) - 1

i :

... 4%) - 1
B, =

o((n + $4 - i : r
7

. . . a((n + ip,)- i

and let R(B) be the condition that the column space of B, does not contain any
nonzero integer vectors. That is,

co1 B,nZ”+’ = (0). (R(B))

Although it can be proved to be generic, there are exceptions to Condition R(B). For
example, if any of o(b,), . . . , o(b,) are integers, the condition fails. This condition is
used in the proof to guarantee that a certain equation has a unique solution. In that
situation, any two solutions would have to differ by an integer vector and R(B) then
implies that the two solutions are not, in fact, distinct. It should be possible to
eliminate the need for this condition in the theorem below by modifying the part of the
procedure described in the proof where we find C, to use varying inputs, but the
algorithm that we give is simpler if we assume R(B).

Next is the identification result. It states that the parameters of a Fourier network
can be recovered using a finite set of input/output data all starting from the same
unknown initial state. More than one set of input/output data is needed, but the
training program does not need the complete input/output behavior as a function.

Theorem 1. Let Xx, be a single input, single output system as in (1); with a(x) = exp(ix).
Assume that

1. the components of B are nonzero, strictly increasing in modulus, and bj - b,$2rziZ
for j # k,

2. the entries of C are all nonzero, and
3. B satisfies R(B).

If the dimension of the system is known, then the input/output data is sufficient to
uniquely determine the parameters A, B, C.

If in addition the system is observable, then the initial state x0 is also uniquely
characterized.

The components of B are uniquely identifiable only up to a change in order. Thus,
we assume that the components of B are initially in increasing order and as we identify
them, we put them in the correct order. The assumptions that bj - bk$2rGZ and the
entries of C are nonzero are made, as in the observability theorem, to allow us to
invert certain matrices. Regarding the assumption that the dimension of the system is
known, this is a standard assumption in neural nets and more generally in function
approximation, where problems are solved by means of search procedures over given

230 R. Koplon. E.D. SontaglNeurocomputing 15 (1997) 225-248

parameter spaces. In linear systems theory, analogously, one assumes a fixed dimen-
sion, in most identification and adaptive control problems. Methods for estimating
dimensions are a matter for future research, but this is an area that is not well-
understood even for function approximation (viz. work on regularization in numerical
analysis, structural risk in learning theory, etc.).

The theorem is proved by means of an explicit procedure for reconstructing A, B,
and C which is described in Section 4.

3. Proof of Observability Lemma

We now prove Lemma 2.1 First assume that YZ is observable. Suppose there exists
a nonzero v E @” such that

Cv=O and AVET’.

Then the initial states 0 and x0 = 27cv are indistinguishable, contradicting observabil-
ity. To see that 0 and x0 are indistinguishable, note that

co = cx,,

so the outputs at time zero are the same. Next, the states at time one are equal for the
two initial states, after applying any input. Indeed, fix any input value U. For the initial
state x0,

x(1) = a(Axo + Bu) =

i

where Aj is the jth row of A. Since AXE E 2d”, o(Ajxo) = 1 = a(AjO) for all j. Thus
x(1) = a(Ao + Bu) which is equal to the state at time one for initial state 0. Hence the
outputs from time one and on are equal.

For the converse, suppose there exists a pair x 0, 2, that is indistinguishable. Then

cxo = cjzo, and Ca(Axo + Bu) = &(A& + Bu), Vu.

We can apply the above equality for the n different input values 0, 1, . . . , II - 1. Since
o&b) = o(b)k,

I

e-(bi)” ... o(bJ-’

(cla(Arxo) ... c,o(A,xo)) :

dU”
1 I

... cQ,)“-’

4bd”
= (cla(AljZo) ... c,o(A,~,))

i

;

4U”

R. Koplon, E. D. Sontag / Neurocomputing I5 (1997) 225-248 231

The marix appearing on both sides of the above equation is a Vandermonde matrix.
That is, it is a matrix of the form

1 Xi x: .*.

I
n-l xi
n-l 1 Xq x; ... x2

i x, xf ...
n-l

x,

with xi # xj i #j. Thus it is invertible, yielding

(cia(Aixo) ... c,o(A,x,,)) = (clo(A1&,) ... c,a(A,R,,)) .

Dividing out the components of C (which are nonzero by assumption), we obtain

a(Axo) = a(A??,),

so A& - 2,) = 27ck for some integer vector k. Let u = (x0 - El,)/2rc # 0. Then
Cv = 0, and Au = k contradicting condition (2) in the lemma. Cl

The condition in the lemma does not always hold, as we can see from the simple
example

A=(; ;), B=(k), C=(l 1).

The two initial states

x0=(;), P,=(_;;)

are indistinguishable.

4. The basic algorithm

Suppose E is a system of known dimension n that is modeled by equations such as
(l), but with unknown values of A, B, C, x0. Assuming we may reset the system to the
unknown initial state and apply any input to obtain the corresponding output, we can
identify the parameters A, B, C using the following procedure. In the procedure, we
input a finite set of controls and then view the list of outputs as the output sequence of
a different system. This other system is linear, allowing the use of linear realization
techniques.

4.1. Finding B

To compute the values of B, first apply integer-valued inputs of length one equal to
0, 1, . . . ,2n - 1. The resulting 2n output values are

Ca(Axo), Ca(Axo + B), . . . , Ca(Axo + (2n - l)B). (3)

232 R. Koplon, E.D. Sontag/ Neurocomputing I5 (1997) 225-248

Let c be the row vector

c = (c1a(A1xo) W(Az%) ... W(&O)),

where cj is thejth component of the row vector C and Aj is the jth row of A. Then the
sequence (3) can be written as

a(bl)2"-1

e

These terms can be viewed as the first 2n Markov parameters (or impulse response
parameters) for an n-dimensional linear system whose “A” matrix has eigenvalues
exactly equal to a(bl), . . . , a(b,). These eigenvalues can be found by applying linear
realization techniques to the sequence. This step of the algorithm is based on
Hankel-matrix techniques that are classical in the context of linear recurrences and
their multivariable extensions developed in control theory (see a detailed discussion in
[14, Chap. 51. The method appears in many other area; for instance in coding theory
for decoding BCH codes, and in learning theory for sparse polynomial interpolation
(see [4, Section 31). Specifically, if we denote the sequence in (3) by hi, h2, . . . , hzn, we
form the two Hankel matrices

1 hl 1.. h,
H1= .*.

h, ... h2n_1

The matrix Aobs satisfying

\

7 Hz =

h n+1 ... ’ ha,
(4)

is the observability form of the “A” matrix for the triple

41)
t?:, . . .

4h)

The eigenvalues of &bs are equal to a(bl), . . . ,a(b,).
In order to compute bl, . . . , b, themselves, one would need to apply the “inverse”

of u. This is slightly more complicated than it seems, since the complex exponential is
not one-to-one. To recover the information lost by taking the complex exponential,

R. Koplon, E. D. Sontag / Neurocomputing I5 (1997) 225-248 233

we repeat the procedure described above, but instead of applying the first 2n non-
negative integer inputs, we apply inputs equal to 0, 1,2A, . . . ,(2n - l)A, where II is
theoretically irrational (or “close” to it for a computer implementation). By comparing
the two sets of resulting eigenvalues we can determine the correct log.

The procedure is as follows. First, from the integer inputs we obtain a vector Bi, by
taking any determination of the logarithm. Observe that this necessarily differs from
the true B by an integer multiple of 27~

B1 = B + 27tr, r an integer vector. (5)

If we could determine r, we would know B, which is our goal. Now from the second set
of inputs we obtain the values c(ibj), and from these values we obtain some possibly
different estimate, Bz, again using any log. Here we know that

B2 = B + $ s, s an integer vector. (6)

From (5) and (6) we deduce

(7)

The integer vectors r and s are unique. To see this, suppose there were two possible
solutions to (7), (rI, si) and (r2, sz). Then

Sl s2 rI -r2 1
rl - - = r2 - -

1 1
or -=-.

s1 -s2 A

The last equality is impossible since the left-hand side is rational while the right side is
irrational. Hence, there cannot be two possible solutions. Theoretically, then, from the
input/output data one has the vector

BI -&
~C----

7c .

There is a unique solution (r, s) to the equation

s
r---v.

1

Thus the true B is recovered as B = B1 - 27cr. Of course, this does not yet provide an
explicit procedure.

For the computer implementation, of course, II cannot actually be irrational. But if
we assume r and s are reasonably small (which corresponds to the entries of B being
reasonably small, since the determinations of log used by most computer systems have
arguments in [-R, x] or [O, 2x]), then a 1 that is not close to being the quotient of
two small integers will work.

Using (7) we can, in principle, find the unique integer vectors r and s and recover the
true B as follows. The simplest idea for this step is to exhaustively search through
integer values for s until the left-hand side of (7) is equal to a vector of integers.

234 R. Koplon, E.D. SontaglNeurocomputing 15 (1997) 225-248

A preliminary problem is that we are assuming the components of B are distinct, and
increasing in modulus, but the components of B1 and B2 may not be in the right order.
So we need to match up each component of B1 with the corresponding component
of BZ.

Start by letting s = 0 and compare the first component of B1 with the first
component of Ba. If

B,(l) - B,(l)
2Tc

is not an integer, then compare B,(l) to B,(2), B,(3), . . . and so on. That is, test if

Bl(l) - B,(k)
271.

has an integer value for some k = 1, . . . , II, and rearrange B2 such that B,(k) is now the
first component of BZ, then proceed to comparing B,(2). Otherwise, try the next s,

r 1
s:= -s+

if s I 0,
o if s>o,

and repeat the evaluation of

B,(l)-B&)+5
2Tt 1

for j ranging from 1 to n. Continuing in this way, obtain a rearranged vector B2 and
two integer vectors r and s. When integer match-ups are found for all entries, we are
done. The true B can be then computed either from the pair B,, by sorting the
components of

B = B1 - 21rr,

or from the pair Bz, s by sorting the vector

B=B+

Both yield the same answer, so in the actual implementation it is not necessary to
store both r and s.

Of course, such an exhaustive search may not be practical for systems of large
dimension. But for moderate sizes and for vectors B that are a priori subject to bounds
(such that the entries of Y and s are small integers), our experience is that this step
represents only a minor part of the time needed to execute our procedure.

4.2. Finding C

The next step in the identification procedure is to determine the vector C. For this,
apply inputs of length two with integer values ranging from 0 to n + 1 for the first

R. Koplon. E.D. Sontag/Neurocomputing 15 (1997) 225-248 235

input and 0 to n - 1 for the second. We introduce the (n + 2) x n dimensional matrix
Y composed of the corresponding output values

i Yo.0 Yo.1 ... YO,“_l \

y= Yl..” 1 : Y1.1 .” Yl,n- 1

Yn+l,O Y.+1,1 : I, ..’ Yn+l,n-1

The main observation at this point is that Y may be fractured as Y = c,V, where I/ is
the Vandermonde matrix

To keep the notation clear, from now on we display the special case 12 = 2, but the
same procedure works in general. We can write, as just explained,

where

e, = 1
c14AdAxoN w(~14~xo))

cla(Ala(Axo + B)) c,o(A1a(Ax, + B))
clo(Ala(Axo + 28)) c,o(Ala(Axf) + 2B)) ’
c,a(A~a(AxlJ + 3B)) c,a(Ara(Ax, + 3B)) I

(8)

Cj is thejth component of C, bj is the jth component of B, and Aj is the jth row of A.
Observe that Y is known (from the data) and the last matrix on the right in (8) is
a Vandermonde matrix, also already known. Thus, we can solve the linear equation
and obtain c,.

Next observe that for each column of c,,

, (9)

where a(vj) = cj. Let V, be the extended Vandermonde type matrix on the right-hand
side of (9). The goal here is to solve for the last vector on the right, call it hi. Then for
each j we can use the first component of hj to find cj, and the rest of the ‘vector will be
used to recover A.

236 R. Koplon, E.D. SontagjNeurocomputing I5 (1997) 225-248

Remark 4.1. The (n + 1) x (n + 1) dimensional Vandermonde matrix

1

1:

o(b,) ...
\

4bn)

i a(@ + l)b,)- 1 ... o((n + l)b,) /

has rank n + 1. After performing an elementary column operation, we see the matrix

1 o(b,) - 1 ... dbn) - 1

\ i a((n + l)b,)- 1 *.. : I a((n + i)b,)- 1

also has rank n + 1. Thus, the matrix B, has full column rank so if R(B) holds,
B,o E Z”+ ’ =E- B,u = 0 which in turn implies that v = 0.

Lemma 4.2. Assume B satisfies Condition R(B). If o(V,t) = o(V,e) for <,g~ @“+ ‘,
then~1-~lE2~Zand<j=~jforj=2,...,n+l.

Proof. Let o = 5 - g. We need to show that if V,OE 27rZnf2, then
w = (27rk, 0, . . . , O)l, or equivalently,

V,OEZ”+2 3 w=(K,O)...) 0).

Assume I/,oEZ”+~. Then

wg +or + ... + w, = ko,

coo + o(bI)oI + ... + a(b,)co,, = kl,

w. + a(bI)“+‘oI + ... + a(b,,)n+lco, = k,+l

Subtracting the first equation from all of the others gives

&[::l=(:;;;o]

which implies that w1 = ... =o,=O.Thuswo=ko,andsow=(ko,O ,..., 0)‘. 0

We just showed that for each j, there is a unique solution for hj, up to the addition
of an integer multiple of 27~ in the first coordinate. This does not contradict the
uniqueness of C since for each j = 1, . . . , n,

cj = o(uj) = Q(Uj + 2Kk), Vk E h .

The procedure that we implemented for finding hj is as follows. Pick any com-
ponentwise log of C,j. Then we can write

-i log(e,,j) + 2nK = VYhj, (10)

R. Koplon, E.D. Sontag / Neurocomputing I5 (I 997) 225-248 23-l

where K is an unknown (n + 2) x n integer matrix that depends on the chosen
determination of log. Now we search through the integers in order to find an integer
vector K and a solution hj for (10) that minimize the error

1 Ir,hj - (i lOgZ;“,j + 27X)1.

(We already proved that such an hj is unique except for integer multiples of 27t in the
first row.) After finding hj for each j, let H be the matrix (hi -.. h,). Apply IS to the
components of the first row of the matrix H to obtain C.

We recognize that an exhaustive search through the integers is a very inefficient way
to solve for the matrix H. Intuitively, we are looking for a point in a hyperplane with
small integer coordinates, or more precisely a point with small integer coordinates
closest to the hyperplane spanned by the columns of an (n i- 1) x n matrix. A more
efficient way to do this might be using ellipsoid methods or interior point methods
[l l] and linear programming for finding lattice points. These ideas will be developed
in the future.

4.3. Finding A

Once we have C and H we can immediately obtain A. Drop the first row of H and
transpose the result,

(

All4Al%) ~l24~1~0)

A214f41%) > ‘422442x0) .
(11)

Next use the first n outputs that were obtained earlier by applying the integer inputs,

a = (Ca(AxrJ), Ca(Axo + B)).

This row vector can be written as the product

Solve the linear equation to obtain the row vector (cla(A1x,,), c2a(A2xo)). By now we
know the components of C so we may divide these out of each component leaving the
vector

A; = (c(A,xo), 442-Q).

Finally, divide each row of (11) term by term by the components of the vector AZ to
obtain A.

This completes the proof of the theorem. The input/output behavior can now be
simulated even without precise knowledge of x0. The last two pieces of information that
are needed to have full knowledge of the input/output behavior are Cx,,, which is
simply the time zero output, and

a(Axo) = A :T,

which provides the state at time one for any point input. Both are already known.

238 R. Koplon, E.D. SontaglNeurocomputing 15 (1997) 225-248

5. Procedure for noisy output

In this section we discuss various purely heuristic considerations. The following are
intuitive ideas for extending the procedure in the previous section to accommodate
more practical situations. One obvious next step involves modifying the basic algo-
rithm to make use of longer output sequences in order to find more uniform
approximations. The basic algorithm uses information obtained only in the first to
time steps. This may be sufficient for identification of systems that are of the desired
form, but it is not enough for approximation of other systems. Using only the
information obtained in the first two time steps will produce a desired network
approximation for a system that will closely approximate the input/output behavior
of the original system for the first two time steps only. We cannot control the accuracy
of the approximation beyond that. Another major problem with the basic approach is
the lack of robustness with respect to noise in the output. We have improved this by
simultaneously conducting the procedure described above on sequential time inter-
vals of length two and “averaging” the information. In Section 7, we define the noise
used and give results of testing this variation of the algorithm on exp-systems with
noisy output.

5.1. Averaging to find B

The basic algorithm applies 2n different length one integer inputs to obtain a scalar
sequence that can be seen as the Markov sequence for the triple (A, 8, c). (This
procedure was then repeated with “irrational” inputs so the proper logs could be
recovered.)

Now instead of applying one set of length one inputs, apply p sets of inputs
increasing in length from one to p. That is, apply the sets of inputs

length 1: 0,1,2, 2n-1

length 2: 00, O&02, . . . , O(2n - 1)

length p: 0 ... 00,O .+. 01,O ... 02, . . . ,O . ..0(2n - 1).

Let yu denote the output that is measured after applying the input u. The number p can
be as high as 2n provided the corresponding outputs do not get too small or too large.
If y, is very large or very small for some u, then just let p = length(u) - 1. If we arrange
the outputs in an array as follows

Yo Yl Y2 .‘. Yzn- 1

Yoo YOl Yo2 ... YO(Zn- 1) (12)

Yo...o ... YO...Zn- 1,

R. Koplon, E.D. Sontag / Neurocomputing 15 (1997) 225-248 239

we can view the columns of (12) as 2n terms of a p x 1 Markov sequence. This sequence
of vectors can be realized by the triple

6)
\

1

a= ...)

1

B= ; ,

4J / OI 1

i c14~i~o) . . . wJ(4&)

2;=
c,a(A,a(Ax,) ... cl~(~nefxo))

\ c,a(A,a(Aa(1.. (Ax,) .*.))) ... c~a(A,o(Aa(... (Ax,) .‘.)))

The rest of the procedure for recovering b,, . . . , b, is almost the same as in the basic
algorithm. Hence we denote

and form the two pn x n Hankel matrices as in (4). Whereas we could have used either
the controllability or the observability form in the first case, here we have to use the
controllability form since HI and Hz are no longer square. We solve

HI A,,,,, = HZ,

to obtain the controllability form of a. We are interested in the eigenvalues of A”,
which are the same as the eigenvalues of A,,,,,. As before, we “invert” CJ to obtain an
estimate for B, repeat the whole procedure with inputs that are “less” rational and
resolve the ambiguity in B that was created by taking the complex exponential.

5.2. Averaging to find C

In the basic strategy we formed the (n + 2) x n dimensional matrix Y = [yi- l,j- r],
and performed a few factorizations (and special steps to get the right log) to isolate the
matrix in (9) and recover C by applying ts to the components of the first row. We used
information obtained only during the first two time steps.

A similar method can be used with any matrix Y, where the elements of Y are
outputs corresponding to inputs of the form

u= z (i-l)(j-1).

any # of zercls

We then obtain a matrix with

240 R. Koplon, E.D. SontaglNeurocomputing 15 (1997) 225-248

as the first row, where cj = a(rj), j = 1, . . . ,n. In this version of the algorithm we
obtain numerous estimates for the vector C by repeating the procedure with different
Y’s and averaging these estimates. The number of estimates that are included in the
average is at most 2n. We use fewer if the output becomes either too large or too small.

Specifically, we get the first estimate for C using the basic algorithm. Next we apply
inputs Uij = O(i - l)(j - 1) to obtain the matrix

Yo.o.0 ...

Y= YO,l,O ...

\’ YO,n+l,O ... Yo,n+l,n- 1

Just as before, we can write Y as the product (assuming n = 2 for notational clarity)

where

z;” =

c14~14w~~o))) c24~24Wxo)))

c1o(A,a(Aa(Axo + B)) c,o(A2a(Aa(Axo + B))

c1o(A1a(Aa(Axo + 2B)) c~a(A&@4xo + 2B))

qo(Ap?(Aa(Axo + 3B)) c&4&Ia(Axo + 3B)) I
Solve the linear equation for c,, and note that for a chosen determination of the
(componentwise) log,

1 40) 40)
Vl 02

-i log(Q + 26 =

i II 1 a(h) 4b2)
1 @1)2 4b2)2 ~114~14~x0)) A21(A144xo)) .

1 4w3 4b2)3 A1244244xo)) A22(-4244xo))

1

As in the basic approach, we must simultaneously solve for the rightmost matrix
above and the integer matrix K. Then apply Q to the entries of the first row of the
resulting matrix to obtain the second estimate for C.

Repeat the procedure starting with a new Y obtained by applying inputs
Uij = OO(i - l)(j - 1). At the end we will have

v2 \

~ll4~l4w~~O))) ~2l(‘4l4444~0)))

I

(14)
~124424444~0))) ~22(~24~44~0)))

and a third estimate for C can be obtained from the first row of this matrix.
Repeating this with an increasing number of zeros in the beginning of the input

sequences provides many estimates for the vector C. The last step is to average all of
the estimates.

R. Koplon, E.D. Sontag/ Neurocomputing 15 (1997) 225-248 241

5.3. Averaging to jind A

Here we use c from (13) and all of the matrices such as (14) used in finding C. (Now
we can discard the first row of each of these matrices.)

The first task is to find e. By now we know A” and 8. We also know the
controllability form for the triple: (Acontr, BEOnlT, Ccontr), since all we really need to
know for these matrices is the characteristic polynomial for i[and the first n terms of
the vector Markov sequence which are exactly the columns in (12). The two triples are
related through an invertible matrix T as follows:

T-‘A cm,T = A”,

We retrieve T by solving

(Bcontr A,,“,, L,,

T - ‘B,,,,, = B, C,,,,,T = e.

... A:,:, B,,,,,) = T@ AB” . . . p- ‘B”).

(The reachability matrices are invertible. Remember, these are not the A, B, C

matrices of the underlying exp-system. The triple (A, B, c) is a minimal realization
of the sequence found in (12).)

Multiply CA, by T to get c. Next average the rows of c. The resulting row vector
is C,,,, where

e,,,(j) = Cj ave(a(Ajx,,), a(Aja(Axo)), . . . ,~(Ajo(Aa(... ~(Axo) *..)))}.

Since we already have an estimate for C, we can divide out cj from each component
and we call the outcome A;,..,.

The second matrix we need in this method for finding A comes from averaging the
matrices obtained in the procedure for finding C. We drop the first row of each matrix
of the form

/
01

Al 1 a(Ala(... 4Axo))) AZI ~AI$. 4Axo))) .

\ A,,4A,4 ... ~(Axo))) Azz4A24 ... 4Axo))) I

Next let II,,, be the matrix formed by averaging (in a term by term way) all of these
matrices.

The last step is identical to the basic method. Transpose H,,, to obtain

(

AII ave{+trx& ... > AXI ave{a(A2xO), ... >

> Al2 ave{a(A,x,), ... } Az2 ave{a(A2xO), ... > ’

Then divide each row, element by element, by the row vector A?_,, .
One technicality is that the number of rows used in the average A;,..,, and the

number of matrices used in the average H,,, must be equal. So if one of these is less
than 2n because of potential numerical problems (numbers becoming either too large
or too small), then only the smaller number is used for both computations.

242 R. Koplon, E.D. SontagjNeurocomputing 15 (1997) 225-248

6. Topics for further study

The algorithms described above only scratch the surface if the body of work that
could and should be done in this area. Section 7 describes some of the shortcomings in
the current numerical adaptation of the algorithm. In addition to the points men-
tioned there, one would also like to be able to identify the parameters without being
restricted to testing with the very special (integer and J x integer) inputs used above.
This should be possible. In the first step, for example, finding B, applying random
inputs corresponds to measuring the output of a continuous-time system at ir-
regularly spaced intervals. This relates to identification of continuous-time linear
systems from irregularly spaced samples.

The program should be tested on systems that are not exp-systems, and developed
further, if necessary, to handle approximating a broad range of systems. Comparative
studies should be made with other identification and approximation techniques.

There are variations on the basic algorithm that should be explored further. One
such variation considered the fact that engineering processes are often hybrid models
with local accurate linear control together with nonlinear components, so a better
model for approximation might be a parallel connection of a linear system and an
exp-system

x(t + 1) = A+(t) + &U(L),

z(t + 1) = a&z(t) + &.4(t)),

y(t) = &x(t) + c&z(t).

This model is still a recurrent neural network with

A=(&.g). E=(;;), c=(cL Cd,

and 6 acting as the identity on the first few components. We can expand the algorithm
to include this model. The parallel system may serve as a better approximator for
general systems with linear components. In particular, it trivially includes the class of
linear systems. The algorithm for the parallel system closely resembles the basic
algorithm. This procedure will be developed in the future and incorporated into the
computer implementation.

7. Numerical techniques

We experimented with the algorithm in Section 5 using MATLAB. The program
employs a naive, but effective, approach to carrying out the given techniques for
parameter reconstruction. Despite the fact that numerous steps lack creative and even
robust numerical solutions, the program and the simulations that follow provide
a “proof” that the concepts described above are practical, and indeed have the
potential to be executed in an efficient manner. Some of the steps in the computer

R. Koplon. E.D. Sontag J Neurocomputing 15 (1997) 225-248 243

formulation require further study. The linear realization that is performed when
finding B is done using a simple Hankel matrix technique. This step should be
replaced with more sophisticated techniques like Hankel norm approximation and
robust identification. The next two steps, finding C and A, use a tedious integer search
to find the correct log at some point. This step should also be improved.

The program behaved relatively well in practice. We tested the program on systems
that were truly exp-systems, but with small random noise (uniformly distributed on
(- 10-3, 10m3)) added to the output. The test systems that we used have dimension
between two and four and the entries of the parameters all have magnitude less
than 10.

The program was sensitive to the number used for A- the “irrational” number, and
the thresholds used when comparing numbers to integers. This lack of robustness
could be eliminated by implementing more refined numerical techniques.

In the simulations below, we use stable systems so that we can make comparisons
between the input/output behaviors of the true and estimated systems over a longer
time period than the one used for the approximation.

Example 7.1. In this example, we reconstructed the parameters for a three dimen-
sional system. The true system parameters are

A = 1.3000

1

;:;I:: -EZi ZE], AEJ)

/

- 1.0000
C = (0.1000 0.5000 0.8000), x,, =

:

0.3000
2.2000 /

In the absence of noise in the output, the program estimated the parameters exactly:

0.5000 - O.OOOOi - 0.6000 - O.OOOOi 0.1000 + O.OOOOi
A^ = 1.3000 - O.OOOOi 0.5000 + O.OOOOi 1.0000 - O.OOOOi ,

0.4000 - O.OOOOi 1 .OOOO + O.OOOOi 0.2000 - O.OOOOi

1.0300 + O.OOOOi

3.2000 - O.OOOOi

C = (0.1000 - O.OOOOi 0.5000 - O.OOOOi 0.8000 - O.OOOOi).

In the presence of noise, the following A, B, C were estimated:

0.5073 - 0.0019i - 0.5872 - 0.0049i 0.0864 - 0.0169i
1.2989 + 0.0083i 0.5039 - 0.02451 0.9988 + 0.0136i ,

0.4065 + 0.0009i 1.0006 - 0.0035i 0.2057 - 0.0124i

244 R. Koplon, E.D. SontagjNeurocomputing 15 (1997) 225-248

/ 1.0290 + 0.0023i
b = 2.6951 -0.0061i ,

1 3.2002 - 0.0031i 1

C = (0.1001 - 0.0002i 0.4964 - 0.0075i 0.8034 + 0.0058i).

The pair of figures (1 and 2) compare the real parts of the outputs for the true system
and the one reconstructed when noise was present in the output during the estimation
procedure. The input sequences used have length 15; the first is a sequence of 15 ones,
the second is a random input sequence.

Example 7.2. This is an example of the parameter reconstruction for a four dimen-
sional system. The true system has parameters

0.5000 - 0.1000 - 0.6000 - 0.30000

A= i

0 0.4000 0.5000
0.7000 1 .oooo 0.2000

- 1.0000 0.8000 0.6000

C = (0.4000 1.1000 6.2000 5.0000), x0 =

2

1.5-

l-

0.5 -
5 a

2
O-

-0.5 - I

-1 -

-1.5 0 2 4 6 tike lo 12 14 16

Fig. 1. Three dimensional example. True (0) and approximating (*) outputs for an input sequence of 15
ones. Noisy case.

R. Koplon, ED. SontaglNeurocomputing I5 (1997) 225-248 245

1

5
40
0

-a

2-

,5 -

l-

s-

O-

1.5 -

-‘0 2 4 6 a 10 12 14
time

j

Fig. 2. Three dimensional example. True (0) and approximating (*) outputs for a random input sequence
of length 15. Noisy case.

Without noise in the output, the program correctly estimated the parameters:

A=

OSOOO-O.OOOOi -0.1000 + O.OOOOi -0.6000 + O.OOOOi -0.3000-O.OOOOi
0.0000 - O.OOOOi 0.4000 + O.OOOOi 0.5000 + O.OOOOi 0.0000 - o.oOOOi

0.7000 - O.OOOOi 1.0000 + O.OOOOi 0.2000 - O.OOOOi 0.3000 + O.OOOOi

- 1.0000 + O.OOOOi 0.8000 - O.OOOOi 0.6000 - O.OOOOi 0.1000 - O.OOOOi

0.2000 - O.OOOOi
B = 1.0000 - O.OOOOi

2.3000 - O.OOOOi

c = (0.4000 - O.OOOOi 1.1000 + O.OOOOi 6.2000 - O.OOOOi 5.0000 + O.OOOOi)

When there was noise in the output, the following A, B, C were estimated:

A=

: - - 0.7112 0.4962 0.0036 1.0118 - - + + 0.02381 0.0023i 0.0308i 0.0036i - 0.8008 0.4000 0.1166 1.0082 - + + + 0.002Oi O.OOOOi 0.0092i 0.0021i - 0.1958 0.6130 0.5938 0.4954 - - - + 0.0008i 0.0135i 0.0008i 0.0083i - 0.0032 0.3069 0.1031 0.3036 + + - + 0.0024i 0.0098i 0.0003i 0.0004i ’

246 R. Koplon, E.D. SontaglNeurocomputing 15 (1997) 225-248

time

Fig. 3. Four dimensional example. True (0) and approximating (*) outputs for an input sequence of 20
ones. Noisy case.

5
CL

2

15.

lo-

f

5-

O-

P , i ,
2 4 6 0 10 12 14 16 16

time
3

Fig. 4. Four dimensional example. True (0) and approximating (*) outputs for a random input sequence
of length 20. Noisy case.

R. Koplon, E.D. SontaglNeurocompvting 15 (1997) 225-248

0.1999 - 0.0006i
B = 0.9987 + 0.0019i

2.2999 + O.OOOli

c = (0.4039 + 0.0069i 1.1000 + 0.0052i 6.1728 - 0.02721 4.9831 - 0.0053i).

247

The final two figures compare the real part of the output of the true system versus
that of the estimated system. As in the previous examples, the inputs used were
a sequence of ones (Fig. 3) and a random sequence (Fig. 4).

References

[l] F. Albertini, E.D. Sontag, For neural networks, function determines form, Neural Networks 6 (1993)
975-990. Summarized version in: Proc. IEEE Conf. Decision and Control, Tucson, 1992, IEEE
Publications, New York, 1992, pp. 26-31.

[2] F. Albertini, D. Sontag, Identifiability of discrete-time neural networks, Proc. Eur. Control Conf.,
Groningen, 1993, pp. 460-465.

[3] F. Albertini, D. Sontag, State observability in recurrent neural networks, Proc. IEEE Conf. Decision
and Control, San Antonio, 1993, IEEE Publications, New York, 1993, pp. 3706-3707.

[4] M. Ben-Or, P. Tiwari, A deterministic algorithm for sparse multivariate polynomial interpolation, in:
Proc. 29th IEEE Symp. Foundations of Comp. Sci., 1988, pp. 301-309.

[S] A.R. Gallant, H. White, There exists a neural network that does not make avoidable mistakes, Proc.
IEEE Internat. Conf. on Neural Networks, San Diego, 1988, pp. 1657-1664.

[6] R. Koplon, Linear systems with constrained outputs and transitions, Ph.D. Dissertation, Rutgers
University, 1994.

[7] R. Koplon, E.D. Sontag, Techniques for parameter reconstruction in Fourier-neural recurrent
networks, Proc. IEEE Conf. Decision and Control, Orlando, 1994, IEEE Publications, New York,
1994, pp. 23-218.

[8] G. Kuhn, N.P. Herzberg, Some variations on training of recurrent networks, Neural Networks:
Theory and Applications, in: R.J. Mammone, Y. Zeevi (Eds.), pp. 233-244.

[9] L. Ljung, System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987.
[lo] K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural

networks, IEEE Trans. Neural Nets 1 (1990) 4-27.
[l l] Y. Nesterov, A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming, SIAM,

Philadelphia, 1994.
[12] M.M. Polycarpou, P.A. Ioannou, Neural networks and on-line approximators for adaptive

control, in: Proc. Yale 7th Workshop on Adaptive and Learning Systems, Yale University, 1992,
pp. 93-98.

[13] H.T. Siegelmann, E.D. Sontag, Some results on computing with ‘neural nets’, Proc. IEEE Conf.
Decision and Control, Tucson, 1992, IEEE Publications, New York, 1992, pp. 147661481.

[14] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer,
New York, 1990.

[15] E.D. Sontag, Neural nets as system models and controllers, in: Proc. 7th Yale Workshop on Adaptive
and Learning Systems, Yale University, 1992, pp. 73379.

[16] E.D. Sontag, Neural networks for control, in: Essays on Control: Perspectives in the Theory and its
Applications, H.L. Trentelman and J.C. Willems (Eds.), Birkhauser, Boston, 1993, pp. 339-380.

[17] R. ibikowski, K.J. Hunt, A. Dzieliriski, R. Murray-Smith, P.J. Gawthrop, A review of advances in
neural adaptive control systems, Technical Report of the ESPRIT NACT Project TP-1, Glasgow
University and Daimler-Benz Research, 1994.

248 R. Koplon, E.D. SontaglNeurocomputing I5 (1997) 225-248

Rend Koploo received the A.B. degree in Mathematics from Barnard College in
1987 and the Ph.D., also in Mathematics, from Rutgers, The State University of
New Jersey, in 1994.

In 1994, Dr. Koplon joined the Department of Mathematics and Statistics at
Wright State University, Dayton, Ohio, where she is currently an Assistant
Professor. Her research interests are in observability and identification of non-
linear control systems and neural networks. Dr. Koplon’s professional member-
ships include SIAM, IEEE and AWM.

Eduardo Sontag received the Licenciado degree (Mathematics) from the University
of Buenos Aires in 1972, and the Ph.D. (Mathematics) under Rudolf E. Kalman at
the Center for Mathematical Systems Theory, University of Florida (1976).

Since 1977, Dr. Sontag has been with the Department of Mathematics at
Rutgers, The State University of New Jersey, where he is currently Professor II of
Mathematics as well as a Member of the Graduate Faculties of the Department of
Computer Science and of the Department of Electrical and Computer Engineer-
ing. He is also the director of SYCON, the Rutgers Center for Systems and
Control. His major current research interests lie in several areas of control theory
and foundations of learning and neural networks.

Dr. Sontag has authored over two hundred journal and conference papers and
book chapters in the above areas, as well as the books Topics in Artificial

Intelligence (in Spanish, Prolam, 1972, Buenos Aires), Polynomial Response Maps (Springer, Berlin, 1979),
and Mathematical Control Theory: Deterministic Finite Dimensional Systems (Texts in Applied Mathe-
matics, Volume 6, Springer, New York, 1990). His industrial experience includes consulting for Bell
Laboratories and Siemens. He is or has been an Associate Editor for various journals, including: Systems
and Control Letters, IEEE Transactions in Automatic Control, Control-Theory and Advanced Techno-
logy, SMAI-COCOV, Journal of Computer and Systems Sciences, Dynamics & Control, Neurocomputing,
and Neural Networks. In addition, he is a co-founder and co-Managing Editor of the Springer journal
MCSS (Mathematics of Control, Signals, and Systems).

Dr. Sontag is an IEEE Fellow, and has been Program Director and Vice-Chair of the Activity Group in
Control and Systems Theory of SIAM. He has been a member of several committees at SIAM and the
AMS, and is a former Chair of the Committee on Human Rights of Mathematicians of the latter.

