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firther Facts about Input to State Stabilization 

EDUARDO D. SONTAG 

Abstruct- Previous results about input to state stabilizability are 
shown to hold even for systems which are not linear in controls, pro- 
vided that a more general type of feedback be allowed. Applications 
to certain stabilization problems and coprime factorizations, as well as 
comparisons to other results on input to state stability, are also briefly 
discussed. 

I. INTRODUCTION 

In a previous paper [3] we studied the problem of when a system on 

(1) 

withfand the entries of the n x m matrix G being smooth, can be made 
input to state stable (ISS) in a rather strong sense to be reviewed below. 
Our main result there was that this system is smoothly input to state 
stabilizable, that is, there exists a smooth (i.e., infinitely differentiable) 
map K: R” + Bm with K ( 0 )  = 0 and such that under the control law 
U = K ( x )  + U the new system 

B” , 

x = f ( x )  + G ( x ) u  

x = ( f ( x )  + G ( x ) K ( x ) )  + G(x)u  

is ISS, if and only if the system (1) is smoothly stabilizable, that is, 
there exists an (in general different) K so that 

x = f ( x )  + G ( x ) K ( x )  

is globally asymptotically stable (GAS). The necessity is a trivial con- 
sequence of our definition of ISS, which implies GAS, but the converse 
is somewhat harder to establish. (It is based essentially on using a new 
feedback U = K ( x )  - (VI/  .G)’  + U ,  where V is a suitably chosen 
Lyapunov function.) 

It is natural to ask if the same result can be proved for the more general 
system 

x = f ( x ,  U) (2) 

which is not necessarily linear in U. More precisely, we assume that 
x(r)  E R n ,  u( t )  E R m ,  that f is a differentiable (much less is needed) 
function from Rnfm into R” , and that 0 is an equilibrium point for the 
system, f ( 0 ,  0) = 0. Unfortunately, the result does not generalize. As a 
counterexample, let m = n = 1 and consider the system 

x = -x + u2x2. 

x = -x + ( K ( x )  + uyx2 

We claim that, for no possible feedback law K, can there hold for 

(3) 
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that: a) for U 1 and initial condi- 
tion x(0)  = 4 the solution remains bounded. Indeed, property a) implies 
that )K(x)I < I / &  for all x > 0, but then this implies that the right- 
hand side of (3) is positive for all x > 4, so the solution with x(0)  = 4 
diverges to +ca. So not even a very weak notion of input to state stability 
can be obtained for this example. 

However, if one allows instead more general feedback laws, of the 
type 

(4) 
where G is an n x n matrix of smooth functions invertible for all x ,  not 
necessarily the identity, then the theorem can be proved for the larger 
class of systems. This more general class of feedback laws is of some 
interest-for instance, it is the class used in most modern “geometric” 
nonlinear control-although it is not appropriate for solving the type of 
problem (Bezout-type coprime factorizations) that was of interest in [3]. 
One may weaken the concept of coprimeness, however, and then the 
generalized theorem becomes applicable in this area as well; this will be 
discussed later. 

In this note we establish the generalized result, for (2) under feedback 
laws (4). As an application, we give an alternative proof of a “folk” fact 
about dynamic extensions and a result which shows that GAS by itself 
is sufficient to guarantee a notion of ISS with “small controls.” Appli- 
cations to coprime factorizations and the local stabilization of cascaded 
systems are also given. As a corollary we show, using only elementary 
techniques, that any cascade of locally asymptotically stable systems is 
again asymptotically stable; no assumptions need to be made, as would be 
the case with center-manifold type of arguments. See [8] for a Lyapunov- 
theoretic proof of this, and [5] for a global version as well as further 
results. 

It should be remarked that global smoothness of control laws is in 
general a restrictive requirement; see [4] for a discussion of this point 
and references to the literature. 

0 the system is GAS, and b) for U 

U = K ( x )  + G(x)u 

11. DEFINITIONS AND STATEMENT OF RESULTS 

We recall the basic terminology from [3]. The function y: B>, + R>o 
is of class X if it is continuous strictly increasing and satisfiesy(0) =-0; 
it is of class X, if in addition y(s) + ca as s -+ ca. If y is of class 
X then the inverse function y-I is well defined and is again of class 
X,. A function (3: B>, x B>, + R>, is of class Xd: if for each fixed 
t the mapping (3( , t)% of c&s X acd for each fixed s it is decreasing 
to zero on t as t -+ ca. We use single bars 151 to denote Euclidean 
norm of states and controls, and use ))uII :=ess.sup. { lu( t ) l ,  t 2 0 )  for 
measurable essentially bounded controls. 

The system (2) is globally asymptotically stable (GAS)  if there exists 
a function b(s, t )  of class Xd: such that, with the control U 0, given 
any initial state 50 the solution exists for all t 2 0 and it satisfies the 
estimate 

Ix(t)l 5 P(lbl, 0 .  
The system is input to state stable ( I S S )  if there is a function (? of 
class Xd: and there exists a function y of class X such that for each 
measurable essentially bounded control U( . ) and each initial state 5 0 ,  
the solution exists for each t > 0 and furthermore it satisfies 

Ix(t)l 5 P(1501, t )  +r(llull). ( 5 )  
Since y(0) = 0, an ISS system is necessarily GAS; the latter is equiv- 

alent to the usual notion of asymptotic stability (‘‘E - 6” stability plus 
attractivity). The former says basically that for bounded initial state and 
control, a bounded trajectory results, and further (since (3 decays) that 
eventually the state is bounded by a function of the control alone (and 
this bound is small if the control is small). This is much stronger that 
asking GAS plus “bounded-point bounded-state” stability. To see this, 
take the system 

x = (sin2 U - I)X. 

This is “BIBS,” and with control U = 0 one has x = -x which is 
globally stable. However, with U 7r/2 trajectories do not become ulti- 
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mately bounded by a constant dependent  of to .  Since we prove mainly 
positive results, choosing such a strong notion of stability makes the 
results more informative. (The one negative example given earlier, deal- 
ing with restrictive types of feedback laws, was such that not even the 
weakest possible version of these properties holds.) 

We shall say that the system (2) is weakly input to state stabiliz- 
able if there exists a continuously differentiable map K :  L$ -+ e with 
K(0)  = 0 and an n x n matrix G of continuously differentiable functions, 
invertible for each x ,  such that under the control law (4) (and replacing 
U by U ) the system 

X = f ( x ,  K ( x )  + G ( x ) u )  (6) 

is ISS. We say that the system is stabilizable if there is a differentiable K 
such that this new system (with G 0) is GAS. The first property implies 
the second. The next result shows they are equivalent. The terminology 
“weak” is used to avoid confusion with the notion in 131, where G = 
identity is required. 

Theorem I :  For (2) under control laws of the type (4), stabilizability 
implies weak input to state stabilizability. 

To prove this theorem, we may assume that the original system is 
already GAS, and we look for a G so that x = f ( x ,  G ( x ) u )  is ISS. The 
idea of the proof can be easily understood in the case of one-dimensional 
systems ( n  = 1). Since the system is GAS, it is necessary in that case 
that 

x f ( x ,  0) < 0 

for all nonzero x .  Thus, by continuity also x f ( x ,  U) < 0 for small U. 
So it is only necessary to multiply controls by a very small number 
in order to have states approach the origin. The same idea works in 
higher dimensions, using Lyapunov functions, but working out the details 
takes some effort. The proof is given in the next section; it is far less 
constructive than the result given in [3]. 

The one-dimensional case also suggests that as long as the controls 
remain small, ISS may hold. This idea gives rise to our other result. 

Theorem 2: If the system (2) is GAS, then there exist a function 
0 of class XC, a function y of class X ,  and a continuous function 
U : R > ~  + Wzo, a ( s )  # O  i f s  # O ,  such that, for each initial state & 
and for each measurable essentially bounded control U(. ) for which 

llull 5 a(ltol), 
the solution of (2) exists for each t 2 0 and it satisfies (5). 

This theorem is not at all surprising, and it is probably a particular 
case of some result on “total stability,” but we have not found it stated 
in this form, and in any case it is very easy to establish once that we have 
the proof of the first result. In the case of exponential stability, where a 
Lyapunov function of quadratic growth exists (see, e.g., [7] and [l]), it 
is much easier to prove. 

III. PROOF OF MAIN RESULTS 
We first prove a technical lemma needed later. 
Lemma 3.1: Assume that 6: R>o + R>o is a continuous mapping 

such that 6(s, 0) < 0 for all s > 0.-Then, there exist 

a smooth function g: Rzo + Rzo; 
0 a function a4 of class X,; and 

a continuous function 8: -+ Rzo, with O(s) # 0 for every 
s # 0 and decreasing on [ l  ,-+ca); 

such that 
1) g(s) # for all s, and g(s) = 1 for s E [0, 11; 
2) for each pair ( s ,  r )  E for which r <e@) ,  necessarily 

3) for each pair (s, r )  E &, for which a4(r )  < s and each U 5 g ( s ) r ,  

Prmj? First observe that, for each closed and bounded interval 

6(s, r )  < 0; and 

necessarily 6(s, U) < 0. 

Z C R >,, , there exists some ro > 0 such that - 

s E Z + 6(s, r )  < 0 for all r E: [0, r o ] .  (7) 

This follows from the uniform continuity of 6 on (for instance) the inter- 
val Z x [0, 11. Now consider the intervals [ l ,  21, 12, 31,. . . , and pick for 
each of these an r, > 0, i = 1, 2, . . , so that (7) holds; without loss of 
generality, take r l  < 1 and assume that the r, decrease with i .  Similarly, 
choose a sequence of decreasing positive numbers r;’ , with r{ < rl , cor- 
respondingtotheintervals[l/2, 11, [1/3, 1/21, [1/4, 1/31,..’ .Wealso 
assume (changing the r, ’s if necessary) that ri > r 2 .  

Now define the piecewise constant function p as follows: on each 
interval of the form [k, k + 1) (integer k > 0), let p rk , and on each 
interval [ l / (k  + l),  l /k)  let p r: .  By construction, it holds that, for 
each (s, r )  E RI&, 

r < p ( s )  =+ 6(s, r )  < 0. (8) 

Let g be any smooth function, never zero, which is identically 1 on 
We next define g, a4, 8 .  

the interval [0, 11 and which satisfies the inequalities 

(9) 

(10) 

Such a g can always be defined: simply pick a function on each interval 
[k, k + 11, k 2 2 which has all derivatives equal to zero at the endpoints 
and so that rk /(k + 1) = g(k) 5 g(s) 5 g(k + 1) on each such interval, 
pick a similar function on [ l ,  21 with values 5 1 and g(1) = 1, and 
then patch these together with g = 1 on [0, 11. Clearly this g satisfies 
the conditions in the first conclusion of the lemma. 

g(s) 5 1 for all s. 

Let (Y be any function of class X, which satisfies 

a(s)  < p ( s )  i f s  5 2 (11) 

a(s) < s for all s 2 2. (12) 

For instance, one may take a piecewise linear, with linear values on 
each interval of the type [ l / (k  + l), I lk] ,  as well as on [ l ,  21, and 
interpolating a( l /k)  = r: /2, a(2) = rl  /2, and linear on 12, tco) with 
a ( s )  = s + r l  /2 - 2 there. Let then a4 :=a-’.  

Finally, let 8 be defined just as a on [0, 11 but piecewise linear inter- 
polating a(k) = rk /2 for k = 2, 3,. . . . Since 8(s) < p(s)  for all s, the 
second property in the statement is a consequence of (8). 

We must prove that the third property in the statement of the lemma 
holds. Pick then a pair (s, r )  E El?,, for which ~ ( r )  < s ,  and any 
U < g ( s ) r .  Note that r < a(s) for such pairs, so U 5 g(s)a(s) .  In case 
s 5 2, (1 1) together with (10) imply that 

U 5 P ( S )  

while for s 2 2 the same conclusion follows from (9) and (12). Then 6 

Assume that the system X = f ( x ,  U) is GAS. As in 131, we know 
that there exists a Lyapunov function for the system x = f ( x ,  0), that 
is, there is a smooth function V :  3” + 3>,, and functions a I ,  a 2 ,  a3 of 
class X , such that, for each ,$ E R“ , 

must be negative, again by (8). 

- 

and 

With respect to these functions we have the following lemma. 
Lemma 3.2: There exist a function a4 E X, and an m x m matrix 

G of infinitely differentiable functions on d , G ( x )  invertible for each 
x ,  such that for each (0 E R” and each essentially bounded measurable 
U( . ), the following property holds for the solution of 

(15) X = f ( x ,  G ( x ) u )  

with x ( 0 )  = 40: for each t 2 0 for which the solution is defined, 

Ix(t)l > a4(llull) =. V V ( x ( t ) )  . f ( x ( t ) ,  G(x( t ) )u ( t ) )  +a , ( Ix ( t ) l )  < 0.  

(16) 
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(To be more precise, this holds for almost all t ,  since U is merely assumed 
to be measurable.) 

Proof: We define the (continuous) function 6: + 

6(s, r )  := max VUE) . f  ( E .  F )  + a 3 ( l E l ) .  
l ~ l = s .  IpI=r 

Note that for s > 0, it holds that 6(s, 0) < 0, because of (14) and com- 
pactness of the sphere of radilis s. Apply Lemma 3.1 to obtain functions 
a4 and g, and let 

G ( t )  :=g(151) . I  

which is smooth because g is smooth and constant near 0. We must prove 
that (16) holds. So assume that Ix(f)l > cyq(lluII) 2 cyq(1u(t)l), and let 
s := Ix(t)l and r := lu(t)l. By definition of 6,  

Ov(x(t)) . f  ( x ( t ) ,  G (x ( t ) )u ( t ) )  + a3(1X(t)I) I 6 ( s 9  U) 

where 

U = IG(x(t))u(t)l I g(s ) r .  

Since s > a 4 ( r ) ,  6 must be negative because of the third conclusion in 
Lemma 3.1. H 

The proof of Theorem 1 is now completed precisely as that of the 
main result in [3]: the above lemma gives (36) in that paper, and the rest 
of the proof goes through word by word (with the same notation). H 

We now prove Theorem 2. Let 6 be as above, and assume that a and 
0 are as in Lemma 3.1.  The functions 0 and y constructed in [3] from 
a I  to a4, together with the function U to be constructed below, satisfy 
the conclusion of the theorem. To see this, we first establish two facts. 

Assume that x(  . ) is a solution of (2) with initial condition xo and 
with a control U which satisfies the inequalities 

and let 

which is also closed. 

( x ( t ) ,  j ~ )  E A for some p so that j~ I llull, then x ( t )  E S .  
Fact 3.3: If for some t it holds that V ( x ( t ) )  < V ( x o )  and that 

Proof: From (13) and the first assumption, it follows that 

Ix(0 < aII(az(IxoI)). 

Assume that if it were the case that Ix(t)l > 1 ,  then it would follow (be- 
cause0 decreases on [ l ,  +m)) that 0( lx( t ) l )  > 0 ( a ~ ' ( a 2 ( ~ x o ~ ) ) ) ,  which 
is greater than 1 1  u I I  because of (ii) above, and hence 

B(lx(t)l) > lpl 

which implies, because of the second conclusion in Lemma 3.1, that 
( x ( t ) ,  p)@A, which is a contradiction. Thus, Ix(t)/ I 1. 

If it were the case that 

a4(IuO < Ix(t)l, (17) 

then Ix(t)l 5 1 would again imply the contradiction ( x ( t ) ,  p)@A (since 
g 

So we need only prove that if x( t )@S,  then (17) must hold. In other 
words, that 

1 f o r s  E [0, 1 1 ) .  

V ( x ( t ) )  > a2(a4(IIuII)) 

increasing. H 
implies (17). But this is clear from (13) and the fact that a* is strictly 

Fact 3.4: For the above trajectory, the set S is invariant; that is, if 
x(to) E S for some t o ,  then x ( t )  E S for all t 2 to .  

Proof: Let E :=x(to)  be like this. Note that 

IEl c aF l (V ( t ) )  5 ~ ~ ~ ( ~ 2 ( ~ 4 ( I I U I I ) ) )  I 1 

by definition of S and because of (i) above. Without loss of generality, 
if the fact is false, we may assume that there is a sequence t k  + t t  such 
that & :=x( fk )@S (otherwise pick a larger to) .  So V ( & )  > az((yq(/l ull))  
for each k, and by continuity of Y it follows that V ( [ )  2 az(q(ll ull)) 
and therefore that 

It1 > a4(llull). 

A4gain, because of the third conclusion in Lemma 3.1, this essentially 
implies that ( x ( t ) ,  u(t))@A, so d V ( x ( t ) ) / d t  is negative at t o .  But then 
V ( & )  < V ( t )  for all large k, contradicting the fact that & :=x ( tk )@S,  
and the proof is complete. (The precise argument is a bit more subtle: 
it may happen that the absolutely continuous function V ( x ( .  )) is not 
differentiable at t o .  However, the fact that ( x ( t ) ,  p)@A for all p 5 11 u I I  
means that, by continuity of x( ) and openness of the complement of 
A ,  this derivative is negative for almost all t in a neighborhood of 6 .) 

H 
We now complete the proof of Theorem 2. We define 

u(s)  := min {a;'(a;'(al(l))), e ( q ' ( a 2 ( S ) ) ) ,  0(s)). 

The same proof [discussion after (36)] as in [3] works again, for controls 
satisfying I! u I I  5 U (  I). It is only necessary to show that for each such 
trajectory either 

( x ( t ) ,  u(t))@A for almost all f (18) 

or there is some to such that 

(X(t )? u(t))@A 

for almost all t < t o  and x(to) E S (and hence also x ( t )  E S for all 
t 2 t o ,  by Fact 3.4). So assume that (18) would not hold. Let 

to :=sup { ~ I ( x ( t ) ,  u(t))@A for almost all t < 7) < m. 

Then also ( x ( t ) ,  u ( t ) ) @ A  for almost all t < t o ,  so V ( x ( t ) )  < V(x0) .  
(Note also that, because u(s)  < 0(s) for all s, it holds that to > 0.) 
From the definition of t o ,  continuity of x (  . ), and closedness of A ,  it 
follows that there is some p < I/ u I I  such that (x ( t ) ,  p )  E A .  The desired 
conclusion follows then from Fact 3.3.  H 

IV. COPRIME FACTORIZATIONS 

We refer the reader to [3] for the definitions of inputloutput stable 
(10s) operators, and the basic properties of this concept. We now modify 
Definition 4.1 (more precisely, its equivalent formulation via Lemma 4.2) 
in the above reference, to weaken the concept of coprimeness. See, e.g., 
[2] for this more general definition, which is not of a "Bezout" type as 
the one given in [3]. 

Definition 4.1: The I/O operator P :  9 ( P )  - L& admits a weakly 
coprime right factorization if there exist 10s operators A :  L",,e x 
&,e -L",,,, N: L;,@ + L k , ,  , and D :  L",,, + L",,, , .such that 
D is causally invertible, a)(D-')  = a)(P) ,  P = ND-' and, if Idenotes 
the identity in L",, e ,  

A o  (z) = I .  

Theorem 3: If (2) is stabilizable, then its input to state mapping admits 

Proof: We first use Theorem 1 to obtain G and k .  Now, let P be 
a weak coprime right factorization. 

the operator defined as follows: 

Since it is memoryless, and G and k are continuous everywhere, it fol- 
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lows that P is 10s.  The operators N and D are chosen precisely as in 
[3], that is, N is the input to state mapping of the closed-loop system 
(6), and D is the resulting mapping U H k ( x )  + G ( x ) u ,  which is itself 
stable (for the same reason that P is) and invertible. 

V. FURTHER REMARKS 

In [7] (see also, e.g., [I]), it is proved that under certain hypotheses, 
GAS implies ISS (or more precisely, a notion of bounded-input bounded- 
state stability). The hypotheses are basically that the map f be globally 
Lipschitz on x ,  uniformly in U (if the system has the form X = f ( x )  + 
G(x)u  this is ensured provided that the control term G ( x )  is bounded) 
and that stability be exponential. Our first remark is that no such result 
holds if one has only nonexponential stability. To illustrate this point, it 
is sufficient to consider the system 

x = -tanhx + U .  

This is GAS, and f ( x ,  U )  is globally Lipschitz, but with U 1 one has 
that all trajectories diverge to +W. 

It was remarked in [3] that a cascade composition of what are there 
called “input/output stable” maps is again of that kind. In terms of state- 
space notions only, this translates into the fact that cascading a GAS 
system with an ISS one gives a GAS system. More precisely, consider 
the composite system 

x = f ( x ,  z )  (19) 

z =g(z)  

where the second is GAS and the first is ISS (with z as control). The 
claim is that the composite system is GAS. Indeed, if PI and y are as in 
the definition of ISS for the first system, and p2 is as in the definition 
of GAS for the second, then for each trajectory necessarily 

lx(t)l + Iz(t)l 5 P(lX(0)I + Iz(0)l 9 t )  

where 

+ Y ( P 2  (s, ;)) > ;) + y (B* (s, i))) 
is again of class X d: . 

If the first system is just GAS rather than ISS, there is no reason for 
the cascade to be again GAS. One possibility is to require less than ISS, 
for instance, a “bounded-input bounded-state’’ condition in addition to 
GAS which, as remarked earlier, is weaker (see [ 5 ] ) .  Another possibility 
is to give only a local result, as provided below. However, it is often 
possible to apply feedback so that this cascade does become stable. This 
is based on the above discussion, as follows. 

The proof of Theorem 1 gives some G ( x )  so that jC = f ( x ,  G ( x ) u )  
is ISS. Changing coordinates 

(x ,  z )  H ( x ,  Y ) ,  y : = G ( x ) - ’ z  

there results a new composite system 

x = f ( x ,  G(X)Y) 

I = a x ,  U) 
where the first system is now ISS. If it were possible to modify g in 
some manner so that it becomes independent of x and the second system 
is GAS, then the above argument gives that the composite system (even 
in the original coordinates) is GAS. This program can be carried out in 
the following situation. Assume that z has dimension 1 and one considers 
the cascade 

x = f ( x ,  2 )  

i = u  
(a “dynamic extension” of the first system). Then the above change of 
coordinates results in a second equation of the type 

Z = h ( x ,  Z)U +k(x ,  z) 

where h is always nonzero. Applying the feedback law 

results then in a composite GAS system. We thus recover the result (see, 
e.g., [5 ]  for an application and references) that if a system is smoothly 
stabilizable, then adding an integrator does not change this property. 

Finally, we give an application of Theorem 2 to show that, for each 
compact subset of the state space, small enough controls tending to zero 
give rise to trajectories that also converge to zero. This is a local version 
of the corresponding global result given in [3], with basically the same 
proof. 

Corollary 5.1: With the notations in Theorem 2, for each real number 
k > 0, the following property holds. For each control U + 0 such that 
llull < u(k)  and each initial 1x0 I < k ,  the solution of (2) exists for all 
t > 0 and it satisfies lim,+o x ( t )  = 0. 

Prmfi Let I := P(k, 0) + y(u(k)) 5 k ,  and pick any U and x(  ) 
as above. We claim that Ix(t)( 5 I for all t (and in particular, then, the 
trajectory is defined globally). Indeed, if the trajectory ever exits the 
ball of radius k, then there is a first T so that Ix(T)I = k .  Consider in 
that case the restriction of U to times t 2 T, 

U := UIIT, tea) (21) 

which has norm again < u(k). Then, by Theorem 2, 

( 2 2 )  

which is less than 1 for all t. 
Pick any E > 0; we wish to show that Ix(t)l < E for all large t. Let 

c > 0 be the minimum of u on the interval [E, I]. Since u ( t )  + 0, there 
is some t o  such that y(l lul l)  < E and also l lull < c for all restrictions U 
as in (21) and all T 2 to .  If it happens that Ix(t)l < E for all t 2 t o ,  then 
there is nothing left to prove. Otherwise, there is some T 2 to so that 
E 5 Ix(T)I 5 1. For this T,  (22) holds. Since the first term tends to zero 
and the second is less than E ,  it follows that Ix(t)l < E for large t, as 
desired. 

Together with the argument used in proving the stability of the cascade 
composition (19), (20), it follows then that, if (19) is GAS when z 0 
and (20) is locally asymptotically stable (LAS),  then the composed sys- 
tem (19), (20) is also LAS. Indeed, we may fix any k, and then pick a 
0 < 6 < u ( k )  for which all trajectories of (20) starting at every < 6 
necessarily satisfy z ( t )  + 0 and Iz(t)l < u(k) .  Then the corollary guar- 
antees that x also goes to zero, and moreover that it remains bounded by 
I = I(k),  which is small for small k. In fact (we owe this observation to 
H. Sussmann), it is enough to suppose that the first system (19) is itself 
locally stable because one can just restrict the system to the domain of 
attraction of the origin (which is diffeomorphic to Euclidean space). We 
conclude the following fact, proved using very elementary techniques (see 
also [SI). 

0, and if (20) is also LAS, Corollary 5.2: If (19) is LAS when z 
then the composite system (19), (20) also is. 
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