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�nite energy gain— if you twist your eyes
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Abstract

In this paper we show that uniformly global asymptotic stability for a family of ordinary di�erential equations is equivalent
to uniformly global exponential stability under a suitable nonlinear change of variables. The same is shown for input-to-state
stability and input-to-state exponential stability, and for input-to-state exponential stability and a nonlinear H∞ estimate.
c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Lyapunov’s notion of (global) asymptotic stability
of an equilibrium is a key concept in the qualitative
theory of di�erential equations and nonlinear control.
In general, a far stronger property is that of exponen-
tial stability, which requires decay estimates of the
type “‖x(t)‖6ce−�t ‖x(0)‖”. (See for instance [16]
for detailed discussions of the comparative roles of
asymptotic and exponential stability in control the-
ory.) In this paper, we show that, for di�erential equa-
tions evolving in �nite-dimensional Euclidean spaces
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Rn (at least in spaces of dimensions 6= 4; 5) the two no-
tions are one and the same under coordinate changes.
Of course, one must de�ne “coordinate change”

with care, since under di�eomorphisms the charac-
ter of the linearization at the equilibrium (which we
take to be the origin) is invariant. However, if, in the
spirit of both structural stability and the classical
Hartman–Grobman Theorem (which, cf. [23], gives
in essence a local version of our result in the special
hyperbolic case), we relax the requirement that the
change of variables be smooth at the origin, then all
obstructions disappear. Thus, we ask that transforma-
tions be in�nitely di�erentiable except possibly at the
origin, where they are just continuously di�erentiable.
Their respective inverses are continuous globally, and
in�nitely di�erentiable away from the origin.
Closely related to our work is the fact that all asymp-

totically stable linear systems are equivalent (in the
sense just discussed) to ẋ =−x; see e.g. [1]. The ba-
sic idea of the proof in [1] is based upon projections
on the level sets of Lyapunov functions, which in the
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linear case of course be taken to be quadratic (and
hence have ellipsoids as level sets). It is natural to
use these ideas also in the general nonlinear case, and
Wilson’s paper [36], often cited in control theory, re-
marked that level sets of Lyapunov functions are al-
ways homotopically equivalent to spheres. Indeed, it
is possible to obtain, in great generality, a change
of coordinates rendering the system in normal form
ẋ=−x (and hence exponentially stable), and several
partial versions of this fact have appeared in the liter-
ature, especially in the context of generalized notions
of homogeneity for nonlinear systems; see for instance
[6,24,15,27,25].
It is perhaps surprising that, at least for unperturbed

systems, the full result seems not to have been ob-
served before, as the proof is a fairly easy application
of results from di�erential topology. (Those results are
nontrivial, and are related to the generalized Poincar�e
conjecture and cobordism theory; in fact, the reason
that we only make an assertion for 6= 4; 5 is closely
related to the fact that the original Poincar�e conjecture
is still open.)
Note, however, that it has been common practice in

the papers treating the nonlinear case to use the ow
generated by the original system to de�ne an equiva-
lence transformation, thereby reducing the regularity
of the transformation to that of the system. Here we
use the ow generated by the (normalized) Lyapunov
function itself, which yields more regular transforma-
tions. In addition, and most importantly, our proof
also allows for the treatment of perturbed systems (for
which the reduction to ẋ =−x makes no sense).
Lyapunov’s notion is the appropriate generalization

of exponential stability to nonlinear di�erential equa-
tions. For systems with inputs, the notion of input to
state stability (ISS) introduced in [29] and developed
further in [5,9,13,14,17,18,26,28,32,33] and other ref-
erences, has been proposed as a nonlinear generaliza-
tion of the requirement of �nite L2 gain or, as often
also termed because of the spectral characterizations
valid for linear systems, “�nite nonlinear H∞ gain”
(for which see e.g. [2,11,12,34]). We also show in
this paper that under coordinate changes (now in both
state and input variables), the two properties (ISS and
�nite H∞ gain) coincide (again, assuming dimension
6= 4; 5).
We do not wish to speculate about the implications

of the material presented here. Obviously, there are no
“practical” consequences, since �nding a transforma-
tion into an exponentially stable system is no easier
than establishing stability (via a Lyapunov function).

Perhaps these remarks will be of some use in the fur-
ther theoretical development of ISS and other stabil-
ity questions. In any case, they serve to further justify
the naturality of Lyapunov’s ideas and of concepts de-
rived from his work.

2. Setup

We consider the family of di�erential equations

ẋ(t) = f(x(t); d(t)); (1)

where f : Rn × D → Rn is continuous and for x 6=
0 locally Lipschitz continuous in x, where the local
Lipschitz constants can be chosen uniformly in
d∈D⊆Rm. Let D denote the set of measurable, lo-
cally essentially bounded functions from R to D. For
any x0 ∈Rn and any d(·)∈D, there exists at least
one maximal solution of (1) for t¿0, with x(0) = x0.
By abuse of notation, we denote any such solution,
even if not unique, as �(t; x0; d(·)), t ∈ I(x; d(·)),
where I(x; d(·)) is its existence interval. Throughout
the paper, ‖ · ‖ denotes the usual Euclidean norm,
and “smooth” means C∞. For a di�erentiable func-
tion V : Rn → R the expression LfdV (x) denotes the
directional derivative DV (x)f(x; d).
The general framework a�orded by model (1) al-

lows us to treat simultaneously classical di�erential
equations (the case when D = {0}) and more gener-
ally robust stability of di�erential equations subject to
perturbations (when functions in D are seen as distur-
bances which do not change the equilibrium, as in pa-
rameter uncertainty), as well as systems with inputs in
which elements of D are seen as exogenous tracking
or regulation signals, or as actuator errors (in which
case, the continuity properties of (x; d) 7→ �(·; x; d)
are of interest, see [30] for the basic background in
control theory). In light of these applications, we now
describe the appropriate stability concepts.
For the �rst, assume that D is compact and that

f(0; d)=0 for all d∈D. Then we say that the zero state
is uniformly globally asymptotically stable (UGAS)
if there exists a class KL function � such that, for
each d(·)∈D, every maximal solution is de�ned for
all t¿0 and

‖�(t; x; d(·))‖6�(‖x‖ ; t) (2)

for all t¿0. As usual, we call a function � : [0;∞)→
[0;∞) of classK, if it satis�es �(0) = 0 and is con-
tinuous and strictly increasing (and class K∞ if it is
unbounded), and we call a continuous function � :
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[0;∞)2 → [0;∞) of classKL, if it is decreasing to
zero in the second and of class K in the �rst argu-
ment. (It is an easy exercise, cf. e.g. [20], to verify that
this de�nition is equivalent to the requirements of uni-
form stability and uniform attraction stated in “j− �”
terms.) Note that while our general assumptions on the
right-hand side f do not guarantee uniqueness of so-
lutions through zero, the added assumption of asymp-
totic stability implies that �(t; 0; d) ≡ 0 is the unique
solution with initial condition x=0, for all d∈D. As
a consequence, since away from zero we have a lo-
cal Lipschitz condition, solutions are unique for each
given initial state and d∈D.
If the origin is no common �xed point for all values

d∈D then (2) is impossible. In this case, however,
still a useful notion of stability is possible. We call
system (1) (globally) input-to-state stable (ISS), if
there exists a class KL function � and a class K∞
function � such that all solutions of (1) satisfy

‖�(t; x; d(·))‖6�(‖x‖ ; t) + �
(
sup
06�6t

‖d(�)‖
)
(3)

for all d(·)∈D and all t¿0. Formulation (3) is the
most frequently used characterization of the ISS prop-
erty. Note that with �̃= 2� and �̃= 2� inequality (3)
immediately implies

‖�(t; x; d(·))‖6max
{
�̃(‖x‖ ; t);

�̃
(
sup
06�6t

‖d(�)‖
)}

;

hence this “max” formulation can be used as an equiv-
alent characterization.
Two apparently stronger formulations of these

properties are obtained if we replace �(‖x‖ ; t) by
ce−�t ‖x‖ , more precisely we call the zero position of
(1) uniformly globally exponentially stable (UGES),
if there exist constants c¿1; �¿ 0 such that

‖�(t; x; d(·))‖6ce−�t ‖x‖ (4)

holds for all d(·)∈D and all t¿0, and we call the sys-
tem input-to-state exponentially stable (ISES), if there
exist a classK∞ function � and constants c¿1; �¿ 0
such that

‖�(t; x; d(·))‖6max
{
ce−�t ‖x‖ ;

�
(
sup
06�6t

‖d(�)‖
)}

(5)

for all d(·)∈D and all t¿0. (As usual, these de�ni-
tions use appropriate constants c; �¿ 0. In this pa-
per, however, we will see that we can always work

with “normalized” versions choosing c = 1; � = 1.
For the (ISES) property we use the “max” formula-
tion because it allows a further implication as stated in
Theorem 5, below. Observe that (5) implies (3) with
�(‖x‖ ; t) = ce−�t ‖x‖ .)
Extending the concepts in [1, p. 207] to our nonlin-

ear setting, we will call a homeomorphism

T : Rn → Rn

a change of variables if T (0)= 0, T is C1 on Rn, and
T is di�eomorphism on Rn\{0} (i.e., the restrictions
of T and of T−1 to Rn\{0} are both smooth). Given
a change of variables T and a system (1), we may
consider the transformed system

ẏ(t) = f̃(y(t); d(t)); (6)

where, by de�nition,

f̃(y; d) = DT (T−1(y))f(T−1(y); d):

In other words, system (6) is obtained from the orig-
inal system by means of the change of variables y =
T (x). Observe that the new system again satis�es the
general requirements: f̃(y; d) is continuous, and it is
locally Lipschitz on x for x 6= 0, uniformly on d.
It is our aim to show that for dimensions n 6= 4; 5

the following assertions are true. Given a system of
the form (1) satisfying (2) or (3), respectively, there
exists a transformed system that satis�es (4) or (5),
respectively. In this sense, global asymptotic stability
is equivalent to global exponential stability under non-
linear changes of coordinates. Furthermore, one may
obtain transformed systems where the constants de�n-
ing the exponential stability property can be chosen to
be the special values c = �= 1.
Furthermore, we show that if system (1) is ISES

(5) with c=�=1 then there exists a homeomorphism
R : Rm → Rm on the input space with R(0)=0 that is a
di�eomorphism on Rm\{0} such that the transformed
system with v= R(d):

ẏ(t) = �f(x(t); v(t)); �f(x; v) = f(x; R−1(v)) (7)

satis�es the following “L2 to L2” nonlinear H∞
estimate:∫ t

0
‖�(s; x; v(·))‖2 ds6‖x‖2 +

∫ t

0
‖v(s)‖2 ds: (8)

Since (8) in turn implies ISS (by [31, Theorem 1]), we
obtain equivalence between ISS and the nonlinear H∞
estimate (8) up to nonlinear changes of coordinates.
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3. Construction of the coordinate transformation

The main tool for our construction of T is the use
of an appropriate Lyapunov function V . In fact, we
can obtain T for a whole class of functions as stated
in the following proposition. Recall that a function
V : Rn → R is called positive de�nite if V (0) = 0
and V (x)¿ 0 for all x 6= 0, and proper if the set
{x |V (x)6�} is bounded for each �¿0.
The next result says in particular that any such func-

tion may look like ‖x‖2 under a coordinate change.
This implies in particular that the level sets under co-
ordinate change are spheres. It may therefore not come
as a surprise that a basic ingredient of the proof is
related to the question of whether level sets of Lya-
punov functions in Rn are di�eomorphic to the sphere
Sn−1. This question is solved except for the two spe-
cial cases of dimensions n = 4 and 5, though in the
case n = 5 it is at least known that the statement is
true if only homeomorphisms are required. (For the
case n= 4 this question is equivalent to the Poincar�e
conjecture; see [36].)

Proposition 1. Let n 6= 4 and let V : Rn → R be a
proper; positive de�nite C1 function. Assume further-
more that V is smooth on Rn\{0} with nonvanishing
gradient. Then for each class K∞ function  which
is smooth on (0;∞) there exists a homeomorphism
T : Rn → Rn with T (0) = 0 such that

Ṽ (y): = V (T−1(y)) = (‖y‖):

In particular this holds for (‖y‖) = ‖y‖2.
If n 6= 4; 5 then T can be chosen to be a di�eo-

morphism on Rn\{0}. Furthermore; in this case there
exists a class K∞ function  which is smooth on
(0;∞) and satis�es (s)=′(s)¿s such that T is C1

with DT (0) = 0.

Proof. For the function V the right-hand side of the
normed gradient ow

ẋ =
3V (x)′

‖3V (x)‖2

is well de�ned and smooth for x 6= 0. Denote the
solutions by  (t; x). Then V ( (t; x)) = V (x) + t, and
thus since V is proper and 3V (x) 6= 0 for x 6= 0
for a given initial value x∈Rn  is well de�ned for
all t ∈ (−V (x);∞), thus also smooth (see e.g. [10,
Corollary 4.1]).

Fix c¿ 0. We de�ne a map � : Rn\{0} → V−1(c)
by

�(x) =  (c − V (x); x):

Obviously � is smooth, and since the gradient ow
crosses each level set V−1(a); a¿ 0 exactly once it
induces a di�eomorphism between each two level sets
of V , which are C∞ manifolds due to the fact that
V is smooth away from the origin with nonvanishing
gradient.
Now observe that the properties of V imply that

V−1(c) is a homotopy sphere (cf. also [36, Discus-
sion after Theorem 1.1]), which implies that V−1(c)
is di�eomorphic to Sn−1 for n = 1; 2; 3 (see e.g. [22,
Appendix] for n=2, [7, Theorem 3.20] for n=3; n=1
is trivial). For n¿6 we can use the fact that the sub-
level set {x∈Rn |V (x)6c} is a compact, connected
smooth manifold with a simply connected boundary,
which by [21, Section 9, Proposition A] implies that
the sublevel set is di�eomorphic to the unit disc Dn,
hence V−1(c) is di�eomorphic to Sn−1. Thus for all
dimensions n 6= 4; 5 we may choose a di�eomorphism
S : V−1(c) → Sn−1. By [8] we may choose S to be
at least a homeomorphism in the case n= 5.
Let Q := S ◦ �. The coordinate transformation T is

now given by T (0) = 0 and

T (x) = −1(V (x))Q(x); x 6= 0:
An easy computation veri�es that T−1(0) = 0 and

T−1(y) =  
(
(y)− c; S−1

(
y

‖y‖
))

; y 6= 0;

hence T is a di�eomorphism on Rn\{0} (resp. a
homeomorphism if n = 5). Since V (0) = 0, and
 (t; S−1(y=‖y‖)) → 0 as t ↘ −c, both T and T−1

are homeomorphisms.
Finally, we have that

V (T−1(y)) = V
(
 
(
(‖y‖)− c; S−1

(
y

‖y‖
)))

= V
(
S−1

(
y

‖y‖
))

− c + (‖y‖)

= (‖y‖)
which �nishes the proof of the �rst assertion.
For n 6= 4; 5 and s¿ 0 we de�ne

L(s) := sup
V (x)=s

‖DQ(x)‖
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and choose any classK function a which is C∞ and
satis�es

a(s)6
s

L(s)
for all s∈ (0; 1]:

Then the function h given by

h(r) =
∫ r

0
a(s) ds

is smooth and of classK∞. Note that this construction
implies h(r)6ra(r) for all r¿0, hence h(r)=h′(r)6r.
Thus  := h−1 is of classK∞, smooth on (0;∞), and
satis�es

(s)
′(s)

= h−1(s)h′(h−1(s))¿
h−1(s)h(h−1(s))

h−1(s)
= s:

Di�erentiating T yields

DT (x) = h′(V (x))Q(x) · DV (x) + h(V (x))DQ(x):

For x → 0 the �rst term tends to 0 since both
h′(V (x)) = a(V (x)) and DV (x) tend to 0, and the
second tends to 0 since for all x su�ciently close to
0 the inequality

h(V (x))‖DQ(x)‖6 a(V (x))‖DQ(x)‖

6
V (x)

L(V (x))
‖DQ(x)‖6V (x)

holds by construction of h. Thus DT (x)→ 0, as x →
0, and consequently T ∈C1 with DT (0) = 0, by a
straightforward application of the mean-value theo-
rem, see e.g. [19, Chapter V, Theorem 3.2] and the
fact that a function is continuously di�erentiable if all
partial derivatives exist and are continuous.

4. Main results

Using the coordinate transformation T we can now
prove our main results.

Theorem 2. Let n 6= 4; 5 and consider any system
(1) on Rn which is UGAS (2). We suppose that the
set D⊂Rm is compact. Then; (1) can be transformed
into a system (6) that is UGES (4).
In particular; the constants in (4) can be chosen to

be c = 1; �= 1.

Proof. Under our assumptions, by [20, Theorem
2.9, Remark 4.1] 3 there exists a smooth function V :
Rn → R for (1) such that
LfdV (x)6− �1(‖x‖) (9)

for some class K∞ function �1. Furthermore, there
exist classK∞ functions �2; �3 such that

�2(‖x‖)6V (x)6�3(‖x‖): (10)

Now let �4 be a C1 function of class K∞ which is
smooth on (0;∞) and satis�es �′4(0) = 0, such that
�4(a)6min{a; �1 ◦ �−13 (a)} for all a¿0.
Such a function can be obtained e.g. by a slight

modi�cation of the construction in [26, Proof of
Lemma 11]: Take a class K∞ function satisfying
�(a)6min{a; �1 ◦ �−13 (a)} and which is smooth on
(0;∞). Then
�4(a) =

2
�

∫ a

0

�(�)
1 + �2

d�

has the desired properties. Thus we obtain

LfdV (x)6− �4(V (x)): (11)

Now de�ne

�(a) := exp

(
−
∫ 1

a
�4(�)−1 d�

)
for a¿ 0;

�(0) := 0:

Obviously � is smooth on (0;∞); furthermore � is of
classK∞ and by Praly andWang [26, Lemma 12] � is
a C1 function on [0;∞) with �′(0)=0. Thus de�ning

W (x) := �(V (x))

we obtain a C1 Lyapunov function, which is smooth
on Rn\{0}, for which an easy calculation shows that

LfdW (x) =
exp
(
− ∫ 1V (x) �4(�)−1 d�)

�4(V (x))
LfdV (x)

6−W (x):

Applying Proposition 1 to W , using the class K∞
function  with (s)=′(s)¿s we obtain for each d∈D
and y 6= 0
〈f̃(y; d); y〉= ‖y‖

′(‖y‖)Lf̃d
W̃ (y)6− ‖y‖

′(‖y‖)W̃ (y)

=− ‖y‖
′(‖y‖)(‖y‖)6− ‖y‖2:

3 To be precise, the results in that reference make as a blanket
assumption the hypothesis that f is locally Lipschitz, not merely
continuous, at x=0. However, as noted in e.g. [35], the Lipschitz
condition at the origin is not used in the proofs.
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Clearly, the overall inequality also holds for y= 0 so
that we obtain
d
dt

‖y(t)‖2 = 2〈f̃(y(t); d(t)); y(t)〉6− 2‖y(t)‖2

and hence ‖y(t)‖26e−2t ‖y(0)‖2, i.e. the desired
exponential estimate.

Theorem 3. Let n 6= 4; 5 and suppose that system
(1) on Rn is ISS (3) with some class K∞ function
� and some class KL function �. Then (1) can be
transformed into a system (6) that is ISES (5) with
constants c = �= 1.

Proof. By [32, Theorem 1] 4 there exists a C1 func-
tion V which is smooth on Rn\{0} and a class K∞
function � such that

‖x‖ ¿�(‖d‖)⇒ LfdV (x)6− �1(‖x‖)
for some class K∞ function �1. Furthermore, there
exist classK∞ functions �2; �3 such that

�2(‖x‖)6V (x)6�3(‖x‖):
As in the proof of Theorem 2 we �nd a function �
which is classK∞, C1, and smooth on Rn\{0}, such
that W = � ◦ V satis�es

‖x‖ ¿�(‖d‖)⇒ LfdW (x)6−W (x):

Now Proposition 1 yields a parameter transforma-
tion T such that W̃ (y) =W (T−1(y)) = (‖y‖) and
(s)=′(s)¿s.
Now choose a class K∞ function � such that

‖T−1(y)‖¿�(‖y‖) and de�ne �̃ = �−1 ◦ �. Then a
straightforward calculation yields

‖y‖ ¿�̃(‖d‖)⇒ Lf̃d
W̃ (y)6− W̃ (y): (12)

Similar to the proof of Theorem 2 this implies

‖�̃(t; y; d(·))‖6e−t ‖y‖
as long as ‖�̃(t; y; d(·))‖ ¿�̃(sup06�6t ‖d(�)‖)
which yields the desired estimate.

Theorem 4. Consider system (1) on Rn being ISES
(5)with some classK∞ function � and c=�=1.Then
there exists a homeomorphism R : Rm → Rm on the
input space with R(0) = 0; that is a di�eomorphism
on Rm\{0}; such that the transformed system (7)
satis�es the nonlinear H∞ estimate (8).

4 As with the UGAS proof, it is easy to verify that the assump-
tion that the right-hand side is Lipschitz at zero is never actually
used in [32]. The possible non-uniqueness of trajectories does not
a�ect the argument used in Lemma 2:12 in that paper, which re-
duces the problem to one of UGAS.

Proof. From (5) it is immediate that for any d(·)∈D,
any x∈Rn, and any T ¿ 0 we have

‖x‖¿eT �
(
sup
06�6t

‖d(�)‖
)

⇒ ‖�(t; x; d(·))‖6e−t ‖x‖ for all t ∈ [0; T ]:
(13)

Now consider the function W (x) = ‖x‖2. Then (13)
implies

‖x‖¿eT �
(
sup

06�6T
‖d(�)‖

)

⇒ W (�(t; x; d(·)))6e−2tW (x) for all t∈[0; T ]:
In particular, this estimate is valid for constant func-

tions d(·) ≡ d∈D, thus the mean value theorem (ob-
serve W (�(0; x; d)) =W (x) = e−0W (x)) yields

‖x‖¿�(‖d‖)
⇒ LfdW (x)6− 2W (x)6−W (x):

Now de�ning

�̃(r) = sup
‖ x‖6�(r); ‖d‖6r

〈f(x; d); x〉

we obtain a classK∞ function �̃ with

LfdW (x)6−W (x) + �̃(‖d‖):
Without loss of generality (one could take a larger �̃),
we may assume �̃ to be smooth on (0;∞), and thus

R(d) :=
�̃(‖d‖)2d

‖d‖
has the regularity properties as stated in the assertion.
Now transformation (7) yields

L �fv
W (x)6−W (x) + ‖v‖2:

Integrating this equation along a trajectory x(·) gives
W (x(t))−W (x(0))

6−
∫ t

0
W (x(s)) ds+

∫ t

0
‖v(s)‖2 ds

which implies (8) since W (x) = ‖x‖2.

5. Remarks

Note that, in general, for our results to be true we
cannot expect T to be di�eomorphic on the whole
Rn. Consider the simplest case where f does not de-
pend on d and is di�erentiable at the origin. If T were
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a di�eomorphism globally, then DT−1(0) would be
well-de�ned, which implies that

Df̃(0) =
@
@y

∣∣∣∣
y=0

DT (T−1(y))f(T−1(y))

=DT (0)Df(0)DT−1(0)

and so the linearizations in 0 are similar; in particular,
the dimension of center manifolds remains unchanged.
Actually, if one wants the exponential decay to

be e−t , even for linear systems one cannot obtain
a di�eomorphism T . As an example, consider the
one-dimensional system ẋ = −x=2. Here one uses
the change of variables y = T (x) given by T (x) =
x2; x¿ 0; T (0)=0 and T (x)=−x2; x¡ 0 to obtain
ẏ=−y. Note that T is C1 withDT (0)=0. The inverse
of this T is given by T−1(y)=

√
y; y¿ 0; T−1(0)=0

and T−1(y) = −√−y; y¡ 0 which is smooth only
away from the origin, though continuous globally.
An example for the case of nontrivial center mani-

folds is given by the system ẋ=−x3. Let us �rst note
that for this system there is no transformation in the
class we consider such that the transformed system is
of the form ẏ = −y. The reason for this is that we
would have Ṫ (x) = ẏ = −y = −T (x), so at least for
x¿ 0, V = T is a Lyapunov function with the prop-
erty that V̇ (x)=−V ′(x)x3 =−V (x). It is readily seen
that the solutions of this di�erential equation (in x and
V ) are Vc(x)=c exp 1=−2x2, for c∈R. However, the
image of [0;∞) under such Vc yields a bounded set,
so that these functions are no candidate for coordinate
transforms on R. Nonetheless, a coordinate transform
according to our requirements can now be easily built:
Take any K∞ function � with �′ ¿ 0 on (0;∞) so
that with via the symmetrization �(−x) := �(x) we get
a smooth function on R. Now de�ne
T (x) := �(x)V1(x); x¿0;

T (x) :=−�(x)V1(x); x¡ 0:

Then for y 6= 0 we have ẏ = Ṫ (x) = −(1 + �′(x)x3=
�(x))T (x)¡− y, so that the transformed system de-
cays at least exponentially with constants c=1; �=1.
Again note that the requirement DT (0)=0 is vital, in
fact all orders of derivatives vanish in 0.
A basic ingredient of the proof of Theorem 2 is the

construction of a Lyapunov function with the property
V̇ 6 − V . Actually, one may even, under restricted
conditions, obtain the equality V̇ = −V . It should
be noted that already in [3] it is shown that for dy-
namical systems with globally asymptotically stable
�xed point a continuous Lyapunov function with the

property V (�(t; x)) = e−tV (x) exists, see also Chap-
ter V.2 in [4]. Note, however that in these references
only systems with trajectories de�ned on R are con-
sidered, which does not include the previous exam-
ple. Indeed, if f(x; d)=f(x) is independent of d∈D
and the system ẋ = f(x) is backward complete we
can also de�ne a coordinate transformation based on
a di�erent W than the one used in the proof of The-
orem 2: In this case the function W (x) = exp t(x)
with t(x) de�ned by V (�(t(x); x))=1 is positive def-
inite, proper, and satis�es LfW (x) = −W (x), thus
W (�(t; x)) =W (x) − t. Since V−1(1) =W−1(1) we
still �nd a di�eomorphism S as in the proof of Propo-
sition 1. Deviating from this proof, instead of the gra-
dient ow we now use the trajectories of the sys-
tem, i.e. we de�ne �(x) = �(W (x) − 1; x) yielding
W (�(x)) =W (x)− (W (x)− 1) = 1. Thus from � we
can construct T as in the proof of Proposition 1, and
obtain W (T−1(y)) = ‖y‖2. Furthermore, the de�ni-
tion of � implies that each trajectory {�(t; x) | t ∈R}
is mapped onto the line {�S(�(x)) | �¿ 0} and con-
sequently f̃(y) =−y, i.e. we obtain a transformation
into the linear system ẏ=−y. Note, however, that with
this construction the coordinate transformation will in
general only have the regularity of f (e.g. a homeo-
morphism if f is only C0), which is inevitable since it
transforms f into a smooth map. Moreover, this con-
struction cannot be generalized to systems with dis-
turbances.
Since we are not requiring that the inverse of a

change of variables be itself a change of variables
(because one may, and in fact does in our construc-
tions, have DT (0) = 0, in which case T−1 is not dif-
ferentiable at the origin), the way to de�ne a notion
of “equivalence” is by taking the transitive and sym-
metric closure of the relation given by such changes
of variables. That is, we could say that system (1) is
equivalent to a system (6) if there exist k ∈N and
maps f0 = f;f1; : : : ; fk = f̃ : Rn × D → Rn, all
satisfying the assumptions on f, with the following
properties: For each i = 0; : : : ; k − 1 there exists a
change of variables T as above such that fl(y; d) =
DT (T−1(y))fm(T−1(y); d), where l= i; m= i+1 or
l= i + 1; m= i.
Finally, regarding our notion of system transforma-

tion, note that even if f(0; d) 6= 0 for some d∈D
for original system (1), then under the assumption
DT (0) = 0 we have f̃(0; d) = 0 for all d∈D for the
transformed system. This implies that even if the orig-
inal system had unique trajectories through zero, the
transformed system cannot have this property.
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