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Abstract— The primary factor limiting the success of
chemotherapy in cancer treatment is the phenomenon of
drug resistance. Resistance manifests through a diverse set
of molecular mechanisms, such as the upregulation of efflux
transporters on the cell membrane, enhanced DNA damage
repair mechanisms, and/or the presence of cancer stem cells.
Classically, these mechanisms are understood as conferred
to the cell by random genetic mutations, from which clonal
expansion occurs via Darwian evolution. However, the recent
experimental discovery of epigenetics and phenotype plasticity
complicates this hypothesis. It is now believed that chemother-
apy can produce drug-resistant clones. In this work, we study
a previously introduced framework of drug-induced resistance,
which incorporates both random and drug induced effects. A
time-optimal control problem is then presented and analyzed
utilizing differential-geometric techniques. Specifically, we seek
the treatment protocol which prolongs patients life by max-
imizing the time of treatment until a critical tumor size is
reached. The general optimal control structure is determined
as a combination of both bang-bang and path-constrained
arcs. Numerical results are presented which demonstrate de-
creasing treatment efficacy as a function of the ability of the
drug to induce resistance. Thus, drug-induced resistance may
dramatically effect the outcome of chemotherapy, implying
that factors besides cytotoxicity should be considered when
designing treatment regimens.

I. INTRODUCTION

Drug resistance is a major factor limiting the success
of cancer chemotherapy. A diverse set of molecular and
environmental mechanisms by which resistance manifests
have been identified in the past thirty years, and our current
understanding of the phenomenon remains incomplete [1].
For example, the alteration of drug targets, upregulation of
efflux transporters on the cell membrane, irregular tumor
vascular structure, increased microenvironmental acidity, and
tumor-stroma interactions have all been shown to decrease
treatment efficacy. Clinical as well as mathematical investi-
gations continue to be an active area of current research. For
a review of the mathematical literature, see [2].

As mentioned, the mechanisms by which drug resistance
presents are extraordinarily diverse. However, a more fun-
damental question relates to the method by which these
resistance-inducing traits arise in a clonal population. In
general, resistance can be classified as either pre-existing
or acquired [1]. Pre-existing (or intrinsic) denotes the case
when resistant subpopulations exist prior to treatment, and
are subsequently selected in a classic Darwinian manner
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after treatment is applied. Acquired resistance denotes the
converse: resistant clones are generated during the course of
therapy. But this latter phenomenon is more complicated, as
the resistance mechanism may be randomly acquired due to
genetic mutations and/or epigenetic phenotype-switching [3],
or may be induced by the presence of the drug itself [4], [5],
[6], [3]. For example, Pisco and colleagues have measured
the relative contribution of resistance selection (pre-existing
and randomly acquired) versus drug-induced resistance in
HL60 leukemic cells [3]. Both pre-existing and randomly
acquired resistance have been well studied mathematically.
It is the latter form, drug-induced resistance, which is more
recently discovered and lacks substantial theoretical analysis.

In a previous work we have developed a mathematical
framework to distinguish between the three forms of resis-
tance discussed above [7]. Specifically, we have formulated
a minimal model of two ordinary differential equations and a
single control representing the chemotherapeutic agent which
may or may not be able to induce drug resistance in a
dose-dependent manner. Our initial investigation was related
to structural and practical identifiability questions, where
we posited novel in vitro methods that could be utilized
to measure a treatment’s induction rate without a priori
knowledge of the resistance mechanisms.

As our previous work demonstrated our model as fully
identifiable, a natural extension is then to consider the control
structure based on parameter values. More precisely, we are
interested in understanding how the drug-induced rate of
resistance impacts the overall control structure from both
mathematical and clinical perspectives. An important ques-
tion is then how chemotherapy should be scheduled, given
a measured induction rate. Similarly, does this rate have
an effect on treatment outcome? We formulate an optimal
control problem, and utilize both the Pontryagin Maximum
Principle and differential-geometric techniques to character-
ize solutions that maximize the time until treatment failure.
The necessary conditions then imply that the optimal control
can be synthesized as a combination of bang-bang and path-
constraint arcs. Numerical results are also provided which
support the computed control structure. We then investigate
the dependence of the control structure and treatment efficacy
as a function of both the chemotherapeutic cytotoxicity (a
classical measure of the effectiveness of treatment) and
the rate at which resistance is induced by the drug. Our
results suggest that the latter may significantly alter the
outcome of treatment, and may in fact be more important
than drug toxicity in certain parameter ranges. Hence, the
propensity of a treatment to promote resistance is clinically
significant, demonstrating the need for further experimental
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and mathematical research.

II. MATHEMATICAL MODELING OF INDUCED
DRUG RESISTANCE

We briefly review the simplified model presented in [7].
In that work, we have constructed a dynamical model
which describes the evolution of drug resistance through
both drug-independent (e.g. random point mutations, gene
amplification) and drug-dependent (e.g. mutagenicity, epi-
genetic modifications) mechanisms. To our knowledge, this
is the first theoretical study of the phenomena of drug-
induced resistance, which although experimentally observed
(see Section I) remains poorly understood. It is our hope that
a mathematical analysis will provide mechanistic insight and
produce a more complete understanding of this process by
which cancer cells inhibit treatment efficacy.

Specifically, we assume that the cancer population is
composed of two types of cells: sensitive (S) and resis-
tant (R). For simplicity, the drug is taken as completely
ineffective against the resistant population, while the log-
kill hypothesis is assumed for the sensitive cells. Complete
resistance is of course unrealistic, but can serve as a rea-
sonable approximation, especially when toxicity constraints
are considered, and hence limit the total amount of drug that
may be administered. Furthermore, this assumption permits a
natural metric on treatment efficacy that may not be present
otherwise (see Section III-A). The effect of treatment is
considered as a control agent u(t), which we assume is a
locally bounded Lebesgue measurable function taking values
in R+. Here u(t) is directly related to the applied drug
dosage D(t), and in the present work we assume that we have
explicit control over u(t). Later, during the formulation of the
optimal control problem (Section III), we will make precise
specifications on the control set U such that u(t) ∈ U .

Sensitive and resistant cells are assumed to compete for
resources in the tumor microenvironment; this is modeled
via a joint carrying capacity, which we have scaled to one.
Furthermore, cells are allowed to transition between the two
phenotypes in both a drug-independent and drug-dependent
manner. All random transitions to the resistant phenotype
are modeled utilizing a common term, εS, which accounts
for both genetic mutations and epigenetic events occurring
independently of the application of treatment. Drug-induced
transitions are assumed of the form αu(t)S, which implies
that the per-capita drug-induced transition rate is directly
proportional to the dosage (as we assume full control on
u(t), i.e. pharmacokinetics are ignored). Of course, other
functional relationships may exist, but since the problem
is not well-studied, we consider it reasonable to begin our
analysis in this simple framework. The above assumptions
then yield the following system of ordinary differential
equations (ODEs):

dS

dt
= (1− (S +R))S − (ε+ αu(t))S − du(t)S

dR

dt
= pr (1− (S +R))R+ (ε+ αu(t))S.

(1)

All parameters are taken as non-negative, and 0 ≤ pr < 1.
The restriction on pr emerges due to (1) already being
non-dimensionalized, as pr represents the relative growth
rate of the resistant population with respect to that of the
sensitive cells. The condition pr < 1 thus assumes that
the resistant cells divide more slowly than their sensitive
counterparts, which is both observed experimentally [8], [9],
[10], and necessary for our mathematical framework. Indeed,
the condition pr ≥ 1 would imply that u(t) ≡ 0 is optimal
under any clinically realistic objective.

As mentioned previously, many simplifying assumptions
are made in system (1). Specifically, both types of resistance
(random genetic and phenotypic) are modeled as dynam-
ically equivalent; both possess the same division rate pr
and spontaneous (i.e. drug-independent) transition rate ε.
Thus, the resistant compartment R denotes the total resistant
subpopulation, both genetic and phenotypic.

The region Ω = {(S,R) | 0 ≤ S + R ≤ 1} in the
first quadrant is forward invariant for any locally bounded
Lebesgue measurable treatment function u(t) taking values
in R+. Furthermore, if ε > 0, the population of (1) becomes
asymptotically resistant: (S(t), R(t))

t→∞−−−→ (0, 1). For a
proof, see Theorem 2 in SI A in [7]. Thus, in our model, the
phenomenon of drug resistance is inevitable. However, we
may still implement control strategies which, for example,
may increase patient survival time. Such aspects will inform
the objective introduced later in this work (Section III). For
more details on the formulation and dynamics of system (1),
we refer the reader to [7].

III. OPTIMAL CONTROL

We focus on control structures based on the presence
of drug-induced resistance. Thus, we rely on the ability
to determine whether, and to what degree, the specific
chemotherapeutic treatment is generating resistance. Ideally,
we envision a clinical scenario in which cancer cells from a
patient are cultured in an ex vivo assay (for example, see [11])
prior to treatment. Parameter values are then calculated from
treatment response dynamics in the assay, and an optimal
therapy regime is implemented based on theoretical work
such as that described in this section. Thus, identifying
patient-specific model parameters, specially the induced-
resistance rate α, is a necessary step in determining control
structures to apply. In [12], we address this issue, and prove
that all parameters are structurally identifiable, as well as
demonstrate a specific set of controls that may be utilized
to determine α. Hence, for the remainder of this work,
we assume that prior to the onset of treatment, all patient-
specific parameters are known. We now analyze behavior
and response of system (1) to applied treatment strategies
u(t) utilizing geometric methods. The subsequent analysis
is strongly influenced by the Lie-derivative techniques intro-
duced by Sussmann [13], [14], [15], [16]. For an excellent
source on both the general theory and applications to cancer
biology, see the textbooks by Schättler and Ledzewicz [17],
[18].
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A. Formulation

As discussed in Section II, all treatment strategies u(t)
result in an entirely resistant tumor: (S∗, R∗) = (0, 1) is
globally asymptotically stable for all initial conditions in re-
gion Ω. Thus, any chemotherapeutic protocol will eventually
fail, and a new drug must be introduced (not modeled in this
work, but the subject of future study). Therefore, selecting
an objective which minimizes tumor volume (S + R) or
resistant fraction (R/(S+R)) at a fixed time horizon would
be specious for our modeling framework. However, one can
still combine therapeutic efficacy and clonal competition to
influence transient dynamics and possibly prolong patient
life, as has been shown clinically utilizing real-time patient
data [19]. Motivated by this observation, we define an
objective based on maximizing time until treatment failure,
as described below.

Let Vc ∈ (0, 1 − ε) be a critical tumor volume at which
treatment, by definition, has failed. The upper bound is a
technical constraint that will be needed in Section III-D;
note that this is not prohibitive, as the genetic mutation rate
ε is generally small [20]. Recall that populations have been
normalized to lie in [0, 1]. Our interpretation is that a tumor
volume larger than Vc interferes with normal biological
function, while S+R ≤ Vc indicates a clinically acceptable
state. Different diseases will have different Vc values. Define
tc as the time at which the tumor increases above size Vc
for the first time. To be precise, tc is the maximal time for
which S + R ≤ Vc. Since all treatments approach the state
(0, 1), tc is well defined for each u(t) : tc = tc(u(t)). Time
tc is then a measure of treatment efficacy, and our goal is
then to determine u∗(t) which maximizes tc(u(t)).

Toxicity as well as pharmacokinetic constraints limit the
amount of drug to be applied at any given instant. Thus, we
assume that there exists M > 0 such that u(t) ≤ M for
all t ≥ 0. Any other Lebesgue measurable treatment regime
u(t) is then considered, so that the control set U = [0,M ]
and the set of admissible controls U is

U = {u : [0, T ]→ [0,M ] |T > 0, u is Lebesgue measurable}.

We are thus seeking a control u∗(t) ∈ U which maximizes
tc, i.e. solves the time-optimal minimization problem with
Lagrangian L(t, x, u) = −1, restricted to the dynamic state
equations given by the system described previously:

ẋ(t) = f(x(t)) + u(t)g(x(t)),

x(0) = x0,
(2)

where f and g are

f(x) =

(
(1− (x1 + x2))x1 − εx1
pr(1− (x1 + x2))x2 + εx1

)
, (3)

g(x) =

(
−(α+ d)

α

)
x1, (4)

and x(t) = (S(t), R(t)). Note that the above is formulated
as a minimization problem to be consistent with previous
literature and results related to the Pontryagin Maximum
Principle (PMP) [17]. Note however that maximization is

still utilized in Section III-B since the explicit necessary
conditions are not needed.

The initial state x0 = (S0, 0) is assumed to lie in Ω, and
the time tc must satisfy the terminal condition (tc, x(tc)) ∈
N , where N is the line S+R = Vc in Ω, i.e. N = ψ−1(0)∩
Ω, where ψ(S,R) := S + R − Vc. Furthermore, the path-
constraint

ψ(S(t), R(t)) ≤ 0 (5)

must also hold for 0 ≤ t ≤ tc. Equation (5) ensures that the
tumor remains below critical volume Vc for the duration of
treatment.

B. Elimination of Path Constraints

We begin our analysis by separating interior controls from
those determined by the path-constraint (5). It can be shown
(see [12]) that an optimal control to the problem presented
in Section III-A exists. The following theorem implies that
outside of the manifold N , the optimal pair (x∗, u∗) solves
the same local optimization problem without the path and
terminal constraints. More precisely, the necessary conditions
of the PMP (see Section III-C) at states not on N are exactly
the conditions of the corresponding maximization problem
with no path or terminal constraints.

THEOREM 1. Suppose that x∗ is an optimal trajectory. Let
T be the first time such that x(t) ∈ N . Fix ε > 0 such that
T − ε > 0, and ξ = x(T − ε). Define z(t) := x∗(t)|t∈[0,T−ε].
Then the trajectory z is a local solution of the corresponding
time maximization problem tf with boundary conditions
x(0) = x0, x(tf ) = ξ, and no additional path constraints.
Hence at all times t, z (together with the corresponding
control and adjoint) must satisfy the corresponding uncon-
strained Pontryagin Maximum Principle.

Proof. See [12].

Theorem 1 then tells us that for states x = (S,R)
such that S + R < Vc, the corresponding unconstrained
PMP must be satisfied by any extremal lift of the original
problem. Furthermore, there exists a unique feedback law for
trajectories to remain on the boundary V = Vc:

up(S,R) =
1

d

(1− (S +R))(S + prR)

S
. (6)

Equation (6) is only feasible on regions of phase space where
0 ≤ up(S,R) ≤ M , and one can show that there exists a
resistant state Rc ∈ [0, 1) such that up > M if R > Rc.

We have shown that the optimal control consists of
concatenations of controls obtained from the unconstrained
necessary conditions and controls of the form (6). In the next
section, we analyze the Maximum Principle in the region
S +R < Vc.

C. Maximum Principle and Necessary Conditions

Necessary conditions for the optimization problem dis-
cussed in Section III-A without path or terminal constraints
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are derived from the PMP. The corresponding Hamiltonian
function H is defined as

H(λ0, λ, x, u) = −λ0 + 〈λ, f(x)〉+ uΦ(x), (7)

where λ0 ≥ 0 and λ ∈ R2. Here 〈·, ·〉 denotes the standard
inner product on R2 and, since the dynamics are affine in
the control u, Φ(x, λ) is the switching function:

Φ(x, λ) = 〈λ, g(x)〉. (8)

The Maximum Principle then yields the following theorem:

THEOREM 2. If the extremal (x∗, u∗) is optimal, there exists
λ0 ≥ 0 and a covector (adjoint) λ : [0, tc] → (R2)∗, such
that the following hold:
1. (λ0, λ(t)) 6= 0 for all t ∈ [0, tc].
2. λ(t) = (λS(t), λR(t)) satisfies the second-order differ-

ential equation

λ̇(t) =

(
2S +R+ ε− 1 prR− ε

S pr(2R+ S − 1)

)
λ(t)

+ u(t)

(
α+ d −α

0 0

)
λ(t)

3. u∗(t) minimizes H pointwise over the control set U :

H(λ0, λ, x∗(t), u∗(t)) = min
v∈U

H(λ0, λ, x∗(t), v).

Thus, the control u∗(t) must satisfy

u∗(t) =

{
0 Φ(t) > 0,

M Φ(t) < 0.
(9)

where

Φ(t) := Φ(x∗(t), λ(t)). (10)

4. The Hamiltonian H is identically zero along the ex-
tremal lift (x∗(t), u∗(t), λ(t)):

H(λ0, λ(t), x∗(t), u∗(t)) ≡ 0. (11)

Proof. See [12].

D. Geometric Properties and Singular Arcs

We now undertake a geometric analysis of the optimal
control problem utilizing the affine structure of system (2)
for interior states (i.e. controls which satisfy Theorem 2).
We call such controls interior extremals, and all extremals
in this section are assumed to be interior. The following
results depend on the independence of the vector fields f
and g, which we use to both classify the control structure
for abnormal extremal lifts (extremal lifts with λ0 = 0), as
well as characterize the switching function dynamics via the
Lie bracket.

Proposition 3. For all S ∈ Ω, S > 0, the vector fields f(x)
and g(x) are linearly independent.

Proof. See [12].

The line S = 0 is invariant in Ω, and furthermore the
dynamics in the set are independent of the control u(t).

Conversely, S0 > 0 implies that S(t) > 0 for all t ≥ 0. We
concern our analysis only in this latter case, and so without
loss of generality, f(x) and g(x) are linearly independent in
the region of interest.

The interior control structure corresponding to abnormal
extremal lifts (i.e. λ0 = 0) is easily characterized: u∗(t) ≡
M . For a proof, see [12]. To understand normal extremal lifts
(λ0 > 0), without loss of generality we assume that λ0 = 1.
The Hamiltonian H(t) evaluated along (λ(t), x∗(t), u∗(t))
is then of the form

H(t) = −1 + 〈λ(t), f(x∗(t))〉+ u∗(t)Φ(t) ≡ 0. (12)

As f and g are linearly independent in Ω, there exist γ, β ∈
C∞(Ω) such that

[f, g](x) = γ(x)f(x) + β(x)g(x), (13)

for all x ∈ Ω. In fact, we can compute γ and β explicitly:

γ(x) = − (α+ d)S2

detA(x)
(aS + bR− c) , (14)

β(x) =
S2

detA(x)

(
α(1− pr)κ(x)(κ(x)− ε)

+ εd(S + prR+ κ(x)− ε)
)
,

(15)

where

a = α

(
(1− pr) +

d

α+ d

)
, (16)

b = α(1− pr) + dpr, (17)
c = α(1− pr) + εd. (18)

Clearly, for parameter values of interest, a, b, c > 0. The
assumption Vc < 1 − ε guarantees that β(x) > 0 that on
0 < S +R ≤ Vc.

From (9), the sign of the switching function Φ determines
the value of the control u∗. As λ and x∗ are solutions of
differential equations, Φ is differentiable. The dynamics of
Φ can be understood in terms of the Lie bracket [f, g]:

Φ̇(t) = γ(x∗(t))〈λ(t), f(x∗(t))〉+ β(x∗(t))Φ(t). (19)

Equation (19) follow from (13) as well as the linearity
of the inner product. We are then able to derive an ODE
system for x∗ and Φ. Equation (12) allows us to solve for
〈λ(t), f(x∗(t))〉 = 1 − u∗(t)Φ(t). Substituting the above
into (19) then yields the following ODE for Φ(t), which
we view as coupled to system (2) via (9):

Φ̇(t) = γ(x∗(t)) +
(
β(x∗(t))− u∗(t)γ(x∗(t))

)
Φ(t). (20)

The structure of the optimal control may now be character-
ized as a combination of bang-bang and singular arcs. We
recall that the control (or, more precisely, the extremal lift)
u∗ is singular on an open interval I ⊂ [0, tc] if the switching
function Φ(t) and all its derivatives are identically zero on I .
On such intervals, equation (9) does not determine the value
of u∗, and a higher-order analysis of the zero set of Φ(t) is
necessary. Indeed, for a problem such as ours, singular arcs
are the only candidates for interior optimal controls that may

5198



take values outside of the set {0,M}. Equation (20) allows
us to completely characterize the regions in the (S,R) plane
where singular arcs are attainable, as demonstrated in the
following proposition.

Proposition 4. Singular arcs are only possible in regions of
the (S,R) plane where γ(x) = 0. Furthermore, as S(t) > 0
for all t ≥ 0, the region

{
x ∈ R2|γ(x) = 0

}
∩Ω is the line

aS + bR− c = 0, (21)

where a, b, c are defined in (16)-(18).

Proof. See [12].

Proposition 4 implies that singular solutions can
only occur along the line aS + bR − c = 0.
Thus, define regions in the first quadrant as fol-
lows: Ω0 :=

{
x ∈ R2 |R,S ≥ 0, R+ S ≤ Vc

}
, Ω+

0 :=
{x ∈ Ω0 | γ(x) > 0} , Ω−0 := {x ∈ Ω0 | γ(x) < 0} , and L =
{x ∈ Ω0 | γ(x) = 0} . Note that Ω0 is simply the region in
Ω prior to treatment failure, i.e. 0 ≤ V ≤ Vc.

If the maximal tolerable dose M is large enough, there
exists a subset L̄ ⊂ L that is a feasible singular arc (for
X := f, Y := f + Mg, L̄ is precisely the subset of L
where LY γ < 0). It can be shown that the singular arc is
of order one. From the above, we know that optimal control
consists of a concatenation of bang-bang and singular arcs.
The following theorem characterizes the interior extremals
precisely.

THEOREM 5. The singular arc L̄ is not optimal. The interior
extremals consist of a finite number of bang-bang arcs, where
at most one switch may occur in the regions γ > 0, γ < 0. In
the regions, the switching structure must take the form Y X
if γ > 0, and XY if γ < 0. Thus, multiple switchings may
only occur across L̄.

Proof. See [12].

For a visualization of the partition of Ω and the corre-
sponding control structure, see Figure 1.

𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

Ω0
− (𝛾 < 0)

Ω0
+ (𝛾 > 0)

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

𝑺
∗

R∗
 ℒ

𝒀𝑿

𝑿𝒀

𝒖 = 𝒖 𝒙

⟺  ℒ

Fig. 1: Geometry of interior control structure. Y X denotes a local
control structure of a Y arc followed by an X arc. Note that only
one switch is allowed for trajectories remaining in each of Ω+

0 and
Ω−0 ; additional switches must occur across the singular arc L̄.

E. Optimal Synthesis

We now state our main theorem, which synthesizes the
features of the interior and path-constraint optimal controls
in the (S,R) plane.

THEOREM 6. For any α ≥ 0, the optimal control to maxi-
mize the time to reach a critical time is a concatenation of
bang-bang and path-constraint controls. In fact, the general
control structure takes the form

(Y X)n(upY )m, (22)

where (Y X)n := (Y X)n−1Y X and similarly for (upY )m,
for n,m ∈ N, and the order should be read left to right.
Here up is defined in (6).

Proof. See [12].

IV. NUMERICAL RESULTS

To investigate the precise control structure as a function
of parameter values, we utilize the GPOPS-II software pack-
age [21]. We begin by fixing values as they appear in [7] for a
resistance-inducing drug (α = 10−2). The results are shown
in Figure 2.
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t
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Control

(c)

Fig. 2: Numerical solution of optimal control problem introduced in
Section III-A. Parameter values are given by S(0) = 0.01, R(0) =
0, pr = 0.2, ε = 10−6, α = 10−2,M = 3, and Vc = 0.9. (a)
Sensitive and resistant populations. (b) Corresponding phase plane
dynamics. (c) Optimal control u∗.

Note that u∗ is of the form u∗ = Y XupY , consistent
with the results of Theorem 6. A comparison of the com-
puted path-constraint control and equation (6) is provided
in Figure 3. Note the close agreement for most time points.
Furthermore, the switching structure for the bang arcs is Y X
in the region γ > 0, which also agrees with Theorem 5.

We now investigate the dependence on parameter α, the
degree to which the drug induces resistance. Parameters are
fixed as in Figure 2, unless explicitly stated otherwise. Nu-
merical results suggest optimal controls all possess the same
qualitative structure over a range of α parameters. However,
the overall success of therapy tc varies dramatically with
parameter α. In general, it appears that therapies become
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Fig. 3: Comparison of GPOPS-II output and predicted formula (6)
along line V = Vc. The numerically computed states S and R were
substituted into (6) find the control as a function of time t.

less successful for increasing values resistance induction. For
example, α = 0 has a critical time tc(α = 0) = 525, while
α = 10−2 has a corresponding tc(α = 10−2) = 171. This is
intuitive, but the mathematical model allows us to quantity
the outcomes of optimal therapies precisely.

A study of the tradeoff between cytotoxicity and
resistance-induction is also analyzed. Recall that parameter
d measures the overall cytotoxic potential of the therapy.
One might assume that therapies with larger values of d
are always preferable. Computing numerically we find that
tc(d = 0.5, α = 10−2) = 139 as compared to tc(d =
1, α = 10−1) = 81. Ignoring the effect of drug-induced
resistance, one might conclude that the latter therapy will
be more effective, as it has an increased ability to eliminate
cancerous cells. However, the ability to promote resistance
dominates in this instance, and we see that the less cytotoxic,
less mutagenic therapy is actually superior.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have analyzed the mathematical model (1)
introduced in [7] that describes both the traditional genetic
origin of resistance, as well as drug induced resistance that
can occur at both the genetic and epigenetic level. Using the
Maximum Principle and differential-geometric techniques we
have analyzed the structure of the zero set of Φ, and analyzed
the overall structure of the optimal control. Numerical results
suggest that drugs which promote resistance have less clin-
ical potential. Furthermore, cytotoxicity and induction need
to be considered simultaneously when designing therapies
for maximally effective clinical results.

The present work provides candidates for the optimal
control which maximizes time until treatment failure. We
are currently exploring the precise dependence of treatment
success on cytotoxicity and induction, as well as to extend
the model to include both reversible drug-induced resistance
and controls problems related to multiple chemotherapeutic
agents targeting both cell populations. For complete proofs
of presented theorems and the discussed extensions, see [12].
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