
Response time re-scaling and Weber’s law in adapting biological systems

Abdullah Hamadeh∗,†, Eduardo Sontag†, Brian Ingalls∗,‡

Abstract— Systems biology has revealed numerous examples
of networks whose dynamic behavior is robust to system per-
turbations and noise. In many cases, this behavior arises from
simple yet fundamental features of the system architecture. A
well-studied example is the chemotactic response of Escherichia
coli. In various models of this system, it is shown that simple
assumptions on the receptor methylation dynamics lead to
robust perfect adaptation of chemotactic activity.

Recent experimental work has also shown that the transient
E. coli chemotactic response is unchanged by a scaling of its
ligand input signal; this behavior is called fold change detection
(FCD), and is in agreement with earlier mathematical predic-
tions. However, this prediction was based on very particular
assumptions on the structure of the chemotaxis pathway. In this
work, we begin by showing that behavior similar to FCD can
be obtained under weaker conditions on the system structure.
Namely, we show that under relaxed conditions, a scaling of
the chemotaxis system’s inputs leads to a time scaling of the
output response. We propose that this may be a contributing
factor to the robustness of the experimentally observed FCD.
We further show that FCD is a special case of this time scaling
behavior for which the time scaling factor of unity.

We then proceed to extend the conditions for output time
scaling to more general adapting systems, and demonstrate this
time scaling behavior on a published model of the chemotaxis
pathway of the bacterium Rhodobacter sphaeroides. This work
therefore provides examples of how robust biological behavior
can arise from simple yet realistic conditions on the underlying
system structure.

I. INTRODUCTION

Signal processing and control mechanisms of a remarkable

level of sophistication have been revealed to be at the

heart of many cellular processes. The capability of cells

to extract and process information from their environment

allows them to optimize their responses and their allocation

of resources, thus bequeathing selective advantages to the

organism. However, such an ability must necessarily be a

robust property for it to be effective in the cell’s noisy

and uncertain environment. A key aim of systems biology

is to identify the mechanisms through which robustness is

achieved in cellular processes.

Such sources of robustness can be identified through

the analysis of models of biological systems. An example

of this is adaptation in the Escherichia coli chemotaxis

model. In [1] it was shown that adaptation of chemotactic

activity in the model presented in [2] can be explained

as an instance of integral feedback control. Two simple

biochemical assumptions are sufficient for this mechanism to

arise, namely that the enzyme CheR methylates only inactive

receptors, whilst CheB demethylates only active receptors.
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Moreover, as a consequence of integral control, adaptation

in this system is a property that is robust to variations in

biochemical parameters such as protein copy numbers and

rates of methylation and phosphorylation reactions.

In a further, more recent, study of bacterial chemotaxis

response [3], it was shown that the dynamic model of

the chemotaxis system presented in [4] displays a property

known as Fold Change Detection (FCD). With this property,

the chemotaxis output response is invariant under scalings

of its sensed ligand input, as illustrated in Figure 1. This

depends on two assumptions on the chemotaxis system.

The first is that the system shows logarithmic tracking of

its sensed ligand input. The second assumption is that the

average receptor activity is a sigmoidal function of the

average receptor methylation state at a fixed ligand level.
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Fig. 1. Fold change detection: a scaling of the input signal L(t) has no
effect on the adapting output A(t).

In this work, we show that with some simple conditions

on the structure of adapting systems, qualitative behavior that

approximates FCD can be observed. In particular, we show

that in response to step inputs, these conditions lead to the

feature that the maximum amplitude of the output response

is invariant under a scaling of the input, a property known as

Weber’s law [8], illustrated in Figure 2. To demonstrate this,

we give conditions under which a scaling of a step input will

lead to an output response that is a time scaled version of the

system’s response to an unscaled input. We also show that

these conditions on system structure are less restrictive than

those required for FCD, which is what would be expected

from the fact that Weber’s law is a weaker property than

FCD.

This paper is organized as follows: we first give a brief

introduction to the E. coli chemotaxis network and review the

properties of this system that lead to FCD. We then show that

by relaxing some of the conditions on the model structure

the system will no longer exhibit FCD, but it will display the

weaker property of Weber’s law. After presenting conditions

for this property in more general systems, we demonstrate

our results on the more complex chemotaxis model of the

bacterium Rhodobacter sphaeroides.
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Fig. 2. Weber’s law: a scaling of the input L(t) leads only to a time
scaling of the adapting output A(t).

With this work, we aim to further the idea that robust

biological behavior arises from simple conditions that are

relatively insensitive to parameter values. We believe that

this approach to understanding the dynamics of biological

systems can provide insight into how cellular modules inter-

act to produce structured behavior, and can offer some ideas

on how robust synthetic circuits can be designed.

II. PROPERTIES OF THE E. coli CHEMOTAXIS SYSTEM

OUTPUT RESPONSE

A. A review of adaptation in E. coli chemotaxis

Many bacteria have evolved chemotaxis mechanisms with

which to navigate their environment towards chemically

favorable conditions. In the bacterium E. coli this is achieved

through a biochemical feedback system that controls its

random walk pattern of swimming by modifying the ac-

tivity of the molecular ‘brake’ that acts on the bacterium’s

propulsive flagella [2], [6]. As shown in Figure 3 protein

receptors (known as methyl-accepting chemotaxis proteins)

span the bacterial cell’s membrane, detect ligands in the cell’s

environment, and undergo methylation and de-methylation

reactions in the cell’s interior. Methylation of the receptors

increases their activity in triggering the phosphorylation of a

chain of chemotaxis signalling proteins. Activation of this

cascade culminates in the phosphorylation and activation

of the protein CheY, which interacts with the bacterium’s

flagella, causing an increase in the frequency of stopping

and re-orientation of the cell. In contrast, a sensed increase in

chemoattractant ligands causes this activity to fall, resulting

in smooth swimming. At the same time, phosphorylation

of the chemotaxis protein cascade results in the activation

of the chemotaxis protein CheB, which increases the de-

methylation rate of the receptors. Thus, a sensed increase

in the ligand concentration causes the activity level to fall,

increasing the average swim length, but this is followed by

a decrease in the de-methylation rate of the receptors. The

subsequent increase in methylation restores the activity, and

hence the average swim length, to its pre-stimulus level. This

return to the same average swim length, a feature termed

adaptation, is observed over a wide ligand concentration

range. The source of this adaptation can be traced to the

specificity with which the chemotaxis proteins bind and

methylate and de-methylate receptors, a process that takes

place on a slower time scale than the activation of the protein

cascade [6]. The protein CheR, which operates at saturation,

preferentially methylates receptors that are inactive, whereas

the protein CheB is known to preferentially de-methylate

active receptors [1]. Denoting the average methylation level

of receptors by m and the activity level as a, after a quasi-

steady state assumption on the phosphorylation dynamics,

the methylation dynamics can be approximated by

ṁ = R(a)(1− a)−B(a)a, a = G(m,L) (1)

where R(a) quantifies the rate of methylation of inactive

receptors and is increasing in a, B(a) represents the rate of

de-methylation of active receptors and is also increasing in a,

and L is the ligand concentration level. More generally how-

ever, and for the purposes of our analysis, the methylation

dynamics can be represented, as in [4], as

ṁ = F (a), a = G(m,L) (2)

where F (a) is a continuous, strictly monotonically decreas-

ing function of a and G is a continuous function where ∂G
∂m

>

0, ∂G
∂L

< 0 (due to the effects of methylation and ligand

binding in respectively increasing and decreasing receptor

activity). Note that with this structure, system (2) exhibits

adaptation: it has a unique fixed point for any L, and the

output at any fixed point, given by a = F−1(0), is indepen-

dent of L. Thus, relatively mild monotonicity conditions lead

to a robust adaptation behavior regardless of the exact values

of this system’s parameters [2], [1]. In this paper, we argue

that further qualitative and robust dynamic behaviors can

also be obtained from simple conditions on system structure.

In particular, we show that similar monotonicity conditions

can be sufficient for adapting systems such as the E. coli

chemotaxis system to exhibit Weber’s law [8].

Many variations of the model (1) exist, including that

in [7] where the dependence of B on a is assumed to

be dynamic and where the methylation dynamics are not

averaged, but split into a series of ODEs that model the

varying degrees of methylation of the receptors.
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Fig. 3. Schematic of the E. coli chemotaxis pathway.

B. Models of E. coli chemotactic activity

The chemotaxis model in [4] is of the form in (2). It

departs from previous models such as [2], [7] in its use of a

thermodynamic approach to construct a model of the average

receptor activity as a function of the average methylation

level m and the sensed ligand concentration L, based on the

Monod-Changeaux-Wyman allosteric model [9]. The form

given for the activity in that reference is
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a(m,L) =
1

1 + exp(ft)
(3)

where
ft = N(fm(m) + fL(L)) (4)

with N being the size of receptor clusters and fm(m),
fL(L) being the contributions to the free energy difference

between active and inactive receptors due to methylation

and ligand binding respectively. It is shown in [10], [4] that

fL(L) = ln(1 + L
KI

) − ln(1 + L
KA

), where the logarithmic

form comes from the change in ligand translational entropy

due to receptor binding. In [4], [11] it is shown by data fitting

that fm(m) is an approximately affine, decreasing function

of m and is given by fm(m) = α(m0 −m). In the range of

ligand concentrations KI ≪ L ≪ KA, the system (3), (4)

can be approximated by

a(m,L) =
1

1 + exp[N(α(m0 −m))]
[

L
KI

]N
(5)

We can alternatively use mass action kinetics to arrive at

a model for the activity given by

a(m,L) =
1

1 + 1
h(m)

[

1+ L

KI

1+ L

KA

]N
(6)

(see Appendix) which is of a form very similar to that in

[4]. Note also that in the ligand range KI ≪ L ≪ KA we

can make an approximation of (6) that is similar to (5):

a(m,L) =
1

1 + 1
h(m)

[

L
KI

]N
(7)

As discussed in the Appendix, the function h(m) quantifies

the ratio of active to inactive receptors when L = 0. We

assume that h(m) is strictly increasing based on the fact that

the kinase activity of the receptor complex increases with the

average receptor level of methylation. We further assume

that h(m) is differentiable. Note that using the alternative

modeling approach of [4], the ratio of active to inactive

receptors when L = 0 is given by
a(m,0)

1−a(m,0) = eNα(m−m0)

which, as with h(m), is an increasing function of m.

Reference [5] presents the activity level AM (L) of a recep-

tor in the M th methylation state (where M ∈ {0, 1, 2, 3, 4})

when the ligand concentration is L by

AM (L) =
1

1 + 1−pM

pM

1+ L

KI

1+ L

KA

(8)

where pM is the probability of activity of a receptor in

the M th methylation state when L = 0. From [12], these

probabilities are p0 = 0, p1 = 0.125, p2 = 0.5, p3 = 0.874
and p4 = 0.997. By fitting a continuous function of the

average methylation level m to AM (0), we can arrive at a

model of the form (6). With the above values of p0, · · · , p4,

the model AM (0) can be approximated by the Hill function

a(m, 0) = m4

m4+15 (see Figure 4). At the ligand level L,

a(m,L) =
1

1 + 15
m4

[

1+ L

KI

1+ L

KA

] (9)

Note that here, h(m) = m4

15 and N = 1.
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Fig. 4. The average chemotaxis receptor activity in E. coli is an increasing
function of the average receptor degree of methylation. Shown here is a
fit of the average activity level a(m, 0) to the probabilities of activity pM
which are estimated in [12]) for different average methylation levels.

In the following section we will be making use of the

following approximation to the receptor activity: in the range

KI ≪ L ≪ KA, (9) can be approximated by

a(m,L) ≈
1

1 + 15
mk

[

L
KI

] (10)

C. FCD and Weber’s law in the E. coli chemotactic response

In agreement with theoretical predictions made in [3]

based on the model (2), (5), it was experimentally shown

in [13] that E. coli displays fold change detection (or, FCD)

in its activity in the ligand range KI ≪ L ≪ KA. This

is the property, illustrated in Figure 1, that the chemotaxis

system output activity a(t), in response to ligand inputs L(t)
and pL(t), p > 0 are identical when the initial conditions

are the steady states pre-adapted to the constant inputs L(0)
and pL(0) respectively. More formally, if (2), (5) exhibits a

solution m1(t) in response to an input ligand signal L1(t)
(with initial condition pre-adapted to the constant input

L1(0)), and a solution m2(t) in response to an input ligand

signal L2(t) = pL1(t), p > 0 (with initial condition pre-

adapted to the constant input L2(0) = pL1(0)), then the

outputs a1(m1(t), L1(t)), a2(m2(t), L2(t)) resulting from

the two solutions are such that a1(t) = a2(t).
We shall next show that, in response to step inputs, output

behavior similar to FCD can be achieved by model (2), (9)

in the ligand range KI ≪ L ≪ KA, where (10) holds.

Consider the model (2), (10), subject to a step input L(t)
(where, without loss of generality, the step is taken at time

t = 0), and assume that the initial state is pre-adapted to

the constant input L(0). We denote the solution in response

to this input by m(t) = φ(t) and the corresponding output

a(φ(t), L(t)). Now suppose that the input is scaled by a

factor p > 0. Adopting the change of variable w4 = m4p−1,

the chemotaxis system (2), (10) can be written as

dw

dt
= p−

1
4F (a), a(w,L) =

1

1 + 15
w4

[

L
KI

] (11)

Defining time scale T = p−
1
4 t, we can re-write (11) as

dw

dT
= F (a), a(w,L) =

1

1 + 15
w4

[

L
KI

] (12)
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Now since the input signal is a step input at time t = T = 0,

it follows that L(T ) = L(t). In the new time scale (12)

is identical to the original system (2), (10) and therefore

w(T ) = φ(T ) = φ(p−
1
4 t). The resulting activity is then

a(φ(T ), L(T )), a time scaled version of the output resulting

from the unscaled input L(t). Figure 5 (left) shows the

simulations of the model (1), (10) where KI = 18, kr =
kb = 1, subject to three step inputs scaled by p = 1, 5, 10.

The right panel shows that time scaling the outputs by p
1
4

aligns them, demonstrating that scaling the input by p causes

a time scaling of the output by p−
1
4 , as shown above.

Weber’s law is the property whereby systems exhibit the

same maximal output in response to a given proportional

change in input. As shown in Figure 2, the time scaling

behavior shown here is an example of Weber’s law, since,

by definition, a mere time scaling of the adapting output

will leave its maximum amplitude unchanged, but will cause

a stretching of the response along the time axis. In Section

III we will show that the only condition needed on h(m)
for such time scaling behavior to hold in response to step

inputs is strict monotonicity. Therefore as with adaptation,

we find that a monotonicity condition is sufficient to yield a

robust dynamic property: F (a) being strictly monotonically

decreasing leads to adaptation, whilst h(m) being strictly

monotonic leads to Weber’s law.
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Fig. 5. Left: Simulated outputs a(t) of the model (2), (10) subject to inputs
pL(t), p = 1, 5, 10. The signal L(t) is a 25% step at time t = 0, where

L(0
−
) = 75. Right: Simulated outputs time scaled by p

1
4 .

If instead of h(m) = m4

15 we have h(m) = eα(m−m0)

as in [4], repeating the analysis above (with the change of

variable eαw = eαmp−1) yields T = t, a time scaling factor

of unity. Therefore scaling the input L(t) by p > 0 yields the

same output a(t), which is fold change detection as defined

by [3], [13], [14].

III. RESULTS

In the following we will be studying how the output

response of dynamical systems of the form

dx

dt
(t) =f(x(t), u(t), y(t)), x ∈ X ⊂ R

n, u ∈ R

y(t) =g(x(t), u(t)) y ∈ R
q

(13)

changes under transformations of the input signal u(t). We

will assume that (13) has a unique steady state σ(u) for each

constant input u.

Definition 1 (Response time re-scaling): Consider a class

of input signals U and a class of transitive and surjective

input transformations Π, where π ∈ Π is such that π : R 7→

R. System (13) exhibits response time re-scaling (RTR) with

respect to inputs u ∈ U and input transformations Π if ∀u ∈
U and ∀π ∈ Π there exists T = T (t), T ∈ K∞ such that

g(x(t), u(t)) = g(x(T (t)), π(u(T (t)))).
Proposition 1 presents a condition for (13) to display RTR

in the sense of Definition 1 when it is subject to inputs in

the set Us, which we define as follows: u(t) ∈ Us if

u(t) =

{

µ0 t = 0
µ t > 0

for any constants µ, µ0 > 0.

Proposition 1: Consider (13) subject to input u ∈ Us and

with initial state σ(u(0)). Suppose that for all π in the class

of transitive and surjective input transformations Π there

exist ρ : X 7→ X , λ : X 7→ R>0 which are such that
ρ∗(x)f(x, π(u)) = λ(ρ(x))f(ρ(x), u)
g(x, π(u)) = g(ρ(x), u)

(14)

where ρ∗ denotes the Jacobian of ρ. Then system (13)

exhibits response time re-scaling in the sense of Definition

1 with T−1(t) =
∫

λ(ρ(x(t))) dt, T (0) = 0.

Proof: Let u ∈ Us and denote by x(t) =
φ(t, σ(π(u(0))), π(u)) the solution to (13) with input π(u)
and with initial state σ(π(u(0))), yielding output

y(t) = g(x(t), π(u(t))) (15)

Note that by the surjectivity of π we have π(u) ∈ Us.

Next, let θ(s) =
∫

λ(ρ(x(s))) ds, θ(0) = 0. Consider the

signal z(t) = ρ(x(θ−1(t))), which obeys

dz

dt
(t) = ρ∗(x(θ

−1(t)))f(x(θ−1(t)), π(u(θ−1(t))))
dθ−1(t)

dt
(16)

Observe that
dθ−1(t)

dt
=

1

θ′(θ−1(t))
=

1

λ(ρ(x(θ−1(t))))
=

1

λ(z(t))
(17)

Using (14), (17) and the fact that u(t) = u(θ−1(t)), we

obtain from (16) that
dz

dt
(t) = λ(z(t))f(z(t), u(t))

1

λ(z(t))
= f(z(t), u(t))

which has solution z(t) = φ(t, σ(u(0)), u) and output y(t) =
g(z(t), u(t)). From (14) and the relation u(t) = u(θ−1(t)),
this output can be written as

y(t) = g(ρ(x(θ−1(t))), u(t)) = g(x(θ−1(t)), π(u(θ−1(t))))
(18)

Comparing (15) and (18), we find that the output y(t)
arising from (13) subject to input π(u) and with initial state

σ(π(u(0))) is equal to the output y(t) arising from the input

u and initial state σ(u(0)) when the former is time scaled

by θ−1(t). Therefore under step inputs u and π(u), with

π ∈ Π, and under the respective steady state initial conditions

σ(u(0)) and σ(π(u(0))), system (13) exhibits RTR in the

sense of Definition 1 with T = θ−1.

A consequence of the transitivity of input transformations

π ∈ Π is that systems (13) exhibiting RTR also show

adaptation in y, as demonstrated in the following corollary.

Corollary 1 (Adaptation): When at the steady state

σ(µ0), corresponding to a constant input µ0, systems of the

form (13) that show RTR in the sense of Definition 1 exhibit

a constant output y that is independent of µ0.
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Proof: Denote by x(t) = φ(t, x(0), u) the solution

to (13). When u(0) = µ0 and x(0) = σ(µ0), the system

exhibits output y(0) = g(φ(0, σ(µ0), µ0), µ0). Similarly,

when u(0) = π(µ0) for some π ∈ Π and x(0) = σ(π(µ0)),
the output is y(0) = g(φ(0, σ(π(µ0)), π(µ0)), π(µ0)). Since

the system exhibits RTR, we have that

g(φ(0, σ(µ0), µ0), µ0) = g(φ(0, σ(π(µ0)), π(µ0)), π(µ0))

Since π is transitive, it follows that for any pair of constants

µ0, ν0, there exists π such that ν0 = π(µ0). Therefore for

any constants µ0, ν0, it follows that g(φ(0, σ(µ0), µ0), µ0) =
g(φ(0, σ(ν0), ν0), ν0), showing that steady state responses of

systems (13) to constant inputs yield the same outputs y.
To compare the sufficient conditions for RTR with those

for FCD under step inputs, note that the conditions given in

[3] are identical to (14) except that the function λ(ρ(·)) in

Proposition 1 needs to be identically equal to one for FCD.
In Section II-C we observed that Weber’s law can be

observed in the response of E. coli chemotaxis models in

the sense that a magnitude scaling of a step change in

sensed ligand input leads to a time scaling of the observed

chemotactic activity. This section has given conditions for

response time re-scaling as per Definition 1. In its usual

definition, Weber’s law is defined as the conservation of

the maximal amplitude of a system’s output response after a

positive scaling of its input signal [4]. It is a weaker property

than RTR, with RTR implying Weber’s law. This can be seen

visually in the simple example in Figure 6. In the top panel,

the two output responses display Weber’s law but not RTR,

since, although the two responses have the same maximal

amplitude, it is clear that a mere time scaling will not align

the two curves. In the bottom panel, the two responses show

both Weber’s law and RTR, since the two curves can be

aligned by a sufficient horizontal scaling of either.

Time t

O
u

tp
u

t

Time t

O
u

tp
u

t

Maximal amplitude

Maximal amplitude

Fig. 6. Top: Weber’s law response but not RTR. Bottom: Weber’s law
response and RTR.

A. RTR in response to multiplicative and additive input

transformations

Integral feedback control is the feature of E. coli chemo-

taxis models such as [2], [4] that is responsible for adapta-

tion. References [13], [3], [14] also give conditions under

which such systems exhibit FCD. Here we consider two

particular classes of integral feedback systems; the first

shows RTR under multiplicative input transformations and

the other shows RTR under additive transformations.

Proposition 2: Systems of the form

ẋ = F (y) x ∈ R, u ∈ R>0

y = G(h(x)ur) y ∈ R, r ∈ R
(19)

where h : R 7→ R is an invertible, differentiable function, sat-

isfy the conditions of Proposition 1 and hence exhibit RTR in

the sense of Definition 1 under multiplicative transformations

of the step input u, of the form π(u) = pu, p > 0.

Proof: Setting ρ(x) = h−1(h(x)pr) and

λ(x) =
pr

h′(x)
h′

(

h−1

(

h(x)

pr

))

we find that G(h(x)urpr) = G(h(ρ(x))ur) and

ρ∗(x)F (G(h(x)urpr)) = λ(ρ(x))F (G(h(ρ(x))ur))

Note that λ(x) > 0 since the invertibility of h guarantees

that the ratio of h′

(

h−1
(

h(x)
pr

))

and h′(x) is positive. The

conditions of Proposition 1 for RTR are thus satisfied.

Corollary 2: Systems of the form

ẋ = F (y) x ∈ R, v ∈ R>0, r ∈ R

y = G(k(x) + γv) y ∈ R, γ ∈ R
(20)

where h : R 7→ R is an invertible, differentiable function,

satisfy the conditions of Proposition 1 and exhibit RTR in the

sense of Definition 1 in response to additive transformations

of step input v, of the form π(v) = v + p, p > 0.

Proof: By defining G̃(·) = G(ln(·)) we can re-write

the output of (20) as y = G̃(h(x)urpr) where h(x) =
exp(k(x)), u = exp(v), r = γ. With these definitions, we

can then directly apply Proposition 2 to system (20).

IV. EXAMPLE

Unlike the E. coli chemotaxis network, that of the bac-

terium Rhodobacter sphaeroides has two distinct sensory

clusters, one spanning the cell membrane that senses the

presence of ligands in the bacterium’s environment, and

another within the cytoplasm that is believed to integrate

internal metabolic information with the externally sensed

ligand concentration signal [6]. These receptors control the

kinase activity of chemotaxis proteins that phosphorylate

a number of proteins analogous to the CheY and CheB

proteins in E. coli. Two of these proteins, CheB1, CheB2,

play a role analogous to CheB in E. coli, de-methylating

the receptors. The R. sphaeroides chemotaxis model in [15]

suggests that CheB1 acts on the membrane cluster whilst

CheB2 de-methylates both clusters.

Two states, m1 and m2, represent the average methylation

states of the membrane and cytoplasmic receptors respec-

tively, and the respective kinase activities of the receptor

complexes are denoted a1 and a2. The membrane cluster

senses an external ligand concentration L. As in [15], we al-

low for a degree of communication between the two clusters

through a signal that is a function of the membrane cluster
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activity, a1. This signal scales the external ligand signal L to

form the signal L̃ that is sensed by the cytoplasmic cluster.

If, as in the E. coli model in [4], we assume that the

chemotaxis protein phosphorylation dynamics are fast com-

pared to the methylation dynamics, we can represent the R.

sphaeroides chemotaxis model in [15] as

ṁ1=K3(1−a1)−K2a1[B1(a1) +B2(a2)], a1 =
m1

K1 + L

ṁ2=K3(1−a2)−K2a2[B2(a2)], a2 =
m2

K1 + L̃
, L̃ =

L

a1
(21)

It can be shown that a1 is bounded by 1, and therefore if

L ≫ K1 then L̃ ≫ K1, in which case a1 ≈ m1

L
and a2 ≈ m2

L̃
which allows us to approximate (21) by

[

ṁ1

ṁ2

]

=

[

K3(1−a1)−K2a1[B1(a1) +B2(a2)]
K3(1−a2)−K2a2[B2(a2)]

]

a1=
m1

L1
, a2=

m2

L̃
, L̃=

L1

a1

(22)

We wish to study the activity responses a1(t), a2(t) of

this system when it is subject to a ligand input signal

L(t) = L1(t) and to positive scalings of this signal, given

by L(t) = L2(t) = pL1(t), p > 0. By letting ρ(m1,m1) =
1
p
[ m1 m2 ]T and λ(m1,m2) = 1

p
, we find that (22)

satisfies the conditions of Proposition 1 and that a scaling

by p > 0 of the input L that is applied to (22) results in

a time scaling of the outputs a1, a2 of this system by p−1.

This is illustrated for the output a1 in Figure 7.

0 500 1000 1500 2000 2500
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55
x 10

−3

Time t

M
e

m
b

ra
n

e
 c

lu
s
te

r 
a

c
ti
v
it
y

 

 

p=1

p=2

p=3

0 500 1000 1500 2000 2500
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55
x 10

−3

Time t

M
e

m
b

ra
n

e
 c

lu
s
te

r 
a

c
ti
v
it
y

 

 

p=1

p=2 timescaled by factor of 2

p=3 timescaled by factor of 3

Fig. 7. Left: Simulated outputs a1(t) of the model (22) subject to
inputs pL1(t), p = 1, 2, 3. The signal L(t) is a 25% step at time
t = 0, where L(0

−
) = 750. Right: Simulated outputs time scaled by

p. Model parameters: K1 = 20,K1 = 33.75, K3 = 0.0612, B1(a1) =
1, B2(a2) = 0.2.

V. DISCUSSION

We have presented conditions under which transformations

of step inputs applied to adapting systems cause a time

scaling of their output responses. These results extend earlier

results that give conditions for fold change detection. We

have shown that the conditions for systems to display time

scaling are less restrictive than those required for exact FCD.

Furthermore, we have shown that by quantifying the degree

of time scaling, we can measure the extent of the system

response’s deviation from FCD.

APPENDIX

We can assume that receptors are either bound or unbound

to ligand, and either active or inactive. The binding reaction

between inactive receptors (concentration [I]) and ligands

(concentration [L]), which has dissociation constant KI ,

can be represented as [I] + [L] ↔ [IL] so that in steady

state [IL]KI = [I][L]. Similarly, the reaction between

active receptors (concentration [A]) and ligands, which has

dissociation constant KA, is [A] + [L] ↔ [AL] so that in

steady state [AL]KA = [A][L]. The average receptor activity

level a can be approximated as

a =
[AL] + [A]

[AL] + [A] + [IL] + [I]
=

1

1 + [I]
[A]

[

1+ L

KI

1+ L

KA

] (23)

When the receptors form clusters of size N , the above

derivation can be extended to arrive at the model of the

activity given by a = 1

1+
[I]
[A]

[

1+ L

KI

1+ L

KA

]

N . The quantity
[A]
[I] ,

which is the ratio of active to inactive receptors when L = 0,

increases with the average receptor methylation level m and

can hence be modeled as a strictly increasing function h(m).
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