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ABSTRACT

A controller is shown to exist, universal for the family of all systems of fixed dimension n, and m controls,
which stabilizes those systems that are stabilizable, if certain gains are large enough.  The controller
parameters are continuous, in fact polynomial, functions of the entries of the plant.  As a consequence, a
result is proved on polynomial stabilization of families of systems.

1. Introduction.
This work continues the investigation of synthesis problems for parametrized families of systems.

There are two main motivations for this line of research.  The first is the expectation that parametrized
controllers should prove useful in shifting the computational effort to "offline" preprocessing in situations in
which the precise values of some system parameters are not known in advance but can be determined
on-line. The second motivation is purely mathematical: it is natural to ask whether the constructions in
control theory can be made "continuous" or "algebraic" in system parameters.

Consider, for any fixed positive integers n,m, the set of all possible continuous-time systems

⋅x(t) = Ax(t) + Bu(t) , (1.1)

for A an n×n and B an n×m real matrix.  We know that, if a given pair (A,B) is stabilizable --that is, all
uncontrollable eigenvalues of A have negative real part,-- then there exists a feedback matrix K = K(A,B)
such that A-BK is Hurwitz (has all eigenvalues with negative real part).  This construction is continuous, in
fact smooth, on the stabilizable pairs (A,B), because a suitable K(A,B) can be found via the solution of a
well-posed quadratic optimization problem; see for instance [D] for a discussion of this point.  What is not
known is if a stabilizing K(A,B) can be computed in a more algebraic fashion (the optimization argument
depends on the implicit function theorem).  We shall prove in this paper that this can indeed be done
provided that dynamic feedback be allowed (we define "algebraic" precisely later).

Another natural question, which turns out to be related to the previous one about algebraic
dependency, is whether it is possible to give a more general construction of "nice" K(A,B), for arbitrary
(not necessarily stabilizable) pairs (A,B) with fixed (n,m), which results in a Hurwitz matrix A-BK(A,B)
whenever the pair (A,B) happens to be stabilizable.  Such questions are of interest in adaptive control.
Posed in this way, the answer is negative even in the case n=1,m=1: as a→1 and b→0 the limit k(a,b)
cannot be finite, since 1-0k(1,0) = 1 is not Hurwitz.  A more plausible variation is suggested by a result in
[S1] that says that there is a K(A,B) depending polynomially on arbitrary (A,B) with the property that, if
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(A,B) happens to be controllable, then A-γBK(A,B) is Hurwitz whenever the multiplicative gain γ is large
enough. Moreover, an estimate on how large is "large enough" is given explicitely by the condition that
γ>ρ(A,B), where ρ is a rational function with no poles at reachable (A,B).  For instance, for n=m=1 we may
choose k(a,b):= b; then a-γbk = a-γb2 is negative whenever γ > a/b2. Note that b≠0 is precisely the
condition that characterizes controllability in this case.

We don’t know if the above result can be generalized to work with stabilizable families (and n,m≠1).
But we present here a variation of it which states essentially that the same is true provided that dynamic
feedback is used.  (And multiple gains are allowed.) As an easy consequence of this result and through
the application of a theorem of Hormander ([H]), we conclude the above mentioned fact on algebraic
dependency.

The paper [S3] presents an introductory survey to the general topic of control of parametrized families
of systems, and should be consulted for other results and for a large list of references.  (A sketch of a
proof of the algebraic dependency result was given in an appendix to that paper.  The proof here, though
having many elements in common with that, is considerably simpler, mainly because the real algebraic
material is left out of the main proof and appears only at the end through Hormander’s theorem. Further,
the results are stronger here, in that explicit multiplicative gains are constructed. On the other hand,
discrete time systems are not treated here, and the reader is refered to [S3] for the appropriate
generalizations.)

2. Definitions and Statement of Main Result.
It is worth giving some of the needed definitions and intermediate results in somewhat more generality

than needed for the main results of this paper, since the proofs will be exactly the same, and the lemmas
proved are of interest in themselves.  The more general context is that of "systems over rings".

An (n,m) (free) system Σ over a commutative ring R is given by a pair of matrices A, B with A∈Rn×n and
B∈Rn×m. We shall be especially interested in two particular cases, "classical" real systems, for which R =
ℜ = reals, and (polynomial) families, where R = ℜ[λ] = ℜ[λ1,⋅⋅⋅,λr], the polynomial ring over the reals in the
variables λ = (λ1,⋅⋅⋅,λr), and r is an integer, the number of parameters. For any system (A,B) we consider
its associated controllability matrix C = C(A,B); this is defined in block form as

C(A,B) := [B,AB,⋅⋅⋅,An-1B] ∈ Rn×mn .

By the Cayley-Hamilton theorem, the column module C(A,B) of C(A,B) is A-invariant.  Equivalently, there
exists a matrix D = D(A,B) ∈ Rnm×nm such that

AC = CD .

(For a very readable and complete introduction to linear algebra over commutative rings, see [M].)

A very special system will be of interest, to which the intermediate lemmas will be applied in order to
conclude the main result.  For fixed (n,m), R[n,m] denotes the real polynomial ring in n(n+m)
indeterminates, R[n,m] = ℜ[α,β], where α = (α11,⋅⋅⋅,αnn) and β = (β11,⋅⋅⋅,βnm). The universal (n,m) system

Σ[n,m] is the system over R[n,m] for which (A[n,m])ij = αij and (B[n,m])ij = βij. Any (n,m) real system (A,B) can

be obtained by evaluating the entries of A[n,m] and B[n,m] at appropriate real numbers. If a = (a11,⋅⋅⋅,ann)

and b = (b11,⋅⋅⋅,bnm), we let Σ[n,m](a,b), or just Σ(a,b) denote the system obtained from the evaluations αij:=
aij and βij:= bij. The corresponding pair of matrices is denoted by A(a) and B(b) respectively, to
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emphasize the fact that we are viewing the particular system as obtained by evaluation of the entries of
the universal system at the vectors a and b respectively.

There are various abstract notions of stability for systems over rings, which generalize the standard
one for real systems.  See for instance [HS], [KS], [E].  One such notion is as follows. Assume given a
multiplicatively closed subset S of the polynomial ring R[z] which consists entirely of monic (leading
coefficient =1) polynomials and which contains at least one polynomial of positive degree.  We call S a set
of Hurwitz polynomials. With this definition, a linear map φ:M→M, where M is an R-module, is Hurwitz iff
there exists a Hurwitz polynomial p(z) which annihilates it: p(φ)=0. An n×n matrix A over R is Hurwitz if
any (and hence all) linear maps it represents are Hurwitz, that is, if there is a Hurwitz p(z) with p(A)=0 as
a matrix.  When R = ℜ, we take S = all monic polynomials with no zeroes in the closed right-half plane.  In
the case of families, we take S to be the set of all polynomials p(λ,z) in ℜ[λ][z] = ℜ[λ1,⋅⋅⋅,λr][z] monic in z

and such that p(l,z) is Hurwitz for all l∈ℜr. That is, all "pointwise Hurwitz" polynomials.

(This definition of stability for linear maps over rings is slightly different from the usual one --see above
references,-- where one asks that the characteristic polynomial of φ be itself Hurwitz.  With this new
approach, however, the definition of stabilizability becomes much more natural than in previous work.  In
any case, for the case of interest R = ℜ[λ], and A(λ) is a matrix, a pointwise argument with minimal
polynomials shows that A(λ) is Hurwitz --in the sense defined above for families-- precisely when its
characteristic polynomial is, or equivalently, iff A(l) is a classical Hurwitz matrix for each l∈ℜr.)

Fix now a system (A,B) over R. Consider the controllability module C(A,B) ⊆ Rn. Since C is A-invariant,
there is a well-defined linear mapping

Af : Rn/C → Rn/C

induced by A. The subscript "f" is intended to indicate that Af corresponds to the "free" dynamics of Σ, the

part not influenced by controls.  This can be made explicit ("Kalman decomposition") when C and Rn/C
are free.  (This happens, for all systems (A,B), if --and only if-- R is a field.)  There is in that case a
T∈Gl(R,n) such that

T-1C = ( ) ,C1
0

where C1 is a matrix of size s×nm, s = rank of C. For any such T, there are decompositions

T-1AT = ( )A1 A2
0 A3

T-1B = ( )B1
0

where B1 is s×m, and where A3 is an (n-s)×(n-s) matrix representing Af. For the universal system Σ[n,m],
we denote the mapping Af corresponding to each specialization Σ(a,b) as A(a,b)f. The ’b’ serves to
emphasize that this map depends on B(b) as well as on A(a).

The system (A,B) is called ("globally") stabilizable if Af is Hurwitz. (As a convention, in the "completely

controllable" case, in which C=Rn, --so that Af acts on a trivial module,-- we define (A,B) to be
stabilizable.) For real systems, this is well-known to be equivalent to the existence of a matrix K such that
A-BK is stable; for more general rings this is equivalent to the existence of a dynamic stabilizer over the
ring (see below).  For the case of a family (A(λ),B(λ)), i.e., a system over ℜ[λ1,⋅⋅⋅,λr], it is natural to also

define (A,B) to be pointwise stabilizable if (A(l),B(l)) is stabilizable for each l∈ℜr. It will follow from the
material in this paper that global and pointwise stabilizability coincide for families.
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For real systems, one extends results from controllable to stabilizable systems by decomposing (A,B)
as above via the change of basis T, and noting that (A1,B1) is controllable.  When dealing with rings, and

in particular with the universal systems Σ[n,m], this cannot be done.  For instance, for m=n=1, (α,β) is such
that R1/C = ℜ[α,β]/(β) is not a free ℜ[α,β]-module. More geometrically, the problem is that the reachability
matrix does not have constant rank as (A,B) ranges over all possible (n,m)-systems, that is, C does not
define a vector bundle over ℜn(n+m).

A dynamic controller for the system in equation (1.1) consists of a system of the same type, whose
inputs are the states x(t) of (1.1) and whose output is the input u(t).  Thus there are in that case a pair of
equations

⋅z(t) = Fz(t) + Gx(t), u(t) = Hz(t) + Jx(t), (2.1)

where z(t) is for each t a vector of size k (=dimension of controller) and F,G,H,J are matrices of
appropriate sizes.  Equivalently, we may write the closed-loop equations (1.1)+(2.1) as the result of
starting with the k-th extension of Σ:

Σk = (Ak,Bk) := (( ),( ) ,A 0
0 0

B 0
0 Ι

(where Ι is a k×k identity matrix, so that this is an (n+k,m+k)-system) and applying feedback

K = ( )J H
G F

to Σk. Thus it is reasonable to define a dynamic feedback controller for the system (A,B) (over any ring R)
as simply the specification of an integer k and an (m+k)×(n+k) matrix K over R. For families, this will
correspond to the specification of a (polynomially parametrized) family of real systems as in (2.1).*

Consider now the universal system Σ[n,m], and let R:= R[n,m][ε], where ε is a new indeterminate (to be
used to control stability margins).  Assume we are given nonnegative integers κ,µ, matrices Ko,⋅⋅⋅,Kµ in

R(m+κ)×(n+κ), such that the first m rows of Ko are identically zero, and elements ψ, and φi, θi, i=1,⋅⋅⋅,µ, in
R. For each set of t positive real numbers g1,⋅⋅⋅,gt, 0≤t≤µ, we introduce the parametric feedback

Kg1...gt
:= Ko + g1θ1K1 + ⋅⋅⋅ + gtθtKt .

Finally, for any (n,m)-system Σ(a,b), where a = (a11,⋅⋅⋅,ann) and b = (b11,⋅⋅⋅,bnm), and any e∈ℜ, we let

σ = σ(a,b,e) := min{i, 0≤i≤µ, θj(a,b,e)=0 for all j>i}

(so σ=0 if all θi(a,b,e) vanish, and σ=µ if they are all nonzero).  Pick any such (a,b,e), and assume first
that σ>0. Consider the set G(a,b,e) consisting of all those positive reals g1,⋅⋅⋅,gσ such that

gσθ2
σ(a,b,e) > ψ(a,b,e) + g1θ1(a,b,e)φ1(a,b,e) + ⋅⋅⋅ + gσ-1θσ-1(a,b,e)φσ-1(a,b,e) .

Note that this is a "high-gain set" in the sense that r(g1,⋅⋅⋅,gσ) is in G(a,b,e) if (g1,⋅⋅⋅,gσ) is.  If instead σ=0,
we let G(a,b,e) be arbitrary.  We shall be interested in the the closed loop characteristic polynomial

χcl := char.poly {Aκ(a) - Bκ(b)Kg1...gσ
(a,b,e)}. (2.2)

(When σ=0, χcl reduces to Aκ(a)-Bκ(b)Ko(a,b).) This is the characteristic polynomial of the composite
system

*Mixing terminologies from algebraic topology and control theory, the dynamic stabilization problem is obtained by "stabilizing" --in
the K-theoretic sense-- the static stabilization problem.



5

⋅x = Ax + B(g1K1+⋅⋅⋅+gσKσ)z
⋅z = Fz + Gx,

where F, G, and the Ki are obtained from the above data and have entries over R (and we omit the
arguments a,b,e).  The main result is:

Theorem A. For any n,m, there exist data as above such that, for each (a,b,e) and each (g1,⋅⋅⋅,gσ) in
G(a,b,e), χcl splits as a product χsχf , where χs has all roots with real part ≤ -e and χf is the characteristic
polynomial of A(a,b)f. Further, if σ=σ(a,b,e) and Aκ(a) - Bκ(b)Kg1...gσ-1

(a,b,e) is already Hurwitz, and e>0,

then (2.2) is Hurwitz for arbitrary positive gσ.n

In particular if Σ(a,b) is stabilizable and e>0, the matrix in (2.2) is Hurwitz if the gains gi are large
enough.

The proof will give (rather impractical) µ = n, κ = n2, and σ (independent of e) = dimension of the
pointwise controllability subspace C(a,b). It would be an interesting question to know if smaller κ,µ can be
used.

We shall apply Theorem A in establishing the following.

Theorem B. Let Σ = (A,B) be a system over ℜ[λ] = ℜ[λ1,⋅⋅⋅,λr] (that is, a polynomially parametrized

family of real systems).  Let Σ(l) = (A(l),B(l)) be the system obtained when substituting λ = l∈ℜr. If Σ(l) is
stabilizable for each l∈ℜr, then there exist an integer κ and a matrix K∈R(m+κ)×(n+κ) (that is, a
polynomially parametrized dynamic feedback law) such that

A(l)κ - B(l)κK(l)

is Hurwitz for all l∈ℜr.

The following local-global principle is basically a restatement of the above:

Theorem C. A family (A,B) is stabilizable iff it is pointwise stabilizable.
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3. Some Results on Systems over Rings.
We need a lemma on pseudoinverses of matrices over rings, which generalizes the result in [S2].  This

is exactly as in [S3], but since the construction is so central to all that follows, we include the (short) proof
here. We let R be an arbitrary commutative ring.

Let C = (cij) be an n×q matrix over R. For any positive r ≤ min{n,q}, we denote by Ιr(C) the ideal of R
generated by all the r×r minors of C. In general, we let C(α,β), where α and β are ordered sets of indices
for rows and columns respectively, denote the minor obtained from the rows/columns indexed by α, β.
Thus Ιr(C) is the set of all linear combinations, with coefficients in R, of the C(α,β) with α and β ordered
index sets of cardinality r.  If α = (α1,⋅⋅⋅,αr) and ν is an integer, we write "ν∈α" to indicate that there is an
index k such that αk = ν; this index k is then denoted by α[ν]. If ν∈α, α\{ν} denotes the (r-1)-tuple
obtained by deleting ν; if ν∉α, α∪{ν} is the (r+1)-tuple obtained by inserting ν in the appropiate position of
α. Finally, we also let C({},{}):= 1 for the empty sets of indices, and Ιs(C):= {0} if s is larger than min{n,q}.

Lemma 3.1: ([S3]) Let C be as above, and let θ be an arbitrary element of Ιr(C). Then there exists a
matrix H over R such that

CHC = θC + L

for some matrix L all whose entries are in Ιr+1(C).

Proof: Let θ = -∑mα,βC(α,β) be an expression in terms of the generators of Ιr(C) (we will omit
summation indices when clear from the context).  Then, define H := (hij), where

hji := ∑ (-1)α[i]+β[j]+1C(α\{i},β\{j})mα,β (3.1)

with the sum over all ordered index sets α and β of cardinality r for which i∈α and j∈β. We must prove
that, for each indices ν, µ, (CHC)νµ = θcνµ + l, with l in Ιr+1(C). This is done exactly as in [B] (which deals
essentially with the case θ = 1).  First note that, for any such ν, µ, and any fixed index sets as above α, β,

∑ (-1)α[i]+β[j]+1cνjciµC(α\{i},β\{j}) + cνµC(α,β) = l, (3.2)

(sum over all i∈α and j∈β) with l in Ιr+1(C). This is proved as follows.  Let l := det(C), where C is obtained
by adjoining row ν and column µ to the matrix corresponding to α and β. Thus either det(C) = 0 (if ν∈α or
µ∈β) or det(C) = ±C(α∪{ν},β∪{µ}), so that l is in Ιr+1(C) as required.  The formula now follows by
expanding first in terms of the last row and then the last column.  Now just calculate (CHC)νµ =

∑ i,jcνjhjiciµ. Substituting 3.1 into hji, and using property 3.2, this equals θcνµ + l∑mα,β.n

Lemma 3.2: Let Σ = (A,B) be an (n,m)-system over R, and let C = C(A,B).  Pick θ1,⋅⋅⋅,θn in R such that

θi∈Ii(C) for each i.  Then, there are matrices H1,⋅⋅⋅,Hn in Rmn×n with the following property.  Let γ1,⋅⋅⋅,γn be
indeterminates over R, and let

G(γ1,⋅⋅⋅,γn) := A - C∑ γiθiHi
n
i=1

(a matrix over R[γ1,⋅⋅⋅,γn]). Let F be an algebraically closed field and π: R[γ1,⋅⋅⋅,γn]→F a ring
homomorphism. A superscript π in a matrix will denote evaluation of all entries by π. Assume that rankCπ

= σ>0. Then, the characteristic polynomial of G(γ1,⋅⋅⋅,γσ,0,⋅⋅⋅,0)π factors as

χfχs ,

where χf is the characteristic polynomial of (Aπ)f and where each root of χs is of the form
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ρ - γπ
σ(θπ

σ)2 ,

ρ = eigenvalue of G(γ1,⋅⋅⋅,γσ-1,0,⋅⋅⋅,0)π.

Proof: We apply lemma (3.1) n times, using always the same matrix C but with each of the
possible θ = θi. There result n matrices Hi, with

CHiC = θiC + Li, Li with entries in Ii+1(C) .

(Thus Ln=0.) Let Ei:= CHi for each i=1,⋅⋅⋅,n. Then,

Ei
2 = θiEi + Ni, Ni with entries in Ii+1(C) .

Consider now a homomorphism π such that rank(Cπ)=σ>0. Then, Ij(C
π)=0 for j>σ, so Nj

π and θj
π vanish

for such j.  In particular,

(Eπ
σ)2 = θπ

σEπ
σ .

Thus Eπ
σ is annihilated by

z(z-θπ
σ) .

If θπ
σ ≠ 0, the minimal polynomial of Eπ

σ is either z(z-θπ
σ), z, or z-θπ

σ.

We let E=Eσ, θ=θσ, and γ=γσ. Further, we drop from now on the superscripts π; thus A will denote
Aπ, θ denotes θπ

σ, and so forth. This will cause no confusion, since all further arguments are over the given
field F. Assume first that θ≠0. It follows then from the form of the minimal polynomial of E that there is a
T∈Gl(F,n) such that

E1 := T-1ET = ( ) .θΙ 0
0 0

If the minimal polynomial is z-θ, the 0 blocks are not there.  If instead the minimal polynomial is z, the θΙ
block is empty (but we prove later that this case cannot happen).  Let

L = ∑ γiθiHi
a
i=1

where a=σ-1, (evaluated by π), and H be Hσ (evaluated). Since

E = CH and C = (1/θ)EC ,

it follows that E and C have the same column space, so rankE = σ. Thus the block θΙ in E1 is σ×σ.
Denote

C1 := T-1C, A1 := T-1AT, LT = (L1,L2) , (3.3)

where L1 is nm×σ and L2 is nm×(n-σ). Then, the equality E1C1 = θC1 implies that C1 has the partitioned
form

( ) ,C2
0

(3.4)

where C2 is of size σ×nm. Thus C2 has rank σ. Finally, partition A1 as

( ) ,A11 A12
A21 A22

(3.5)

where A11 is σ×σ. From the A-invariance of C, we can write

AC = CD ,

from where it follows that A1C1 = C1D, and hence A21C2 = 0.  Since C2 has rank σ and A21 is σ×σ, we
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conclude that A21=0; thus we are in the standard case discussed in the introduction where A22 represents
Af. Note that then

T-1(A-CL-γθE)T = (3.6)

( ) ,A11−C2L1−γθ2Ι A12−C2L2
0 A22

so the characteristic polynomial of the desired G(γ1,⋅⋅⋅,γσ,0,⋅⋅⋅,0) = A-CL-γθE splits as that of Af and of

A11-C2L1-γθΙ. The eigenvalues of the latter matrix are translates by γθ2 of those of A11-C2L1, which is in
turn by formula (3.6) (when γ=0) a matrix whose eigenvalues are among the eigenvalues of A-CL =
G(γ1,⋅⋅⋅,γσ-1,0,⋅⋅⋅,0).

If instead θ=0, the statement to be proved is simply that χf divides A-CL.  But we may always find
an invertible T such that, with (3.3), the forms (3.4) and (3.5) hold, and A21=0. Thus χf is also then a
factor. This completes the proof.n

Partition now each matrix Hi in the form

Hi1
.
.
Hin

where each block Hij is of size m×n. Thus

G(γ1,⋅⋅⋅,γn) = A - ∑ ∑ γiθiA
j-1BHij .n

i=1
n
j=1

Note that, for each positive j,

AjB = (zΙ-A)Uj + BVj , (3.7)

for suitable Uj, Vj over R[z] (z = indeterminate over R).  This is easy to prove, by induction on j, using that

AjB = (zΙ-A)(-Aj-1B) + z(Aj-1B) .

Let Γ := zΙ-G. Then,

Γ = (zΙ-A)(Ι+∑ Uj(z)Xj) + B(∑ Vj(z)Xj) ,
n
j=1

n
j=1 (3.8)

where

Xj := ∑ θiγiHij.
n
i=1

Let ∆(z) be any fixed polynomial in R[z,ε], where ε is yet another indeterminate, ∆ monic and of degree at
least 1 in z.  (We shall think of R[z,ε] as polynomials in z with coefficients in R[ε].) For the main theorem,
we shall use

∆(z) := z+ε , (3.9)

but the argument to follow is more general (and will be used later in proving results over arbitrary rings).
Let χ denote the characteristic polynomial of A. Since this is monic, there is a well defined division of
polynomials by χ, and in particular there are polynomial matrices Tj(z), j=1,⋅⋅⋅,n, and Sj(z), j=1,⋅⋅⋅,n, such
that

∆nVj(z) = χ(z)Tj(z) + Sj(z)

and degree Sj ≤ n-1. (All polynomials are over R[ε].) Let ∆’(z):= ∆n(z)Γ. It follows that
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∆’(z) = (zΙ-A)[∆n(Ι+∑ Uj(z)Xj)] +
n
j=1 (3.10)

+ χ(z)B[∑ Tj(z)Xj] + B[∑ Sj(z)Xj] .
n
j=1

n
j=1

Since χ(z)B = (zΙ-A)cof(zΙ-A)B ("cof" = matrix of cofactors), it follows from (3.10), by collecting the first two
terms, that

∆’(z) = (zΙ-A)Q(z) - BW(z) , (3.11)

where W(z):= -∑ Sj(z)Xj is a polynomial matrix (in z) of degree at most n-1.  Comparing leadingn
j=1

coefficients in z, since ∆’ is monic of degree 1+deg∆(z), it follows that Q(z) is also monic, of degree
n’=n.deg∆(z). The argument used in passing from (3.8) to (3.11), with ∆ independent of ε, proves also a
general fact, which we state here for future reference:

Proposition 3.3: Assume that (A,B) is an (n,m)-system over R, and that U(z), V(z) are matrices over R[z]
of sizes n×n and m×n respectively, such that

Γ := (zΙ-A)U(z) + BV(z)

is monic.  Let ∆ be any monic polynomial in R[z] of degree at least 1.  Then, there exist polynomial
matrices Q(z), W(z), where Q(z) is monic and of strictly larger degree than W(z), such that, with ∆’:= ∆nΓ,

∆’(z) = (zΙ-A)Q(z) - BW(z) .n

(This result provides the essential step in the proof of the result given in [E]; the author learned the
above simple proof from Malo Hautus.)  For our main result, we must now obtain a realization of Q-1W
that preserves linearity in the gains γ. For simplicity, from now on we do take ∆ as in equation (3.9), so
that n’=n, and we may write

Q(z) = znΙ - ∑ ziQi+1
n−1
i=0

and for each k=1,⋅⋅⋅,n,

Qk = Rk + ∑ γiθiRki ,n
i=1

where the matrices Ri and Rki are all n×n matrices over R[ε]. Similarly,

W(z) = ∑ ziWi+1 ,n−1
i=0

Wk = ∑ γiθiSki ,n
i=1

where the Ski are m×n matrices over R[ε]. We now apply the lemma in the appendix, with the above Q
and with P(z):= BW(z) and k=n.  (And, "R" in the appendix is R[ε].) We can interpret the conclusions in
term of the extended system Σκ, where κ = n2. Consider the matrix

0 W1 W2 W3 . . . Wn
0 0 I 0 . . . 0
0 0 0 I . . . 0

K := -  .  . . . . . . . .
. . . . . . . .
0 0 0 0 . . . I
I Q1 Q2 Q3 . . . Qn

Then,

Aκ-BκK (3.12)

equals M in the appendix, and hence has characteristic polynomial
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det((z+ε)n(zΙ-G)) = (z+ε)n2
det(zΙ-G) .

Furthermore, there is an expression

K = K(γ1,⋅⋅⋅,γn) = Ko + ∑ γiθiKi ,n
i=1 (3.13)

where the Ki are (n2+m) by (n2+n) matrices over R[ε] and the first m rows of Ko are identically zero.  From
lemma 3.2 we may then conclude:

Proposition 3.4: Let Σ = (A,B) be an (n,m)-system over R, and let C = C(A,B).  Pick θ1,⋅⋅⋅,θn in R such

that θi∈Ii(C) for each i.  Let γ1,⋅⋅⋅,γn and ε be indeterminates over R, and κ=n2. For the extended system
Σκ, there exists then a matrix K over R[γ1,⋅⋅⋅,γn,ε] of the form in equation (3.13), such that the following
holds. Let π: R[γ1,⋅⋅⋅,γn,ε]→F be any homomorphism onto an algebraically closed field such that Cπ has
rank σ, 0≤σ≤n. Then, the characteristic polynomial of (3.12) splits as a product χsχf, where χf is the
characteristic polynomial of (Aπ)f, and where each root of χs either equals -π(ε) or is of the form

ρ - γπ
σ(θπ

σ)2 ,

where ρ is an eigenvalue of

(Aκ)π -
(Bκ)πK(γ1,⋅⋅⋅,γσ-1,0,⋅⋅⋅,0)π

(if σ=0, all roots of χs equal -π(ε)). n

(When σ=0 then Cπ=0, and all θi evaluate to zero, so the matrix G(γ1,⋅⋅⋅,γn)π reduces to Aπ = (Aπ)f. Thus
all zeroes of χs in fact equal -π(ε) in that case.)

To prove Theorem A, we choose now R = R[n,m], and

θi := sum of the squares of all i×i minors of C .

We apply the above proposition, so there result matrices Ki as there.  The number µ in the statement of

theorem A will be n, and κ there is n2. We pick

ψ := ε + 2 + ∑ ∑ αij
2 + ∑ ∑ (BKo)ij

2 ,n
i=1

n
j=1

n
i=1

n
j=1

φl := 1 + ∑ ∑ (BKl)ij
2 .n

i=1
n
j=1

Let Σ(a,b) = (A(a),B(b)) be choosen so that C=C(a,b) has rank σ, where 0≤σ≤n. Pick any real e and
positive g1,⋅⋅⋅,gn. Let π be homomorphism into C induced by the evaluation of α, β, ε, γ1,⋅⋅⋅,γn into a, b, e,
and g1,⋅⋅⋅,gn respectively. Assume first that σ=0. Then C=0, so by the proposition the desired
characteristic polynomial factors as the characteristic polynomial of A times one having all roots = -e.
And, since C=0, A=Af, so the result follows.  So assume that σ>0, and that g1,⋅⋅⋅,gn are arbitrary, with
gσ>0. By proposition 3.4, the characteristic polynomial of Aκ(a) - Bκ(b)Kg1...gσ

(a,b) splits as the product of

the characteristic polynomial of A(a,b)f and of a polynomial χs each of whose roots either equals -e or is

of the form ρ - gσθ2
σ(a,b,e), where ρ is an eigenvalue of

F := A(a) - B(b)Ko(a,b,e) -

∑ giθi(a,b,e)B(b)Ki(a,b,e)q
i=1

(where q=σ-1) Let ρ be any such eigenvalue.  Then its real part is less than |ρ|, which is dominated by the
spectral radius of F, and hence by the norm of F induced by Euclidean norm in ℜn; thus
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Re ρ ≤ ||A(a)|| + ||B(b)Ko|| + ∑ giθi(a,b,e)||BKi(a,b,e)||q
i=1

≤ 2 + ψ(a,b,e) + ∑ giθi(a,b,e)φi(a,b,e) - e .q
i=1

where q=σ-1. It follows that

Re(ρ-gσθ2
σ(a,b,e)) ≤ {ψ(a,b,e)+∑ giθi(a,b,e)φi(a,b,e)-gσθ2

σ(a,b,e)}-eq
i=1 (3.14)

where q=σ-1. If now g1,⋅⋅⋅,gσ satisfy

gσθσ(a,b,e)2 > ψ(a,b,e) + ∑ θi(a,b,e)giφi(a,b,e) ,q
i=1

where q=σ-1, then the expression in (3.14) is less than -e, as desired.  Finally, assume that e>0 and that
gσ is arbitrary but that all eigenvalues ρ of F have negative real part.  Then χs has all zeroes equal to -e<0
or of the form ρ-(positive), so all such zeroes again have negative real part.  This completes the proof of
the main theorem.n

4. Proof of Theorem B.
In this section we prove the result on polynomially parametrized families.  This will be an easy

consequence of Theorem A once that we establish a result in real algebraic geometry.  Recall that a
semialgebraic subset of ℜr is one that can be defined by a first-order formula in the theory of real-closed
fields. By a rational function defined on F, where F is a semialgebraic set of ℜr, we shall mean a rational
function in r variables which has no poles in F. The main fact that we need is as follows.

Proposition 4.1: Given a closed semialgebraic subset F of ℜr and a rational function ζ defined on F,
there exists a polynomial p∈ℜ[λ1,⋅⋅⋅,λr] such that p(l)>ζ(l) whenever l∈F and p(l)>0 for all l∈ℜr.

Proof: Let ζ = φ/θ, where θ has no zeroes on F. Without loss, we assume that θ>0 on F (otherwise
use -φ). Also, we may assume that F is nonempty, otherwise the result is trivial.  Consider the following
subset E of ℜ2:

E := {(x,y) s.t. if l∈ℜr is such that ||l||2≤x and l∈F then yθ(l)>φ(l)}.

This is again a semialgebraic set.  Now let f: ℜ→ℜ be the function defined by

f(x) := inf{y s.t. (x,y)∈E} ,

with f(x)=+∞ if the set is empty.  Then (see [H], pages 367-368,) the function f is semialgebraic, and
hence if it is finite for large positive x then f has the form

f(x) = Axα(1+o(1)) as x→∞ , (4.1)

where α is rational.  Let x>0 be such that Cx:= F∩Bx is nonempty, where Bx is the ball of radius x.  Since
ζ is continuous on the compact set Cx, it is in particular bounded there.  So

f(x) = sup{ζ(l), l∈Cx}

is finite, and f(x) has the form (4.1) for large x.  Let q(x) be a polynomial such that q(x)>f(x) for all large x;
such a q exists because of (4.1).  Since f is a nondecreasing function for x>0, there is a constant c such
that q’(x):= c+q(x) is larger than f(x) for all positive x.  Finally, choose

p(λ) := q’(||λ||2).

This is a polynomial, and it dominates ζ on F by construction. If p is not everywhere positive, just replace
it by p2+1, which is positive and dominates p.n
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We now complete the proof of theorem B. It is slightly easier to prove the theorem if we use the explicit
construction of the θi’s, but we prefer to obtain it as a corollary of theorem A. In this way we emphasize
that B follows from the existence of a "high-gain theorem" plus the above algebraic-geometric fact.
Possible improvements in theorem A (smaller µ and κ, for instance) will then give improvements in B.

Pick n,m, and let κ, µ, Ki’s, etc., be as concluded by theorem A. Now assume that Σ is a pointwise
stabilizable (n,m)-system over ℜ[λ] = ℜ[λ1,⋅⋅⋅,λr], and denote by aij(λ) and bij(λ) the entries of A and B
respectively, as polynomials in the variables λ. Evaluate the entries of the Ki, φi, θi, and ψ, at αij:= aij(λ),
βij:= bij(λ), and ε:= 1.  There result polynomial matrices and polynomials in ℜ[λ], which we denote again
by Ki, etc.  Define the function

σ: ℜr → nonnegative integers, σ(l):= σ(a(l),b(l),1).

Then, whenever σ(l) = σ and g1,⋅⋅⋅,gσ satisfy

gσθ2
σ(l) > ψ(l) + g1θ1(l)φ1(l) + ⋅⋅⋅ + gσ-1θσ-1(l)φσ-1(l) ,

it follows that

Lg1,...,gj
(l) := A(l)κ - B(l)κ(Ko(l) + g1θ1K1(l) + ⋅⋅⋅ + gjθjKj(l))

is Hurwitz for j=σ. (When σ(l)=0, only Ko appears.) This is true because the vanishing of θi for i>σ means
that Lg1,...,gσ

coincides with the closed-loop matrix in (2.2), and stabilizability of Σ(l) means that A(l)f is

stable. Further, it also follows from theorem A that Lg1,...,gj
(l) is Hurwitz, for j=σ, if gσ is arbitrary positive

but Lg1,...,gj
(l), j=σ-1, is known to be Hurwitz.

Claim: There are polynomials pj, j=1,⋅⋅⋅,µ, such that, if l is such that σ(l)=j>0, then Lp1(l),...,pj(l)
is Hurwitz.

Theorem B follows from this: for any l, if σ(l)=0 then stability follows from theorem A, independently of
the choice of the pi’s; for σ(l)>0 the conclusion follows from the claim.

We prove the claim by induction on j.  Assume that p1,⋅⋅⋅,pj-1 have been constructed, such that if
σ(l)=i≤j-1 then Lp1(l),...,pi(l)

is Hurwitz (no assumption when j=1).  Consider the set

Fj := {l s.t. Lp1(l),...,pj-1(l) is not Hurwitz and θi(l)=0 for i>j} .

This is a closed semialgebraic set, because Hurwitz matrices form an open semialgebraic set. We claim
that if l is in Fj then θj(l)≠0. Otherwise, Lp1(l),...,pj-1(l) coincides with Lp1(l),...,pi(l)

, with σ(l)=i<j, and this

contradicts the inductive hypothesis. (When j=1, only Ko appears, and this matrix equals Aκ(l)-Bκ(l)Ko(l),
which is Hurwitz since σ=0.) Thus, by proposition (4.1), there is a polynomial pj such that

pj(l)θj
2(l) > ψ(l) + p1(l)θ1(l)φ1(l) + ⋅⋅⋅ + pj-1(l)θj-1(l)φj-1(l) , (4.2)

whenever l is in Fj. Assume now that σ(l)=j. If l is in Fj, then by (4.2) it follows that Lp1(l),...,pj(l)
is indeed

Hurwitz. If not in Fj, then Lp1(l),...,pj-1(l) must be Hurwitz, so since pσ is always positive, again Lp1(l),...,pj(l)
is

Hurwitz. This completes the proof of the claim and hence of theorem B.n

5. Complements on Stabilizability.
In this section, we include some remarks concerning stabilizability of systems over arbitrary

commutative rings, and in particular show why theorem C is just a restatement of B. It will also follow that
our definition of stabilizability coincides with the usual one (see e.g.  [HS], [KS], [E]).  Let R be a fixed
commutative ring, with a given Hurwitz set S. Also, Σ = (A,B) is a fixed (n,m)-system over R.
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We shall say that a polynomial Ψ∈R[z] is assignable for Σ iff there exist polynomial matrices Q∈R[z]n×n

and P∈R[z]m×n such that

(zΙ-A)Q(z) + BP(z) = Ψ(z)Ι . (5.1)

Assume that Ψ is like this, and let P = ∑Piz
i. Let C:= C(A,B).  For each i>0 we may write

BPiz
i = (zΙ-A)Mi(z) + AiBLi ,

for suitable polynomial Mi and constant Li. This follows by iterating on the formula

BPz = (zΙ-A)BP + ABP .

The argument can be reversed --using equation (3.7).  Thus, Ψ is assignable iff there exist Q(z) as before
and L∈Rnm×n (constant, not polynomial) such that

(zΙ-A)Q(z) + CL = Ψ(z)Ι . (5.2)

This last equation implies that Ψ(A) = CL.  (Basically, by evaluation of both sides at z:= A. But the
argument is slightly more subtle, because of the noncommutativity of the matrix ring, and it depends on
the fact that Ψ(z)I commutes with A. See [G], "generalized Bezout’s theorem," IV.3, theorem 1.)
Conversely, if Ψ(z) is arbitrary, we may divide on the left by the monic polynomial (zΙ-A), thus if Ψ(A) = CL
then (5.2) holds for some Q(z). So, Ψ is assignable iff the image of Ψ(A) is included in C, or, by definition
of Af:

Proposition 5.1: Ψ is assignable if and only if it annihilates Af. n

The usual definition of stabilizability for systems over rings is in terms of assignability of Hurwitz
polynomials; by the proposition, it coincides with the definition which we use. It is a result of Emre (see
[E]) that this implies the existence of dynamic stabilizers; we shall prove this now, using facts already
derived.

Assume that Ψ is assignable and Hurwitz.  Pick any ∆∈S of positive degree.  Then, proposition 3.3
applies, and we may write

∆n(z)Ψ(z)Ι = (zΙ-A)Q(z) + BP(z) ,

with Q monic and larger degree than P. By the lemma in the Appendix, there are then an integer κ and a
matrix K such that Aκ-BκK has characteristic polynomial (∆nΨ)n, and hence is Hurwitz.

Conversely, assume that there exist κ,K like that.  Let Ψ be a Hurwitz polynomial annihilating Aκ-BκK.
Then Ψ also annihilates Af. Indeed, if Cκ denotes C(Aκ,Bκ), then

Ψ(Aκ-BκK) = Ψ(Aκ) + CκL

and the form of Aκ, Bκ imply that Ψ(A)+CL’ = 0 for some L’.  We conclude then:

Theorem D. The following statements are equivalent, for any fixed R,S, and Σ:
i. Σ is stabilizable (i.e., Af is Hurwicz).
ii. There is an assignable Hurwitz polynomial.
iii. There are κ,K such that Aκ-BκK is Hurwitz (Σ is dynamically stabilizable).n

Theorem C then follows from B and D. From the last condition in D, it follows that stabilizability implies
pointwise stabilizability for families.  And the converse is proved by theorem B, using again the last
characterization.
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6. Appendix.
The following lemma is needed in the text.

Lemma 6.1: Let R be a commutative ring, n,k positive integers, and consider the following n(k+1) by
n(k+1) matrix over R (each block of size n×n):

A P1 P2 P3 . . . Pk
0 0 I 0 . . . 0
0 0 0 I . . . 0

M = . . . . . . . . .
. . . . . . . .
0 0 0 0 . . . I
I Q1 Q2 Q3 . . . Qk

Then, the characteristic polynomial of M equals the determinant of

N(z) = (zΙ-A)Q(z) - P(z) ,

where

Q(z) := zkΙ - ∑ ziQi+1 , andk−1
i=0

P(z) := ∑ ziPi+1 .k−1
i=0

Proof: Consider the matrix zΙ-M. It is enough to prove that there is an unimodular (det=1) matrix
E over R[z] such that

Ι * * . . . 0 (6.1)
0 N 0 . . . 0
0 * Ι 0 . . 0

E(zΙ-M) = 0 * 0 Ι 0 . 0 .
. . . . . . .
. . . . . . .
0 * * * * . Ι

The matrix zΙ-M has k+1 block rows each consisting of n rows; when we write "row i", we shall mean "i-th
block of rows", and row operations will be by blocks.  Now operate as follows.  In the order i=3,⋅⋅⋅,k, do

row_i := row_i + z.row_(i-1) .

Thus the i-th block of zΙ-M becomes

[0,zi-1,0,⋅⋅⋅,0,-Ι,0,⋅⋅⋅,0] ,

with the -Ι in block position i+1, for i=2,⋅⋅⋅,k. Now do

row_1 := row_1 + (zΙ-A)row_(k+1) ,

so row 1 now looks as

[0,-P1-(zΙ-A)Q1,⋅⋅⋅,-Pk-1-(zΙ-A)Qk-1,-Pk-(zΙ-A)Qk+z(zΙ-A)] .

Operating now again on row 1,

row_1 := row_1 + [-Pk-(zΙ-A)Qk+z(zΙ-A)]row_k ,

results in the block (1,k+1) being zero.  Finally, apply the operations

row_1 := row_1 + [-Pi - (zΙ-A)Qi]row_i ,

in the order i = k-1,⋅⋅⋅,2. There results a matrix

0 N(z) 0 . . . 0
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0 zΙ -Ι 0 . . 0
0 z2Ι 0 -Ι . . 0
. . . . . . .
. . . . . . .
-Ι * * * . . *

Multiply now rows 2,⋅⋅⋅,k+1 by -1 and do kn exchanges to bring block row k+1 to block row 1.  This results
in the desired form (6.1).n



16

7. References.

[B] Bhaskara Rao,K.P.S., "On generalized inverses of matrices over integral domains," Linear Alg.& its
Appls. 49(1983): 179-189.

[D] Delchamps,D.F., "Analytic stabilization and the algebraic Riccati equation," Proc. IEEE Conf. Dec. and
Control (1983):1396-1401.

[E] Emre,E., "On necessary and sufficient conditions for regulation of linear systems over rings," SIAM
J.Contr.Opt. 20(1982):155-160.

[G] Gantmacher,F.R., Matrizenrechnung, v.I, Veb Deutscher Verlag der Wissenschaften, Berlin, 1959.

[HS] Hautus,M.L.J. and E.D.Sontag, "An approach to detectability and observers," in AMS-SIAM
Symp.Appl.Math., Harvard, 1979 (Byrnes,C. and Martin,C., eds.):99-136, AMS-SIAM Pbl., 1980.

[H] Hormander,L., The Analysis of Linear Partial Differential Operators II, Springer, Berlin, 1983.

[KS] Khargonekar,P.P. and E.D.Sontag, "On the relation between stable matrix fraction decompositions
and regulable realizations of systems over rings," IEEE Trans.Autom. Control 27(1982):627-638.

[M] McDonald, Bernard R., Linear Algebra over Commutative Rings, Dekker, New York, 1984.

[S1] Sontag, E.D., "Polynomial stabilization is easy," Systems and Control Letters 4(1984): 181-188.

[S2] Sontag,E.D., "On generalized inverses of polynomial and other matrices," IEEE Trans. Autom.
Contr. AC-25(1980):514-517.

[S3] Sontag,E.D., "An introduction to the stabilization problem for parametrized families of linear
systems," in Contemporary Mathematics, Vol.47, Linear Algebra and its Role in Systems Theory,
pp.369-400, AMS, Providence, RI, 1985.



i

Table of Contents
1. Introduction. 1
2. Definitions and Statement of Main Result. 2
3. Some Results on Systems over Rings. 6
4. Proof of Theorem B. 11
5. Complements on Stabilizability. 12
6. Appendix. 14
7. References. 16


