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Abstract— This tutorial paper deals with the Internal
Model Principle (IMP) from different perspectives. The
goal is to start from the principle as introduced and
commonly used in the control theory and then enlarge
the vision to other fields where “internal models” play a
role. The biology and neuroscience fields are specifically
targeted in the paper. The paper ends by presenting an
“abstract” theory of IMP applicable to a large class of
systems.

I. INTRODUCTION

By the 1930s, thanks to research at the Bell Tele-
phone Laboratories, the mathematical foundation of
“classical” linear feedback control based in the fre-
quency domain was soundly established. Its implica-
tions were the following:

1 Error feedback (i.e. output feedback followed by
the precise differencing of output and input refer-
ence signals to form the tracking error) by itself
can reduce parameter sensitivity, and final tracking
error, but only at the expense of high loop gain.

2 Error feedback, plus an internal model of the
reference signal generator, together reduce final
tracking error to exactly zero (i.e. ensure per-
fect tracking), regardless of (reasonable) param-
eter perturbations, while requiring only moderate
average loop gain.
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A familiar example is the “integrator” component of
PID control used to track (specifically) step reference
inputs. In general the price to be paid for perfect track-
ing was extra control complexity, including a stabilising
compensator, specific to the reference signals to be
tracked. Later, Otto Smith [68] incorporated an internal
model in his scheme of predictive control, while from
the 1970s the study of parameter-insensitive perfect
asymptotic tracking led to the recognition of both error
feedback and the internal model as necessary and suffi-
cient structural features of “robust” linear multivariable
systems. The IMP, in turn, was fully developed for
linear multivariable systems in the 70s in the set of
seminal works [16] and [13] in which the step reference
generator of PID control was generalised to an arbi-
trary linear exogenous system (“exosystem”) as well
as outputs of arbitrary vector dimension. The relevant
aspect of the framework developed in those papers
relies in the complete characterisation of necessary and
sufficient conditions for the solution of the problem of
output regulation in a robust way, namely in presence
of uncertainties, appropriately defined, in the regulated
plant. The principle, in turn, claims that asymptotic
regulation is achieved in presence of plant parameter
variations “only if the controller utilises feedback of
the regulated variable, and incorporates in the feedback
path a suitably reduplicated model of the dynamic
structure of the exogenous signals which the regulator
is required to process”. Generalisations to nonlinear
systems (with a differential geometry perspective) were
initially obtained in [22], [23] (see also [86]) mainly in
case of step reference signals and then extended to gen-
eral exosystems in [30], [25]. Since then, many attempts
have been done to make the nonlinear framework even
more general and constructive and nowadays output
regulation is still an active research area in control
theory (see in this regard Section VI).

In psychology and human experience generally the
IMP is by no means new. According to Kenneth Craik
[12],“Only an internal model of reality - this working
model in our minds - enables us to predict events which
have not yet occurred in the physical world, a process
which saves time, expense, and even life. In other words
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the nervous system is viewed as a calculating machine
capable of modelling or paralleling external events, and
this process of paralleling is the basic feature of thought
and of explanation.” Mark Twain, apprenticed as a
teenager to a Mississippi river pilot, later [78] reports
his mentor as saying, “You only learn the shape of
the river; and you learn it with such absolute certainty
that you can always steer by the shape that’s in your
head, and never mind the one that’s before your eyes”.
We shall later indicate what that “shape of the river”
might be (see Section V). Our mimicry of the IMP with
automata (or discrete dynamics) is nothing new either;
as Thomas Hobbes [24] declared, “For seeing life is
but a motion of limbs ... why may we not say, that all
automata (engines that move themselves by springs and
wheels as doth a watch) have an artificial life?”

The idea that an appropriate model of the environ-
ment where the system operates is somehow incorpo-
rated in the system itself (not necessarily in a closed-
loop fashion) whenever it shows special properties,
such as the ability of adapting its behaviour to external
stimuli or executing smart operations in presence of
partial information, is then ubiquitous in many fields
of science that go well beyond control theory. As
presented in [71], the IMP, as with any “principle” in
control theory and more generally in mathematics, is
not a theorem but rather a “mold” for many possible
frameworks and theorems declined in different ways
according to the specific scientific field.

For instance, internal models are crucial for the
proper functioning of many biological organisms that
must be able to detect changes in their environment
and adjust their internal states accordingly, a process
commonly referred to as “homeostasis” or “adaptation”
(see [71], [2]). For example, successful chemotaxis
(movement towards high concentrations of chemical at-
tractant) of E. coli depends on the ability of the bacteria
to adapt to step changes in chemoattractant ([1]). In
terms of terminology commonly used in control theory
this capability is related to the presence of “blocking
zeros” in the transfer function modelling such a bio
systems.

Similarly, in neuroscience it is clearly observed that
the brain allows vertebrates to act proactively rather
than reactively, to acquire new skills and to maintain
mastered skills in response to changes in the external
environment and the motor systems. There are many
reasons to believe that it does this by computing the
expected sensory consequences of a given motor com-
mand, and producing sensory prediction error signals

when the actual sensory input does not match expecta-
tions. The expected consequences are indeed captured
by an internal model that is rapidly updated to enable
the motor system to learn to expect unexpected sensory
inputs ([7]) and respond appropriately. Properties of
this kind are observed also in invertebrates whose
nervous system implements prediction of the sensory
consequences of action ([82], [50]). In terms of control
terminology, forward models are used to predict the
sensory consequences of actions and inverse models
are used to produce motor commands that adapt to
the plant. These internal models, along with models
of the environment, are thought to underlie the rapid,
robust, and adaptive behaviour typically observed in
vertebrates and invertebrates. Investigating the neural
implementation of these computations is an active area
of research.

In the paper we present an overview of the con-
cepts and tools that are behind the IMP by bridging
research skills and viewpoints from the above men-
tioned research areas. The main goal is to overview
how the “mold” of the IMP developed in the control
community and how it is declined in the two fields of
bioengineering and neuroscience.

II. OUTPUT REGULATION FOR SYSTEMS MODELED

BY ORDINARY DIFFERENTIAL EQUATIONS

A. Problem Formulation

The problem of robust output regulation aims at de-
signing a feedback controller for an uncertain plant so
that, in the resulting closed-loop system, all trajectories
are bounded and the output asymptotically tracks a
class of reference inputs (produced by an exogenous
system), in the presence of a class of disturbances.
To describe this problem, consider a (composite) plant
described by

ẋ = f(x, u, w, µ)

ẇ = s(w)

e = h(x, u, w, µ)

y = hm(x, u, w, µ)

(1)

with state x ∈ Rn, control input u ∈ Rm, exogenous
input w ∈ Rr, tracking error e ∈ Rm, measurement
output y ∈ Rpm , and uncertain constant parameter
vector µ ∈ P ⊂ Rp. It is assumed that the equilibrium
at the origin of the exosystem ẇ = s(w) is stable (in
the sense of Lyapunov) and, for any w(0), the solution
of exosystem exists and is bounded over t ∈ [0,∞). It
is also assumed that the nominal value of the uncertain
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parameter µ is µ = 0. The plant (1) is said to be known
exactly if P = {0}.

We consider the control law described by

u = k(z, y)

ż = fz(z, y),
(2)

with state z ∈ Rnz . The control law (2) includes the full
information control when hm(x, u, w, µ) = col(x,w),
state feedback control when hm(x, u, w, µ) = x, and
error output feedback control when hm(x, u, w, µ) = e
as special cases. Let xc = col(x, z) be the state of
the closed-loop system with dimension nc. Then, the
closed-loop system can be written as

ẋc = fc(xc, w, µ)

e = hc(xc, w, µ)

for some functions fc and hc. For convenience, it is
assumed that all the functions here are sufficiently
smooth and defined globally on the appropriate Eu-
clidean spaces, with the value zero at the respective
origins, and f(0, 0, 0, µ) = 0, h(0, 0, 0, µ) = 0 and
hm(0, 0, 0, µ) = 0 for all µ ∈ Rp.

Various versions of the output regulation problem
have been defined over the years. Here we unify these
versions to the following.

Definition 1 (Output Regulation Problem) For some
subsets Xc ⊂ Rnc , W ⊂ Rr, and P ⊂ Rp, which
contain the origins of the respective Euclidian spaces,
find a control law of the form (2) such that, for all
xc(0) ∈ Xc, all w(0) ∈W , and all µ ∈ P , the solution
of the closed-loop system exists and is bounded for all
t ≥ 0, and is such that

lim
t→∞

e(t) = 0. (3)

Definition 1 includes several special versions. For
instance, when P = {0}, the problem is a non-robust
output regulation problem, when Xc, W , and P are
arbitrarily small neighbourhoods of the origins of their
respective Euclidian spaces, the problem is called local
robust output regulation problem, and when Xc = Rnc ,
and W ⊂ Rp and P ⊂ Rr are arbitrarily large compact
sets, respectively, the problem is called global robust
output regulation problem. Finally, if the problem can
be solved for arbitrarily large compact sets Xc ⊂ Rnc ,
W ⊂ Rp, P ⊂ Rr, then the problem is called semi-
global robust output regulation problem.

B. The Origin of Nonlinear Output Regulation

The output regulation problem was first studied for
the class of linear time-invariant systems [13], [18],
[17], to name just a few. The main tool for dealing
with the output regulation problem is the IMP. By this
principle, the robust output regulation problem of a
given plant can be converted into an eigenvalue assign-
ment problem of an augmented system composed of the
given plant and a well defined dynamic compensator
called internal model. In the mid 1970s, Francis and
Wonham also considered the robust output regulation
problem for a class of weakly nonlinear systems for the
special case where the exogenous inout is constant [17].
For this special case, they showed that a linear robust
regulator designed based on the linear approximation of
the plant can solve the local structurally stable output
regulation problem for the nonlinear plant. Later, the
output regulation problem of general nonlinear systems
with the constant exogenous input was further studied
in several papers [14], [22], [25]. In particular, Huang
and Rugh related the solvability of the problem to the
solvability of a set of nonlinear algebraic equations
[25].

The research on the nonlinear output regulation
problem for the general case where the exogenous
input is time-varying started in 1990 when Isidori and
Byrnes formulated and solved the output regulation
of nonlinear systems with P = {0} and solved this
problem by a feedforward control approach in [30].
In particular, Isidori and Byrnes linked the solvability
of the nonlinear output regulation problem to a set of
nonlinear partial differential and algebraic equations
of the form (4) known as regulator equations. As the
regulator equations are the foundation for the research
of the nonlinear output regulation problem, we make
their existence an assumption as follows:

Assumption 1 There exist sufficiently smooth func-
tions x(w, µ) and u(w, µ) with x(0, 0) = 0 and
u(0, 0) = 0 that satisfy, for all w ∈W and µ ∈ P , the
following equations

∂x(w, µ)

∂w
s(w) = f(x(w, µ),u(w, µ), w, µ)

0 = h(x(w, µ),u(w, µ), w, µ).
(4)

Based on the solution of the regulator equations, Isidori
and Byrnes showed that if there exists a feedback gain
K such that x = 0 is a locally exponentially stable
equilibrium of ẋ = f(x,Kx, 0, 0), then the following
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control law

u = u(w, µ) +K(x− x(w, µ)) (5)

solves the local output regulation problem of (1).
The law (5) presumes the availability of the exoge-

nous input w as well that of the parameter vector µ. If
only the error output is available for measurement and
µ is uncertain, in order to solve a problem of (robust)
output regulation one has to establish an appropriate
nonlinear version of the IMP. A first progress in this
direction was made in [26] by Huang, who, inspired
by an example in [8], realised that the steady-state
tracking error in a nonlinear system is a nonlinear
function of the exogenous signals, and that a good
internal model should be able to “reproduce” the solu-
tion of the nonlinear regulator equations. Based on this
observation, Huang conceived the concept of kth order
internal model that leads to the solution of the robust
output regulation problem for an uncertain nonlinear
system provided the solution of the regulator equations
of the system is a polynomial in the exogenous input
[27], [29]. Subsequently, the robust output regulation
problem was further pursued in [9], [33], generating
various techniques and insights on this important issue.

The role of the internal model conceived in [27],
[26] as well as in [9] is to convert the local robust
output regulation problem to an eigenvalue assignment
problem for the linear approximation of an augmented
system. A regulator designed in this way, though, is
unable to handle the global or semi-global robust output
regulation problem with large P . Moreover, like the one
in [13], [18], [17], it cannot deal with uncertainties in
the exosystem.

Since the mid 1990s, the research on the output
regulation problem has made further advancement in
two directions. First, the solution of the local robust
output regulation problem has been extended to cover
the cases of semi-global or global robust output regula-
tion, with arbitrarily large P . Second, adaptive output
regulation techniques have been developed for dealing
with uncertain exosystems. For these purposes, the
original concept of nonlinear internal model was not
adequate. Efforts have been made to give a more gen-
eral characterisation of the idea of internal model. The
key elements for this generalisation are the concepts
of immersion and steady state generator, first proposed
in [9], and then further enriched and generalised in a
sequence of papers, say, [10], [28], [43], leading to a
variety of internal models for different scenarios.

C. General Characterisation of Internal Models

The cornerstone for generalising the internal model is
the concept of system immersion, described as follows.

Definition 2 Suppose Assumption 1 holds. The au-
tonomous system (with output u)

ẇ = s(w), u = u(w, µ) (6)

is said to be immersed into the system

ξ̇ = φ(ξ), u = γ(ξ). (7)

defined on some set Ξ containing the origin of Rq
if there exists a smooth mapping τ : W × P → Ξ,
satisfying τ(0, 0) = 0 such that

∂τ(w, µ)

∂w
s(w) = φ(τ(w, µ)), u(w, µ) = γ(τ(w, µ)).

(8)
If this is the case, the triplet (τ, φ, γ) is said to be a
steady state generator.

One can see that, if a steady state generator exists,
then the input solution of the regulator equations can
be reproduced by the autonomous system (7), which
is independent of the uncertain parameter µ. Thus it is
possible to use (7) to reproduce u(w, µ), which is the
necessary information for solving the output regulation
problem.

Having introduced the concept of steady state gener-
ator, we are ready to give a general characterisation of
the concept of the internal model as follows. Consider
a system

η̇ = α (η, u) (9)

in which α : Rq × Rm 7→ Rq is a sufficiently smooth
function vanishing at the origin.

Definition 3 Suppose system (1) admits a steady-state
generator (τ, φ, γ). System (9) is an internal model
candidate if

∂τ(w, µ)

∂w
s(w) = α(τ(w, µ), γ(τ(w, µ)). (10)

The composition of the plant and the internal model
candidate characterises what is called the “augmented”
system

η̇ = α(η, u)

ẋ = f(x, u, w, µ)

e = h(x, u, w, µ).

(11)
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A consequence of the definition of internal model
candidate is that, in the augmented system, the manifold
M = {(η, x, w) | η = τ(w, µ), x = x(w, µ), w ∈
Rp} is rendered invariant by means of the control
u = u(w, µ) and on such manifold the error output
is identically zero. In fact,

∂τ(w, µ)

∂w
s(w) = α(τ(w, µ),u(w, µ))

∂x(w, µ)

∂w
s(w) = f(x(w, µ),u(w, µ), w, µ)

0 = h(x(w, µ),u(w, µ), w, µ).

(12)

To further illustrate the role of the internal model,
let

η̄ = η − τ (w, µ)

x̄ = x− x(w, µ)

ū = u− γ(η).

(13)

Then we have

˙̄η = ᾱ(η̄, x̄, ū, w, µ)

˙̄x = f̄(η̄, x̄, ū, w, µ)

e = h̄(η̄, x̄, ū, w, µ),

(14)

which has the property that, for all trajectories w(t) of
the exosystem, and all µ ∈ Rr,

γ̄(0, 0, 0, w(t), µ) = 0

f̄(0, 0, 0, w(t), µ) = 0

h̄ (0, 0, 0, w(t), µ) = 0.

(15)

Thus, if an output feedback control law of the form

ū = k̄ (ξ, e) , ξ̇ = gξ(ξ, e) (16)

locally or globally stabilises the equilibrium of the
augmented system (14) at the origin, then the following
controller

u = γ(η) + k̄ (e, ξ)

η̇ = α (η, u)

ξ̇ = gξ (e, ξ)

(17)

solves the robust output regulation problem for the
original plant (1) locally or globally. In other words,
the robust output regulation problem of the composite
system (1) has been converted into a robust stabiliza-
tion problem of the equilibrium at the origin of the
augmented system (14).

D. Construction of Internal Models

From the previous discussion, it follows that the
design of an internal model has to fulfill two purposes:
(i) to make sure that the identity

φ(τ(w, µ)) = α(τ(w, µ), γ(τ(w, µ)) (18)

is fulfilled, and (ii) to make sure that system (14) is
stabilizable by means of a feedback of the form (16).

An internal model candidate is called a local or
global internal model if it is such that the equilibrium
of (14) at the origin is locally or globally stabilizable.
However, finding a global internal model for a general
nonlinear system is at least as intractable as ascertaining
the global stabilizability of a general nonlinear system.
Therefore, a more practical approach is to find an
internal model candidate with some good properties,
such as being input-to-state stable (ISS) [69].

First of all, it is stressed that a simple strategy to
fulfill identity (18) is to pick

α(η, u) = φ(η) +N [u− γ(η)] (19)

in which N is a matrix of design parameters that could
be used to make the design of the stabiliser (16) easier.
If this is the case, the main issue in the design of the
internal model is to find a steady state generator. In
what follows, we will overview a few typical internal
models widely used in practice. For simplicity, we
assume m = 1.

1) Canonical linear internal model: The canonical
linear internal model was first proposed in [55] and
later formalised in [61] and [62]. Suppose the system
(6) is immersed to the linear system

ξ̇ = Φξ, u = Γξ, (20)

and the pair (Φ,Γ) is observable. Let M̃ ∈ Rq×q and
Ñ ∈ Rq×1 be any controllable pair with M̃ Hurwitz
such that the spectra of the matrices Φ and M̃ are
disjoint. The Sylvester equation TΦ− M̃T = ÑΓ has
a unique nonsingular solution, and hence (19) can be
written in the form

α(η, u) = Mη +Nu. (21)

in which

M = T−1M̃T, N = T−1Ñ . (22)

If we perform a coordinate transformation η̃ = Tη,
then it can be verified that

˙̃η = M̃η̃ + Ñu (23)
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is also an internal model candidate of (1) corresponding
to the steady-state generator (τ̃ , φ̃, γ̃) with τ̃(ξ) =
Tτ(ξ), φ̃(ξ) = TΦT−1ξ, and γ̃(ξ) = γT−1ξ. A par-
ticular advantage of (23) is that it can handle uncertain
exosystems, see, for example, [40], [55], [62], [90].

2) Two Nonlinear Internal Models: The existence
of the canonical linear internal model requires the
system (6) be immersed to a linear system, which
essentially requires that the nonlinearity in the plant
(1) be of polynomial type. To weaken this restriction,
two nonlinear models were developed later. The first
one was given in [28] under the assumption that the
system (6) can be immersed into a nonlinear system
of the form (7) with φ(ξ) = Φξ for some matrix
Φ. Moreover, this assumption can be verified by the
solution of the regulator equations. The particular form
of this immersed system also leads to a nonlinear
internal model of the form (19) with

α(η, u) = (M +NΓ)η +N(u− γ(η)) (24)

where Γ is the gradient of γ at the origin, the pair
(Ψ,Γ) is assumed to be observable and the pair (M,N)
is the same as (22). Under some assumption on γ, (24)
is globally ISS.

Another nonlinear internal model was proposed in
[10] under the assumption that there exist an integer
q and a sufficient smooth function g vanishing at the
origin such that (here L denotes the Lie derivative):

Lqus(w) + g(u, Lqus(w), · · · , Lq−1u s(w)) = 0. (25)

In fact, in this case, the system (6) can be immersed
the nonlinear system of the form (7) with φ(ξ) =
col(ξ2, . . . , ξq, g(ξ1, . . . , ξq)) and γ(ξ) = Γξ = ξ1. If
g is bounded, N can be chosen in such a way that
the internal model is ISS. This internal model has been
used to handle semi-global output regulation.

3) A Generic Internal Model: All the previous three
internal model candidates are constructed under various
assumptions on the solution of the regulator equations.
Recently, a generic internal model was proposed in
[43]. Suppose that the exosystem satisfies the property
of Poisson stability on some compact subset W ⊂
Rp. Then, there exist a sufficiently large integer q,
a controllable pair (M,N) ∈ Rq×q × Rq×1 with M
Hurwitz, and a continuous map γ : Rq → R, such that,
for all w ∈W and all µ ∈ P with P a compact subset
of Rr, γ(w, µ) satisfies (8) with φ(ξ) = Mξ+Nγ(ξ).
That is, system (6) is immersed to a system of the form
(7). As a result, the following dynamic compensator

η̇ = Mη +Nu (26)

is an ISS internal model of (1).
The applicability of the internal model (26) relies

on the explicit construction of the function γ. But this
function is only known to exist. Some discussion on
approximately finding the function γ which is locally
Lipschitz was given in [44]. It is noted that this internal
model was used to study the semi-global robust output
regulation problem for some non-minimum phase non-
linear systems in [43].

III. THE INTERNAL MODEL PRINCIPLE IN SYSTEMS

BIOLOGY

Organisms depend critically, for their adaptability
and survival, on their capability to formulate appropri-
ate responses to chemical and physical environmental
cues, distinguishing “background” signals from infor-
mative inputs. They must maintain a narrow range of
concentration levels of vital quantities (homeostasis,
adaptation) while at the same time appropriately react-
ing to changes in the environment (signal detection).
This is achieved by regulatory changes in metabolism
and gene expression, which are in turn mediated by
signal transduction and gene regulatory networks in
individual cells which process sensed chemical (for
instance, nutrients or chemokines) or physical inputs
(such as temperature, pressure, of electric potentials).
Much theoretical, modelling, and analysis effort has
been devoted to the understanding of these questions,
traditionally in the context of steady-state responses to
constant or step-changing stimuli.

One says that a system Σ regulates against all
external input signals u in a given class U of time-
functions (for example, U might be the class of all
constant inputs, or of all inputs that are periodic with
a certain period) if a certain quantity y(t) associated to
the system (the “output” in control-theory terms) has
the property that y(t) → y0 as t → ∞ whenever the
system is subject to an input signal from the class U
(Figure 1), where y0 is a fixed value which does not
depend upon the particular input u ∈ U . In control

- -Σ y(t)→ y0u(·) ∈ U

Fig. 1. Given system, regulated output y(t) when inputs in U

theory, this would be called a disturbance rejection
property (or, if the output is the error signal with respect
to a desired reference input, a tracking problem).
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In biology, one often uses the term adaptation for
this property. An example studied in [91] from a
control-theoretic viewpoint is that of bacterial E. coli
chemotaxis, where adaptation against constant inputs
(chemoattractants) plays a central role in enabling
motion in the directions of nutrient change. If the nu-
trients being sensed do not change much during a time
interval, they are sensed as constant, and no directed
motion happens. In this example, and simplifying a
little to give the intuitive idea, “y0” is the internal
concentration of a kinase, a chemical signaling protein.
At this special value y0, the bacterium moves purely
at random, instead of actively trying to move in a
directed fashion. Adaptation against constant inputs is
achieved by an integrator embedded in the system, in
which the methylation state of a receptor serves as
a memory (integrator) and the “error” is the average
kinase activity relative to its basal value.

The question that the IMP asks is: if a system Σ
is seen experimentally to regulate against all inputs
in U , then what can it be said about its internal
structure? Answers to this question may help guide
experimentalists and modelers, by ruling out putative
mechanisms and suggesting the search for components
responsible for adaptation.

A bit more formally, the IMP states, roughly, that
if the system Σ adapts to U then it necessarily must
contain a subsystem ΣIM which can itself generate all
disturbances in the class U . The terminology arises
when thinking of ΣIM as a “model” of a system
which generates the external signals. For example, if
y(t)→ y0 as t→∞ whenever the system is subject to
any external constant signal (i.e., the class U consists
of all constant functions), then the system Σ must
contain a subsystem ΣIM which generates all constant
signals (typically an integrator, since constant signals
are generated by the differential equation u̇ = 0).
If, instead, y(t) → 0 as t → ∞ whenever the
system is subject to a sinusoidal signal at frequency
ω (i.e., the class U consists of all functions of the
type A sin(ωt + φ), for some fixed ω but different
possible amplitudes A and phases φ), then Σ should
have a subsystem ΣIM which generates these signals
(such as a harmonic oscillator ẋ1 = x2, ẋ2 = −ω2x1),
and so forth. In addition, the IMP specifies that, in
an appropriate sense, the subsystem ΣIM must only
have y as its external input, receiving no other direct
information from other parts of the system nor the
input signal u. One intuitive interpretation is that ΣIM
generates its “best guess” of the external input u based

on how far the output y is from zero. Pictorially, if we
have the situation shown in Figure 1, then there must
be a decomposition of the system Σ into two parts, as
shown in Figure 2, where the system ΣIM (with y ≡ 0)

�

-

-

-

y(t)→ y0u(·) ∈ U

Σ0

ΣIM

Fig. 2. Decomposition of Σ into Σ0 and ΣIM , the latter driven
by y(t)

is capable of reproducing all the functions in U . The
IMP originates in the biological cybernetics literature,
and like any “principle” it is not a specific result,
but rather is a guide for different theorems, which
hold under different technical assumptions and whose
conclusions will depend upon the precise meaning of
“class of external signals,” “reproducing all functions,”
and so on.

The Francis/Wonham theory applies to systems Σ
which are already partitioned into a “plant” plus a
“controller”. The robustness assumption amounts to the
requirement that the given controller should perform
appropriately (in the sense that the regulation objective
y(t)→ y0 is achieved) even when the plant subsystem
– but most definitely not the controller subsystem
– is arbitrarily perturbed. The conclusion is that the
controller is driven by y and incorporates a model of
the external signals. (It is obvious that some additional
condition, such as structural stability, must be imposed,
since otherwise the trivial system Σ which simply
outputs “y ≡ y0” for every possible input signal u
adapts, yet does not contain any subsystem generating
the signals in U .)

In biological applications, it is very difficult to think
of a “plant” and “controller” as different objects –
the system regulates itself, and therefore robustness
is arguably not a natural condition. In addition, few
biological systems behave in even approximate linear
regimes. Thus, it is desirable to have theorems which
(a) apply to nonlinear systems Σ, (b) do not require the
system Σ to be split between “plant” and “controller”
subsystems, and (c) do not require structural stability
(robustness) in the sense of the Francis/Wonham theory.

We will review here a result from [71], illustrated
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with an example from [67], which shows that, under
certain Lie-algebraic conditions on the system and
assuming that the inputs in U are not “too unstable”,
the IMP holds when we impose instead of robustness a
condition which amounts to a signal detection property,
namely that the output must reflect sudden changes
in the input (thus ruling out the trivial solution y ≡
y0). One perhaps surprising fact is that, while for
linear systems the class of inputs for which the IMP
can be proved is quite arbitrary (the IMP for linear
systems can be easily understood in terms of transfer
function pole/zero cancellations, as discussed in [71]),
for nonlinear systems there are counterexamples, when
inputs are unstable.
The setup. We study dynamical systems with inputs
and outputs in the standard sense of control systems
theory [70]:

ẋ = F (x, u) , y = h(x) , (27)

where F , h are functions which describe respectively
the dynamics and the read-out map. Here, u = u(t) is a
generally time-dependent input (in biology, an input is
typically called a “stimulus” or “excitation”) function,
x(t) is an n-dimensional vector of state variables, and
y(t) is the output (in biology, “response” or “reporter”
variables). In order to describe positivity of variables
as well as other constraints, we introduce the following
additional notations. States, inputs, and outputs are
constrained to lie in open subsets, which we call Z, U,
and Y respectively, of Euclidean spaces Rn,Rm,Rq.
For example, U = R>0 means that the input values
must be scalar (m = 1, U ⊂ R1) and positive. The
functions F, h are differentiable. We will assume that
for each piecewise-continuous input u : [0,∞) → U,
and each initial state ξ ∈ Z, there is a (unique) solution
x : [0,∞)→ Z of (27) with initial condition x(0) = ξ,
and the corresponding output y : [0,∞)→ Y is y(t) =
h(x(t)). More specifically, in order to review the results
from [71], we will restrict to scalar-input scalar-output
n-dimensional systems for which the input appears to
first order:

ẋ = f(x) + ug(x) , y = h(x) . (28)

The vector fields f and g are smooth, and h is a smooth
function.

We will illustrate the main result by means of the in-
coherent feedforward loop (IFFL) model studied often
in the systems biology literature:

ẋ = αu− δx , ẏ = β
u

x
− γy (29)

with h(x, y) = y, where u, x, y are assumed to evolve
in the set of positive real numbers. In vector form, this
is ẋ = f(x) + ug(x), where the vector fields are:

f(x, y) =

(
−δx
−γy

)
and g(x, y) =

(
α
β/x

)
.

(30)
In an IFFL, the input u directly helps promote for-
mation of the reporter y and also acts as a delayed
inhibitor, through an intermediate variable x. This
“incoherent” counterbalance between a positive and a
negative effect gives rise, under appropriate conditions,
to adaptation. There are many models of IFFL’s, but
this is one of the simplest ones. IFFL’s are ubiquitous
in systems biology. The reference [34] provides a large
number of incoherent feedforward input-to-response
circuits, which participate in EGF to ERK activation
[58], [53], glucose to insulin release [47], [54], ATP to
intracellular calcium release [41], [45], nitric oxide to
NF-κB activation [57], microRNA regulation [76], and
many others. A variation of the model studied in [67]
was given in [77], [72], and appears in slightly modified
forms in models for Dictyostelium chemotaxis and
neutrophils [89], [38], microRNA-mediated loops [88],
and E. coli carbohydrate uptake via the carbohydrate
phosphotransferase system [36] and other metabolic
systems [79]. The work [6] shows experimentally and
analytically that IFFL’s are especially well-suited to
controlling protein expression under DNA copy vari-
ability.

We will say that the system (28) adapts to inputs
in a class U if for each u ∈ U and each initial state
x0 ∈ Z, the solution of (28) with initial condition
x(0) = x0 exists for all t ≥ 0 and is bounded, and
the corresponding output y(t) = h(x(t)) converges to
a fixed value y0 ∈ Y (which does not depend on the
particular input u ∈ U) as t→∞. As usual in control
theory, we describe the class of inputs U with respect to
which adaptation holds through the specification of an
“exosystem” that produces these inputs. An exosystem
is simply any autonomous system Γ:

ẇ = Q(w) , u = θ(w) (31)

with the following property: the input class U consists
exactly of the functions u(t) = θ(w(t)), t ≥ 0, for each
possible initial condition w(0). For example, if we are
interested in step responses, we pick ẇ = 0, u = w.
This means that the possible signals are the solutions of
ẇ = 0, i.e. the constant functions of time; that is, U is
the set of functions u(t) for which u(t) = ū for all t for
some ū ∈ U. On the other hand, if we are interested
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in sinusoidals with frequency ω then we would use
ẋ1 = x2, ẋ2 = −ω2x1, u = x1.

A technical assumption for stating the result
from [71] is that the signals in U do not grow without
bound. Specifically, the exosystem is assumed to be
Poisson-stable, meaning that for every state w0, the
solution w(·) of ẇ = Q(w), w(0) = w0 is defined
for all t > 0 and it satisfies that w0 is in the omega-
limit set of w. In other words, the exosystem is almost-
periodic in the sense that trajectories keep returning to
neighbourhoods of the initial state. Both the constant
and sinusoidal examples mentioned above are generated
by Poisson-stable systems. In contrast, ramps (linearly
growing signals) are not generated by Poisson-stable
systems, since they require an unstable second-order
system ẇ2 = 0, ẇ1 = w2, u = w1 to generate them.
Thus, adaptation to ramps is not included in the scope
of the theorem to be stated. The exosystem is assumed
to have states that evolve on some differentiable mani-
fold, Q is a smooth vector field, and θ is a real-valued
smooth function.

The IMP claims that a copy of this exosystem must
be embedded in the system (28). More precisely, one
says that the system contains an output-driven internal
model of U if there is a change of coordinates which
brings the equations (28) into the following block form:

ż1 = f1(z1, z2) + ug1(z1, z2)
ż2 = f2(y, z2)
y = κ(z1)

(32)

so that the subsystem with state variables z2 is capable
of generating all the possible functions in U . Namely,
for some function ϕ(z2), and for each possible u ∈ U ,
there is some solution of

ż2 = f2(y0, z2) (33)

which satisfies ϕ(z2(t)) ≡ u(t). “Change of coordi-
nates” means that there is some integer r ≤ n and
two differentiable manifolds Z1 and Z2 of dimensions
r and n− r respectively, as well as a smooth function
κ : Z1 → R and two vector fields F and G on Z1×Z2

which take the partitioned form

F =

(
f1(z1, z2)

f2(κ(z1), z2)

)
, G =

(
g1(z1, z2)

0

)
and a diffeomorphism Φ : Rn → Z1 × Z2, such
that Φ′(x)f(x) = F (Φ(x)), Φ′(x)g(x) = G(Φ(x)),
and κ(Φ1(x)) = h(x) for all x ∈ U, where Φ1 is
the Z1-component of Φ and prime indicates Jacobian.
Intuitively, the signal z2 computes an integral of a

function of the output y(t), and when y(t) ≡ y0, z2
is (up to the mapping ϕ, which may be interpreted as
a sort of rescaling) a signal in U . For example, if U
consists of constant functions (adaptation to steps), then
for y ≡ y0 one obtains (for different initial conditions)
the possible constant signals.

In order to prove a theorem justifying the IMP,
several technical conditions are imposed in [71]. The
first is a signal detection or “sensitivity” property: (1)
for some positive integer r, called in control theory
a finite uniform relative degree, LgLkfh ≡ 0, k =

0, . . . , r − 2 and LgLr−1f h(x) 6= 0 ∀x ∈ Z. Generally,
LXH denotes the directional or Lie derivative of a
function H along the direction of a vector field X:
(LXH)(x) = ∇H(x) · X(x), and one understands
LY LXH as the iteration LY (LxH). (In the special case
that Lgh(x) 6= 0 for all x, the relative degree is r = 1,
since the condition for k < r−1 is vacuous.) Given that
the relative degree is r, one may consider the following
vector fields:

g̃(x) =
1

LgL
r−1
f h(x)

g(x)

f̃(x) = f(x)−
(
Lrfh(x)

)
g̃(x)

τi := adi−1
f̃
g̃, i = 1, . . . r ,

where adX is the operator adXY = [X,Y ] = Lie
bracket of the vector fields X and Y , and adi−1

f̃
is

the iteration of this operator i − 1 times (when i = 1,
τi = g̃). One says that a vector field X is complete
if the solution of the initial value problem ẋ = X(x),
x(0) = x0 is defined for all t and for any initial state
x0. Two vector fields X and Y are said to commute if
[X,Y ] = 0. The final assumptions, then, are that (2) τi
is complete, for i = 1, . . . , r and (3) the vector fields
τi commute with each other. (In the special case r = 1,
condition (3) is automatic, since every vector field
commutes with itself.) These assumptions are satisfied
for linear systems. The assumptions are also satisfied,
for example, for the IFFL system (29). Indeed, since
Lgh = (0, 1)·(α, β/x)T = β/x is everywhere nonzero,
we have that r = 1. Thus we need only check that

τ1 = g̃ =
1

Lgh(x)
g(x) =

x

β
g(x) =

( α
βx

1

)
is complete, which is true because g̃ is a linear vector
field.

The main theorem in [71] says the following: Sup-
pose that assumptions (1)-(3) hold for the system (28).
If (28) adapts to inputs in a class U generated by a
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Poisson-stable exosystem, then it contains an output-
driven internal model of U .

The proof of the theorem consists of showing that
there is, under the stated conditions, a change of
variables as claimed. The map producing the change
of variables is obtained by solving a first-order partial
differential equation.

Let us now illustrate this change of variables with
the system (29), or (30) in vector form. This system
adapts to steps (constant inputs): it is easy to see,
for any constant (positive) input u(t) ≡ u, there is
global asymptotic stability of the steady state x0 =
αu/δ and y0 = βδ

αγ , and y0 is independent of u. We
already checked properties (1)-(3), and the system, so
the theorem says that it should be possible to recast it
integral feedback form. The proof in [71] asserts the
existence of a mapping ϕ(x, y) whose Lie-derivative
along g solves the following first-order linear PDE:

Lgϕ = ∇ϕ · g = αϕx(x, y) +
β

x
ϕy(x, y) = 0 .

Generally, such an equation may be solved using the
method of characteristics. However, in our example the
solution is immediate: ϕ(x, y) = αy − β log x. The
map

(x, y) 7→ (z1, z2) = (y, ϕ(x, y)) = (y, αy − β log x)

is a diffeomorphism whose inverse is y = z1 and x =
e(αz1−z2)/β . We obtain the following equations in the
new coordinates (z1, z2):

ż1 = βue(z2−αz1)/β − γz1
ż2 = βδ − αγz1

with output y = z1. This has the desired internal model
form ż1 = f1(z1, z2)+ug1(z1, z2), ż2 = f2(y, z2), y =
κ(z1), if we define: f1(z1, z2) = −γz1, g1(z1, z2) =
βe(z2−αz1)/β , f2(y, z2) = f2(y) = βδ − αγy, and κ =
identity. Thus z2 is the variable that integrates the error:
when y = y0 = βδ

αγ , the equation for z2 becomes
ż2 = 0, whose solutions are all the possible constant
signals. We can also write this system in terms of the
coordinates x = ez2/β , y = z1 as follows:

ẋ = cx (y0 − y) , ẏ = βuxe−
α

β
y − γy (34)

with c := αγ
β . See [67] for more details. This system

has the generic form ẋ = xF (y0−y), ẏ = G(x, y, u) of
“nonlinear integral feedback systems” in [66]. Bacterial
chemotaxis models often can be shown to have this
form.

When the IMP fails. Interestingly, the Poisson stability
of the exosystem seems to play a key role. To see this,
we now show the two-dimensional IFFL in (29) has
the property that it adapts to polynomial inputs of any
degree, and in fact to any subexponential inputs, even
though the IFFL cannot contain as a factor a system of
arbitrary dimension (as needed to generate arbitrary-
degree polynomials). These remarks are from [74],
see [73] which should be consulted for more details.
Consider (assume u(t) differentiable)

v(t) :=
d

dt
lnu(t) =

u̇(t)

u(t)

and its limsup and liminf as t→∞:

λ := lim inf
t→∞

v(t) , λ := lim sup
t→∞

v(t)

We will assume that v is bounded, so both are finite.
We also denote

y := lim inf
t→∞

y(t) , y := lim sup
t→∞

y(t)

Then one can prove:

β

αγ
max {0, δ + λ} ≤ y ≤ y ≤ β

αγ
max

{
0, δ + λ

}
This implies that if u is a sub-exponentially increasing
input, such as a polynomial of any order, so that
(d/dt) lnu = 0, then λ = 0 and thus

lim
t→∞

y(t) =
βδ

αγ
.

Thus the output y(t) converges to the same constant
independent of the input as if the input was constant.

Interestingly, if there is exponential growth, u̇(t)u(t) → λ
as t→∞, for example if u is an exponential function
u(t) = βeλt, then

lim
t→∞

y(t) =
c

αγ
max{0, δ + λ}

so y(t) converges to value linear on the logarithmic
growth rate. This convergence is hypothesised to play
a role for this adapting circuits in recognising the speed
of chance of a tumor or infection [74].

IV. INTERNAL MODELS IN NEUROSCIENCE

Sensorimotor integration, the transformation of sen-
sory information into motor actions, is one of the most
studied functions of the nervous system. Producing
context-appropriate movement for foraging, escaping
from predators, or mating, is critical to animal sur-
vival. Moreover, since the output of this computation
(movement) and many of its inputs (sensory stimuli)
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can be measured from behaviour alone, sensorimotor
integration can be studied in humans as well as a variety
of animal species.

Many of the early studies focused on reflexive
movements, in which sensory stimuli directly drive
stereotypical motor actions in response. However, it has
been clear for a long time [80] that many sensorimotor
transformations in nature do not fall in this category
but display predictive and adaptive features. The frame-
work of control theory has been very influential in
developing insight into the computations underlying
these features and to guide experimental investigations
of their neural implementation.

Whenever it is observed that a control system is ca-
pable of perfect (asymptotic) tracking of the reference
signals produced by an exogenous system, the internal
model principle implies that the controller must include
an internal model of such exosystem (in addition to
feedback control). Similarly, a control system capable
of closing a sensorimotor loop with no apparent delay
(or significantly smaller than the sensory and actuation
lags) must include an internal model of relevant parts
of the sensorimotor plant within a feedforward or
predictive control scheme. Theoretical considerations
such as these can be translated into experiments that
probe the use of internal models in the nervous system.

Here we review some of the experimental evidence
that the sensorimotor transformations performed by
humans and many animal species are in fact consistent
with the use of internal models of the plant and the
environment. A variety of techniques and experimental
preparations have been effectively employed to func-
tionally probe these models, but revealing the neural
mechanisms underlying these computations has proved
challenging, with progress limited to a few special
preparations. Some of the fascinating questions that
remain open for investigation include (i) to what extent
internal models are explicitly represented in the nervous
system, as opposed to implicitly computed, (ii) whether
there are separate neural substrates for different types
of internal models and for feedback control and (iii) to
what extent neural mechanisms implementing internal
models have been conserved across species.

While this tutorial paper focuses on the internal
model principle, which classically refers to the internal
model of an exogenous system, most of the focus
in neuroscience has been placed on internal models
of the plant. Hence, we will mostly discuss what is
known about these types of internal models, with spe-
cial emphasis on forward (direct) models of the plant.

However, we will conclude with evidence for internal
models of the environment in which the organism
operates, for example of the feasible trajectories of a
moving target, which are directly relatable to exosys-
tems in the context of the internal model principle.

A. Internal models of the plant

Humans and animals can perform motor gestures
which require exquisite temporal and spatial precision,
such as hitting a baseball or catching evading prey.
While this is theoretically achievable via pure feedback
control (with the right sequence of fast reflexive correc-
tions), the sensorimotor delay is usually large relative
to the task. For example, visual processing alone takes
a minimum of 20ms in insects such as dragonflies,
and 100ms or more in humans. Significant delays are
also introduced in the loop by neural computations and
muscle contractions to generate forces. It is hard to
imagine how a purely feedback-based controller with
these lags could enable a hunting dragonfly to catch its
prey within 150ms, or a professional baseball player to
hit a ball within 500ms. Moreover, any sensory appara-
tus has limited resolution, and the sensory information
driving the feedback loop (e.g. the prey or ball position)
must be isolated from a variety of noise sources. In
particular, the nervous system must distinguish useful
sensory information about the external world from self-
motion artifacts, which every motor gesture produces.
Finally, it is unclear how context-dependent movements
could be implemented in a purely reflexive system.
For example, insects have an innate optomotor reflex
that maintains their body orientation aligned with the
horizon, but this reflex would prevent a dragonfly from
performing banked turns while in pursuit of a prey.

It is thus posited that the nervous system com-
bines some form of model-based predictive control to
sensory-driven feedback loops. As the nervous system
plans and executes a motor action, a copy of the
motor command (efference copy [80]) is thought to
be processed through a forward model of the plant
and combined with incoming delayed sensory input
(afferent input). Such a control architecture (Figure 3)
resolves the limitations of pure feedback control. The
nervous system can avoid the large sensorimotor lag by
closing the loop with predicted sensory input or with
some predicted internal state, computed using the for-
ward model within a state observer (by using a Kalman-
filter-type architecture, for example). Moreover, the
sensory consequences of self-motion can be predicted
and canceled from the incoming sensory stream to
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Fig. 3. A forward model of the plant can be used to predict upcom-
ing sensory inputs (ypre(t)), identify the unpredicted information
(yunp(t −∆)) within the raw sensory signals (ys(t)), or estimate
internal states (xpre(t)). The controller may use ypre(t) or xpre(t)
to close the loop without being subject to the sensorimotor lag ∆.

improve the ability to extract sensory information about
the external world. This cancellation can occur by
adding to the sensory input a signal equal and opposite
to the predicted contribution of self-motion (“software
cancellation”) or by moving the sensory apparatus, e.g.
the eyes, in a way that counteracts the effect of self-
motion (“hardware cancellation”). Similar mechanisms
can be used to guarantee that reflexive responses are
activated only by unexpected sensory inputs and not
by self-motion artifacts.

For challenging goal-oriented tasks, such as catching
prey or hitting a baseball, the nervous system may also
exploit internal models of the external world, to predict
the future position of the goal. We will discuss these
models in the next subsection, whereas here we focus
on models of the plant.

Significant insight into sensorimotor integration, at
least at the computational level, can be obtained even
without neural recordings, by tracking the sensory in-
puts and motor behaviour in well-designed experimen-
tal conditions. Wolpert et al. [84] used this approach to
show that humans are able to optimally combine inter-
nal model predictions and sensory feedback to estimate
the current state of their arm. Human subjects were
asked to move a computer-controlled manipulandum
and to report the estimated state of their arm at the
end of a movement performed in the dark. Assistive
or resistive forces were applied to the manipulandum
in some of the trials. The bias and variance of the
estimates in the different conditions were inconsistent
with pure feedback (in this case proprioception, the
sense of relative position between body parts) but
were well described by an optimal linear estimator
employing a forward model (Kalman filter). Mehta
and Schaal [48] found similar results when they asked
subjects to control a virtual inverted pendulum via

a manipulandum with and without visual feedback.
Controlling an inverted pendulum requires real-time
control (the control sequence cannot be memorised),
but subjects were able to successfully perform this
task even during 500ms periods of visual blackout,
suggesting that a forward model was used to provide a
persistent estimate of the pendulum state. There is also
behavioural evidence for the use of forward models to
predict the consequences of self-motion. For example,
the latency of eye movements in tracking a moving
target, which is usually 130ms, disappears when the
target is manually controlled by the subject [60] - a
“hardware cancellation” of self-motion effects.

While behavioural evidence for forward models in
the human brain is relatively rich, the investigation of
their neural implementation is limited by the lack of
available neural recordings. Indirect evidence, however,
points to the cerebellum as a possible locus for these
computations. Perturbation of the cerebellum via tran-
scranial magnetic stimulation during a reaching task
[49] produces performance deficits consistent with the
use of a delayed estimate of the arm position instead of
the real-time estimated position. Similar motor deficits
are observed in cerebellar patients [75].

Direct neural evidence for forward models has been
found in the cerebellum of non-human primates, in
the context of vestibular sensing of head movement.
Brooks et al. [7] recorded the neural activity of the
deep cerebellar nuclei, which send the output of the
cerebellum to the rest of the brain, when the head of
a monkey rotated actively towards a target and when
it was rotated passively by a torque motor. They found
neurons that responded only to passive rotations of the
head but not to active (voluntary) rotations, reflecting
a “software cancellation” of the sensory consequences
of self-motion. When a passive rotation was added
during active head rotations, the activity of the neurons
was proportional to the passive component alone - the
unexpected sensory input. Even more interestingly, if
the same passive rotation was added to every voluntary
movement, the neurons gradually reduced their activity
to zero, consistent with adaptation of the forward model
responsible for computing the expected consequences
of self-motion, which now included the added passive
term. The output of the cerebellum may thus represent
the difference between predictions, made by a rapidly-
adaptive forward model, and actual sensory inputs. This
output may be used as an “innovation term” (like in the
Kalman filter) by other brain regions that are thought
to hold the current estimate of the body state, such as
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the posterior parietal cortex (PPC) [64]-[51].
But is the forward model itself - which transforms

motor signals and current state signals into predicted
sensory signals - fully implemented within the cere-
bellum? After all, the forward-model-related signals
in the cerebellum reported in [7] may be inherited
from upstream regions, or may reflect a distributed
computation involving not only the cerebellum but also
other regions (including the PPC, as argued in [52]).
While this question has not been definitely answered,
there are anatomical, computational and experimental
considerations [83] which suggest that the forward
model may be implemented within the cerebellar cortex
itself (not to be confused with the cerebral cortex, of
which PPC is one part). The main neurons in this region
(Purkinje cells) receive thousands of sensory inputs
and efference copies of motor commands, organised in
a strikingly regular fashion that could favour learning
complex associations between these inputs. The “regu-
lar” high-frequency spiking patterns of these neurons
(simple spikes) encode the expected sensory inputs
better than the true ones [15]. Moreover, Purkinje cells
also produce special complex spikes when a mismatch
occurs between expected and actual sensory inputs,
e.g. when there is an unexpected sensory input after
movement. Complex spikes are thought of as teaching
signals, and there is evidence (at least in specific do-
mains, e.g. eye movements [46]) that they may induce
changes in the pattern of activity of simple spikes -
perhaps reflecting an adaptation of the forward model.

The closest to a mechanistic explanation for how
a forward model may be implemented, comes from
a cerebellar-like region in a very different family of
organisms, the Mormyrids electric fishes [59]. These
animals sense the presence of other fishes (conspecifics,
prey, etc.) by creating weakly electric fields around
their bodies, and monitoring changes in these fields.
However, the own activity of these fishes affects the
electric field they use to sense the environment. Their
movement in the water affects the electric field, and
so do the active electric pulses they emit for elec-
trolocation and communication. So these animals must
be able to cancel the sensory consequences of their
own actions to be able to sense the environment, and
in fact they do. Through a combination of complex
experimental perturbations and measurements, Sawtell
and colleagues could observe the emergence of “soft-
ware cancellation” signals in the output of Purkinje-like
cells after repeated stimulation of the inputs of these
cells during specific bouts of activity. This suggests

that the strengths of the synapses (input connections) to
these cells are highly adaptive and the forward model
implementation may be in these synapses along with
the biophysical properties of the cells themselves and
their downstream connections.

As illustrated by the electric fish case, there are
animal species that may be more experimentally ad-
vantageous than primates to study the implementation
of forward models of the plant (or any other internal
model). Mice are becoming increasingly popular in
the sensorimotor field, as it is now possible to com-
bine genetic techniques for measuring and perturbing
neural activity in the brain, with complex behavioural
paradigms (e.g. [21]). Insects are also particularly ap-
pealing for their smaller nervous system, individually
identifiable neurons and available genetic tools in some
species (the fruit fly drosophila melanogaster). It has
long been known, e.g. in crickets during singing [56],
that efference copies of motor commands are used to
modulate sensory inputs, but this could be through
a much simpler mechanism than a forward model
[82]. Recent behavioural and neural data, however,
appears consistent with the hypothesis that internal
models may also be implemented in the nervous system
of insects. A behavioural study of dragonfly hunting
flights [50] showed that dragonflies predictively steer
their head while they are maneuvering, to keep the
image of the prey in a fixed region of the eyes. In
experimental conditions with constant speed of the
prey (a computer-controlled bead), the head rotation
almost perfectly canceled “in hardware” the effect of
self-motion as well as the predictable movement of
the prey. This suggests that the head control circuitry
includes a forward model and a model of prey motion,
perhaps very simple (see [81] for a possible neural
substrate). Moreover, a neurophysiological study of the
fruit fly [35] revealed that during fast, voluntary flight
maneuvers, visual neurons receive motor-related inputs
which are consistent in magnitude, sign and latency,
with what would be needed to cancel “in software” the
sensory consequences of the maneuver.

In addition to forward models of the plant, which
transform motor commands into their predicted sensory
consequences, the human brain is thought to implement
inverse models of the plant to achieve the opposite
transformation. An inverse model transforms a desired
trajectory in sensory coordinates (needed to achieve a
certain goal in the environment) into a motor command
that can accomplish such an outcome. It is thus a very
useful component of the controller - either within a pure
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Fig. 4. An inverse model of the plant can be used in the controller,
along with feedback control, to achieve a desired trajectory ydes(t).
In one possible scheme (top) the inverse model produces a feed-
forward control command uff (t), whereas feedback corrections
ufb(t) are driven by a separate pathway when unexpected sensory
signals (yunp(t)) are detected. An alternative scheme (bottom) uses
the inverse model to convert high-level commands in extrinsic
coordinates (ycom(t), based on feedback, predictions or both) into
appropriate motor commands to the plant (u(t)). If the desired tra-
jectory ydes(t) is produced by an exogenous system, the controller
may also include an internal model of the exosystem (not shown).

feedforward pathway parallel to feedback control, or
as a common stage for both feedforward and feedback
pathways (Figure 4).

The best behavioural evidence for inverse models
comes from classical “force field” experiments, in
which human subjects were asked to control a robotic
manipulandum towards a virtual goal, while external
forces were systematically applied to the robot [63].
The subjects were initially affected by the force field,
with their trajectories missing the goal. However, over
the course of the experiment they learned to compen-
sate for the force field and to produce successful trajec-
tories which reached the goal. When the force field was
unexpectedly removed, the trajectories produced by the
subjects missed the goal with directional errors opposite
to those produced when the force field was first expe-
rienced. This suggests that the control algorithm in the
brain included an inverse model of the plant, which had
adapted during the experiment to include the force field
effects (an alternative interpretation would be that the
brain had created an internal model of the experimental
environment).

It is not fully understood where the inverse models

are implemented within the nervous system. Studies of
cerebellar activity in primates during eye movements
have been interpreted in the past as evidence that the
cerebellum also implements inverse models in addi-
tion to forward models [65]-[83]. Other studies [20],
however, have argued that the role of the cerebellum
is only consistent with a forward model even in the
context of eye movements, whereas the inverse model
of the eye dynamics may mostly reside in the brain-
stem. For forelimb movements, instead, the locus of
inverse model may be in the cerebral (not cerebellar)
cortex. Force field experiments in monkeys [39] have
revealed neurons in the motor cortex that adapt to the
introduction of the force field perturbation, consistent
with the behavioural adaptation results. However, while
these neurons reflect the output of an inverse model,
consistent with their role as limb controllers, the actual
inverse model may reside upstream of motor cortex.
As in the case of forward models, uncovering the
neural implementation of inverse models may be more
tractable in animal models such as mice or insects, by
combining the right behavioural paradigm (e.g. force
field adaptation) with genetic tools for recording and
perturbing neural activity in multiple brain regions.

B. Internal models of the environment

The survival and success of an animal is tied to the
environment in which it operates, and is particularly de-
pendent on the interaction with external actors such as
prey, predators and mates. It is thus not surprising that
the nervous system of most animals is also capable of
internalising regularities in the environment to improve
perception and action selection. Having an internal
model for how passive objects are physically bound to
move (e.g. due to gravity) or how active external actors
are likely to move (e.g. how a prey trajectory is likely
to evolve in the next future) gives the nervous system
similar advantages to having an internal model of its
own plant. It enables an animal to properly weigh noisy
sensory information against prior expectations (as in a
Kalman filter) and to perform real-time control based
on predicted sensory inputs or estimated state of the en-
vironment. This avoids the large sensorimotor lag that
would render pure feedback-based control ineffective,
and makes goal-oriented motor actions possible even
when sensory inputs are unavailable or unreliable (e.g.
when a prey that is being pursued is visually occluded).

Here we focus on the internal models of a moving
object in the context of interception or visual tracking.
This is only a subclass of all the internal models of
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the environment that are likely present in the nervous
system, but one that is tractable experimentally since
predictions and measurements can be easily compared.

To track and intercept a falling inanimate object, the
human brain uses an internal model of physical prop-
erties of the world, including gravity and momentum.
When preparing to intercept a free-falling ball dropped
from different heights, muscle activity at the elbow
and wrist joints (measured via EMG recordings) was
shown to precede contact by a fixed amount of time
(about 100ms), suggesting a correct estimate of time-to-
contact in the brain [37]. Moreover, when balls of dif-
ferent mass were dropped, the amplitude of preparatory
activity was proportional to the expected momentum of
the ball at impact. Internal models of gravity may be
innate rather than learned, and somewhat hard-coded
in the nervous system. In fact, astronauts in space are
still biased towards expecting objects to fall accord-
ing to gravity, which leads to incorrect interception
behaviours [42], despite prolonged exposure to a 0g
environment. Similar results have been observed in
simulated visual 0g experiments on Earth [92]. Subjects
were asked to intercept a ball falling behind a projector
screen (when it reached the bottom edge of the screen)
based on the visual cues provided by a constant speed
(hence 0g) target projected on the screen. The speed
of the projected target and the timing of ball release
were coordinated so that the positions of the physical
and virtual target would match at the interception point
below the screen. The performance of the subjects in
this task remained well below baseline (assessed with
1g virtual targets) even after many repetitions, and were
consistent with the subjects not fully abandoning the
assumption of gravity when computing the expected
time-to-contact.

The brain can, however, switch between different
internal models of a moving object depending on
the context. In another experiment presented in [92],
subjects were able to correctly intercept the 0g virtual
target if the task was changed so that the physical ball
was removed, and the interception was performed with
the click of a mouse. Interestingly, in this task the
subjects performed better when trained on 0g than on
1g virtual targets. These results may be accounted for
by the existence of separate internal models for passive
and active targets - the gravity model may have been
engaged in the task with the physical ball, but not in
the virtual interception task.

There is strong behavioural evidence that the nervous
system can predictively track the movement of a self-

propelled (e.g., prey) or externally controlled target,
provided it is sufficiently smooth and regular. For exam-
ple, human subjects engaged in a manual interceptive
task can track without delay targets moving along
sinusoidal trajectories up to 2Hz [19]. These results are
well accounted for by a computational model which
augments optimal state feedback (enabled by a state
predictor and a Kalman filter, as discussed for forward
models of the plant) with a “disturbance observer” that
plays the role of the internal model of an exosystem
producing the sinusoidal trajectories. Similarly, mon-
keys can visually track complex trajectories (circles,
Lissajous curves in 2D) with a delay of only a few
ms (2-20 ms), much smaller than the full visuomotor
lag observed in response to unpredictable shifts of the
target (80-100ms) [32].

There are very few physiological studies of internal
models of the environment, but the available results are
similar to those described for forward models of the
plant. Cerminara et al. [11] recorded neural activity
from the cat’s cerebellum during a visually guided
reaching task, with the target moving at constant speed
and disappearing for 200-300ms in the middle of the
task. They found that the simple spike activity of certain
Purkinje cells was significantly modulated by the onset
of target motion, and this activity remained modulated
(higher or lower firing rates compared to baseline) until
the target stopped moving. Crucially, the modulation of
simple spikes during target motion persisted even when
the target was not visible. Since the activity of those
cells did not appear to encode limb or eye movements,
these results suggest that Purkinje cells may have been
encoding the predicted (rather than the sensed) target
motion produced by an internal model. As in the case
of forward models of the plant, computational models
have suggested that the cerebellar cortex may be the
locus of the internal model computation [32].

While the experimental evidence is much too scarce
to draw conclusions, it is tempting to speculate that the
similarities between neural data recorded in the context
of forward models of the plant and models of target
motion (e.g. simple spike activity encoding predictions
in both cases) may result from a common mechanism
for learning and executing internal models. Studying
the neural implementation of internal models of the
environment could be a tractable alternative to studying
forward models of the plant, since the complexity of
the environment can be controlled experimentally. The
internal model principle would provide a useful theo-
retical framework for this kind of investigation. In the
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context of target tracking, for example, one approach
could be to systematically increase the complexity of
the exosystem producing the trajectories to be tracked,
and search for neural activity that adapts to match the
increased complexity of the exosystem. If the nervous
system can predictively track the given trajectories, the
internal model principle proves that an internal copy of
the exosystem must in fact be embedded in the neural
controller.

V. AN ABSTRACT INTERNAL MODEL THEORY

As discussed in Sections III-IV, the concept of
internal model is ubiquitous, and the internal model
principle can be an important conceptual framework in
a variety of fields. However, the technical machinery
of the IMP in control theory (Section II) may not be
easily translated to every other field. In this section, we
thus introduce an abstract version of the internal model
theory that is applicable to a large class of systems.

Since the achievement of “robustness” or structural
stability of perfect regulation with respect to parameter
variations is largely a matter of technology, we shall
consider only the converse questions:
• Is error feedback a necessary condition for “good”

regulation (i.e. perfect tracking)?
• Is an internal model a necessary condition for

“good” regulation?
If “Yes”, shouldn’t these statements hold for a very

wide class of regulator systems, linear or nonlinear?
Thus we shall assert as the IMP: For a very general

class of systems:
• Assertion 1. Error feedback + Perfect regulation
⇒ Internal Model

• Assertion 2. Structurally stable (or “robust”) per-
fect regulation⇒ Error feedback + Internal Model

Fig. 5. Total System S.

Our goal is to establish the IMP in a general but
rudimentary discrete-time framework, using just or-
dinary sets and functions, without any sophisticated
technical or geometric machinery. We begin with the
easier Assertion 1. Referring to Fig 5, we consider
the total system S = Exosystem × Controller × Plant
= E×C×P, with state space the set X = XE×XC×

XP, say. While there’s no need to distinguish sharply
between Controller and Plant, we do so here for the
sake of intuition and control tradition. Bring in the total
one-step transition function α : X → X . We consider
XC×XP to be α-invariant, and XE the corresponding
factor with induced map αE : XE → XE. Thus
(XE, αE) is the dynamic model of the exosystem or
“outside world”, providing the reference signal for
tracking by C×P. Think of E as “driving” C×P.

For the total system S we need to define internal
stability, error feedback, and exosystem detectability.
For internal stability we assume that X is a finite set
and that (XE, αE) induces an α-invariant subset of
X via an injection iE : XE → X as shown in the
(commutative) diagram of Fig. 6. Thus α◦iE = iE◦αE

. Write X̃E := iE(XE) and assume (crucially) that X̃E

is a global attractor, namely that, for every initial state
xo in X , there is an integer N with αn(xo) ∈ X̃E for
all n ≥ N . [For simplicity we omit the technical details
in case X is infinite.] Think of E as an orchestra and
C×P as an attentive but passive audience.

Fig. 6. Internal stability commutative diagram.

To define error feedback, first let K ⊆ X be the
target subset for regulation: in the standard case K is
exactly the subset where tracking error is zero. Also let
γ : X → XC be the natural projection defining state of
the controller. Error feedback is then the property that
the controller C is externally driven only when state
of S deviates from the target K, namely the dynamics
of C are autonomous as long as x ∈ K, or “tracking
remains perfect”. Suppose x ∈ K, so the controller
state is xC = γ(x). By feedback the next controller
state x′C = γ(α(x)) depends only on xC = γ(x),
i.e. for x ∈ K, γ ◦ α(x) is computable from γ(x).
Formally ker(γ|K) ≤ ker(γ ◦ α|K), where ker(.)
denotes equivalence kernel of the functional argument
and ≤ means “is a refinement of”. Note that K itself
need not be α-invariant and usually isn’t.

Lack of space prohibits formally defining exosystem
detectability (see [85], [87]); just recall that detectabil-
ity is “local observability” on an invariant subspace,
defined here as the property that the global observer
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congruence for the pair (γ, α) reduces to “full ob-
servation” (bottom element) on X̃E. Intuitively this
means that the controller is effectively coupled (via
error feedback) to the exosystem, namely the latter is
observable by the controller as long as regulation is per-
fect. This requirement could be dropped by replacing
the exosystem by its “observable factor”.

With XE as defined above, write α̃E := α|X̃E,
γ̃E := γ|X̃E. Now we can prove

Theorem 1 Internal Model Principle: Assertion 1
above

Assume that S satisfies internal stability, perfect
regulation, error feedback, and exosystem detectability.
Then

1) There exists a unique mapping αC : XC → XC

determined by αC ◦ γ|K = γ ◦ α|K
2) αC ◦ γ̃E = γ̃E ◦ α̃E

3) γ̃E is injective
Statement 1 defines the controller’s dynamics, as au-
tonomous under the condition of regulation. Statement
2 identifies these controller dynamics as a copy of the
dynamics of E on the global attractor (i.e. exosystem
dynamics). Statement 3 asserts that this copy is faithful,
namely incorporates fully the exosystem dynamics. The
result is shown in the commutative diagram Fig. 7. The
proof (omitted) amounts to building up the commuta-
tive diagram Fig. 8. To formalise Assertion 2 above

Fig. 7. Commutative diagram for Assertion 1.

Fig. 8. Commutative diagram for Theorem 1.

we enlarge the state structure by forming products with
a parameter set M; and require that internal stability,
perfect regulation, and exosystem detectability hold
for every element µ in M . For realism and to avoid
overkill we specialise M = ME × MC × MP, µ =
(µE, µC, µP), resulting in the commutative diagrams
of Fig. 9. The resulting perturbation model (Fig. 10)
leads in turn to the equation

αC [R(µE)(xE), S(µP) ◦ iP(xE), T (µC) ◦ iC(xE)] =

T (µC) ◦ iC ◦ αE(xE)

(a)	 (b)	

(c)	

Fig. 9. Admissible transformations.

Fig. 10. Perturbation model commutative diagram.

We must make the final crucial assumption of Rich
Parameter Perturbation:

For each fixed xE, as µE varies through ME and µP
varies through MP, R(µE)(xE) varies through XE and
S(µP) ◦ iP(xE) varies through XP. It follows that

αC[R(µE)(xE), S(µP) ◦ iP(xE), T (µC) ◦ iC(xE)]

depends only on T (µC) ◦ iC(xE). In other words,
for each fixed parameter value µ, the system S has
feedback structure on the attractor X̃E(µ), namely for
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every µ the controller C is autonomous when regulation
is perfect. As before, we deduce that C contains an
internal model of E, establishing Assertion 2 above.

So what is “the shape” of Mark Twain’s river (which
wanders about under perturbation)? Note that in Fig.
9, αE ◦ R(µ) = R(µ) ◦ αE, where R(µ) is in fact an
automorphism. Thus a “small” perturbation µ merely
shifts the current state of E to one on a “neighbouring”
trajectory of the same dynamics (XE, αE). For “the
shape” take any ”nominal” trajectory you like!
The scheme above may provide a basis for versions
of the IMP in a variety of more structured technical
settings, for example bang-bang or sliding mode. Not
to mention refinements topological, metric, differen-
tiable, etc., where (essentially) the same commutative
diagrams ought to work.

VI. CONCLUSIONS AND RESEARCH DIRECTIONS

This tutorial paper has the objective of presenting
fundamental concepts about the internal model princi-
ple and how it is declined in different scientific areas,
starting from control theory where the principle has
been formalised around the 70s, and then overview-
ing the biology and neuroscience areas in which the
principle is a driving concept. The goal of the paper
was not to find a common formal perspective but
simply to objectively present the different visions and
problems as tacked in the different areas, by arousing
the curiosity of the reader on how the same “principle”
finds declinations in the presented scientific areas. The
abstract perspective presented in Section V, in turn,
can be seen as an attempt to formalise a primitive
“intelligence” not biased on a specific area. Issues on
how this “intelligence” is declined in different scenarios
by addressing problems of adaptation, learning, com-
puting power, and “real” problem-solving intelligence
are definitely open for investigation and characterise the
research challenges nowadays addressed in the different
areas.

As for control theory, the research area of internal
model-based design is still very active with many chal-
lenges that are now under the spotlight. Two accompa-
nying papers to this tutorial ([5], [3]) provide more in-
sight on some research aspects that are now considered.
One of the main challenges is related to how the “prim-
itive intelligence” declines for multivariable (i.e. with
many inputs, measured outputs, and regulation errors)
nonlinear systems not necessarily possessing special
normal forms. The multivariable nature of the problem
shows how internal model-based architectures devel-

oped so far in the context of output regulation for single
input-single error nonlinear systems (see Section II) are
somehow limitative and must be called into question.
In this respect, the distinction that clearly emerged in
the last years (see [31]) is between pre-processing and
post-processing architectures, with the former typically
proposed for single input-single error nonlinear systems
and the latter that are typically adopted for linear
systems in a general multivariable context. A pictorial
sketch of the two architectures is shown in Figure 11.
While post-.processing architectures are definitely more
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Fig. 11. Pre- and Post-processing internal model-based control
architectures.

appealing for handling general multivariable systems,
they pose some structural problems in the constructive
design of the regulator for nonlinear systems (in this
way justifying the research drift towards pre-processing
schemes observed so far). In fact, a “chicken-egg”
dilemma arises in the design of the stabiliser and the
internal model, with the former that depends on the
latter (since it is expected to stabilise the cascade
between the plant and internal model) and the latter that
depends on the former (since the cascade of the two is
expected to provide the ideal steady state input), see [5].
While for linear systems a “sequential” design of the
two units is possible since the harmonics of the ideal
state inputs are known a-priori (as coincident with the
exosystem modes) and are independent of the stabiliser,
the nonlinear case is definitely more challenging. In
plain words, while in the linear framework the internal
model is just linked to the exosystem, in the nonlinear
setting it is affected by the exosystem, the regulated
system and the stabiliser. This fact, in turns, motivates a
“synergistic” design of the stabiliser and internal model
in which both are “simultaneously” designed to guaran-
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tee the invariance of steady state manifold associated
to a zero regulation error (typically demanded to the
internal model unit) and the attractiveness of the latter
(typically demanded to the stabiliser), with the internal
dynamics of the steady state manifold that jointly
depends on the exosystem and regulated plant. The
adoption of a mix of adaptive and identification tools is
a possible way investigated in [4] (see [5]). The quest
for robustness is also a further fundamental research
topic when dealing with the design of the regulator
for multivariable nonlinear systems. As stressed in the
accompanying paper [3], the formal requirement of
robustness necessarily asks to specify which property
must be preserved under system uncertainties (with
“zero asymptotic regulation error” that is only one,
often quite idealistic, possible property) and which kind
of topology is used to model system uncertainties.
For instance, for linear systems it is known that the
linear regulator is robust when considering the property
“zero asymptotic regulation error” and when consider-
ing arbitrary plant uncertainties that do not destroy the
linearity of the system (and the closed loop stability).
In the case of nonlinear systems the fact of insisting
with the ideal property of zero regulation error in
presence of arbitrary plant uncertainties seems to be
unrealistic to the point that the paper [3] conjectures
that finite dimensional robust regulators do not exist.
This observation justifies research directions aiming to
identify the strongest (i.e. “as close as possible” to zero
regulation error) property that the is preserved under
the weakest topology constraining plant uncertainties,
opening to internal model principles that depends on
the adopted property/topology.
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