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Abstract-In this paper, the problem of asymptotic 
identification for fading memory systems in the presence of 
bounded noise is studied. For any experiment, the worst-case 
error is characterized in terms of the diameter of the 
worst-case uncertainty set. Optimal inputs that minimize the 
radius of uncertainty are studied and characterized. Finally, a 
convergent algorithm that does not require knowledge of the 
noise upper bound is furnished. The algorithm is based on 
interpolating data with spline functions, which are shown to 
be well suited for identification in the presence of bounded 
noise-more so than other basis functions such as 
polynomials. 

1. Introduction 
Recently, there has been increasing interest among the 
control community in the problem of identifying plants for 
control purposes. This generally means that the identified 
model should approximate the plant in the operator 
topology, since this allows the immediate use of robust 
control tools for designing controllers (Dahleh and 
Khammash, 1990, Doyle, 1982). This problem is of special 
importance when the data are corrupted with bounded noise. 
The case where the objective is to minimize the prediction 
error for a fixed input has been analyzed by many 
researchers (see Ljung, 1987, and references therein). The 
problem is more interesting when the objective is to 
approximate the original system as an operator, a problem 
extensively discussed by Zames (1979), especially when the 
plant’s order is not known a priori. For linear time-invariant 
plants, such an approximation can be achieved by uniformly 
approximating the frequency response (H, norm) or the 
impulse response (e, norm). In H, identification, it was 
shown that robustly convergent algorithms can be furnished, 
when the available data is in the form of a corrupted 
frequency response, at a set of points dense on the unit circle 
(Helmicki et 01.. 1991: Gu et uf.. 1992: Gu and Khareonekar 
i992). For the iopol&y induced by the e, norm, a c;mplete 
study of asymptotic identification was furnished by Tsc et al. 
(1993) for arbitrary inputs, and the question of optimal input 
design was addressed. Most work on input design has been 
done in stochastic settings (see e.g. Mehra, 1974; Zarrop, 
1979), but recently there have also been some results in 
worst-case settings (Kacewicz and Milanese., 1992; Makila, 
1991). Related work on the worst-case identification problem 
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was also reported by Makila and Partington (1991), Poolla 
and Tikku (1994), Dahleh et al. (1993) and Jacobson and 
Nett (1991). 

In this paper, the work of Tse et al. (1993) is extended to 
analyse the worst-case asymptotic identification of nonlinear 
fading memory systems. As in Tse et al. (1993), the study is 
done in two steps. The first is concerned with obtaining tight 
upper and lower bounds on the optimal achievable error by 
any identification algorithm. The bounds are functions of the 
input used for the experiments, and this can be arbitrary. The 
second step is then to study these bounds and characterize 
the inputs that will minimize them. In particular, simple 
topological conditions are furnished that guarantee the 
existence of an algorithm with a worst-case error within a 
factor of two from the lower bound. A near-optimal input is 
characterized so that the worst-case- error is within a factor of 
two of the bound on the noise. 

It is noted that for the results on arbitrary experiments, the 
suggested optimal algorithms are tuned to the knowledge of 
the bound on the noise. If, however, the near-optimal input 
is used, then an untuned algorithm can be provided that 
results in a worst-case error equal to the noise bound, 6. 
Such an algorithm is based on interpolating data by spline 
functions of several variables. 

The rest of the paper is organized as follows: Section 2 
gives a formal definition of nonlinear fading memory 
systems. Section 3 describes the identification set-up. Section 
4 characterizes the asymptotically optimal algorithms and the 
associated optimal worst-case errors for a given input. The 
problem of optimal inputs is addressed in Section 5. An 
optimal untuned algorithm is developed in Section 6. Section 
7 contains our conclusions. 

2. Fading memory systems 
Let %ll be the set of one-sided infinite sequences whose e, 

norm is bounded by 1. This can be viewed as the input set 
that contains the possible inputs that can be used for 
performing the identification experiments. We consider the 
set of models ZLO as discrete-time, causal functions from % to 
I?“; a plant h E &takes as input a sequence u = (u,,, u,, . .) 
to give an output sequence (h,(u), h,(u), . .). We assume 
that h E &further satisfies the following properties: 
(1) h,(u) depends continuously on uO,. . , u,_,; 
(2) h has equilibrium-initial behavior: 

h,+,(Ou) = h,(u) Vn, 

where Ou is the input O,uO, u,, . . . (In general, we shall 
use the notation VW for concatenation, i.e. first apply the 
finite sequence V, then w. Since we are dealing with 
causal systems, we shall slightly abuse the notation and 
write h,(w) to mean h,,(u), where u is any infinite 
sequence whose first n elements are given by the finite 
sequence w.); and 

(3) h has fading memory (FM): for each E > 0, there is some 
T = T(E) such that for every k, every t 2 T and every 
finite sequence u E [-1, ilk, w E [-1, l] 

Ih,+*(vw) - h,(w)1 < E. 
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To measure the identification error. we shall u5e the 
operator gain 

Ilhll I = sup llh(~~)ll,. 
I‘ < ‘l/ 

It can be seen from the defining properties that systems in 
I must necessarily have bounded operator gain. This is a 
good norm to consider for robust control applications. 
However, it should be noted that this norm is different from 
the standard definition of the gain of a nonlinear operator, 
which is readily suitable for robust control applications. For 
the above induced norm to be useful, an upper bound on the 
amplitudes of input signals has to be known a priori. In the 
above definition, this bound is normalized to one. 

2.1. Examples of FM systems 
2.1.1. Stable LTI systems. For each h e 0. consider the 

input/output map u HU * h. It is cleat that these systems 
satisfy the above conditions. The operator-induced norm in 
this case is just the e, norm. 

2.1.2. Hammerstein syslems. These arc systems formed by 
composition of a stable LTI system followed by a 
memoryless nonlinear element: 

v,, = g((n * h),z) 

for some h E f, and some continuous functions 6: R + R. It is 
easy to verify that these systems satisfy the first two 
conditions above. If we assume further that g is uniformly 
continuous then it can be seen that the system also has fading 
memory. 

For further details on fading memory operators, see Boyd 
and Chua (1985) and Shamma and Zhao (1990). 

3. Identification set-up 
The plant to be identified is known to be in a model set 

Y c Z. An input u is selected from the set q/. We assume 
that the observed output y is corrupted by some additive 
disturbance d that is unknown but magnitude-bounded, 
IId \jx 5 6, i.e. if h is the system then the observed output is 

v=h(u)+d. 

An identification algorithm is a sequence of mappings 
4 = {r#~,} generating at each time an estimate +,,(f,,u. P,y) E 
B of the unknown plant. Here P,, is the truncation operator 
defined by P,(u,,, II,, . It,,, !A,, / , .) = (UC,. , u,. 0, 
0. .). 

Given an identification algorithm and a chosen input. we 
should like to consider the limiting situation when longer and 
longer output sequences are observed. To this end. the 
worst-case asymptotic error, e=(+, LI, 6) of an algorithm 4 is 
defined as the smallest number I such that for all plants 
h E Ju and for all disturbances d with Ild II7 5 6 

lim sup llr#~(P,,u, P,(u * h t cl)) ~ h/I , 5 r. 
n-r 

Equivalently 

e-(4. a, 6) 

The interpretation of this definition is that no matter what 
the true plant and the disturbances are, the plant can be 
eventually approximated to within e,(&, L(, 6), using the 
estimates generated by the identification algorithm. The 
convergence rate may depend on the plant and noise, i.e. for 
a given E. there exists some N(d, h, F) such that 

whenever n 2 N. We say that the convergence is uniform ii 
N(y, h, E) depends only on F. For more motivation and 
discussion on these definitions, see Tse et al. (1993). 

The optimal worst-case asymptotic error E,(u, S) is 
defined as the smallest error achievable by any algorithm: 

Any algorithm for which the infimum is attained is said to be 
asymptotically optimal. We shall obtain a general charac- 
terization of the asymptotically optimal algorithms and the 

resulting optimal error, for any given input u. We shall then 
find conditions on the input u to make this optimal 
worst-case asymptotic error small. 

4. Asymptotically optimal identification 
‘The characterization of asymptotically optimal algorithms 

and optimal asymptotic errors is in terms of the uncertainty 
set, an important notion in information-based complexity 
theory. The uncertainty set S,,(u, I’, S) at time n is the set of 
all systems in the given model set 1 that are consistent with 
the observed data up until time n: 

S,(u, Y, 6) = {h E N: lIP,(y - h(u))llx’S). 

These are the plants that can give rise to the observed output 
for some valid disturbance sequence. The infinite-horizon 
uncertainty set is 

.S,(it, v. 6) = jh t JM: [Iy ~ h(u)/r % 8). 

For a given set A c dl define the diameter of the set as 

dim (A) = $fA /It? - h II 9, 

and let D(u. 6) be the diameter of the worst-case 
infinite-horizon uncertainty set: 

D(U, 6) = .ssp, ,,gp6 dim [SAU, u * h + 4 S)l 
Ic 

Under appropriate topological conditions on the model set, 
this quantity characterizes the optimal asymptotic worst-case 
error so that the infinite-horizon experiment can essentially 
he viewed as the limit of the finite-horizon experiments. We 
call this notion consistency. The following consistency result 
is a generalization of Proposition 3.3, Theorem 3.4 and 
Proposition 3.9 in the LTI case (Tse et al., 1993) to our 
present setting. The proof is essentially the same, and is 
omitted. 

Theorem 4. I. If the model set &c I is o-compact (i.e. 1 is 
a countable union of compact sets) then 

:D(u. 6) c E,(u, 6) 5 D(u, 8). 

Furthermore, if 1 is compact then the convergence can be 
made uniform. 

In the rr-compact case, an algorithm achieving an 
asymptotic error within the above bounds can be realized 
using the principle of Occam’s razor. Let 1= l_l, JU,, where 
the A, are compact and increasing. This decomposition gives 
a complexity index to each plant h in Ju, defined as the 
smallest i for which h E A,. At each time n, the algorithm 
simply returns, as an estimate, any plant in the uncertainty 
set $I with the smallest complexity index. Note that since the 
disturbance bound S is required to compute the uncertainty 
set, this algorithm is tuned to this information. On the other 
hand, if ./tl is compact, one can use an algorithm that simply 
returns the plant in Y that fits best the input/output data 
observed so far. This algorithm attains an asymptotic error 
within the above bounds with a uniform rate of convergence. 
It is also untuned to the disturbance bound S. 

A slight extension of the above result yields essentially the 
same bounds for the case when & is separable. The proof is 
along the same lines as the proofs of Lemma 4.5 and 
Proposition 4.6 in Tse et al. (1993). The optimal algorithm 
has roughly the same structure as that for the u-compact 
case. 

Theorem 4.2. If 1 is separable then 

~l‘o apply the above results, we now look at the topological 
structure of some classes of fading memory systems under 
the operator-induced norm. 

Consider first the class of stable LTI systems. Since this 
corresponds to the space C,, which is separable, Theorem 4.2 
is applicable in this case. More generally, we can in fact 
prove the following. 
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Theorem 4.3. The class of all fading memory systems is 
separable. 

Proof Define the class of @h-order memory systems, A,,, to 
be the set of all f such that for every k and for every t >p 
and all finite sequences u E [-1, l]* and w E [ -1, l]‘, 
fi+r(uw) =f,(w). It is clear that any fading memory system 
can be approximated (in the operator-induced norm) 
arbitrarily closely by a @h-order memory system for 
sufficiently large p. Hence it suffices to prove that J$ is 
separable for all p. 

Now, given any f E “ttp, we can find some continuous 
function g: [-I, l]P+ R such that for all time n and all input 
u 

fn(u)=g(un-p,...,un-l). 

We call g the memory function for f: Hence we have 
l]fll = llgll,, where the infinity norm is taken over [-l,l]p. 
But the space of continuous functions with the uniform 
topology induced by the e, norm, denoted by C([-1, l]P), is 
separable, and hence so is JU,. n 

This means that when we look at fading memory systems, 
we can apply Theorem 4.2, and reduce the analysis of the 
asymptotic optimal error to the analysis of the worst-case 
infinite-horizon diameter. 

5. Optimal inputs 
We now turn to the question of optimal inputs, i.e. inputs 

u that minimize the worst-case infinite-horizon diameter 
D(u, 6). First we state a simple lower bound. 

Lemma 5.1. Assume 1 is path-connected and diam (1) 2 
26. Then D(u, 6) 2 26 for all u E %. 

Proof See Tse et al. (1993). H 

Since diam (,U) > 26 for most reasonable model sets, the 
above results gives a general lower bound. We now 
investigate how to choose an input that achieves this bound. 

Recall that A is balanced if h E 1 implies -h E A. For 
balanced and convex model sets, it is well-known from 
information-based complexity theory (Traub and Woz- 
niakowski, 1980) that the worst-case diameter is equal to the 
diameter of the uncertainty set when the output is identically 
zero. The following lemma summarizes this. 

Lemma 5.2. Assume that Y is balanced and convex. Then, 
for all u E Q, S>O 

D(u, 6) = diam [S,(u, 0, S)]. 

Call an input u E ‘% persistently exciting for ~7 if the 
following property holds: 

Il4U)llT = IV II% Vh E A 

The following result says that persistently exciting inputs are 
optimal. 

Theorem 5.1. Assume that & is balanced and convex. 
(1) If the input u is persistently exciting, then D(u, 6) 5 26 

for all 6 > 0. 
(2) If u is persistently exciting then D(u, 6) = 26 for each 

0<6sfdiam(Jtl). 

ProoF (1) By Lemma 5.2, for all 6 > 0 

D(u, 6)=2sup{llhII:h Ed, Ilh(U)li,~6}. 

Pick any h E .A% such that I/h(u) II_ 5 8. If u is persistently 
exciting, this means that also Ilh II15 6, so D(u, 6) 5 26. 

(2) From Lemma 5.1, D(u, 6) 2 26 for such 6. The result 
follows from (1). n 

It follows from Theorems 4.2 and 4.3, Lemma 5.1 and the 
above theorem that one can achieve nearly optimal 
asymptotic identification for the entire class of fading 
memory systems if one uses a persistently exciting input. 

Corollary 5.1. Let JX = Z&‘, the class of all fading memory 

systems. Then for any identification algorithm 4 and any 
input u, the worst-case asymptotic error e-(4, u, 6) is lower 
bounded by 8. If u is persistently exciting then there is an 
algorithm that can achieve an asymptotic error of less than 
26. 

A natural question that arises at this point is whether 
persistently exciting inputs exist. In the stable LTI case, this 
was shown to be the case (Tse et al., 1993). The next theorem 
shows that they also exist when the model set consists of 
nonlinear fading memory systems. 

Theorem 5.2. Let the model set 1 be some subset of the set 
of fading memory systems. Let W be any countable dense 
subset of [-1, 11 and consider any input w,, E [-1, 11” that 
contains all possible finite sequences of elements of W. Then 
oa is persistently exciting. 

Proof Assume that h E A, llh (/ = K < m. Pick any E > 0. Let 
T = T(E) as in the definition of FM. By definition of the sup 
norm, there are some w and some T, so that 

Using the equilibrium-initial assumption and replacing w by 
Orw and T, by T + T,, we may assume that 

sup Ih,(o)l > K - E. 
T%Ci-, 

By density of W and continuity of h,(o) on past values of o, 
we may further assume that o(O), , o(T, - 1) take values 
in W. From the construction of oc, there is some k such that 

w,(k) = w(O), wo(k + 1) = o(l), . . , 
o,(k + T, - 1) = w(T, - 1). 

Let v be the finite sequence oc(O), tic(l), , o&c - 1) and 
let w be the finite sequence o(O), w(l), . . , w( & - l), which 
is equal to o,,(k), o&4 + l), . , oo(k + T, - 1). So VW is the 
same as the first T, + k - 1 elements of oc. 

By the FM property applied to these inputs, we have 

lh,+k(u~) - h,(w)1 < E for each t 2 T 

(using the notational convention mentioned above for h,(w) 
if the length of w is larger than s). Then for such t 

Ih+,(4l= Ih+/AUW)l~ Ih( - 6 
so 

Il~(%)II 22 T+k$ygr +* Ih( = K - 25 
1 

Thus we conclude that K = llhll 2 Ilh(q,)II > K - 2~ for all 
F >O, so Ilh(o,,II = K as wanted. n 

6. An untuned algorithm 
As remarked earlier, the asymptotically optimal algorithms 

for o-compact and separable model sets are tuned to the 
knowledge of 8, the bound on the disturbance. It will be 
shown that for fading memory systems, we can achieve 
asymptotically optimal identification without knowing 8, 
provided that we use a persistently exciting input. This is in 
fact a generalization of a result by Makila (1991) which was 
proved in the context of stable LTI systems. 

We shall make use of multivariate piecewise-linear spline 
functions to interpolate between the measured data to form 
an approximation to the unknown plant. This is a 
generalization of the univariate linear spline, but, because in 
higher dimension there is no natural ordering of the data 
points, the description of the interpolant is more 
complicated. 

Consider the cube I = [-1, l]P clwp. Let xi, x2,. ,x,, 
m >p, be m points in the interior of the cube. We wish to 
construct a continuous, piecewise-linear function f: I+ R 
such that f(xi) =yi, i = 1,2,. , m, where the y, are given 
data values to interpolate. 

To facilitate the discussion, we need to first define several 
basic geometric concepts. A p-dimensional simplex S in Rp is 
the convex hull of p + 1 affinely independent points. Each of 
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these points is a vertex of S. The convex hull F of any subset 
of these p + 1 points form a face of S if there exists a 
hyperplane H such that S lies entirely on one side of H and 
S n H = F. If F is the convex hull of p points, it is called a 
facet. A point u outside S is said to be separated from S by a 
face F if v and S lie on opposite sides of the p - I 
dimensional hyperplane containing F. A more elaborate 
discussion of these concepts can be found in Grotschel et a/. 
(1987). 

The first step is to find a set of simplices {S,} such that (1) 
their combined vertex set is {x1, , x,}. (2) the simplices 
only intersect at common faces and (3) their union gives the 
convex hull of the vertex set. This can be done inductively as 
follows: for m = p + 1, the set simply consists of one simplex. 
which is the convex hull of the p + 1 points. Suppose now we 
obtain a set of simplices S,, S,. . S, to cover m >p points, 
and consider one additional point x,, +,. If x,,, , , E Sk for 
some k then we can simply replace S, with the p + 1 
simplices formed by x,,, + , with each of the faces of S,. It is 
easy to see that these p + 1 simplices only intersect at 
common faces and their union is S,. so that the updated set 
of simplices now covers the m + 1 points. On the other hand. 

if .r,,, + I lies outside P = Ur=, S, then for each facet F of some 
S, that separates x,,, , , from P, we add a simplex formed by 
s,, , , with F to the set. It can also be proved that these added 
simplices together with the original ones satisfy the three 
conditions. 

Given these simplices, we can now define our interpolating 
linear spline f as follows: first define f(x,) =y, at the given 
data points. For other x E [- 1, I]“, if I E S, for some j, let 
f(x) -Z, CX,~(U,), where the U, are the vertices of S, and 
r = Z, (Y,u,. It is easy to check that because of the above 
three conditions on the simplices, f is well defined and 
continuous. To extend f continuously outside P = U, .S,. 
define f(x) to be equal to the value off at the nearest point 
in P to X. Since P is convex, this nearest point is unique. and 
this guarantees the continuity of this extension. 

If we view this interpolating process as an operator rnr,, 
mapping the data vector y = (JJ,, y2, , y”,) to the 
piecewise-linear interpolating function (T,,(y))(x) then we 
can see that this operator is linear, and its gain, defined as 

II K, II - sup II K,(Y) 11%. 
l/Yllr .= 1 

(1) 

is equal to one. This simple fact ensures that, no matter how 
many data are obtained, noise in the data will not be 
amplified in the interpolating process. This property of linear 
splines, which is not shared by methods such as global 
polynomial interpolation. turns out to be the key to 
guaranteeing the consistency of the estimates. A similar 
situation is encountered in linear system identification from 
frequency-response data (Helmicki et al., 1991). where 
one-dimensional splines are used instead of polynomials to 
interpolate the noisy data to guarantee robustness of the 
identification procedure. 

With the above basic discussions on multivariate linear 
splines, we may now state the main result of this section. 

Theorem 6.1. Let the model set .& = 2, the set of all fading 
memory systems. If the input u is persistently exciting then 
there is an algorithm that can achieve an optimal worst-case 
asymptotic error ex(4. IA, 6) = S. This algorithm does not 
require the knowledge of 6 in computing the estimates. 

Proof The structure of the algorithm is as follows. We view 
the model set J4 as the closure of the finite-memory systems 
.M,,, p =O. 1. 2.. We start by assuming that the true 
system is in _4,& Data is observed until time n(0). after which 
the algorithm comes up with an estimate h^“” t .&. Then it 
moves onto the next model set _M,, and waits until time n( 1) 
before coming up with an estimate h^(” E Y,. The algorithm 
continues to move onto the model set of one higher order, to 
produce a new estimate. It will be shown below how the time 
n(p) is specified and the estimate h^@’ is computed for each 

P. 
Let h be the true system. Let {S,,} be any sequence that 

goes to zero monotonically. 

Fix p, and let the time n E [n(p ~ I), n(p)]. (This is when 
the algorithm is collecting data to compute an estimate in 
.U,,.) Consider all the blocks 

(U,, ,’ e , 1 3 L(,, ,.u,) Vn=n(p-1) I..., n(p) 

in the input as data points in the cube [ - 1, l]P. We maintain 
a simplicial structure in [-1. 11” with these data points as a 
vertex set. and the structure is incrementally modified more 
or less according to the procedure discussed earlier, with a 
slight twist. Let C,! = U, S, be the union of the simplices at 
time n, and let d, be the distance between C,, and the corner 
of [-I, 11” farthest away from C,. At time n + 1, one more 
data point is obtained. If d, < S,, and the new data point lies 
outside C, then discard the new point. Otherwise update the 
simplicial structure as described earlier. 

Let n(p) be the earliest time such that d,,(,,) < 8, and the 
diameter of the largest simplex in C, is less than 8,. At this 
time, the algorithm returns an estimate &@)= &,cp,(h(~) + 
d) to be the pth-order system with memory function as the 
piecewise-linear spline interpolant of the current simplex 
structure. 

We now claim that n(p) < x for every p. First we see that, 
because the input is persistently exciting, the p-blocks in u 
are dense in [-I. I]!‘. (Otherwise, there is a ball in [-1, l]p 
that does not contain any blocks in U, and we can construct a 
p-step finite memory system with a continuous function 
f: iw” + R to be positive at the centre of the ball and zero 
outside. Then applying the input u to the system will give a 
zero output while the gain of the system is non-zero, thus 
contradicting the persistent excitedness of u.) Hence there 
exists a time m(p) such that d,(,, < 8,. After this time, the 
convex hull C,, no longer expands. All the changes consist of 
further partitioning of the simplices inside C, due to the new 
data points. Because the data points are dense, it can be seen 
that the diameter of the largest simplex must go to zero. 
Hence, n(p) is finite. 

We now claim that 

lim sup II 4,,,,,(h(u) + d) - h II 5 6 
P--LX 

for all d. l/d iI_ 5 6. This, combined with our lower-bound 
result (Corollary S.l), shows that the asymptotic error is 
exactly S. Note also that the algorithm defined above does 
not use the value of 6 in computing the estimate. 

Take any E > 0. There exists some 4 such that A, contains 
a system h’ with 

ilh ~ h’ // 5 Q. (2) 

Let K’ be the (q-step) memory function for h’. For p > y. 
@,,(,,)(h(u) + d) is the spline interpolant that approximates 
the unknown memory function, and y = h(u) + d is the 
output. We can also extend R’ to a function on I-1, l]P that 
depends only on the last 4 coordinates. Now 

= lld~,,,,,W)) + 4,,,,(d) -g’ll- 
(by linearity of the interpolation operator) 

5 ~l&,,>,Wu)) - R’II- + ll9,,,,(d)lI~ 

5 ll6,,,,,(Mu)) -g’ll= + 6 (by (1)). 

The first term is the interpolation error when the data is 
noiseless, whereas the second term is the error due to the 
noise. We now show that the first term can be made 
arbitrarily small for large p. 

Since ,g’ is continuous, g’ is a uniformly continuous 
function on [ - 1, I]“. Choose E, such that 

II-~I - X2il2 5 613 llg’(*,) - g’(Xz)/l2 5 l . (3) 

Now pick p sufliciently large that S,, < E, and p >q. Let 

@I(*) = &,,J,(h(~~)). 
Now, for any x E Cncll), the convex hull, let x = Z, a,~,. 

where X, are the vertices of the simplex containing X. Since gp 
agrees with the noiseless output data at the vertices, by (2), 
for each i 

Ik”(X,) - ‘fk)l 5 E. (4) 
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We have 

IgP(x) - g’(x)1 = 17 w%) - p’(x)l 
5 IT aif -f(X)1 + e @Y (4)) 

52.e 

by (2), since llxi - x )I is less than the diameter of the simplex, 
which is smaller than 6,. 

Now for x outside C,+), let x’ be the point in C,+) that is 
closest to x. By definition of n(p), the distance of x’ from x is 
at most S, < c,. Hence 

IgP(x) - g’(x)1 = I@+‘) - g’(x)1 
(by definition of the interpolant) 

5 Ig%‘) - g'W)l + E (by (2)) 
s 3e (from above). 

Therefore if hP is the finite-memory system with memory 
function r#~,,(h(u) + d) then 

Since this is true for all E, it follows that 

lim sup IlhP - h )I 5 S, 
p-m 

as desired. n 

Compared with the corresponding result in the LTI case 
(Makila, 1991), it can be seen that, while in the fading 
memory case we can attain the lower bound of 6 in the 
asymptotic error, in the LTI case one can only guarantee an 
asymptotic error of less than 28. While this seems at first 
paradoxical, since the space of LTI plants is a subset of the 
fading memory plants, it shows that in fact one can reduce 
the worst-case error by allowing the algorithm to return 
nonlinear plants as estimates even if it was known a priori 
that the true plant is linear. This is due to the geometry of 
the subset of LTI plants in relation to the bigger space of 
nonlinear fading memory plants. 

Finally, we should like to make a comment about the 
algorithmic and time complexity of this identification 
problem. For a given experiment length n, the complexity of 
the proposed identification algorithm is roughly proportional 
to the number of simplices in the imposed simplex structure. 
This is in turn bounded by O(nP), where p is the order of the 
memory function, since each simplex has p + 1 vertices. In 
terms of time complexity, it can easily be seen that, in 
general, the time needed to identify a system to a prescribed 
accuracy grows exponentially with the order of the system, 
even when there is no noise. For example, if we assume a 
certain Lipschitz condition on the order p memory function 
g, such as k(x) -g(y)1 <M IIx - y II, then, to identify the 
function up to accuracy E (in the Il.II_ norm) the number of 
data points needed is at least the minimum number of e-balls 
to cover [-1, 11”. Since the volume of an e-ball is 
proportional to &‘, it is clear that this minimum number is at 
least proportional to eep, and hence so is the experiment 
length. This means that if p is large, the experiment length 
will be very long if we make no further assumption on the 
unknown plant. 

It is interesting to compare this situation with the problem 
of identifying linear finite-impulse response systems. For 
nonlinear systems, the time complexity is exponential in the 
order, whether or not there is noise. For the linear case, 
while it takes only linear time to identify an FIR system 
exactly when there is no noise, it has been shown (Dahleh et 
al. 1993; Poolla and Tikku, 1994) that the time complexity 
immediately becomes exponential once we introduce any 
worst-case noise. Moreover, it has been demonstrated that if 
we are willing to put a probability distribution on the noise, 
polynomial time complexity can often be obtained (Tse and 
Tsitsiklis, 1990). These facts show that while in the nonlinear 
case the plant uncertainty determines the time complexity of 

the identification, in the linear case the complexity is 
sensitive to how the noise is modeled. 

7. Conclusions 
A framework for the analysis of asymptotic worst-case 

idenfication of LTI systems has been extended to the setting 
of nonlinear fading memory systems. For model sets that are 
either u-compact or separable, and for any experiment, the 
optimal worst-case error is always bounded by twice the 
lower bound, which is the diameter of a certain uncertainty 
set. Optimal inputs that minimize this diameter have been 
characterized. It has also been shown that accurate 
asymptotic identification can be achieved by an optimal 
input, using an untuned algorithm based on spline 
interpolation. 
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