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Abstract

In this paper, the problem of asymptotic identifica-
tion for a class of nonlinear fading memory systems
in the presence of bounded noise is studied . For any
experiment, the worst-case error is characterized in
terms of the diameter of the worst-case uncertainty
set. Optimal inputs that minimize the radius of un-
certainty are studied and characterized. Finally, a
convergent algorithm that does not require knowledge
of the noise upper bound is furnished. The methods
as well as the results are quite general and are appli-
cable to a larger variety of settings.

1 Introduction

Recently, there has been increasing interest in the
control community in the problem of identifying
plants for control purposes. This generally means
that the identified model should approximate the
plant in the operator topology, since this allows the
immediate use of robust control tools for designing
controllers [2, 3]. This problem is of special impor-
tance when the data is corrupted with bounded noise.
This problem has been extensively studied in the lit-
erature when the objective is prediction with a fixed
input (7]. The problem is more interesting when
the objective is to approximate the original system
as an operator, a problem extensively discussed in
[13]. For linear time invariant plants, such approxi-
mation can be achieved by uniformly approximating
the frequency response (H-norm) or the impulse re-
ponse (£, norm). In Hy identification, it was shown
that robustly convergent algorithms can be furnished,
when the available data is in the form of corrupted
frequency response, on a set of points which is dense

in the unit circle. [5, 4]. When the topology is in-
duced by the ¢; norm, a complete study of asymp-
totic identification was furnished in [12] for arbitrary
inputs, and the question of optimal input design was
addressed. Related work on this problem was also
reported in (8, 9, 6],

In this paper, the work in [12] is extended to gen-
eral settings, which allows for immediate analysis of
larger classes of systems, namely, nonlinear fading
memory systems. The study is done in two steps.
The first step is concerned with obtaining tight up-
per and lower bounds on the optimal achievable error,
for a given fixed experiment. The second step is then
to study these bounds and characterize the inputs
that will minimise them. The analysis given in this
paper is quite general, and can be applied to many
classes of systems. In particular, simple topological
conditions are furnished that guarantee the existence
of an algorithm with a worst-case error within a fac-
tor of two from the lower bound. In the particular
case of Fading Memory systems, a near optimal input
is chosen to minimise the bound.

The rest of the paper is organized as follows: Sec-
tion 2 gives a general formulation, Section 3 presents
a characterization of the optimal error in terms of un-
certainty sets, as well as the basic consistency results,
Section 3 contains the discussion of fading memory
systems and Section 4 contains the characterization
of optimal inputs, as well as consistency results for
such inputs. Conclusions are in Section 5.

2 General Formulation

In this section, we will give a general formulation of
the identification problem.
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Denote by £ the set of all possible observations (or
observed, noise-corrupted, behaviors). Typically £ is
a fixed subset of R®. Let M denote the model set:
a set of possible models to explain the observed be-
havior, representing the a priori knowledge ; pis a
metric on the set M used to measure identification
errors. Given an observed behavior y € £, define the
sets {Sn(y),n € T,y € L}, where each S,(y) C M
denoting all possible models “consistent with the be-
havior observed up to time n”. This set represents
the uncertainty in the model up to time n, and cap-
tures exactly the information available at that time.
These sets define an uncertainty structure if they sat-
isfy two conditions:

1. Spa(y) CSm(y) fn>m,Vy.
2. Each S,(y) is a closed set.

The infinite-horison uncertainty set is given by:

Sao(¥) =[] Salv)

n>0

(1)

Let an estimator be defined by a sequence of maps
¢ = {¢n,n > 0}, each ¢, : £ — S,(y) C M. An
estimator is required to be causal in the following
sense:

Vn, lh y’a Su(ll) = Sn(y) = ¢ﬁ(y) =¢ﬁ(#)

Typically S,(y) will depend only on the “restriction
of y to interval [0, n]”, so this will really mean that
¢a(y) depends only on past values.

Next, we will give precise definitions of the error
functions. The largest possible asymptotic error if
the true plant is h and the estimator is ¢, is given by

e(¢,h) :==  sup limsupp(da(y),h) (2)
{v|h€Sc(y)} n—roo

which is well defined for all estimators ¢ and all
h € M. This is a pointwise error, which can be in-
terpreted as follows: for a fixed model A € M, the
estimate based on any observation (with which A is
consistent), will eventually be within a radius of e+¢
from h, for any € > 0.

The worst case asymptotic erroris defined as

e(d) = sup e(¢,h) (3)
heM

This error can be interpreted as follows: for any
model h € M, the estimate based on any observa-
tion (with which h is consistent), will eventually be
within a radius of e + ¢ from h, for any small £ > 0.
The convergence rate may very well depend on the
plant and noise, i.e. for a given ¢ there exists some
N(y, h,¢) so that

Plda(y)h) < e(¢) +¢

whenever n > N. For the convergence to be uniform,
we need N := N(y,h,¢) to be independent of y, A.
only.

The main goal of this investigation is to character-
ise the smallest possible achievable worst-case error
e(¢), over all possible estimators. In particular, the
dependence of this error on the noise will be stud-
ied. The hope is that under suitable assumptions,
the error will tend to zero as the noise level goes to
sero. Two types of estimators will be studied, with
two associated Optimal Worsi-Case Errors

E*® := inf{e(¢)|¢ arbitrary }

E*** = inf{e(¢)| ¢ causal }
I causality is not required in the estimator, then
the estimator can utilize the whole set of information
(S (y)) at any time n. This estimator is not desir-
able from a practical point of view,but has been stud-

ied extensively in the information-based complexity
literature [10]. It is clear that: E*® < Eeou,

3 Analysis of Optimal Worst-
Case Error

For each nonempty subset A C M define the Cheby-
shev radius of A

R(A) := e1‘5:5{‘ :1613 plc, b)

and the diameter of A

D(A) = sup p(bl,bz) .

1,0€

Let R and D denote the infinite-horison radius and
diameter of uncertainty, i.e.

R := sup R(S(y))
yeL

and

D := sup D(Se(y))
yeL

It is a standard result from Information-Based Com-
plexity (IBC) theory (10, 11] that
R<D<2R (4)

Also from IBC, the optimal worst-case asymptotic
error over all arbitrary estimators satisfies:

E*®=R> D/2 (5)

Next, it will be shown that under mild assump-
tions, E<*" < D. This, combined with Equation( 5 ),
will give

D/2< E*“ <D (6)

It should be noted that the next result was proved in
[12] for linear models and additive noise. The result
here is more general and the proof is more elegant.
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Proposition 3.1 If M is o-compact, then D/2 <
E*t < D.

The above proposition states the following: Given
that the model set is o-compact, then there exists a
causal estimator such that the worst-case asymptotic
error is bounded by D; the worst-case diameter of
uncertainty.

As stated earlier, the convergence rate depends on
the actual process h and possibly the noise. Uniform
convergence can be obtained if the model set is com-
pact. A proof of this result in the linear case is found
in [12]; the proof of the general case is identical.

3.1 Separable Case

In many common application, the model set A1 is not
o-compact, however, it may be seperable, i.e. it hasa
countable dense set. In the sequel, the optimal worst
case asymptotic error is analyzed for such model sets.

Given a subset S C M, for each ¢ > 0 we can
define an e-cover of the set S as:

B[S] := {M e M|3heS p(hh') <e}
Also denote
Sn(y) == B*[Sa(v)]

and
S*(v) := [) Si(v) -

n>0

Note that the sets {S:(y)|n > 0} give a valid uncer-
tainty structure. For that, two conditions need to be
verified. It is clear that S5(y) C S5 (y) if m < n,
for all y, and that each set S%(y) is closed. Note also

that
B*[Se(y)] € S°(v) (7
since for each n, B*[Se(v)] € B*[Sa(y)] = S5(v).
From
Sn(y) = Sa(V) = Si(v) = Si(V)
it follows that

¢ causal estimator for {S;(y)}
also causal estimator for {S,(y)}

=

Let
D* := sup D(5°(y))
yEL
be the diameter computed relative to the e-structure,
for each fixed . Define

Dt := lim, o+ D*

Next, it is shown that if the model set is sepera-
ble, then the optimal worst case error satisfies D/2 <
Ecau S D+.

Theorem 1 Assume that M is separable. Then,

D/2 < E**® < D+,

4 Fading Memory Systems

We now specialize and apply the above results to spe-
cific identification problems. In particular, model sets
that contain operators (possibly nonlinear) with fad-
ing memory, with additive corrupting noise with a
bound on its {», norm, will be analyzed in the con-
text of worst-case identification.

4.1 Definitions

Let U be the set of infinite sequences whose £, norm
is bounded by 1. This can be viewed as the input set
which contains the possible inputs that can be used
for performing the identification experiments. Let
L C R be the observation space which contain the
output sequences that can be observed in the experi-
ments. We view our models as causal functions from
U to R®; these are discrete-time systems, possibly
non-linear, which take as input a sequence in U to
give an output sequence in R*®°. The input and the
output at time n will be denoted by u, and h,(u).
The model sets M we shall look at will be subsets of
this class of functions.

We consider now that the ontput observed y is cor-
rupted by some additive disturbance d which is un-
known but magnitude-bounded, ||d||o < &, i.e. if h
is the system, then

y=h(u)+d
With this, the set L is precisely given by:
L= {yly=h(u)+d, he M, ||d]l <6}

Fix the input sequence u. The uncertainty set S,(y)
at time n contains all the systems in the given model
set M which are consistent with the observed data
until time n:

Sa(y) = {h € M : ||Pa(y — h(u))||o < 6}

where P, is the truncation operator. These are the
plants which can give rise to the observed output
for some valid disturbance sequence. The infinite-
horison uncertainty set is

Seo(y) = {h € M: [ly - h(u)|| < 6}

To measure the identification error, we shall define a
metric p to be the one corresponding to the operator-
induced norm:

lIR|| = sup [|A(u)]|e
welU

This is the natural norm to consider for robust control
applications.
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4.2 Definition of Fading Memory Sys-
tems

We shall now specialise further in defining the sys-
tems we are looking. Assume that they further satisfy
the following properties

1. hn(u) depends continuously on u, ..., 8s_1.
2. h has equilibrium-initial behavior:
hat1(0%) = ha(u) forall n

where Ou is the input 0, %9, 4,....

In general, we will use the notation vw for concate-
nation, i.e. first apply the finite sequence v, then w.
Since we are dealing with causal systems, we shall
slightly abuse the notation and write A,{w) to mean
h,(u), where u is any infinite sequence the first n
elements of which is the finite sequence w.

Definition 4.1 An operator h has fading memory
(FM) if for each € > 0 there is some T = T(c) such
that: for every k, every ¢ > T and every finite se-
quences v € [-1,1]*, w € [-1,1}¢,

hesu(vw) — he(w)| < ¢

It can easily be seen that fading memory systems sat-
isfying properties (1) and (2) have bounded operator-
induced norms. The resulting topological set is in fact
seperable.

Proposition 4.2 The class of all fading memory
systems is separable.

This means that when we look at fading memory sys-
tem, we can apply Theorem 1, and reduce the anal-
ysis of asymptotic optimal error to the analysis of
infinite-horison diameter.

4.3 Examples of FM Systems

Example 1: stable LTI systems.
For each h € ¢, define the input/output map u — ush
by convolution. It is clear that these systems satisfy
the above conditions. The operator-induced norm in
this case is just the £; norm.
Example 2: Hammerstein Systems.
These are systems which are formed by composition
of a LTI system followed by a memoryless nonlinear
element:
¥ = 9((u*h)n)

for some h € {; and some continuous fanction g :
R — R. It is easy to verify that these systems satisfy
the first two conditions above. Since |(h * u),| <

h ; then g is uniformly continuous on [—||A||1, |A||1).
Hense h has fading memory.

5 Optimal Inputs

Let V be a finite subset of the allowable input set
U; V contains the input sequences to be used for the
identification experiments, the number of such inputs
is equal to |V]. With a slight change of the notation,
we define the finite and infinite horison uncertainty
sets for multiple experiments as:

5a(V,3,6) = L) Sa (y)

and
S (V,3,6) = ¥} Seo (¥9)

where
y =["Y,...,l"MN

are the outputs observed for all the experiments. We
define D(V, §) to be the diameter of this set (§ is the
bound on the disturbance). The goal is to find the
input set V such that D(V, §) is as small as possible
for any given §.

Definition 5.1 A subset V C U™ is persistently ez-
citing (PE) if

max |[(u)|] = |Ik|| V b € M

The next theorem gives the main result in charac-
terizing the optimal worst-case error. Recall that M
is called balanced if h € M implies that ~h € M.

Theorem 2 Assume M is balanced and convez and
take any input set V. Then:

1.V is PE= D(V,8) < 26 for all § > 0.
Also, D*(V,6) < 25 for all § > 0.

2.V is PE=> D(V,8) = 26 for each0 < § <
D(M)
-

Thus, if the set of inputs used in the experiments
is PE, then accurate identification can be achieved
asymptotically. An interesting question arises: Does
there exist a single input that is PE? In the stable
linear shift invariant case, this was shown to be the
case [12]. In the next theorem, it is shown that such
an input will also exist when the model set consists
of all nonlinear fading memory systems.

Proposition 5.2 Let the model set M be some sub-
set of the set of fading memory systems. Let W be
any countable dense subset of [-1,1] and consider
any input wg € [—1,1]* which contains all possible
finite sequences of elements of W. Then, V = {wo}
is PE.
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5.1 Consistency without Knowing §

The general consistency results Proposition 3.1 and
Theorem 1 assume that the identification algorithm
has knowledge of §, the bound on the disturbance.
This enables it to compute the uncertainty sets S,
and hence compute the simpliest plant consistent
with the data. It will now be shown that, for the spe-
cial case of fading memory systems, one can achieve
consistency without knowing §, provided that we use
a persistently exciting input. This is in fact a general-
isation of a result by Makila [8], which was developed
in the context of stable LTI systems.

Theorem 3 If u is persistently ezciting then
B ({u},6) < 28

and there is an algorithm which attains the bound and
does not require the knowledge of §.

6 Conclusions

A general set-up for worst-case identification has been
introduced and lower bounds on the optimal achiev-
able errors were derived. For model sets that are
cither o-compact or seperable, and for any experi-
ment, the optimal worst-case error is always bounded
by twice the lower bound. For the class of nonlinear
fading memory system, optimal inputs are character-
ised. It is shown that accurate asymptotic identifica-
tion can be achieved by one input, using an algorithm
that does not require the bound on the disturbance
when additive noise is considered.
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