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Summary. Given a set of differential equations whose description involves unknown
parameters, such as reaction constants in chemical kinetics, and supposing that one may
at any time measure the values of some of the variables and possibly choose external
inputs to help excite the system, how many experiments are sufficient in order to obtain all
the information that is potentially available about the parameters? This paper shows that
the best possible answer (assuming exact measurements) is 2r+1 experiments, where r
is the number of parameters. Moreover, a generic set of such experiments suffices.

1. Introduction

Suppose that we are given a set of differential equations whose description involves
unknown parameters, such as reaction constants in chemical kinetics, resistances in
electrical networks, or damping coefficients in mechanical systems. At any time, we
may measure the value of some of the variables, or more generally of certain functions
of the variables, and we may also choose external inputs to help excite the system so as to
elicit more information. Measurements are assumed to be accurate, with no observation
noise. We address the following question: How many experiments are sufficient in order
to obtain all the information that is potentially available about the parameters? The
main result is 2r+1 experiments, where r is the number of parameters.

Questions of this type appear in many areas, and indeed the identification (or, when
parameters are thought of as constant states, the observation) problem is one of the central
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topics in systems and control theory (see e.g. [23]). However, the main motivation for
this paper arose from recent work on cell signaling, gene expression, and metabolic
pathways (see e.g. [3], [4], [8], [22], [27], [28]). In that field, and in contrast to the
standard paradigm in control theory, it is not possible to apply arbitrary types of inputs
to a system. Often inputs, such as growth factors or hormones, are restricted to be applied
as steps of varying durations and amplitudes (or perhaps combinations of a small number
of such steps), but seldom does one have the freedom assumed in control-theory studies,
where for instance closure of the input class under arbitrary concatenations is needed in
order to prove the basic theorems on observability.

In contrast to the references mentioned above, which present algorithms for biological
network identification, our paper deals with the basic mathematical issue of deciding how
many experiments are enough in order to determine in principle the unknown parameters,
rather than the construction of algorithms for actually performing the identification task.
One may reasonably expect that this knowledge will be useful in the future development
of experimental strategies.

The “2r+1” expression appears often in geometry and dynamical systems theory. It
is the embedding dimension in the “easy” version of Whitney’s theorem on representing
abstract manifolds as submanifolds of Euclidean space, and it is also the dimension
in which r -dimensional attractors are embedded, in Takens’s classical work [39]. In
Aeyels’s control-theory papers, it is the number of samples needed for observability of
generic r -dimensional dynamical systems with no inputs. Technically, our problem is
quite different, as evidenced by the fact that, in contrast to these studies, which deal
with smooth manifolds and systems, we require analytic dependence on parameters, and
our main conclusion is false in the more general smooth case. Nonetheless, there are
relationships among the topics, which we discuss in the paper.

Let us start to make the problem precise. The system of interest will be assumed to
have this form:

ż = f (z, u, x), (1)

z(0) = χ(x), (2)

y = h(z, u, x), (3)

where dot indicates derivative with respect to time, and (dz/dt)(t) = f (z(t), u(t), x)
depends on a time-invariant parameter x and on the value of the external input u at time t .
The internal state z of the system, as well as the external inputs, are vector functions, and
the parameter x is a constant vector (we prefer to speak of “a vector parameter” as opposed
to “a vector of parameters” so that we can later say “two parameters” when referring
to two such vectors). The (instantaneous) measurements at time t are represented by
y(t) = h(z(t), u(t), x); typically, y does not depend directly on inputs nor parameters,
and is simply a subset of the state variables z, i.e. the function h is a projection. We
suppose that the initial state is also parametrized, by a function χ . One more item is
added to the specification of the given system: a class of inputs U , meaning a set of
functions of time into some set U . All definitions will be with regard to time functions
u(t) in this set. (The set of inputs U will be a finitely parametrized class of functions.)
Before providing more details, let us discuss an example.
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1.1. An Example

As an illustration, we start with the following model:

Ṁ = Em

1+ Em
− aM, Ė = M − bE, (4)

for the production of an enzyme E and the corresponding messenger RNA M , under
the assumption that multiple copies of E are required in order to activate the gene that
expresses for E (positive feedback). The first term appearing in the rate equation for M
represents the feedback effect, where the the positive Hill constant m (not necessarily
an integer) specifies the cooperativity of the feedback. The positive constants a and b
account for degradation. This is a (nondimensionalized) modification by Griffith [17] of
the classical operon model of Goodwin [15]; see also the textbook [10], pp. 208 and 308,
as well as the recent paper [29] which describes other variations that are biologically
more accurate. The general form of the equations (4) is assumed to be known, but
the numerical values of m, a, and b are unknown. Many different sorts of parameter
identification questions could be posed for this example. Let us start with the one such
problem, which we then modify in various ways.

We will assume that experiments are set up so the amount of mRNA M(t) can be
measured at various times t . In terms of the general formalism in (1), the state z is
the vector (M, E). There are no inputs in this very special example (soon, we will
modify the example so as to also include inputs), but the case of no inputs can always
be considered as a special case of the general formalism, merely by taking the set U
to be, for instance, {0}; thus the class of inputs U consists of just one function, the
input “u ≡ 0” restricted to various intervals of time (the duration of the experiment).
The parameters are 3-dimensional positive vectors x = (m, a, b), the vector field is
f ((M, E), (m, a, b), 0) = ( Em

1+Em − aM,M − bE), and as output function h, we take
h(M, E) = M , in accordance with the assumption that only M(t)will be experimentally
measured.

The goal is to determine the values of the Hill coefficient m and of the degrada-
tion rates a and b. In order to approach this problem, a biologist might perform the
following experiment. The initial concentration of E is set to the known value “2,”
i.e., E(0) = 2, and the initial concentration of M is set to the known value “1,” i.e.,
M(0) = 1. (Setting these initial values may be experimentally unrealistic, but we are
merely trying to illustrate a mathematical point in the simplest possible setting; below
we discuss unknown initial states.) In the general formalism, we have, then, that χ(x)
is just the constant vector (1, 2). Next, one allows the system to evolve by itself until a
certain time T1, at which time the concentration M(T1) is measured; let us write “µ1”
to denote this measured concentration at time t = T1. The experiment is repeated, and
concentrations are measured at a different time T2, and so forth, until a vector of seven
numbers (µ1, . . . , µ7) has been obtained. (The choice of seven experiments is guided by
the formula 2r + 1 = 2(3)+ 1 = 7, since there are r = 3 unknown parameters.) With
this data having been collected, one sets up the following numerical problem: Minimize
the least-squares fit criterion

E(m, a, b) =
7∑

i=1

(M(m, a, b, Ti )− µi )
2, (5)
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where “M(m, a, b, Ti )” is the solution at time Ti of the differential equation (4) with
initial condition (M(0), E(0)) = (1, 2). We will not be concerned here with the actual
algorithm used for this minimization (for example, one might rely upon gradient descent,
using an adjoint equation to pull back tangent vectors, as routinely done for analogous
optimal control problems, see e.g. [35], Chapter 9), but rather with the theoretical proper-
ties of the error criterion E . Assuming that there was no noise in the collection of the data,
the true vector of three parameters x = (m, a, b) minimizes the cost: E(m, a, b) = 0.
However, minimizers are not unique. To illustrate this lack of uniqueness, let us suppose
that the unknown vector is

x1 = (1, 2/3, 1/2).

In other words, the true equation describing the system is

Ṁ = E

1+ E
− (2/3)M, Ė = M − E /2.

We note that (1, 2) is a steady state for these coupled differential equations. This means
that we would observe the measurements µi = 1 for all i ∈ {1, . . . , 7}, and the error
criterion (5), which is hereE(m, a, b) =∑7

i=1(M(m, a, b, Ti )−1)2, is so thatE(x1) = 0.
On the other hand, it is also true that E(x2) = 0, where

x2 = (2, 4/5, 1/2)

corresponds to the differential equations:

Ṁ = E2

1+ E2
− (4/5)M, Ė = M − E /2.

Indeed, (1, 2) is a steady state for these coupled differential equations too, so M(2, 4/5,
1/2, Ti ) = 1 for all i , which implies E(x2) = 0. We conclude from this discussion that
minimization of E gives an ambiguous result and parameters cannot be identified from
the given data. (The choice of seven experiments is irrelevant; any number of experiments
would still give the same nonuniqueness.) Thus, there is no way to determine the unknown
parameters (m, a, b). We must modify the experimental design if we wish to achieve
the goal posed at the beginning of the paragraph. We do that next, but we will return
later to this first design, and point out that our theoretical result still tells us something
interesting, even when there is no uniqueness.

Let us now imagine that in our experiments we can also affect the degradation rate b.
Specifically, suppose that some another substance, which binds to (and hence neutralizes)
the enzyme E , is added at a concentration “u” which we can choose as part of our
experiments. We model binding by ideal mass action kinetics. Picking appropriate units
for u, the new equations become

Ṁ = Em

1+ Em
− aM, Ė = M − bE − uE . (6)

(To frame this in the general formalism, the parameters are the same as before, and neither
χ or h needs to be modified; the only change is that now f ((M, E), (m, a, b), u) =
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( Em

1+Em −aM,M−bE−uE) because there is an explicit input in the system description.)
We will assume that the concentration “u” is kept constant at a value ui for the duration
of the i th experiment, so that the set of possible experiments is now specified by two
numbers instead of one: a pair (ui , Ti ) consisting of the concentration ui ≥ 0 (so, ui = 0
means no neutralization) and the length of the time interval Ti at the end of which we
measure M(Ti ). Here the set U consists of all possible nonnegative constant mappings
[0,∞)→ R. The error criterion to be minimized in order to find the unknown parameters
(m, a, b) is now

E(m, a, b) =
7∑

i=1

(M(m, a, b, Ti , ui )− µi )
2, (7)

where “M(m, a, b, t, v)” denotes the M component of the solution, at time t , of the
differential equations (4), with initial condition (M(0), E(0)) = (1, 2) and the input
u(t) constantly equal to v. In this case, it turns out, every pair of distinct parameters is
distinguishable; the calculation is a simple exercise which we postpone until Section 5.
What this means, when considered in conjunction with the fact that 2(3)+ 1 = 7 and in
view of our main result, is that the true parameters provide the unique global minimum
of (7). Any other set of parameters will give a strictly positive error E(m, a, b) > 0, while
the true set will make this value equal to zero. To be more precise, this conclusion is true
as long as we are not “unlucky” in our choice: There is a set or measure zero of possible
seven-sequences of pairs (u1, T1), . . . , (u7, T7) of concentrations u and length of the
time interval T at the end of which we measure M(T ), for which the above conclusion
is false. For example, if we use “u = 0” in every experiment, then we are not making
use of our freedom to “explore” the system, and, indeed, we have already shown that
uniqueness may fail under such circumstances. On the other hand, for a random choice
of seven pairs (u, T ), uniqueness is guaranteed (the precise mathematical meaning of
“random” or “generic” will be clarified later).

In a variation of this example, one might be able, for instance, to change the concentra-
tion u(t) in a linearly increasing fashion: u(t) = u0+u1t , with u0 ≥ 0 and u1 ≥ 0. Now
the experiments would be specified by triples “(u0, u1, T ),” where again T stands for the
time at which we take the measurement, and now U consists of linear, not necessarily
constant, functions. The uniqueness result for global minima holds just as before.

A more interesting variation is as follows. Let us now suppose that our experimenter is
not able to set up matters so that the initial state is guaranteed to be (M(0), E(0)) = (1, 2).
Instead, the initial state is now an unknown vector (M0, E0) of initial concentrations.
The experiments to be performed consist of letting the system evolve (starting from
the unknown initial state), and measuring the concentration M(Ti ) at a set of times Ti ,
just as before. We assume, once again, that the inputs are constant functions, which
might correspond to the concentration of a neutralizing agent for E . (Also in this case,
uniqueness fails if one does not incorporate such inputs.) We take as parameters for this
problem the possible 5-dimensional positive vectors:

x = (M0, E0,m, a, b),

which list now the initial conditions as well as the three unknown constants. Thus,χ(x) is
the vector (M0, E0), and f ((M, E), (M0, E0,m, a, b), u) = ( Em

1+Em−aM,M−bE−uE).
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Our general theorem, together with the calculation done for this example in Section 5
and the fact that 2(5) + 1 = 11 (there are 5 parameters now), will imply that a set of
measurements taken at a random choice of 11 instants is sufficient in order to distinguish
between any two parameters. (Less than 2r+1 measurements may be enough in any
given example; the 2r+1 bound is a very general upper bound, which is best possible in
the sense that for some systems, no less will do.) In other words, if we pick at random
11 pairs (ui , Ti ), then (with probability one) the error function

E(M0, E0,m, a, b) =
11∑

i=1

(M(M0, E0,m, a, b, Ti , ui )− µi )
2 (8)

has the property that E = 0 at the true parameters, and E > 0 at all other parameters,
so minimization of E is guaranteed to result in the correct set of parameters. (Of course,
actually carrying out this minimization is a nontrivial matter, as the problem will be highly
nonconvex.) Here, M(M0, E0,m, a, b, t, v) is the M component of the solution, at time
t , of the differential equations (4), with initial condition (M(0), E(0)) = (M0, E0) and
the input u(t) constantly equal to v.

Finally, let us return to what happens when parameters cannot be identified. For
example, suppose that we take the case in which we do not have the capability of applying
the input u (mathematically equivalent: we can only use u = 0). As we have seen, the
solutions of E(x) = 0 will include spurious minima in addition to the true parameter
x1. However, our theorem guarantees that any other solution x2 of E(x) = 0 will have
the property that the parameter x2 is in every way indistinguishable from x1: No matter
what further experiments are done (as long as the class of permissible experiments is
not changed), we will always obtain the same results whether the true parameters are x1

or x2. An easy to understand, though admittedly artificial, trivial, and not biologically
motivated, example of this phenomenon would be as follows. Consider the differential
equation ż = −z + λ2u, where input functions u belong to some predetermined class.
Exactly which class makes no difference for this example, but let us say, for simplicity,
constant inputs. The initial state is taken to be always z(0) = 0. We assume that z(t)
can be measured, and would like to find the value of the parameter λ. From the output
z(T ) = (1 − e−T )λ2u, we see that it is always possible to determine λ2, as long as we
don’t have that u = 0 or T = 0 (the “unlucky” choices of experiments). However, λ
itself cannot be determined, since there is no way to distinguish λ = 1 from λ = −1, or
for that matter λ from −λ for any nonzero λ. On the other hand, this does not matter, in
the sense that, whether the true parameter is λ or−λ, it makes no difference whatsoever
in the behavior of the system ż = −z + λ2u. (We will say that such parameters are
indistinguishable from each other.)

1.2. The Main Result

Let us now return to the general definitions and statements of results. Recall that real-
analytic maps are those which can be represented locally, about each point in their
domain, by a convergent power series. The notion of analyticity includes most reason-
able nonlinearities one may think of, such as rational functions, roots and exponents (as
long as away from singularities), trigonometric functions, logarithms, and exponentials.
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Excluded are switching discontinuities, and even smooth “patchings” between discon-
tinuous pieces. The main results to be proved are definitely not true if analyticity is
relaxed to just infinite differentiability, as we shall show by counterexample.

We will define later what we mean by an “analytically parametrized system” (some-
what imprecisely, a system in which the vector field, the initial state map χ , and the
observation map h are all expressed as real-analytic functions of states, parameters, and
inputs, and also inputs depend analytically on a finite number of parameters). We will
also define what we mean by “a randomly chosen set of 2r+1 experiments” and by “dis-
tinguishability” of parameters. All these definitions express the intuitive ideas conveyed
by the terms, but are necessarily somewhat technical, so we defer them until after the
statement of our main theorem:

Theorem 1. Assume given an analytically parametrized system, and let r be the dimen-
sion of its parameter space. Then, for any randomly chosen set of 2r+1 experiments, the
following property holds: For any two parameters that are distinguishable, one of the
experiments in this set will distinguish them.

Let us now make the terms precise. In order to properly define analytic maps, we need
that states z(t), parameters x , input values u(t), and measurement values y(t) all belong
to analytic manifolds. Examples of such manifolds are all open subsets of a Euclidean
space, which are indeed the most common situation in applications; for instance, in
biological applications states and parameters are usually given by vectors with strictly
positive entries. But using manifolds more general than open subsets of Euclidean spaces
allows one to model constraints (such as the fact that a state may be an angle, i.e. an
element of the unit circle), and adds no complexity to the proof of the main result. We
do not lose generality, however, in assuming that y(t) ∈ R

p for some integer p, since
every analytic manifold can be embedded in some Euclidean space.

Formally, we define analytically parametrized systems as 9-tuples:


 = (M,U,X,�, p, f, χ, h, µ),

where

• the state-space M , input-value space U , parameter space X, and experiment space�
are real-analytic manifolds,

• p is a positive integer,
• f : M×U×X → TM (the tangent bundle of M), χ : X → M , h: M×U×X → R

p,
and µ: �× R → U are real-analytic maps, and

• f is a vector field on M , that is, f (z, u, x) ∈ Tz M for each (z, u, x).

(In the special case in which M is an open subset of a Euclidean space R
n , f can be

thought of simply as a map M × U × X → R
n .) An additional technical assumption,

completeness, will be made below.
Given a system 
, we associate to it its response, the mapping

β
 : X×�→ R
p

obtained, for each system parameter x ∈ X and experiment λ ∈ �, by solving the initial-
value problem (1)–(2) with the input u(t) = µ(λ, t), and then evaluating the output (3)
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at the final time t = 1. (We are arbitarily normalizing the time interval to [0, 1], but
varying lengths can easily be incorporated into the formalism, as we discuss later.) Thus,
the class of inputs U is the set of all maps t �→ µ(λ, t). We may view this as a finitely
parametrized class of maps, where the λ are the parameters determining which input
function is being used.

More precisely, the definition of β
 proceeds as follows. We consider the solution z(·)
of the differential equation (dz/dt)(t) = g(t, z(t)) with initial condition z(0) = χ(x),
where g is the time-varying vector field defined by g(t, ζ ) = f (ζ, µ(λ, t), x). Since
f (ζ, µ(λ, t), x) depends analytically on t , ζ , λ, and x , such a solution exists at least for
all t ≈ 0, and it depends analytically on λ and x . (This is a standard fact about differential
equations; see e.g. Proposition C.3.12 in [35], viewing parameters as constant additional
states, and note that the manifold case follows easily from the Euclidean case.) We make
the following completeness assumption: The solution z exists on the interval [0, 1]. Now
we define β
(x, λ) := h(z(1), µ(λ, 1), x). Thus, β
 is a real-analytic function. (Note
that we are requiring completeness for the inputs corresponding to every possible value
of λ.)

We define two parameters x1 and x2 to be distinguishable if there exists some exper-
iment λ which distinguishes between them, meaning that

β
(x1, λ) �= β
(x2, λ).

We next discuss the notion of a “random” set of 2r+1 experiments. In general, we will
say that a property holds generically (often the term “residual” is used for this concept)
on a topological space S if the set of elements S0 ⊆ S for which the property holds
contains the intersection of a countable family of open dense sets. Such sets are “large”
in a topological sense, and for all the spaces that we consider, the “Baire property”
holds: Generic subsets S0 are dense in S. When S is a manifold, there is a well-defined
concept of measure zero subset, see e.g. [14], [18]; in that case we will say that a subset
S0 ⊆ S has full measure if its complement S\S0 has measure zero. (See e.g. [25] for a
comparison of these two alternative concepts of “large” subset of S. For an extension to
infinite-dimensional spaces of the notion of full measure, called “prevalence,” see [20].)
We will show that sets of 2r+1 experiments which distinguish are both generic and of
full measure.

In general, for any set M and any positive integer s, as in [14] we denote by M (s)

the subset of Ms made up of all sequences (ξ1, . . . , ξs) consisting of distinct elements
(ξi �= ξj for each i �= j). Then, we say that a property (P) of q-element sets of experiments
holds for a random set of q experiments, where q is a positive integer, provided that

Gq = {(λ1, λ2, . . . , λq) | (P) holds for the set {λ1, λ2, . . . , λq}}
is generic and of full measure in �(q). Now all the terms in the statement of Theorem 1
have been defined.

Remark 1.1. In applications, often we may not want to restrict the space � which
parametrizes experiments to have to be a manifold. For instance, in the examples in
Section 1.1, we took constant or linear nonnegative inputs, meaning that� = [0,∞) or
[0,∞)2 respectively. Such generalizations present no difficulty and can be handled by the



Differential Equations with r Parameters 561

theory in several alternative ways. The simplest is just to pick a different parametrization
of inputs. For example, we may write constant nonnegative inputs as u2

0, with u0 ∈
� = R, and linear nonnegative inputs as u2

0 + u2
1t , with (u0, u1) ∈ � = R

2. Another
possibility is to use a smaller� which is dense in the original one; for instance, we may
use � = (0,∞) for the constant input case, and note that, by continuity of β
(x, λ)
on λ, distinguishability is not affected when using such restricted experiments. Finally,
the best alternative would be to prove the theorem for more general sets � (and X too),
namely arbitrary “subanalytic” subsets of analytic manifolds; we did not do so in order
to keep the presentation as simple as possible.

Remark 1.2. We normalized the time interval to [0, 1]. However, we can easily include
the case in which observations may be performed on the system at different times. We
simply view measurements taken at different times as different experiments, adding the
final time T as a coordinate to the specification of experiments, just as we did in the
examples discussed in Section 1.1. Formally, we define the map

β∗
 : X×�× (0,∞)→ R
p: (x, λ, T ) �→ h(z(T ), µ(λ, T ), x),

and say that two parameters x1 and x2 are distinguishable on varying intervals if there ex-
ist λ ∈ � and T > 0 such that β∗
(x1, λ, T ) �= β∗
(x2, λ, T ). Theorem 1 gives as a corol-
lary that, for a random set of pairs of the form {(λ1, T1), (λ2, T2), . . . , (λ2r+1, T2r+1)}, if
any two parameters x1 and x2 are distinguishable on varying intervals, thenβ∗
(x1, λi , Ti )

�= β∗
(x2, λi , Ti ) for at least one of the 2r+1 pairs in this set. To prove this corollary, we
introduce a new set of experiments �̃ := �×(0,∞), and a new analytically parametrized
system


̃ = (M, Ũ ,X, �̃, p, f̃ , χ, h̃, µ̃)

with the property that β∗
(x, λ, T ) = β
̃(x, (λ, T )) for all (x, λ, T ). Clearly, the desired
conclusion follows for 
 when the theorem is applied to 
̃. To define 
̃, we note that
we must have

h(z(T ), µ(λ, T ), x) = h̃(z̃(1), µ̃((λ, T ), 1), x) (9)

for all (x, λ, T ), where z̃ solves (dz̃/dt)(t) = f̃ (z̃, µ̃((λ, T ), t), x) with initial condi-
tion z̃(0) = χ(x). This can be accomplished by reparametrizing time according to the
experiment duration:

Ũ := (0,∞)×U, µ̃((λ, T ), t) := (T, µ(λ, T t)),

f̃ (z, (u0, u), x) := u0 f (z, u, x), h̃(z, (u0, u), x) := h(z, u, x).

It is easy to verify that (9) holds with these choices.

The rest of this note is organized as follows. Section 2 studies the more abstract
problem of distinguishability for “response” maps β which do not necessarily arise from
systems
, and presents a general 2r+1 theorem for such responses. That result already
appeared, expressed in a slightly different manner, as a technical step in [33], so we
do not include all the details of the proof, and in particular the technical material on
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analytic functions, which can be found in that reference. Also in Section 2, we present
results for merely smooth mappings: one showing that r experiments are enough for local
identification, and another one on genericity. Section 3 specializes to responses linear
in inputs, a class of responses which is of interest because of relations to Whitney’s
embedding theorem and data reduction (cf. Section 6.6), and, in Section 3.1, we provide
a nontrivial example in this class showing that the bound 2r+1 cannot be improved in
the analytic case. Section 4 shows how the results apply to the system case, proving
Theorem 1. Section 5 completes the discussion of the second example in Section 1.1,
showing that all pairs of parameters are distinguishable. Finally, we close with Section 6,
where we provide general comments and discuss relations to other work.

2. Parameter Distinguishability for Maps

In this section, we consider arbitrary maps, not necessarily arising from differential
equations,

β: X× U → R,

which we call responses. We assume that X and U are two differentiable (connected,
second countable) manifolds. We think of each map β(x, ·): U → R, obtained when
fixing a (vector) “parameter” x , as the (scalar) response of a system to “inputs” in U (in
the application to systems, these will be elements in � which parametrize continuous-
time inputs). In typical applications, X is an open subset of a Euclidean space R

r , and
U is an open subset of some R

m . In general, we call X the parameter space and U the
input space, and use respectively r and m to denote their dimensions.

The results of most interest here will be those in which β is a (real-)analytic map
(that is, β may be represented by a locally convergent power series around each point
in X × U), in which case we assume implicitly that X and U are analytic manifolds.
However, we also will make some remarks which apply to the more general cases when
β is merely smooth, i.e. infinitely differentiable (and X and U are smooth manifolds), or
even just continuously differentiable.

Given a response β and any subset of inputs U0 ⊆ U, two parameters x1 and x2 are
said to be indistinguishable by inputs in U0, and we write

x1
∼
U0

x2,

if

β(x1, u) = β(x2, u) ∀u ∈ U0.

If this property holds with U0 = U, we write x1 ∼ x2 and simply say that x1 and x2 are
indistinguishable; this means that β(x1, u) = β(x1, u) for all u ∈ U: The response is the
same, for all possible inputs, whether the parameter is x1 or x2. If, instead, there exists
some u ∈ U such that β(x1, u) �= β(x1, u), we say that x1 and x2 are distinguishable,
and write x1 �∼ x2.

We say that a set U0 is a universal distinguishing set if

x1
∼
U0

x2 ⇐⇒ x1 ∼ x2,
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which means that if two parameters can be distinguished at all, then they can be distin-
guished on the basis of inputs taken from the subset U0 alone.

A useful notation is as follows. For each fixed positive integer q, we extend the
function β: X× U → R to a function

βq : X× U
q → R

q : (x, u1, . . . , uq) �→



β(x, u1)

...

β(x, uq)


 , (10)

and, with some abuse of notation, we drop the subscript q when clear from the context.
Then, saying that the finite subset U0 = {u1, . . . , uq} is a universal distinguishing set
amounts to the following property holding for all x1, x2 ∈ X:

(∃u ∈ U)(β(x1, u) �=β(x2, u)) ⇒ β(x1, u1, . . . , uq) �=β(x2, u1, . . . , uq). (11)

2.1. Global Analytic Case: 2r+ 1 Experiments Are Enough

We now turn to the main theorem of this section. It states that 2r+1 (recall r = dim X)
experiments are sufficient for distinguishability, and, moreover, that a random set of 2r+1
inputs is good enough, if β is analytic. Later, we show that the bound 2r+1 is the best
possible. This theorem was already proved, using slightly different terminology, in [33].
We provide here the outline of the proof, but for the main technical step, concerning
real-analytic manifolds, we will refer the reader to [33].

We express our result in terms of the set Gβ,q consisting of those (“good”) sequences
(u1, . . . , uq) ∈ U

(q) which give rise, for a given response β, to universal distinguishing
sets U0 = {u1, . . . , uq} of cardinality q, and its complement U

(q)\Gβ,q , the (“bad”)
sequences:

Bβ,q := {w ∈ U
(q) | ∃x1, x2 ∈ X s.t. x1 �∼ x2 and β(x1, w) = β(x2, w)}. (12)

Theorem 2. Assume that β is analytic. Then the set Bβ,2r+1 is a countable union of
embedded analytic submanifolds of U

2r+1 of positive codimension. In particular, Gβ,2r+1

is generic and of full measure in U
2r+1.

We give the proof after establishing a general technical fact. For each fixed positive
integer q , we introduce the following set:

Pβ,q := {((x1, x2), w) ∈ X
(2) × U

(q) | x1 �∼ x2 and β(x1, w) = β(x2, w)}. (13)

This is a “thin” (possibly empty) subset of X
(2) × U

(q):

Lemma 2.1. The set Pβ,q is a countable union of submanifolds of X
(2) × U

(q) each of
which has dimension ≤ qm + 2r − q.

Proof. The proof is included in [33]; let us recall the main steps. We first consider the
set of pairs of parameters which can be distinguished from each other:

X := {(x1, x2) ∈ X
(2) | x1 �∼ x2}. (14)
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If this set is empty, then Pβ,q is also empty, and we are done. Otherwise, X is an open
subset of X

(2), and hence an open subset of X
2, and is thus a manifold of dimension 2r .

We let U(x1, x2) be the set consisting of those u ∈ U such that x1∼u x2. If (x1, x2) ∈ X ,
then U(x1, x2) is an analytic subset (a set defined by zeroes of analytic functions) of
U of dimension at most m − 1, since it is the set where the nonzero analytic func-
tion β(x1, u)−β(x2, u) vanishes, and U is connected. Therefore, its Cartesian product
(U(x1, x2))

q is an analytic subset of U
q of dimension at most q(m−1) (Proposition A.2,

Part 3, in [33]). Next, for each (x1, x2) ∈ X , we consider the following subset of U
q :

T (x1, x2) = {w ∈ U
(q) | β(x1, w) = β(x2, w)}.

Clearly, T (x1, x2) is a semianalytic subset, i.e. a set defined by analytic equalities (re-
sponses are equal) and inequalities (the coordinates of w are distinct). The key point is
that T (x1, x2) has dimension at most q(m − 1), because it is a subset of (U(x1, x2))

q .
The set Pβ,q is also semianalytic. Let π1: X

(2) × U
(q) → X

(2) be the projection on
the first factor. For each (x1, x2) ∈ X , π−1

1 (x1, x2)
⋂

Pβ,q = T (x1, x2) has dimension
at most q(m − 1). Applying then Proposition A.2, Part 2, in [33], and using that X is
an analytic manifold of dimension 2r , it follows that dimPβ,q ≤ 2r + q(m − 1) =
2r + qm− q . It is known from stratification theory (cf. [5], [12], [38], and the summary
in the Appendix to [33]) that any semianalytic set is a countable union of embedded
analytic submanifolds, so the Lemma is proved.

Proof of Theorem 2. Letting π2: X
(2) × U

(q) → U
(q) be the projection on the second

factor, we have that π2(Pβ,q) = Bβ,q . Again from stratification theory, we know that the
image under an analytic map of a countable union of (embedded, analytic) submanifolds
of dimension ≤ p is again a countable union of submanifolds of dimension ≤ p. In the
particular case that q = 2r+1, and applying Lemma 2.1, this means that Bβ,2r+1 is a
countable union of submanifolds Mi of U

2r+1 of dimension≤ p, where p ≡ (2r+1)m+
2r − (2r+1) = (2r+1)m − 1. Since dim U

2r+1 = (2r+1)m, each Mi has positive
codimension. Embedded submanifolds are, in local coordinates, proper linear subspaces
(and one may cover them by countably many charts), so the complements of each Mi

are generic and of full measure, from which it follows that Gβ,2r+1 is generic and of full
measure, as wanted.

2.2. Local Case: r Experiments Are Enough

If only distinguishability of parameters near a given parameter is desired, then r , rather
than 2r+1, experiments are sufficient, at least for a generic subset of parameters. To make
this fact precise, we introduce local versions of the sets of “good” and “bad” inputs. For
each open subset V ⊆ X, we let

Bβ,q,V := {w ∈ U
(q) | ∃x1, x2 ∈ V s.t. x1 �∼ x2 and β(x1, w) = β(x2, w)},

and Gβ,q,V = U
(q)\Bβ,q,V . When V = X, these are Bβ,q and Gβ,q respectively.

Proposition 2.2. Assume that β(·, u) is continuously differentiable for each u ∈ U.
Then there exists an open dense subset X0 of X with the following property: For each
x ∈ X0, there is some neighborhood V of x such that Gβ,r,V is nonempty.
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To show the proposition, we first introduce the notion of a nonsingular parameter. For
each x ∈ X, each positive integer q, and each w ∈ U

(q), we define ρ(x, w) to be the
rank of the differential of βq(ξ, w) with respect to ξ , evaluated at ξ = x , and for each
x ∈ X we define

ρ(x) := max{ρ(x, w) | w ∈ U
(q), q ≥ 1}.

Observe that the maximum is always achieved at somew ∈ U
(ρ(x)), since if ρ(x, u1, . . . ,

up) = q , then there must exist some q-element subset of {u1, . . . , up} for which the rank
is also q . We will say that a parameter value x is nonsingular provided that this maximal
rank is locally constant at x , that is, there is some neighborhood V of x in X such that
ρ(ξ) = ρ(x) for every ξ ∈ V . The set XNS of nonsingular parameter values is an open
and dense subset of X. Openness is clear from the definition, and density follows from
this argument: Suppose there would exist an open subset W ⊆ X with W

⋂
XNS = ∅;

now pick a point x ∈ W at which ρ(x) is maximal with respect to points in W ; since
β is continuously differentiable at x , there is a neighborhood of x in W where the rank
is at least equal to ρ(x), and thus, by maximality, it is equal to ρ(x); so x ∈ XNS, a
contradiction. Proposition 2.2 is then a consequence of the following, using X0 = XNS,
and because ρ(x) ≤ r for all x :

Lemma 2.3. Pick any nonsingular parameter value x. Then there is some open neigh-
borhood V of x such that Gβ,ρ(x),V �= ∅.

Proof. We must prove that there is an open neighborhood V of x and a subset U0 of U

of cardinality q = ρ(x) such that U0 is a universal distinguishing set for parameters in
V , that is,

x1
∼
U0

x1 and x1, x2 ∈ V ⇒ x1 ∼ x2.

If w = (u1, . . . , uq) ∈ U
(q) is such that q = ρ(x) = ρ(x, w), a routine functional

dependence argument implies that U0 = {u1, . . . , uq} has the desired properties, as
follows. We pick a neighborhood V of x so that, for any other u ∈ U, the rank of
the differential of βq+1(ξ, w, u) with respect to ξ is also constantly equal to q on V
(nonsingularity of x). Consider the mapping

K : V → R
q : ξ �→ βq(ξ, w).

Since the rank of the differential of K is constant on V , by the Rank Theorem (see e.g. [6],
pp. 2–5) and after shrinking V if needed, we know that there exist two diffeomorphisms
S: R

r → V and T : W → R
q , where W is the image K (V ), such that T ◦K ◦S: R

r → R
q

is the canonical projection (z1, . . . , zr )→ (z1, . . . , zq) on the first q coordinates.
Now pick any other u ∈ U, introduce

H : V → R
q+1: ξ �→ βq+1(ξ, u1, . . . , uq , u) =

(
βq(ξ, w)

β(ξ, u)

)
,

and let F : R
r → R

q+1 be the map obtained as the composition (T × I ) ◦ H ◦ S,
where T × I maps (a, b) �→ (T (a), b). Since S: R

r → V and (T × I ): W → R
q



566 E. D. Sontag

are diffeomorphisms and H has constant rank, F also has constant rank q. So, since the
Jacobian of F has the block form

(
I 0
∗ M

)
, where ∗ is irrelevant and M is the Jacobian

of β(S(·), u) with respect to the variables zq+1, . . . , zr , it follows that M ≡ 0. In other
words, β(S(·), u) must be independent of these variables, so there exists a ϕ: R

q → R

such that β(S(z), u) = ϕ(z1, . . . , zq) for all z = (z1, . . . , zr ) ∈ R
r . Since T ◦ K ◦ S is

the projection on the first q variables, this means that β(S(z), u) = ϕ((T ◦ K ◦ S)(z)) =
ϕ(T (β(S(z), w))) for all z ∈ R

r . As S is onto, this is equivalent to

β(ξ, u) = ϕ(T (β(ξ,w))),
for every ξ ∈ V . Now let us suppose that x1

∼
U0

x2. By definition, β(x1, w) = β(x2, w),
and this in turn implies

β(x1, u) = ϕ(T (β(x1, w))) = ϕ(T (β(x2, w))) = β(x2, u).

As u was arbitrary, we conclude x1 ∼ x2.

Note that, in contrast to the analytic results, we have not provided a genericity, but
merely an existence, statement. Observe as well that the “size” of the neighborhood V
cannot be predicted from the proof.

Remark 2.4. In general, X0 must be a proper subset of X. A counterexample to equality
would be provided by β(x, u) = f (x) · u (dot indicates inner product; see Section 3 for
responses of this special form), where x ∈ R and f : R → R

2 parametrizes a figure-8
curve. Around the parameter value that corresponds to the crossing, no single u will
distinguish. (We omit details.)

2.3. Smooth Case: 2r+ 1 Experiments Are Enough, for Generic β

For infinitely differentiable but nonanalytic β, the result on existence of universal dis-
tinguishing subsets of cardinality 2r+1 does not generalize. As a matter of fact, one
can exhibit a β of class C∞, with r = 1, with the property that there is no finite uni-
versal distinguishing set: Take X = U = (0,∞) and β(x, u) := γ (x − u), where γ
is a smooth map which is nonzero on (−∞, 0) and zero elsewhere. For this example,
every two parameters are distinguishable (if x �= y then picking u := (x + y)/2 results
in β(x, u) �= 0 = β(y, u)). To see that there is no finite universal distinguishing set,
suppose that U0 ⊆ U is such a set; then picking x, y ≥ max{u | u ∈ U0}, we have that
β(x, u) = 0 = β(y, u) for all u ∈ U0, a contradiction. Observe that lack of compactness
is not the reason that finite distinguishing subsets fail to exist in the nonanalytic case. Let
us sketch an example with X = S

1 and U = (−π, π). For each ϕ ∈ U, we take β(·, ϕ) to
be a “bump function” centered at eiϕ , with value = 1 there and less than one elsewhere,
and supported on a compact set which does not contain x = 1. (Such a choice can be
made smoothly on x and u simultaneously.) If x �= y are elements of S

1, we can always
distinguish them by an appropriate u (if x �= 1, we may take ϕ to be the argument of
x , so that β(x, u) = 1 and β(y, u) < 1, and if x = 1 and y �= 1, we may take ϕ to be
the argument of y). However, given any finite set of u’s, the union of the supports of the
corresponding bump functions is still a compact subset of S

1 which does not include 1,
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so there is some x �= 1 such that β(x, u) = 0 for all u in this set, and hence x is not
distinguishable from 1.

It is possible, however, to provide a result that holds generically on C∞(X × U,R),
the set of smooth (that is, infinitely differentiable) responses β: X× U → R, endowed
with the Whitney topology. (Density in the Whitney topology means approximability in
a very strong sense; see e.g. [14], [18] for details.) Generic results in this sense are not
terribly interesting, and are fairly meaningless in applications, since a response “close” to
a given one may not have any interesting structure, but we present the result nonetheless
for completeness. The analogue of Theorem 2 is as follows.

Proposition 2.5. For generic β ∈ C∞(X×U,R), Gβ,2r+1 is generic and of full measure
in U

2r+1.

We need this analog of Lemma 2.1 (recall that m is the dimension of U):

Lemma 2.6. For generic β ∈ C∞(X × U,R), Pβ,q is a submanifold of X
(2) × U

(q) of
dimension ≤ qm + 2r − q.

Let us show first how Proposition 2.5 follows from here. In the particular case q =
2r+1, the Lemma gives that dimPβ,q ≤ (2r+1)m−1. The projectionπ2: X

(2)×U
(q) →

U
(q) restricts to a smooth map f : Pβ,q → U

(q) with image f (Pβ,q) = Bβ,q . In general,
the Morse-Sard Theorem (as stated e.g. in [18], Theorem 3.1.3) says that if f : M → N
is smooth, then N\ f (
 f ) is generic and has full measure, where
 f is the set of critical
points of f (differential is not onto). In our case, dimPβ,q < (2r+1)m = dim U

(q), so

 f = Pβ,q . Thus Gβ,2r+1 = U

(q)\ f (Pβ,q) is generic and has full measure, as wanted.

Lemma 2.6 is, in turn, an immediate consequence of the following fact, because Pβ,q
is an open subset of P̃β,q .

Proposition 2.7. Fix any positive integer q. Then, for generic β ∈ C∞(X× U,R), the
set

P̃β,q := {((x1, x2), w) ∈ X
(2) × U

(q) | β(x1, w) = β(x2, w)} (15)

is either empty or it is a submanifold of X
(2) × U

(q) of dimension qm + 2r − q.

Proof. The proof is a routine exercise in transversality theory. We begin by recalling
the Multijet Transversality Theorem (see [14] for details), in the special case of jets of
order zero. (The general case for arbitrary orders, which we do not need here, would
require the careful definition of jets of functions on manifolds, which in turn requires a
more complicated quotient space construction.) The theorem states that, given

• any two smooth manifolds M and N ,
• any positive integer s, and
• any submanifold W of Ms × N s ,
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then, for generic β ∈ C∞(M, N ), the s-fold 0-prolongation j0
s β of β is transversal∗ to

W , where

j0
s β: M (s) → Ms × N s : (ξ1, . . . , ξs) �→ (ξ1, . . . , ξs, β(ξ1), . . . , β(ξs)).

Thus, since preimages of submanifolds under transversal maps are submanifolds of the
same codimension, a generic β ∈ C∞(M, N ) has the property that ( j0

s β)
−1(W ) is either

empty or it is a submanifold of M (s) of codimension (that is, dim M (s) − dim W ) equal
to the codimension of W (that is, dim Ms × N s − dim W ).

A typical application of this theorem is in the context of the Whitney embedding theo-
rem, as it implies that the set of one-to-one smooth mappings from M to N is generic, pro-
vided that dim N > 2 dim M . To see this, one just takes s = 2 and W = {(ξ1, ξ2, ζ1, ζ2) |
ζ1 = ζ2}, which has codimension equal to dim N . Then W̃ = ( j0

s β)
−1(W ) ⊆ M (2) is the

set of pairs ξ1 �= ξ2 such that β(ξ1) = β(ξ2), and this set must be empty, since otherwise
its codimension would be larger than dim M (2) = 2 dim M , which is nonsense. (See e.g.
[14], [18], [20], [30] for such arguments.) The application to our result is very similar,
and proceeds as follows.

Pick M = X×U, N = R, and s = 2q. To define W , we write the coordinates in Ms ,
and in particular in the subset M (s), in the following form:

((x1, u1), (x2, u2), . . . , (xq , uq), (y1, v1), (y2, v2), . . . , (yq , vq)), (16)

and let W consist of those elements

((x1, u1), (x2, u2), . . . ,(xq , uq), (y1, v1), (y2, v2), . . . ,(yq , vq), w1, . . . , wq , z1, . . . ,zq)

in Ms × R
s such that

x1 = x2 = · · · = xq , y1 = y2 = · · · = yq , u1 = v1, u2 = v2, . . . , uq = vq , (17)

and wi = zi for all i = 1, . . . , q. Counting equations, it is clear that W is a submanifold
(linear subspace in the obvious local coordinates) of codimension ρ := 2r(q − 1) +
mq + q .

For generic β, multijet transversality insures that Q = ( j0
s β)

−1(W ) either is empty
or is a submanifold of M (s) of codimension ρ. The set Q consists of all sequences (of
distinct pairs) as in (16) for which all the equalities (17) hold as well as

β(x1, u1) = β(y1, u1), β(x2, u2) = β(y2, u2), . . . , β(xq , uq) = β(yq , uq).

Now we introduce the function �: X
(2) × U

(q) → (X× U)(2q) that maps

((x, y), (u1, . . . , uq)) �→ (x, u1), (x, u2), . . . , (x, uq), (y, u1), (y, u2), . . . , (y, uq),

and notice that � establishes a diffeomorphism between P̃β,q and its image Q. Thus,
P̃β,q either is empty or is a submanifold of dimension 2q(m + r)− ρ = qm + 2r − q,
as claimed.

∗ Recall that transversality of f : P → Q to a submanifold W of Q denoted f � W , means that Df x (Tx P)+
Tf (x)W = Tf (x)Q for all x such that f (x) ∈ W . All that we need here is the conclusion on preimages.
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3. A Special Case: Responses Linear in Inputs

A very special case of our setup is that in which the input set is a Euclidean space:
U = R

m , and β depends linearly on the inputs u. Then we may write:

β(x, u) = f (x) · u (18)

(dot indicates inner product in U), where f is some mapping X → R
m . We will denote

by S ⊆ R
m the image f (X) of f . In this special case, we have that two parameters x1

and x2 are indistinguishable by inputs belonging to a given subset U0 ⊆ R
m (x1

∼
U0

x2) if
and only if

f (x1)− f (x2) ∈ U
⊥
0

(U⊥0 = {a ∈ R
m | a · u = 0∀u ∈ U0} is the orthogonal complement of U0), and x1 and

x2 are indistinguishable (case U0 = U) if and only if f (x1) = f (x2). Therefore, a subset
U0 is a universal distinguishing set if and only if (S − S)

⋂
U
⊥
0 = {0}, i.e.

a, b ∈ S, a − b ∈ U
⊥
0 ⇒ a = b.

Let us introduce the set sec(S) consisting of all unit secants of S:

sec(S) :=
{

a − b

|a − b| , a �= b, a, b ∈ S

}
,

as well as the set u(U⊥0 ) of unit vectors in U
⊥
0 . These are both subsets of the (m−1)-

dimensional unit sphere S
m−1. With these notations, we can say that a subset U0 is a

universal distinguishing set if and only if sec(S)
⋂

u(U⊥0 ) = ∅, or equivalently, if and
only if

u(U⊥0 ) ⊆ S
m−1\sec(S). (19)

Any basis of U provides a universal distinguishing set of cardinality m (since then
u(U⊥0 ) = ∅). On the other hand:

Proposition 3.1. There is a universal distinguishing set of cardinality m−1 if and only
if sec(S) �= S

m−1.

Proof. If there is such a U0 with less than m elements, then U
⊥
0 �= {0}, so also u(U⊥0 ) �= ∅,

and then (19) gives that sec(S) �= S
m−1. Conversely, if there is any u ∈ S

m−1\sec(S), we
may let U0 be any basis of {u}⊥, so that u(U⊥0 ) = {±u}. Since also −u ∈ S

m−1\sec(S),
we have that u(U⊥0 ) ⊆ S

m−1\sec(S), and thus U0 is a universal distinguishing set of
cardinality m − 1.

3.1. Examples

We will provide examples of two subsets S ⊆ R
2 and R ⊆ R

3, both images of analytic
maps defined on R, with the properties that S − S = R

2 and sec(R) = S
2. These

examples will allow us to show that the 2r+1 bound is the best possible. First we need
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the following:

Lemma 3.2. Pick any real a > 0 and any nonnegative integer k, and let

f (x) = (x + a) sin x (20)

for x ∈ R. Then, there exists an

Mk ∈ ((2k + 1/2)π, (2k + 1)π)

and a continuous map

α: [2kπ,Mk] → [Mk, (2k + 1)π ]

such that

α(2kπ) = (2k + 1)π, α(Mk) = Mk, and f (α(x)) = f (x)∀x ∈ [2kπ,Mk].

Proof. Consider the restriction of the function f to the interval [2kπ, (2k + 1)π ], and
observe that its derivative f ′(x) = sin x + (x + a) cos x is positive for 2kπ ≤ x ≤
(2k + 1/2)π , has f ′((2k + 1)π) = ((2k + 1)π + a) · (−1) < 0, and, for (2k + 1/2)π <
x < (2k + 1)π , f ′(x) = 0 is equivalent to

tan x = −x − a,

which happens at a unique x = Mk ∈ ((2k+ 1/2)π, (2k+ 1)π) (clear from the graph of
tan x and from the fact that the graph of−x−a is in the fourth quadrant). Therefore, on the
interval [2kπ, (2k+1)π ], f is strictly increasing on [2kπ,Mk] and strictly decreasing on
[Mk, (2k+1)π ]. Let f1 and f2 be the restrictions of f to [2kπ,Mk] and [Mk, (2k+1)π ]
respectively, and let

g := f −1
2 : [0, f (Mk)] → [Mk, (2k + 1)π ]

(so g is a strictly decreasing continuous function). Finally, let α := g ◦ f1. Thus α is
a continuous function and it satisfies that α(2kπ) = (2k + 1)π and α(Mk) = Mk by
construction. Finally,

f (α(x)) = f2(α(x)) = f2( f −1
2 ( f1(x))) = f1(x) = f (x),

for all x ∈ [2kπ,Mk], as desired.

Lemma 3.3. Consider the spiral S = {ζ ∈ C | ζ = reir, r ≥ 0}. Then, for each
complex z ∈ C there exist two elements ζ1, ζ2 ∈ S such that ζ1 − ζ2 = z. That is, as a
subset of R

2, we have S − S = R
2.

Proof. The idea of the proof is very simple: We first find some “chord” between two
points a and b such that the difference b−a is a multiple of the desired z, and its modulus
is larger than that of z; then, we displace it in an orthogonal direction, until the resulting
chord has the right length. Analytically, we proceed as follows.
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Let z = reiϕ , with r ≥ 0 and ϕ ≥ 0. Without loss of generality, we assume that r > 0
(if z = 0, we just take z1 = z2 to be any element of S), and ϕ > 0, and pick any positive
integer k such that ϕ + 2kπ > r

2 . Our goal is, thus, to show that there are reals s, t such
that

tei(t−ϕ) − sei(s−ϕ) = r,

which is equivalent to asking that

t sin(t − ϕ) = s sin(s − ϕ) (21)

and

t cos(t − ϕ)− s cos(s − ϕ) = r. (22)

By Lemma 3.2, applied with a = ϕ and the chosen k, there exists Mk ∈ ((2k +
1/2)π, (2k+1)π) and a continuousα: [2kπ,Mk] → [Mk, (2k+1)π ] such thatα(2kπ) =
(2k + 1)π , α(Mk) = Mk , and

(x + ϕ) sin x = (α(x)+ ϕ) sinα(x), (23)

for all x ∈ [2kπ,Mk]. Let

γ (t) := t cos(t − ϕ)− [ϕ + α(t − ϕ)] cos(α(t − ϕ)), t ∈ [ϕ + 2kπ, ϕ + Mk].

Then,

γ (ϕ+2kπ) = (ϕ+2kπ) cos(2kπ)−(ϕ+2kπ+π) cos(2kπ+π) = 2(ϕ+2kπ)+π > r,

and

γ (ϕ + Mk) = (ϕ + Mk) cos Mk − (ϕ + Mk) cos Mk = 0.

So, since γ is continuous, there is some t0 ∈ [ϕ + 2kπ, ϕ + Mk] such that γ (t0) = r ,
which means that

t0 cos(t0 − ϕ)− s0 cos(s0 − ϕ) = r,

with s0 := ϕ + α(t0 − ϕ). Moreover, evaluating (23) at x = t0 − φ gives that

t0 sin(t0 − ϕ) = s0 sin(s0 − ϕ),

and the proof is now complete.

Lemma 3.4. Consider the following subset of R
3:

R = {(ζ, ξ) ∈ C× R | ζ = eir, ξ = er sin 2r, r ≥ 0}.

Then, for eachw ∈ C×R there exist two elementsω1, ω2 ∈ R and a real number χ > 0
such that ω1 − ω2 = χw. That is, as a subset of R

3, sec(R) = S
2.
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Proof. We will use the real functions

g(x) := ex sin 2x and f (x) := g(x − π /2).

Representing complex numbers ζ in the form reiϕ , with r not necessarily positive but
the argument ϕ restricted to [0, π), we may rephrase the claim of the lemma as follows:
For each r ∈ R, 0 ≤ ϕ < π , and p ∈ R, there exist χ > 0 and t, s ≥ 0 such that(

eit − est

−eπ /2( f (t)− f (s))

)
= χ

(
reiϕ

p

)
, (24)

and we may assume that w = (r, p) �= 0, since when w = 0 we may pick any χ
and ω1 = ω2 = any element of R. Equality of the first (complex) components in (24)
amounts to asking that the following two equations hold:

sin(t − ϕ) = sin(s − ϕ), cos(t − ϕ)− cos(s − ϕ) = χr, (25)

and for this, in turn, it is sufficient to find t, s ∈ R such that

t + s = π + 2ϕ, cos(π + ϕ − s)− cos(s − ϕ) = χr.

The last of these equations simplifies to− cos(s−ϕ) = χr /2. In summary, for any given
r, ϕ, p we must find two real numbers α and s such that (absorbing −e−π /2 into p):

f (π + 2ϕ − s)− f (s) = p, − cos(s − ϕ) = χr /2.

Or, letting θ := s−ϕ−π /2, and in terms of g(x) = f (x+π /2), the problem is to solve
the following two simultaneous equations for χ, θ :

g(ϕ + θ)− g(ϕ − θ) = χp, sin θ = χr /2. (26)

In the special case that r = 0, we have p �= 0 (recall (r, p) �= 0), so we may pick θ := π
and χ := [g(ϕ + π)− g(ϕ − π)]/p. Thus, we assume r �= 0 from now on.

We will show that there is some θ which is not of the form kπ for any integer k, such
that

g(ϕ + θ)− g(ϕ − θ)
sin θ

= 2p

r
. (27)

Once such a θ is found, we may simply let χ := (2/r) sin θ , from which it follows that
sin θ = χr /2 and g(φ + θ)− g(ϕ − θ) = (2/r)p sin θ = χp, so (26) holds as desired.

Letting q := (2p/r)e−ϕ , we restate our goal as that of solving

eθ sin(2(ϕ + θ))− e−θ sin(2(ϕ − θ))
sin θ

= q (28)

for q . The idea is to take θ " 0, so that the first term in the numerator dominates.
We consider three cases: (i) 0 < ϕ < π /2, (ii) ϕ = 0, and (iii) π /2 ≤ ϕ < π .
The last case follows from the first two, since given any ϕ in the interval [π /2, π), we
may solve the version of (28) stated for ϕ̂ := ϕ − π /2 instead of ϕ and −q instead
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of q , and the same θ then solves (28) (since sin(2(ϕ̂ + θ)) = − sin(2(ϕ + θ)) and
sin(2(ϕ̂ − θ)) = − sin(2(ϕ − θ))).

Case (i): We introduce the functions A(θ) := eθ sin(2(ϕ+θ)) and B(θ) := e−θ sin(2
(ϕ − θ)), and note that |B(θ)| < 1 for θ > 0. Pick

α := 1

4
min

{
ϕ,
π

2
− ϕ

}
> 0

and observe that

4α ≤ ϕ ≤ π /2− 4α (29)

(from which it also follows that α ≤ π /16). Let

σ1 := e2α−π /2 sin(2ϕ + 4α − π), σ2 := e−2α sin(2ϕ − 4α).

Observe that ϕ ≤ π /2− 4α implies that

−π < 2ϕ + 4α − π < −4α < 0,

so σ1 < 0, and that 4α ≤ ϕ implies

0 < 4α < 2ϕ − 4α < 2ϕ < π,

so σ2 > 0. Now pick an odd integer k large enough so that

ekπσ1 + 1

cos 2α
< q and

ekπσ2 − 1

sin 2α
> q,

and introduce θ1 := kπ − π /2+ 2α, θ2 := kπ − 2α, and the interval I := [θ1, θ2]. On
this interval, sin θ is decreasing and positive; in fact it satisfies sin 2α = sin θ2 ≤ sin θ ≤
sin θ1 = cos 2α. In particular, the function

C(θ) := A(θ)+ B(θ)

sin θ

is well-defined and continuous on I . Moreover, since A(θ1) = ekπσ1, A(θ2) = ekπσ2,
and |B(θ)| < 1 for all θ , and because of the choice of k,

C(θ1) < q and C(θ2) > q,

so we conclude that, indeed, we can solve C(θ) = q.

Case (ii): If ϕ = 0, then (28) reduces to eθ sin 2θ−e−θ sin 2θ
sin θ = q or equivalently

2eθ cos θ − 2e−θ cos θ = q.

We pick a positive integer k large enough so that

−
√

2e2kπ+3π /4 + 2 < q and
√

2e2kπ+π /4 − 2 > q.

Now consider the function C(θ) = 2eθ cos θ − 2e−θ cos θ on the interval I = [θ1, θ2] =
[2kπ + π /4, 2kπ + 3π /4]. We have that C(θ1) > q and C(θ2) < q, so we can again
solve C(θ) = q .
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Corollary 3.5. For any fixed positive integer r , consider the subset Rr = Sr−1 ×R of
R

2r+1. Then sec(Rr ) = S
2r .

Proof. Take any θ ∈ S
2r , and write it in the form (z1, . . . , zr−1, w) with zi ∈ C and

w ∈ C × R. Using Lemma 3.4, we pick ω1, ω2 ∈ R and χ > 0 such that ω1 − ω2 =
χw. Next, using Lemma 3.3, we find ζij ∈ S, i = 1, . . . , r − 1, j = 1, 2, such that
ζi1 − ζi2 = χ zi for each i = 1, . . . , r − 1. So aj := (ζ1 j , . . . , ζr−1, j , ωj ) ∈ Rr for
j = 1, 2 satisfy a1 − a2 = χθ . Since θ has unit norm, it follows that χ = |a1 − a2|, so
θ = a1−a2

|a1−a2| ∈ sec(Rr ).

3.2. The Bound 2r+ 1 Is Best Possible

We now present an example which shows that the number 2r+1 in Theorem 2 cannot
be lowered. For this, we must exhibit, for each positive integer r , an analytic response β
with the property that Gβ,2r either is not generic or has less than full measure in U

2r . In
fact, we will show far more: We will show that Gβ,2r is empty.

The example is as follows. Given any fixed r , we consider the mapping

g: [0,∞)r−1 × (0,∞)→ R
2r+1: (t1, . . . , tr ) �→ (t1eit1 , . . . , tr−1eitr−1 , eitr , etr sin 2tr )

whose image is Rr (note that (1, 0, 0) can be obtained as (eitr , etr sin 2tr ) for tr = 2π ,
so tr = 0 is not required), and let f : X = R

r−1 × (0,∞) → U = R
2r+1 be given

by f (t1, . . . , tr ) = g(t2
1 , . . . , t2

r−1, tr ), so also f (X) = Rr . We let β(x, u) = f (x) · u.
By Proposition 3.1, if there is a universal distinguishing set of cardinality 2r , then
sec(Rr ) �= S

2r (note that m − 1 = 2r ). This contradicts Corollary 3.5, so no such set
can exist.

We can modify this example so that the input set U is scalar, as follows. Let us consider
the following response, with Ũ = R:

β̃(x, u) := β(x, ψ(u)) = f (x) · ψ(u),
where ψ : R → R

2r+1: u �→ (1, u, u2, . . . , u2r ), leaving f and X unchanged. We claim
that there is no universal distinguishing set of cardinality 2r . Indeed, suppose that Ũ0

would be a 2r -element universal distinguishing set. Consider the set U0 := ψ(Ũ0). As
this set has 2r elements, it cannot be a universal distinguishing set for β. Thus, there
exist two parameters x1 and x2 which are distinguishable for β, that is f (x1) �= f (x2),
but such that β(x1, v) = β(x2, v) for all v ∈ U0, which implies β̃(x1, u) = β̃(x2, u)
for all u ∈ Ũ0. If we show that β̃(x1, u) �= β̃(x2, u) for some u ∈ Ũ, then we will have
a contradiction with Ũ0 being a universal distinguishing set. To see this, simply notice
that ψ(R) linearly spans R

2r+1: If the vector a ∈ R
2r+1 is nonzero, then a · ψ(u) �= 0

for some u ∈ R (
∑

ai ui ≡ 0 ⇒ ai = 0∀i), and apply with a = f (x1)− f (x2).

4. Application to Systems

Now we apply the results about abstract responses to the special case of identifying
parameters in systems, proving Theorem 1. We take an analytically parametrized system
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, with r = dim X. When the number of measurements p = 1, the results follows from
Theorem 2 applied to β = β
 .

For the general case, we consider the scalar responses β i

 , i = 1, . . . , p which are

obtained as coordinate projections of β
 . We claim that, for each fixed q, and with
the obvious notations,

⋂
i Gi

q ⊆ Gq . Indeed, take any w ∈ ⋂i Gi
q , and any x1, x2 such

that x1 �∼ x2. Then there must be some i ∈ {1, . . . , q} such that x1 �∼ x2 for the
response β i


 , so, since w ∈ Gi
q , it follows that β i


(x1, w) �= β i

(x2, w), and therefore

also β
(x1, w) �= β
(x2, w). This proves that w ∈ Gq . Since the intersection of a finite
(or even countable) number of generic and full measure sets is again generic and of
full measure, Gq must have this property. This completes the proof of Theorem 1 for
arbitrary p.

4.1. A System for Which 2r+ 1 Experiments Are Needed

We can express the responses β or β̃ from Section 3.2 as the response β
 for an analyt-
ically parametrized system, and in this way know that the number 2r+1 in Theorem 1
cannot be lowered to 2r , and in fact, there are analytic systems with r parameters for
which there is not even a single universal distinguishing set of cardinality 2r . The sim-
plest 
 would be obtained by using any f , and just defining h(z, u, x) = β(x, u). It is
far more interesting, however, to give an example where only polynomials appear in the
system description and h does not depend directly on u and x . We do this explicitly for
the case r = 1; the case of arbitrary r is entirely analogous.

The system 
 that we construct has state space M = R
9, input-value space U = R,

parameter space X = (0,∞), experiment space � = R, and p = 1, and is given by

χ : (0,∞)→ R
9: a �→ (a, 1, 0, 0, 1, 0, 1, 0, 1),

h: R
9 → R: (z1, z2, . . . , z9) �→ z2z5 + z3z6 + z4z8z9

(independent of u and x),

µ: R× R → R: (λ, t) �→ λ

(i.e., inputs are constant scalars), and

f (z, u, x) := (0, 0, uz2, 2uz3,−z1z6, z1z5,−2z1z8, 2z1z7, z1z9).

The solution z(t) with initial condition z(0) = χ(a) and input u(t) ≡ λ is the following
vector:

(a, 1, λt, λ2t2, cos at, sin at, cos 2at, sin 2at, eat),

and therefore

β
(a, λ) = h(z(1)) = ϕ(a) · ψ(λ),
where ϕ(a) = (cos a, sin a, ea sin 2a) and ψ(λ) = (1, λ, λ2), which is β̃(a, λ).

A small modification of this example has h linear: Just add an additional variable z10

with initial condition z10(0) = 0 and satisfying ż10 = (z2z5 + z3z6 + z4z8z9)
· (written,

using ż3 = uz2, etc., in terms of the zi and u), and now use h(z) = z10.
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5. Distinguishability in the Operon Example

We now show, for the operon system (6) with external input, and considering as pa-
rameters the five-vectors which include initial states as well as m, a, and b, that every
two distinct parameters are distinguishable. (In particular, the same is true when only
the three-vector parameter (m, a, b) is considered, and initial conditions are fixed.) The
calculation to be presented here completes the discussion in Section 1.1. Recall that
the experiments (λ, T ) consist of using constant inputs u(t) ≡ λ, for varying intervals
[0, T ], and measuring M(T ).

Thus, we wish to prove: If for every nonnegative λ, the solution (M(t), E(t)) of Ṁ =
Em /(1+Em)−aM, Ė = M−bE−λE , with initial condition (M0, E0), and the solution
(M†(t), E†(t)) of Ṁ† = (E†)m

†
/(1+ (E†)m

†
)− a† M†, Ė† = M† − b† E† − λE†, with

initial condition (M†
0, E†

0) are such that M(t) ≡ M†(t), then necessarily M0 = M†
0,

E0 = E†
0, m = m†, a = a†, and b = b†.

Assume we are given two parameters (M0, E0,m, a, b) and (M†
0, E†

0,m†, a†, b†)

with this property (recall that the entries are all positive, by assumption). Since M(t) ≡
M†(t), of course M0 = M†

0, and we write ξ for their common value. Now fix an arbitrary
λ and look at M(1) and M†(1). We have that M(1) = e−aξ + ∫ 1

0 e−a(1−t)α(t) dt, where
we define α(t) = E(t)m

1+E(t)m and note that α(t) ≤ 1 for all t . It follows that M(1) ≤ 1+ ξ
is bounded independently of the value of λ. On the other hand, E(t) = e−(b+λ)t E0 +∫ t

0 e−(b+λ)(t−s)M(s) ds. Since e−(b+λ)(t−s) → 0 as λ → ∞ for each s < t , and M is
bounded, we have by dominated convergence that E(t)→ 0 as λ→∞, for each fixed
t . Thus also α(t) → 0 as λ → ∞, for each fixed t . Now applying this to the above
formula for M(1), and again by dominated convergence, we have that M(1) → e−aξ

as λ→∞. Since M(1) = M†(1) for any given λ, and since by an analogous argument
we also have that M†(1) → e−a†

ξ as λ → ∞, we conclude that e−aξ = e−a†
ξ , and

therefore that a = a†.
From the original differential equation Ṁ = Em

1+Em −aM, we know that α = Ṁ+aM ,
and we also have the same formula (a is the same, and M too) for the second set of
parameters, which gives us that α(t) = α†(t), and therefore (since p → p

1+p is one-to-

one) that Em(t) = (E†)m
†
(t) for all t , no matter what input λ is used. For any given λ,

we introduce the function

w(t) = 1

λ

1

Em(t)

d

dt
Em(t)

and similarly for the second set of parameters. As Em ≡ (E†)m
†
, also w ≡ w†. Cal-

culating, we have that w = m
λE (M − bE) − m, and similarly for w†. Thus we obtain,

evaluating at t = 0,

m

λE0
(ξ − bE0)− m ≡ m†

λE†
0
(ξ − b† E†

0)− m†,

and taking now the limit as λ → ∞, we conclude that m = m†. Thus, since now we
know that Em ≡ (E†)m , we can conclude that E ≡ E† and in particular that E0 = E†

0

and that i td E /dt ≡ d E†/dt (for any given value of the input λ). Finally, for λ = 0 we
have from Ė = M − bE that b = b†.
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6. Comments and Relations to Other Work

We close with some general comments.

6.1. Universal Distinguishing Sets

The concepts of distinguishability and distinguishing sets are common in several fields. In
control theory (see e.g. [35], Chapter 6), one studies the possibility of separating internal
states (corresponding to parameters in the current context) on the basis of input/output
experiments. The papers [33], [34] deal with applications of distinguishability to the study
of local minima of least-squares error functions, and set-shattering in the sense of Vapnik
and Chervonenkis, for artificial neural networks. More combinatorial, but essentially the
same, notions have appeared in computational learning theory (a teaching set is one
which allows a “teacher” to uniquely specify the particular function being “taught”
among all other functions of interest; see e.g. [13]) and in the theory of experiments in
automata and sequential machine theory (cf. [9]).

6.2. Observability

The observability problem, that is, the reconstruction of all internal states of the system,
is included in the problem discussed here, in the following sense. Suppose that parame-
ters include all initial states, that is, X = M × X0 and the initial state χ is a projection
onto the components in M (as in the examples in Section 1.1). Then distinguishability
of parameters implies distinguishability of initial states, and, since the flow of a dif-
ferential equation induces a group of diffeomorphisms (so the map z(0) �→ z(T ) is
one-to-one, for each T and each given input), also the distinguishability of states at any
future time.

6.3. Restarting

Notice an important feature of the setup. Since the objective is to find parameters, and
these are constant, it is implicitly assumed that one may “restart” different experiments at
the same initial state. In practice, this may or may not be a valid assumption. In fact, much
work in control theory deals with identification problems for which one need not restart
the system: This is the subject of the area of universal inputs for observability, cf. [16],
[31], [37], [41]. On the other hand, in molecular biology, multiple experiments, assuming
identical initial conditions, are usually performed by careful assay controls, or by dealing
with synchronized daughter cells. Indeed, because of the noisiness inherent in biological
applications, data for a “single experiment” may actually represent an average of different
runs under the same (approximate) conditions. In addition, many measurements in cell
biology are destructive, and thus it is impossible to take measurements at different
times from the same cell, so the theory of universal inputs does not apply under such
circumstances.
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6.4. Genericity

The material in Section 2.3 on genericity is motivated by—and shares many of the
techniques with—the theory of manifold embeddings (see also Section 6.6 below, as
well as the remark in the proof about one-to-one maps). Also closely related is the
work of Takens [39], which shows that, generically, a smooth dynamical system on an
r -dimensional manifold can be embedded in R

2r+1, as well as the control-theory work
of Aeyels on generic observability, which shows in [2] that for generic vector fields and
observation maps on an r -dimensional manifold, 2r+1 observations at randomly chosen
times are enough for observability, and in [1] that this bound is the best possible. Aeyels’s
proofs, in particular, are based on transversality arguments of the general type that
we use.

6.5. The Examples

In Lemma 3.4, if instead of R we would have considered the set consisting of those
(ζ, ξ) ∈ C × R with ζ = eir and ξ = sin 2r , then sec(R) would be a proper subset of
S

2. Indeed, this set was studied in [7], where it was shown to have nonzero measure and
a complement also of nonzero measure.

6.6. Whitney’s Embedding Theorem

The material in Section 3 is closely related to the proof of the “easy version” of Whitney’s
Embedding Theorem, cf. [14], [18]. We briefly review this connection here.

We suppose that S is a compact r -dimensional embedded submanifold of U = R
m .

We assume that m ≥ 2r+1 (otherwise what follows is not interesting.) The dimension r
may well be smaller than the dimension of X. Of course, there is no reason whatsoever
for S to be a submanifold of R

m , as the mapping f may well have singularities. Thus, we
are imposing yet another condition besides linearity on u. On the other hand, analyticity
of f , i.e. analyticity of β on x , is not needed in what follows.

The facts that universal distinguishing sets U0 of cardinality 2r+1 exist and, moreover,
that a U0 has this property are, in the special case being considered here, immediate
consequences of the proof of the “easy version” of Whitney’s Embedding Theorem. (The
classical embedding results date back to Menger’s 1926 work (cf. [21]) for continuous
functions and maps from topological spaces into Euclidean spaces, and the smooth
version dealing with embeddings of differentiable manifolds of dimension r in R

2r+1

due to Whitney in [42]. A “harder” version of Whitney’s theorem [43] shows that one
may embed such manifolds in R

2r as well, and locally embed (immerse) in R
2r−1 when

r > 1; see [18]. There is also related work on embedding nonsmooth (fractal) sets into
Euclidean spaces, see e.g. [19] and [24].)

Let us briefly sketch how this conclusion is obtained. We consider first the special case
m = 2r + 2. The universal distinguishing sets consisting of 2r+1 linearly independent
vectors are in a one-to-one correspondence (up to a choice of basis) with the possible
2r+1-dimensional subspaces V of R

m for which sec(S)
⋂

u(V⊥) = ∅, or equivalently
with the unit vectors u ∈ R

m which do not belong to sec(S). (Note that u ∈ sec(S) if and
only if−u ∈ sec(S), so there is no need to work with projective space in dimension m−1,
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and we may simply deal with unit vectors.) Thus, one needs to show that S
m−1\sec(S)

is generic and of full measure. Now, sec(S) is the image of the differentiable mapping

S̃ = {(a, b) ∈ S2 | a �= b} → S
m−1: (a, b) �→ a − b

|a − b| ,

and S̃ has dimension 2r < m − 1 = dimension of S
m−1. Thus, the Morse-Sard Theorem

says that sec(S) has measure zero and is included in a countable union of closed-nowhere
dense sets, as wanted. The general case (m ≥ 2r + 3) can be obtained inductively, by
iteratively reducing to a smaller dimensional embedding space by means of projections
along vectors u picked as in the previous discussion, with a small modification: The
choice of u has to be made with some care, requiring in addition that all tangents to S
miss u; when doing so, the projection of S has a manifold structure and the argument
can indeed be repeated. See [18] for details, and also [7] for an expository discussion of
these ideas in the context of numerical algorithms which optimize the projections; the
generalization of the material in this last reference, to cover special classes of nonlinear
parametrizations, would be of great interest.

6.7. The Techniques

As we mentioned, the main result is based on the facts regarding analytic functions which
we developed in our previous paper [33]. This is in contrast to work based on Whitney
embeddings and transversality arguments. Quite related, on the other hand, is the recent
(and independent of [33]) work [11], [26], which deal with the distinguishability of fluid
flows on the basis of a finite set of exact experiments: The authors provide a bound of the
form “16r + 1” measurements (the number arises from the need to obtain appropriate
parametrizations), where r is the dimension of an attractor for the systems being studied,
and they also employ analytic-function techniques in a manner very similar to ours.

6.8. Numerical Computation and Noise

In Section 1.1 we discussed, through an example, the question of actual numerical
computation of parameters via the global minimization of a least-squares error function
such as (5). We pointed out that, for a generic set of 2r+1 experiments, its minima
correspond to the unique true parameters, assuming that all pairs of parameters are
distinguishable. If parameters are not distinguishable, we still get parameters in the
same equivalence class as the true parameter. In practice, when data are noisy, one
may expect to have to use many more than 2r+1 experiments to average out errors. A
detailed analysis of the scaling of the error covariance as a function of the noise level is
a most challenging question for further research. In classical statistics, the Cramer-Rao
inequality for the Fisher information matrix provides a lower bound for the covariance
of any unbiased estimator. This inequality is of a local character, and applies basically
in the “nonsingular case” (treated in Section 2.2) but not in the more global analysis that
we gave.

Another most important issue, also left for future research, concerns local minima in
a least-squares criterion such as (5). Even if only global minima are of interest, most
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numerical techniques will be based upon some variation of gradient descent, and hence
local minima present an obstruction to their application. It is not possible to say much in
general about this problem (basically any finite-dimensional minimization problem can
be recast as one of parameter identification as treated here). However, one might be able
to provide estimates for specific classes of systems, such as equations with special types
of nonlinearities. See for instance [33] for related work in the context of the minimization
of least-squares criteria associated to sigmoidal neural networks.

One simple observation that can be made, regarding the identification of parameters
from the observations β(x, ui ), i = 1, . . . , 2r + 1, is as follows. The gist of this re-
mark is that the solution of the least-squares problem associated to estimation will be
continuous on the observations, provided that we restrict to a compact subset of param-
eters. Suppose that X0 is any given compact subset of the parameter space X. This set
would represent, in an application, our a priori knowledge of bounds on parameters.
Let us assume that every pair of parameters can be distinguished. For each sequence
of inputs w = (u1, . . . , u2r+1) ∈ U

2r+1, we will let Sw ⊆ R
2r+1 denote the image of

the map Hw = β2r+1(·, u1, . . . , uq): X0 → R
2r+1, where β2r+1 is defined as in (10)

but restricted to the compact subset X0 of X. Then, for generic w’s, there is a function
Kw: Sw → X, which we will call a reconstruction map, that is continuous with respect
to the induced topology on Sw, and that inverts Hw, in the sense that Kw(Hw(x)) = x for
all x ∈ X0. The existence of Kw is simply a restatement of the fact that, for w ∈ Gβ,2r+1

and under the identifiability assumption that we have made, the mapping Hw is one-
to-one. Continuity follows from the fact that Hw is continuous, and hence is a closed
mapping (since its domain is compact), so its inverse is continuous as well. (Notice that
differentiability of the inverse in general fails, since Hw may have singularities, though
a simple Sard’s Lemma argument can be used to show the existence of inverses on large
sets.) In the general case in which some pairs of parameters are indistinguishable, this
result can be modified to provide a reconstruction map into the quotient space under the
indistinguishability equivalence relation; we omit the straightforward details.

Finally, we speculate that a more theoretical, but potentially extremely useful, ap-
proach to the understanding of the noisy problem might rely upon some sort of stochas-
tic embedding. Assuming (for simplicity) once more that every pair of parameters is
distinguishable, we have that for generic ui ’s, the map x �→ β2r+1(x, u1, . . . , u2r+1) is
one-to-one. When there are measurement errors, one might be able to profitably view
such a map as a random mapping x �→ β2r+1(ω, x, u1, . . . , u2r+1), where ω belongs to
a probability space used to model noise. Perhaps a useful “probability one” statement
about embeddings could be made in that sense. It would be worthwhile to attempt to
pattern such a statement after the recent ideas on stochastic Takens’s Embeddings dis-
cussed in [36], where embeddings for stochastically driven systems, and in particular for
systems subject to noisy observations, were formulated in terms of bundle (semidirect
product) conjugacies.

6.9. Vector Outputs

The statement of the main theorems notwithstanding, the results are really about scalar
measurements, in the sense that the number of simultaneous measurements p does not
enter into the estimates. This is unavoidable: For instance, if all coordinates of h happen
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to be the same, no additional information can be gained. It would be of interest to come
up with a natural (and verifiable) condition of independence which, when incorporated
into the system description, would allow one to introduce a factor 1/p into the estimates.
It is fairly obvious how to do such a thing with abstract responses and if there are enough
input dimensions (m ≥ p): Provided that independence implies that the codimensions of
the setsU(x1, x2) is p instead of 1, the critical inequality (2r+1)(m−1)+2r < (2r+1)m
becomes ( 2r

p +1)(m−p)+ 2r < ( 2r
p +1)m, so 2r

p +1 randomly chosen experiments suf-
fice. But in the case of systems, and even for abstract responses with low-dimensional
U, how to state a good result is less clear.

6.10. Structure

The problem of structure determination, that is to say, finding the form of equations, can
sometimes be reduced to the problem studied here. Specifically, it usually happens in
applications that one merely wishes to know if a particular term appears or not in the
description of a differential equation. As an illustration, take the following situation in
molecular biology: It is not known whether or not a variable, let us say z1, affects the
evolution of another variable, let us say z2, but it is known that, if there is any effect at
all, then this influence takes the form of an inhibitory feedback term c 1

1+z2
z1 appearing

in the equation for ż1. One reduces to the identification problem by thinking of “c” as a
parameter; c = 0 corresponds to no effect. Given that the “hypothesis testing” problem
“determine if c = 0 or c �= 0” is less demanding than the problem of actually finding
the value of c, it is not surprising that fewer than 2r+1 experiments are required to settle
this matter. In formal terms, one can prove that distinguishability of parameter vectors
x from a fixed vector x0 can be attained by means of randomly chosen sets of r + 1
experiments. The proof of this fact is entirely analogous to the one given for our main
theorem; the only difference is that in the definition of the sets Pβ,q , we can simply look
at elements (x, w) ∈ (X\{x0}) × U

(q), and this has dimension qm + r − q, so using
q = r + 1 we obtain a projection Bβ,r+1, now defined in terms of existence of x not
equivalent to x0, and this is a union of manifolds of positive codimension in U

(r+1).
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