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Abstract. We analyze nonlinear cascades in which the driven subsystem is integral input-to-
state stable (ISS), and we characterize the admissible integral ISS gains for stability. This character-
ization makes use of the convergence speed of the driving subsystem and allows a larger class of gain
functions when the convergence is faster. We show that our integral ISS gain characterization unifies
different approaches in the literature which restrict the nonlinear growth of the driven subsystem and
the convergence speed of the driving subsystem. The result is used to develop a new observer-based
backstepping design in which the growth of the nonlinear damping terms is reduced.
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1. Introduction. Studies on the stabilization of cascade systems have paved
the road to major advances in nonlinear control theory. Among these advances are
several constructive design methods such as backstepping and forwarding, which are
based on recursive applications of cascade designs (see, e.g., Sepulchre, Janković, and
Kokotović [17]), and the discovery of structural obstacles to stabilization such as the
peaking phenomenon (see Sussmann and Kokotović [23]).

One of the main motivations for the stabilization of cascades came from the
linear-nonlinear cascade

ẋ = f(x, z),(1)

ż = Az +Bu(2)

resulting from input-output linearization. Because global asymptotic stability (GAS)
of the x-subsystem ẋ = f(x, 0) is not sufficient to achieve GAS of the whole cascade
with z-feedback u = Kz, alternative designs which employ x-feedback were developed,
such as the feedback passivation design of Kokotović and Sussmann [8]. To achieve
GAS by z-feedback, Sontag [18], Seibert and Suarez [16], Mazenc and Praly [11],
Janković, Sepulchre, and Kokotović [6], and Panteley and Loŕıa [12, 13] studied general
cascades in the which the z-subsystem is nonlinear and derived conditions for the
x- and z-subsystems that ensure stability of the cascade. Among these results, a
particularly useful one is the input-to-state stability (ISS) condition in [19], which
states that if the x-subsystem is ISS with input z and the z-subsystem is GAS, then
the cascade is GAS. This result has been widely used for nonlinear designs based on
the normal form (1)–(2), in which the zero dynamics (1) is ISS. Other results, such
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as [11] and [6], make less restrictive assumptions than ISS for the x-subsystem but
restrict the z-subsystem to be locally exponentially stable (LES).

The integral version of ISS (iISS), recently introduced in [20], requires that an
energy norm of the input be bounded to ensure boundedness of the states. As shown
in [20], iISS is less restrictive than ISS because, in an iISS system, a bounded input
may lead to unbounded solutions if its energy norm is infinite.

In this paper, we analyze the stability of nonlinear cascades in which the x-
subsystem is iISS and the z-subsystem is GAS. The admissible iISS gains for stability
are characterized from the speed of convergence of the z-subsystem. When the con-
vergence is fast, the iISS gain function of the x-subsystem is allowed to be “steep”
at zero. We show that this trade-off between slower convergence and steeper iISS
gain encompasses and unifies several results in the literature. In particular, if the
x-subsystem is ISS, then the slope of its iISS gain function is very gentle at zero
and tolerates every GAS z-subsystem no matter how slow its convergence is. On
the other hand, if the convergence is exponential, that is, if the z-subsystem is LES,
then the cascade is stable for a large class of iISS gains. This class includes all iISS
x-subsystems that are affine in the input z. Thus, for systems like (1)–(2), where a
control law can be designed to render the z-subsystem GAS and LES, the iISS of the
x-subsystem ensures GAS of the cascade.

In section 2, we define the new concepts used in the paper and present lemmas
which are preliminary to our main results. In section 3, we present our main result,
Theorem 1, which characterizes the admissible iISS gains from the speed of conver-
gence of the z-subsystem. We show that several results in the literature are special
cases of Theorem 1, including those that restrict the x-subsystem to be ISS (Corollary
1) and those that restrict the z-subsystem to be LES (Corollary 2). In section 4, we
show that Corollary 2 restricts the nonlinear growth of the interconnection term and
illustrate with an example that violating this growth condition leads to instability of
the cascade.

The second main contribution of the paper is an output-feedback application of
our cascade result. Due to the absence of a separation principle, it is necessary to
design control laws that guarantee robustness against the observer error. We present
a design which renders the system iISS with respect to the observer error and hence
ensures robustness when the error is exponentially decaying. The advantage of our
design over the observer-based backstepping scheme of Kanellakopoulos, Kokotović,
and Morse [7] is that we employ “weak” nonlinear damping terms which grow slower
than those in [7] and result in a “softer” control law. The main features of the design
are discussed and illustrated in an example in section 5. The general design procedure
and its stability proof are given in section 6.

2. Definitions and preliminary lemmas. In this section, we give definitions
and present lemmas that will be used in the rest of the paper. The proofs are given
in section 7.

We first recall standard definitions: K is the class of functions R≥0 → R≥0 which
are zero at zero, strictly increasing, and continuous. K∞ is the subset of class-K
functions that are unbounded. L is the set of functions R≥0 → R≥0 which are
continuous, decreasing, and converging to zero as their argument tends to +∞. KL
is the class of functions R≥0 × R≥0 → R≥0 which are class-K in the first argument
and class-L in the second argument.
Definition 1. We say that the function µ(·) : R≥0 → R≥0 is class-Ko if it is

class-K and O(s) near s = 0; that is, for all s ∈ [0, 1], µ(s) ≤ ks for some k > 0.
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Definition 2 (see [20]). The system

ẋ = f(x, z)(3)

is said to be iISS with input z if there exist a class-K∞ function ω(·), a class-KL
function β(·, ·), and a class-K iISS gain µ(·) such that, for all t ≥ 0,

ω(|x(t)|) ≤ β(|x(0)|, t) +
∫ t

0

µ(|z(τ)|)dτ.(4)

Lemma 1 computes an iISS gain µ(·) from the derivative of an iISS Lyapunov
function.
Lemma 1.
(i) If there exists a C1, positive definite, radially unbounded function V (x) satis-

fying

∂V

∂x
f(x, z) ≤ −ρ(|x|) + µ(|z|)(5)

for some positive definite function ρ(·), then the system (3) with input z is iISS with
gain µ(·).

(ii) If there exists a C1, positive definite, radially unbounded function V (x) satis-
fying

∂V

∂x
f(x, z) ≤ σ(|z|)(6)

for some class-K function σ(·), and if the system (3) is GAS when z ≡ 0, then there
exists a class-Ko function θo(·) such that (3) is iISS with gain µ(·) = σ(·) + θo(·).

The following lemma proves that if (3) is affine in the input z, then σ(·) in (6) is
class-Ko, which means that the iISS gain µ(·) = σ(·) + θo(·) is also class-Ko.
Lemma 2. If the input-affine system

ẋ = f(x) + g(x)z(7)

is iISS, then it is also iISS with a class-Ko gain µ(·).
It is known [20] that ISS implies iISS. We further show that ISS allows us to select

the iISS gain µ(·) in (4) to match any desired class-K function µ̃(·) locally.
Lemma 3. Suppose the system (3) is ISS. Then, for any class-K function µ̃(·),

it is iISS with a gain µ(·) satisfying µ(s) = µ̃(s) for all s ∈ [0, 1].
It is proved in [20, Proposition 7] that, for a GAS system ż = q(z), the solutions

z(t) satisfy

|z(t)| ≤ α(e−ktγ(|z(0)|))(8)

for some constant k > 0 and class-K∞ functions α(·) and γ(·). The following definition
classifies GAS systems using the function α(·) as an index of their speed of convergence
to zero.
Definition 3. Given a class-K∞ function α(·), we say that the system ż = q(z)

is GAS(α) if there exist a class-K∞ function γ(·) and a positive constant k > 0 such
that (8) holds for all z(0).

Thus, for the identity function α(·) = I(·), GAS(I) consists of systems in which
the convergence is exponential. We next show that α(·) is determined by the local
speed of convergence.
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Lemma 4. If the equilibrium z = 0 of ż = q(z) is GAS and if there exist a
constant ε > 0 and a K∞ function γ̃(·) such that

|z(0)| ≤ ε ⇒ |z(t)| ≤ α(e−ktγ̃(|z(0)|)) ,(9)

then there exists a class-K∞ function γ(s) = O(γ̃(s)) near s = 0 such that (8) holds
for all z(0); that is, ż = q(z) is GAS(α).

The following definition will be used in our cascade result to characterize the
admissible iISS gains from the speed of convergence α(·) of the GAS(α) driving sub-
system.
Definition 4. Given a class-K α(·), we say that the function µ(·) is class-Hα if

it is class-K and satisfies ∫ 1

0

(µ ◦ α)(s)
s

ds <∞.(10)

In particular, for the identity function α(·) = I(·), class-HI is defined by∫ 1

0

µ(s)

s
ds <∞.(11)

Thus µ(s) is class-HI if it is class-Ko or if µ(s) ≤ sp for some p > 0, such as µ(s) =
√
s.

3. Main results. We consider the cascade

ẋ = f(x, z),(12)

ż = q(z),(13)

where x ∈ R
nx , z ∈ R

nz , and f(·, ·) and q(·) are locally Lipschitz and satisfy f(0, 0) =
0, q(0) = 0. The stability properties to be analyzed are with respect to the origin
(x, z) = (0, 0), which is an equilibrium for (12)–(13).

Our main stability result characterizes the admissible iISS gains for the x-subsystem
from the speed of convergence of the z-subsystem.
Theorem 1. If the z-subsystem (13) is GAS(α) as in (8) and the x-subsystem

with input z is iISS with a class-Hα iISS gain µ(·) as in (10), then the cascade (12)–
(13) is GAS.

Proof. We note from (8) that

∫ ∞

0

µ(|z(τ)|)dτ ≤
∫ ∞

0

(µ ◦ α)(γ(|z(0)|)e−kτ )dτ =
1

k

∫ γ(|z(0)|)

0

(µ ◦ α)(s)
s

ds ,(14)

where s := γ(|z(0)|)e−kτ . From (10),

λ(s′) :=
1

k

∫ s′

0

(µ ◦ α)(s)
s

ds(15)

exists for all s′ ≥ 0, and it is class-K because λ(0) = 0 and (µ◦α)(s)
s > 0 for all s > 0.

Thus, from (4),

ω(|x(t)|) ≤ β(|x(0)|, 0) + λ(γ(|z(0)|)),(16)

which proves stability of the cascade (12)–(13). Because
∫∞
0
µ(|z(τ)|)dτ is bounded,

(4) implies that x(t)→ 0 as t→ ∞, as proved in [20, Proposition 6].
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If the x-subsystem with input z is ISS as in [19], then, from Lemma 3, it is also
iISS with a class-Hα gain. This means that no matter what the speed of convergence
α(·) is for the z-subsystem, the ISS x-subsystem satisfies the corresponding Hα iISS
gain condition of Theorem 1. Thus Theorem 1 encompasses the following well-known
result.
Corollary 1. If the z-subsystem (13) is GAS and the x-subsystem is ISS, then

the cascade (12)–(13) is GAS.
Another particular case of interest is when the z-subsystem is LES, that is, when

(9) holds with α(·) = I(·) and γ̃(s) = cs for some c ≥ 1. From Lemma 4, there exist
a class-Ko function γ(·) and a constant k > 0 such that, for all z(0),

|z(t)| ≤ e−ktγ(|z(0)|) .(17)

This means that the z-subsystem is GAS(I), and hence Theorem 1 requires that the
iISS gain be class-HI .
Corollary 2. If the z-subsystem (13) is GAS and LES and the x-subsystem is

iISS with a class-HI gain µ(·) as in (11), then the cascade (12)–(13) is GAS.
We note from Lemma 2 that the class-HI restriction of Corollary 2 is satisfied

when the iISS x-subsystem is affine in z.
Corollary 3. If the z-subsystem (13) is GAS and LES and the x-subsystem is

iISS and affine in z, then the cascade (12)–(13) is GAS.
Examples 1 and 2 illustrate that the LES and the class-HI gain restrictions cannot

be removed from Corollary 2.
Example 1. For the cascade system

ẋ = −sat(x) + xz,(18)

ż = −z3 ,(19)

where sat(x) := sgn(x)min{1, |x|}, the x-subsystem with input z is iISS with a class-
Ko (hence class-HI) gain, as verified from V (x) =

1
2 ln(1+x

2), which satisfies V̇ ≤ |z|
as in Lemma 1. However, the cascade (18)–(19) has unbounded solutions because the
z-subsystem is not LES. To prove this, we let z(0) = 1 so that z(t) = 1√

1+2t
, and we

let x(0) > 1 so that, as long as x(t) ≥ 1,

ẋ =
1√
1 + 2t

x− 1 ⇒ x(t) = e(
√

1+2t−1)

[
x(0)−

∫ t

0

e(1−
√

1+2τ)dτ

]
.(20)

Using the change of variables s = −1 +√
1 + 2τ , we obtain

∫ t

0

e(1−
√

1+2τ)dτ ≤
∫ ∞

0

e(1−
√

1+2τ)dτ =

∫ ∞

0

e−s(s+ 1) ds = 2;(21)

thus, if x(0) ≥ 3, then (20) implies x(t) ≥ e(
√

1+2t−1). This means that x(t) ≥ 1 for
all t ≥ 0 and x(t)→ ∞ as t→ ∞.

Example 2. In this example, we show that the class-HI gain restriction cannot
be removed from Corollary 2. Consider the locally Lipschitz system

ẋ = −m(x) + g−1

(
g

(
ee

x−1
b −az2

)
sat(z2)/2

)
,(22)

ż = −z/2,(23)
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where g : [0,+∞) → [0, 1] is defined as g(x) := e−
1
x for x > 0 and g(0) = 0, m(x) is

a locally Lipschitz function satisfying m(x)x > 0 for all x �= 0,

m(x) =
1

2e
|x|−1

b

∀x ≥ 1 + b ln(a) ,(24)

and a, b > 0 are constants to be specified. Using V (x) = ln(1 + x2) and |g(r)| ≤ 1 for
all r ∈ R≥0, we obtain

V̇ = −2m(x)x
1 + x2

+
2x

1 + x2
g−1

(
g

(
ee

x−1
b −az2

)
sat(z2)/2

)

≤ −2m(x)x
1 + x2

+ g−1(sat(z2)/2) ,(25)

which, from Lemma 1, proves that the x-subsystem is iISS with input z. Moreover,
the z-subsystem is exponentially stable as in Corollary 2. However, because the iISS
gain is not class-HI , the cascade (22)–(23) admits the unbounded solution

x(t) = 1 + b ln(a+ t)(26)

when z(0) ∈ (0, 1), a = ln(2/z2(0)g(z2(0))), and b = 1/2. To see that (26) satisfies
(22), note that the time derivative of x(t) is ẋ(t) = b/(t+a) and that the substitution
in (22) of

m(x(t)) =
1

2(a+ t)
=

b

a+ t
,(27)

g−1

(
g

(
ee

x(t)−1
b −az2(t)

)
sat(z2(t))/2

)
= g−1(g(etz2(0)e−t)z2(0)e−t/2)(28)

= g−1(g(z2(0))z2(0)e−t/2) =
1

t+ ln(2/z2(0)g(z2(0)))
=

2b

a+ t

indeed yields ẋ(t) = b/(t+ a).
Theorem 1 characterized the class of admissible iISS gains from the speed of

convergence of the z-subsystem. It may appear that this class can be enlarged by a
change of coordinates in which the z-subsystem converges faster as in Grüne, Sontag,
and Wirth [5]. The following example illustrates that such an attempt fails because
in the new coordinates the iISS gain of the x-subsystem becomes steeper.

Example 3. For the system (18)–(19), the change of coordinates

z̃ = Φ(z) := ze−
1

2z2(29)

ensures exponential convergence for the z̃-subsystem:

ẋ = −sat(x) + xΦ−1(z̃),(30)

˙̃z = −(1 + [Φ−1(z)]2)z̃ .(31)

Using V (x) = 1
2 ln(1 + x

2), we obtain

V̇ ≤ −xsat(x)
1 + x2

+Φ−1(|z̃|) ,

which, from Lemma 1, implies that the x-subsystem with input z̃ is iISS with gain
Φ−1(·). The cascade (30)–(31) has unbounded solutions as proved in Example 1
because all derivatives of Φ(z) vanish at z = 0, and hence the inverse function Φ−1(·)
is too steep at zero to satisfy the class-HI condition of Corollary 2.
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4. Growth restrictions on the interconnection term. It is well known that
the nonlinear growth of the interconnection term h(x, z) := f(x, z)− f(x, 0) plays an
important role for the stability of the cascade (12)–(13), rewritten here as

ẋ = f(x, 0) + h(x, z),(32)

ż = q(z) .(33)

In this section, we show that the class-HI gain condition of Corollary 2 imposes a
restriction on the nonlinear growth of h(x, z) in x. To this end, we consider the
cascade (32)–(33) with x ∈ R and with h(x, z) bounded by

|h(x, z)| ≤ γ1(|z|) + γ2(|z|)ϕ(|x|).(34)

We characterize the class-K functions ϕ(·) for which the x-subsystem satisfies the
class-HI gain condition of Corollary 2.
Proposition 1. Consider the cascade (32)–(33), where x ∈ R. If ẋ = f(x, 0) is

GAS, ż = q(z) is GAS and LES, and h(x, z) satisfies (34) for some class-HI functions
γ1(·), γ2(·), and a class-K function ϕ(·) satisfying∫ ∞

1

1

ϕ(s)
ds =∞ ,(35)

then the origin is GAS.
Proof. To prove that the x-subsystem is iISS with a class-HI gain, we let V (x)

be a smooth, positive definite function such that V (x) = V (−x), and

x ≥ 1 ⇒ V (x) = V (1) +

∫ x

1

1

ϕ(s)
ds .(36)

Because of (35), V (x) is radially unbounded and satisfies

|x| ≥ 1 ⇒
∣∣∣∣∂V∂x

∣∣∣∣ = 1

ϕ(|x|) .(37)

Thus, if |x| ≥ 1, (34) and (37) yield
∂V

∂x
[f(x, 0) + h(x, z)] ≤ 1

ϕ(1)
γ1(|z|) + γ2(|z|) =: γ5(|z|) .(38)

If |x| ≤ 1, then ∣∣∂V∂x ∣∣ ≤ b for some positive constant b, and
∂V

∂x
[f(x, 0) + h(x, z)] ≤ bγ1(|z|) + bγ2(|z|)ϕ(1) := γ6(|z|) .(39)

Because V̇ ≤ max{γ5(|z|), γ6(|z|)}, the x-subsystem is iISS with a class-HI gain as in
Corollary 2, and hence the cascade (32)–(33) is GAS.

It is important to note that the growth condition (35) encompasses functions that
grow faster than linear, such as ϕ(|x|) = |x| ln(|x|). On the other hand, (35) disallows
ϕ(|x|) = |x|2, ϕ(|x|) = |x|3, etc. Growth conditions similar to (35) have been derived
by Mazenc and Praly [11] and, more recently, by Panteley and Loŕıa [13]. Proposition
1 gives a simple iISS interpretation of their more involved Lyapunov arguments. We
finally show that (35) is tight and cannot be relaxed.
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Example 4. The cascade

ẋ = −sat(x) + ϕ(x)z,(40)

ż = −z(41)

exhibits finite escape time when the class-K function ϕ(x) fails to satisfy (35), that
is, ∫ ∞

1

1

ϕ(s)
ds <∞ .(42)

To prove this, we let V (x) be as in (36) and note from (42) that there exists a constant
V∞ > 0 such that V (x) < V∞ for all x ∈ R, and V (x) → V∞ as x → ∞. Moreover,
from (36),

x(t) ≥ 1 ⇒ V̇ = − 1

ϕ(x(t))
+ z(t) ≥ − 1

ϕ(1)
+ z(0)e−t .(43)

If z(0) > 1/ϕ(1), then we can find T > 0 such that

φ(t) :=

∫ t

0

(
− 1

ϕ(1)
+ z(0)e−t

)
dt = − t

ϕ(1)
+ z(0)(1− e−t)(44)

satisfies φ(t) > 0 for all t ∈ (0, T ]. Thus, if x(0) is such that x(0) ≥ 1 and V∞−φ(T ) ≤
V (x(0)) < V∞, then it follows from (43) that

V (x(T )) ≥ V (x(0)) + φ(T ) ≥ V∞ ,
which proves that x(T ) is not defined.

5. Application to output-feedback design. One of the major difficulties in
nonlinear output-feedback design is the absence of a separation principle. Even when
a nonlinear observer is available, it may be necessary to redesign the control law to
make it robust against the observer error. One such design is the observer-based
backstepping scheme of Kanellakopoulos, Kokotović, and Morse [7], further extended
by Praly and Jiang [14], which makes use of nonlinear damping terms to render
the system ISS with respect to the observer error. A shortcoming of this design,
pointed out by several authors, is the rapid growth of the nonlinearities in the control
law due to nonlinear damping terms. Such nonlinearities in the control law make
the implementation difficult and are harmful in the presence of unmodeled actuator
dynamics, saturation, etc. Efforts to reduce the growth of nonlinear damping terms
are restricted to a result for Euler–Lagrange systems, Aamo et al. [1], and an adaptive
backstepping design in Krstić, Kanellakopoulos, and Kokotović [10, section 5.8], where
stability is achieved with the help of a strengthened parameter identifier.

We now give a systematic procedure to reduce the growth of nonlinear damping
terms. Our main idea is to render the system iISS against the observer error. Because
iISS is less restrictive than ISS, it is achieved with a “weak” form of nonlinear damp-
ing. Closed-loop stability is then established using Corollary 2 because the observer
error is exponentially decaying. This exponential decay condition is satisfied by most
observers used in backstepping, including Krener and Isidori [9], Arcak and Kokotović
[4, 3], and Praly and Kanellakopoulos [15]. We wish to emphasize that our iISS design
is not of “certainty-equivalence” type because, as in the ISS design of [7], the design
of the controller makes use of the observer equations.
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To make the main features of our design more apparent, we first illustrate it in an
example. The general design procedure and its stability proof are given in the next
section.

Example 5. For the system

ẋ1 = x2 + x
3
1,

ẋ2 = u+ x2 − x3
2,(45)

y = x1,

the problem is to stabilize the origin x = 0 by output-feedback. The following ob-
server, designed as in [3], ensures exponential convergence of the estimates x̂1 and x̂2

to the true states:

˙̂x1 = x̂2 +G1(y, x̂1) := x̂2 + y
3 − 2(x̂1 − y),

˙̂x2 = u+G2(y, x̂1, x̂2) := u+ x̂2 − (x̂2 − 1.5(x̂1 − y))3 − 3(x̂1 − y).(46)

To incorporate this observer in feedback control we employ the observer-based back-
stepping procedure of Kanellakopoulos, Kokotović, and Morse [7]. Defining the ob-
server error z2 := x2 − x̂2 and letting χ1 := x1, we rewrite the first equation of (45)
as

χ̇1 = x̂2 + χ
3
1 + z2 .(47)

For x̂2 we design the virtual control law

α1(χ1) = −c1χ1 − χ3
1 , c1 > 0,(48)

which results in

χ̇1 = −c1χ1 + χ2 + z2 ,(49)

where χ2 = x̂2 − α1(χ1). Differentiating χ2 with respect to time, we obtain

χ̇2 = u+G2(y, x̂1, x̂2)− ∂α1

∂χ1
(χ3

1 + x̂2)− ∂α1

∂χ1
z2(50)

and note that the control law

u = −(c2 + δ(χ1))χ2 − χ1 −G2(y, x̂1, x̂2) +
∂α1

∂χ1
(χ3

1 + x̂2)(51)

yields

χ̇2 = −(c2 + δ(χ1))χ2 − χ1 − ∂α1

∂χ1
z2 .(52)

In the ISS design of Kanellakopoulos, Kokotović, and Morse [7], the nonlinear damping
term is

δ(χ1) = δISS(χ1) =

(
∂α1

∂χ1

)2

= (c1 + 3χ
2
1)

2,(53)

whose growth in χ1 is quartic.
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To design a “softer” δ(χ1), let us pursue an iISS design with the help of the
Lyapunov function U(χ1, χ2) =

1
2χ

2
1 +

1
2χ

2
2. From (47) and (50),

U̇ = −c1χ2
1 + χ1z2 − c2χ2

2 − δ(χ1)χ
2
2 + χ2(c1 + 3χ

2
1)z2,(54)

and hence, using the inequalities

3χ2χ
2
1z2 ≤ χ2

2χ
2
1 +

9

4
χ2

1z
2
2 , χ1z2 ≤ c1

2
χ2

1 +
1

2c1
z22 , c1χ2z2 ≤ c2

2
χ2

2 +
c21
2c2
z22 ,(55)

we can find positive constants k1, k2, k3 such that

U̇ ≤ −k1U − δ(χ1)χ
2
2 + χ

2
1χ

2
2 + k2Uz

2
2 + k3z

2
2 .(56)

Unlike the iISS Lyapunov function (5) in Lemma 1, the inequality (56) contains the
product of U and the disturbance z22 , which means that U(χ) cannot be an iISS
Lyapunov function. However, the new C1 function V (χ) := ln(1 + U(χ)) results in

V̇ =
U̇

1 + U
,(57)

which means that the product k2Uz
2
2 in (56) is now

k2
U

1 + U
z22 ≤ k2z22 ,(58)

and hence

V̇ ≤ −k1 U

1 + U
+ (k2 + k3)z

2
2 + (χ

2
1 − δ(χ1))

χ2
2

1 + U
.(59)

Because the first two terms on the right-hand side are as in the iISS Lyapunov function
(5), the choice

δ(χ1) = δ iISS(χ1) = χ
2
1(60)

eliminates the third term and ensures iISS as in Lemma 1. It follows from Corollary
3 that our iISS design ensures GAS of the closed-loop system (45)–(46) because the
observer error z is exponentially decaying and the χ-subsystem is affine in z2.

Unlike the quartic δISS(χ1), the “weak” nonlinear damping term δ iISS(χ1) is only
quadratic. This reduction in the nonlinear growth is more pronounced for higher
relative degree systems studied in the next section, which require several steps of
observer-based backstepping.

6. Observer-based backstepping with weak nonlinear damping. We now
generalize the above design to the system

y = x1,

ẋ1 = x2 + g1(x1),

ẋ2 = x3 + g2(x1, x2),

· · ·(61)

ẋr = p(ξ, u) + gr(x),

ξ̇ = q(ξ, x, u) ,
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where x := (x1, . . . , xr)
T and the functions g1, . . . , gr, p and q are smooth and vanish

when their arguments are zero; that is, the origin (x, ξ) = (0, 0) is an equilibrium
when u = 0.

We assume the availability of a global observer of the form

˙̂x1 = x̂2 +G1(y, x̂1),
˙̂x2 = x̂3 +G2(y, x̂1, x̂2),

· · ·(62)

˙̂xr = p(ξ̂, u) +Gr(y, x̂),

˙̂
ξ = Q(ξ̂, x̂, u, y) .

Assumption 1. The observer (62) guarantees exponential convergence of the
state estimates to the true states; that is, there exist a constant k > 0 and a class-K
function γ(·) such that, for every input u and for every initial condition x(0), ξ(0),

x̂(0), ξ̂(0), the observer error z = (xT , ξT )T − (x̂T , ξ̂T )T satisfies

|z(t)| ≤ e−ktγ(|z(0)|)(63)

for all t in the maximal interval of existence [0, tf ) of (61)–(62).
Observer designs satisfying Assumption 1 are being reported at an increasing rate

[15, 4, 3]. Our next assumption is that the function p(ξ, u) is invertible in u.
Assumption 2. There exists a function π(·, ·) satisfying

v = p(ξ, u) ⇔ u = π(ξ, v).(64)

Finally, the zero dynamics of the system (61),

ξ̇ = q(ξ, 0, π(ξ, 0)),(65)

satisfy the following robust stability assumption.
Assumption 3. The zero dynamics (65), perturbed by v0, v1, and v2,

ξ̇ = q(ξ, v0, π(ξ − v1, v2)),(66)

are ISS with input (v0, v1, v2).
The class of systems defined by (61) and Assumptions 1–3 encompasses the one

studied in [7] and [10] for observer-based backstepping. We now present our new
design, which renders the system (61) iISS with respect to the observer error z.

Step 1. Defining

χ1 := y(67)

and using x2 = x̂2 + z2, we rewrite the first equation of (61) as

χ̇1 = x̂2 + g1(χ1) + z2 .(68)

For x̂2, we design the virtual control law

α1(χ1) = −c1χ1 − g1(χ1), c1 > 0 ,(69)
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and obtain

χ̇1 = −c1χ1 + χ2 + z2,(70)

where

χ2 := x̂2 − α1(χ1) .(71)

Step 2. From (62) and (68), χ2 is governed by

χ̇2 = x̂3 +G2(χ1, x̂1, x̂2)− φ1(χ1)(x̂2 + g1(χ1))− φ1(χ1)z2 ,(72)

where

φ1(χ1) :=
∂α1

∂χ1
.(73)

Because φ1(χ1) is a smooth function, we can rewrite it as

φ1(χ1) = φ10 + χ1Φ1(χ1),(74)

where

φ10 = φ1(0) , Φ1(χ1) =

∫ 1

0

∂φ1(X1)

∂X1

∣∣∣∣
X1=sχ1

ds .(75)

For x̂3, we design the virtual control law

α2(χ1, x̂1, x̂2) = −[c2+d2Φ2
1(χ1)]χ2−χ1−G2(χ1, x̂1, x̂2)+φ1(χ1)(x̂2+g1(χ1)),(76)

which results in

χ̇2 = −χ1 − [c2 + d2Φ2
1(χ1)]χ2 + χ3 − [φ10 + χ1Φ1(χ1)]z2 ,(77)

where

χ3 := x̂3 − α2(χ1, x̂1, x̂2) .(78)

Step i (3 ≤ i ≤ r). For
χi := x̂i − αi−1(χ1, x̂1, . . . , x̂i−1) ,(79)

we obtain

χ̇i = x̂i+1 +Gi(χ1, x̂1, . . . , x̂i)− φi−1(χ1, x̂1, . . . , x̂i−1)[x̂2 + g1(χ1) + z2](80)

−∂αi−1

∂x̂1
(x̂2 +G1(y, x̂1))− · · · − ∂αi−1

∂x̂i−1
(x̂i +Gi−1(y, . . . , x̂i−1)),

where x̂r+1 := p(ξ̂, u) and

φi−1(χ1, x̂1, . . . , x̂i−1) :=
∂αi−1

∂χ1
.(81)

To factor φi−1 as in (74) in Step 2, we first rewrite it as a function of (χ1, . . . , χi−1, z1),
where z1 = x1 − x̂1:

φi−1(χ1, x̂1, . . . , x̂i−1) = φ̃i−1(χ1, . . . , χi−1, z1) .(82)
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Next, defining φi−1, 0(z1) = φ̃i−1(0, . . . , 0, z1) and

Φi−1(χ1, . . . , χi−1, z1) =

∫ 1

0

(
∂φ̃i−1(X1, . . . , Xi−1, z1)

∂(X1, . . . , Xi−1)

)T
∣∣∣∣∣∣
(X1,...,Xi−1)=s(χ1,...,χi−1)

ds ,

(83)
we get

φi−1(χ1, x̂1, . . . , x̂i−1) = φi−1, 0(z1) + [χ1 . . . χi−1] Φi−1(χ1, . . . , χi−1, z1) .(84)

The virtual control law for x̂i+1 is

αi(χ1, x̂1, . . . , x̂i) = −χi−1 − [ci + diΦT
i−1Φi−1]χi −Gi(χ1, x̂1, . . . , x̂i)

+
∂αi−1

∂x̂1
(x̂2 +G1(y, x̂1)) + · · ·+ ∂αi−1

∂x̂i−1
(x̂i +Gi−1(y, . . . , x̂i−1))

+φi−1(χ1, x̂1, . . . , x̂i−1)[x̂2 + g1(χ1)] .(85)

If i < r, we define

χi+1 = x̂i+1 − αi(χ1, x̂1, . . . , x̂i)(86)

and proceed with step i+ 1. The control law obtained by r steps of backstepping is

u = π(ξ̂, αr(χ1, x̂1, . . . , x̂r)) ,(87)

where the function π(·, ·) is as in (64).
The resulting closed-loop system consists of the exponentially converging observer

error z driving the (χ, ξ)-subsystem

ξ̇ = q(ξ, v0(χ, z), π(ξ − v1(z), v2(χ, z))),(88)

χ̇1 = −c1χ1 + χ2 + z2,

· · ·
χ̇i = −χi−1 − [ci + diΦT

i−1Φi−1]χi + χi+1 − (φi−1,0(z1) + [χ1 · · ·χi−1]Φi−1)z2,(89)

· · ·
χ̇r = −χr−1 − [cr + drΦT

r−1Φr−1]χr − (φr−1,0(z1) + [χ1 · · ·χr−1]Φr−1)z2 ,

where the functions v0(χ, z) = x, v2(χ, z) = αr(χ1, x̂1, . . . , x̂r), and v1(z) = ξ − ξ̂
vanish at (χ, z) = (0, 0).
Theorem 2. If Assumptions 1–3 hold, then the control law (87) guarantees GAS

of the closed-loop system (61)–(62).
Proof. We first prove that the χ-subsystem (89) is iISS with input z. To this end,

we note that the function U = 1
2

∑r
i=1 χ

2
i satisfies

U̇ =

(
r∑

i=1

−ciχ2
i − χiφi−1,0(z1)z2

)
+

(
r∑

i=2

−diΦT
i−1Φi−1χ

2
i − z2[χ1 · · ·χi−1]Φi−1χi

)
,

(90)
where φ00(z1) = −1 and φ10(z1) = φ10 as in (74). Using the inequalities

−χiφi−1,0(z1)z2 ≤ ci
2
χ2
i +

1

2ci
φ2
i−1,0(z1)z

2
2 ,(91)

−z2[χ1 · · ·χi−1]Φi−1χi ≤ diΦT
i−1Φi−1χ

2
i +

1

4di
[χ1 · · ·χi−1] [χ1 · · ·χi−1]

T z22 ,(92)
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we obtain

U̇ ≤ −
r∑

i=1

ci
2
χ2
i +

r∑
i=1

1

2ci
φ2
i−1,0(z1)z

2
2 +

r∑
i=2

1

4di
(χ2

1 + · · ·+ χ2
i−1)z

2
2(93)

≤ −cU + 1

2c

(
r∑

i=1

φ2
i−1,0(z1)

)
z22 +

r

2d
Uz22 ,(94)

where c := min1≤i≤r ci, d := min2≤i≤r di. Thus

V (χ) := ln(1 + U(χ))(95)

satisfies

V̇ ≤ −c U

1 + U
+

(
r

2d
+
1

2c

r∑
i=1

φ2
i−1,0(z1)

)
z22 ,(96)

which, from Lemma 1, proves that the χ-subsystem (89) with input z is iISS with a
class-Ko gain. Moreover, the observer error z satisfies the exponential decay condition
(63) for all t ∈ [0, tf ). Thus, letting T < tf , we can show from Corollary 2 that there
exists a class-KL function β1(·, ·) such that, for all t ∈ [0, T ],

|(χ(t), z(t))| ≤ β2(|(χ(0), z(0))|, t) .(97)

Next, we note from Assumption 3 that the ξ-subsystem (88) is ISS with input (χ, z).
In view of Corollary 1, this means that a class-KL function β3(·, ·) exists such that,
for all t ∈ [0, T ],

|(ξ(t), χ(t), z(t))| ≤ β3(|(ξ(0), χ(0), z(0))|, t) .(98)

Finally, we note that |(ξ(T ), χ(T ), z(T ))| is bounded by β3(|(ξ(0), χ(0), z(0))|, 0), which
is independent of T . This means that tf = ∞, and hence (98) holds for all t ≥ 0,
which proves GAS of the closed-loop system (61)–(62).

7. Proofs of lemmas.

Proof of Lemma 1. Part (i) is proved in [2]. To prove part (ii), we modify [2,
Proposition II.5], which is proved for a class-K function θ(·), and show that it actually
holds with a class-Ko function θo(·).
Lemma 5. The system ẋ = f(x, 0) is GAS iff there exist a smooth semiproper1

function W (x), a class-Ko function θo(·), and a continuous positive definite function
ρ : R≥0 → R≥0 such that

∂W

∂x
f(x, z) ≤ −ρ(|x|) + θo(|z|).(99)

The proof is given at the end of this section. In passing we emphasize that, in
general, Lemma 5 does not hold with a proper (radially unbounded) W (x).

To complete the proof of Lemma 1, we define V1(x) = V (x) +W (x), where V (x)
and W (x) are as in (6) and (99), respectively, and obtain

V̇1 ≤ −ρ(|x|) + σ(|z|) + θo(|z|) ,(100)

which is (5) with µ(|z|) := σ(|z|) + θo(|z|).
1A positive definite function W (x) is called semiproper if there exist a class-K function π(·) and

a radially unbounded positive definite function W0(x) such that W (x) = π(W0(x)). Thus W (x) may
not be radially unbounded.
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Proof of Lemma 2. Because (7) is iISS with input z, it follows from [2] that
there exists an iISS Lyapunov function V (x) satisfying

LfV (x) + LgV (x)z :=
∂V

∂x
f(x) +

∂V

∂x
g(x)z ≤ −ρ(|x|) + σ̃(|z|)(101)

for some positive definite function ρ(·) and some class-K function σ̃(·). To prove that
µ(·) in (4) is class-Ko, we first show that

LfV (x) + |LgV (x)| ≤ σ̃(1) .(102)

If LgV (x) �= 0, then (102) follows by evaluating (101) at z = 1
|LgV (x)|LgV (x)

T . If

LgV (x) = 0, then (102) holds because LfV (x) ≤ −ρ(|x|) from (101). Next, we note
that LfV (x) ≤ LfV (x)|z| when |z| ≤ 1 and obtain
|z| ≤ 1 ⇒ LfV (x)+LgV (x)z ≤ LfV (x)|z|+|LgV | |z| = (LfV+|LgV |)|z| ≤ σ̃(1)|z| .
(103)
Inequalities (101) and (103) imply

LfV (x) + LgV (x)z ≤ σ(|z|),(104)

where

σ(|z|) :=
{
σ̃(1)|z| if |z| ≤ 1,
σ̃(|z|) if |z| > 1 .(105)

Because σ(·) is class-Ko, it follows from Lemma 1 that the system (7) is iISS with a
class-Ko gain µ(·).

Proof of Lemma 3. Because of ISS, it follows from [22] that there exists an ISS
Lyapunov function V (x) satisfying

V̇ ≤ −ρ(|x|) + σ(|z|)(106)

for some class-K∞ functions ρ(·) and σ(·). Letting µ(·) be a class-K function such
that µ(s) = µ̃(s) when s ∈ [0, 1] and µ(s) = σ(s) when s ≥ 2 and applying the
changing supply functions lemma [21], we can find another ISS Lyapunov function
Ṽ (x) satisfying

˙̃V ≤ −ρ̃(|x|) + µ(|z|)(107)

for some class-K function ρ̃(·). From Lemma 1, this implies iISS with gain µ(·).
Proof of Lemma 4. Because of GAS, there exists a T ∗ > 0 such that |z(T ∗)| ≤ ε,

and hence, for all t ≥ T ∗,

|z(t)| ≤ α
(
e−k(t−T∗)γ̃(ε)

)
= α

(
ekT

∗
e−ktγ̃(ε)

)
.(108)

Again, from GAS, there exists a class-KL function β(·, ·) such that
|z(t)| ≤ α(β(|z(0)|, t));(109)

thus, for all t ∈ [0, T ∗],

|z(t)| ≤ α ((β(|z(0)|, t)ekt)e−kt
) ≤ α((β(|z(0)|, 0)ekT∗

)e−kt) .(110)
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Choosing T ∗ = T (|z(0)|) such that T (|z(0)|) = 0 for |z(0)| ∈ [0, ε] and T (|z(0)|) is
a continuous, strictly increasing function for |z(0)| ≥ ε, we conclude from (9), (108),
and (110) that (8) holds with

γ(s) =

{
max

{
1, β(ε,0)

γ̃(ε)

}
γ̃(s) if s ≤ ε,

max{γ̃(ε), β(s, 0)}ekT (s) if s > ε .
(111)

Proof of Lemma 5. The result follows by using Lemma 6 instead of [2, Corollary
IV.5] and modifying the proof of [2, Proposition II.5] accordingly. For Lemma 6, we
define a function σ− : R≥0 → R≥0 to be class-K− if it is continuous and strictly
increasing but, unlike a class-K function, not necessarily zero at zero.
Lemma 6. If γ : R

2
≥0 → R is such that γ(·, s) is class-K for each s ∈ R≥0 and

γ(r, ·) is class-Ko for each r ∈ R≥0, then there exist a class-K− function σ−(·) and a
class-Ko function σo(·), such that

γ(r, s) ≤ σ−(r)σo(s) .(112)

Proof. Because both γ(·, s) and γ(r, ·) are class-K, it follows from [2, Corollary
IV.5] that there exists a class-K function σ1(·) such that

γ(r, s) ≤ σ1(r)σ1(s) .(113)

Because γ(r, s) = O(s) for all r ≥ 0, we can find a class-K− function σ2(·) such that,
for all s ≤ 1,

γ(r, s) ≤ σ2(r)s .(114)

The inequalities (113) and (114) imply γ(r, s) ≤ σ−(r)σ̃o(s), where σ−(r) :=
max{σ1(r), σ2(r)} and

σ̃o(s) :=

{
s, s ≤ 1,
σ1(s), s > 1 .

(115)

Thus (112) follows by finding a continuous upper-bound σo(·) on σ̃o(·).
8. Conclusion. We have studied the stability of nonlinear cascades and showed

that a trade-off exists between slower convergence for the driving subsystem and
steeper iISS gain for the driven subsystem. This approach unifies several results in the
literature, obtained by restricting the speed of convergence of the driving subsystem
and the nonlinear growth of the driven subsystem. We have studied the connection
between these growth conditions and the iISS gain and have proved that our iISS
gain restriction leads to a less restrictive condition than the linear growth assumption
common in the literature. The cascade result has been used to develop a new observer-
based backstepping design which reduces the growth of nonlinear damping terms. It
would be of interest to extend our cascade result to feedback interconnections, where
small-gain formulations of iISS can be pursued.
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[23] H. J. Sussmann and P. V. Kokotović, The peaking phenomenon and the global stabilization
of nonlinear systems, IEEE Trans. Automat. Control, 36 (1991), pp. 424–439.


