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Abstract

This paper deals with concepts of output stability. Inspired in part by regulator theory, several variants are considered,
which di�er from each other in the requirements imposed upon transient behavior. The main results provide a comparison
among the various notions, all of which specialize to input to state stability (ISS) when the output equals the complete state.
c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper addresses questions of output stability
for general �nite-dimensional control systems

ẋ(t) = f(x(t); u(t)); y(t) = h(x(t)): (1)

(Technical assumptions on f, h, and admissible in-
puts, are described later.) Roughly, a system (1) is
“output stable” if, for any initial state, the output y(t)
converges to zero as t → ∞. Inputs u may inuence
this stability in di�erent ways; for instance, one may
ask that y(t) → 0 only for those inputs for which
u(t)→ 0, or just that y remains bounded whenever u
is bounded. Such behavior is of central interest in con-
trol theory. As an illustration, we will review below
how regulation problems can be cast in these terms,
letting y(t) represent a quantity such as a tracking
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error. Another motivation for studying output stabil-
ity arises in classical di�erential equations: “partial”
asymptotic stability (cf. [26]) is nothing but the par-
ticular case of our study in which there are no inputs
u and the coordinates of y are a subset of the coordi-
nates of x (that is to say, h is a projection on a subspace
of the state space Rn). The notion of output stability
is also related to that of “stability with respect to two
measures”, cf. [9].
The main starting point for our work is the obser-

vation that there are many di�erent ways of making
mathematically precise what one means by “y(t) →
0 for every initial state” (and, when there are inputs,
“provided that u(t)→ 0”). These di�erent de�nitions
need not result in equivalent notions; one must de-
cide how uniform is the rate of convergence of y(t)
to zero, and precisely how the magnitudes of inputs
and initial states a�ect convergence.
Indeed, our previous work on input-to-state stability

(ISS, for short) was motivated in much the same way.
The concept of ISS was originally introduced in [16]
to address the problem when y= x. Major theoretical
results were developed in [19,21] and applications to
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control design can be found in, among others, [4,6–
8,12,15,21,25] as well as in the recent work [13] as a
foundation for the formulation of robust tracking.
Actually, in the original paper [16] we had already

introduced a notion of input=output stability (IOS), but
the theoretical e�ort until now was almost exclusively
directed towards the ISS special case. (There are two
ways to formulate the property of input=output sta-
bility and its variants. One is in purely input=output
terms, where one uses past inputs in order to repre-
sent initial conditions. Another is in state space terms,
where the e�ect of past inputs is summarized by an
initial state. In [16] an i=o approach was used, but here,
because of our interest in initial-state dependence, we
adopt the latter point of view. The relations between
both approaches are explained in [16] and in more de-
tail in [10,5].)
It turns out that the IOS case is substantially more

complicated than ISS, in the sense that there are sub-
tle possible di�erences in de�nitions. One of the main
objectives of this paper is to elaborate on these dif-
ferences and to compare the various de�nitions; the
companion paper [24] provides Lyapunov-theoretic
characterizations of each of them.
A second objective is to prove a theorem on output

rede�nition which (a) extends one of the main steps
in linear regulation theory to general nonlinear sys-
tems, and (b) provides one of the main technical tools
needed for the construction of Lyapunov functions
in [24].
The organization of this paper is as follows. Section

1.1 starts with the review of certain facts from regula-
tion theory; this material is provided merely as an ad-
ditional motivation for our study, and is not required
in order to follow the paper. Because of the technical
character of the paper, it seems appropriate to provide
an intuitive overview; thus, the rest of that section de-
scribes the main results in very informal terms. After
that, in Section 2, we de�ne our notions carefully and
state precisely the main results. The rest of the paper
contains the proofs. A preliminary version of this pa-
per appeared in [22].

1.1. Additional motivation and informal discussion

Output regulation problems encompass the main
typical control objectives, namely, the analysis of
feedback systems with the following property: for
each exogenous signal d(·) (which might represent a
disturbance to be rejected, or a signal to be tracked),
the output y(·) (respectively, a quantity being stabi-

lized, or the di�erence between a certain variable in
the system and its desired target value) must decay
to zero as t → ∞. Typically (see e.g. [18, Section
8:2], or [14, Chapter 15] for linear systems, and [3,
Chapter 8], for nonlinear generalizations), the exoge-
nous signal is unknown but is constrained to lie in a
certain prescribed class (for example, the class of all
constant signals). Moreover, this class can be charac-
terized through an “exosystem” given by di�erential
equations (for example, the constant signals are pre-
cisely the possible solutions of ḋ = 0, for di�erent
initial conditions).
In order to focus on the questions of interest for this

paper, we assume that we already have a closed-loop
system exhibiting the desired regulation properties,
ignoring the question of how an appropriate feedback
system has been designed. Moreover, let us, for this
introduction, restrict ourselves to linear time-invariant
systems (local aspects of the theory can be generalized
to certain nonlinear situations employing tools from
center manifold theory, see [3]). The object of the
study becomes

ż = Az + Pw;

ẇ= Sw;

y=Cz + Qw;

seen as a system ẋ = f(x), y = h(x), where the ex-
tended state x consists of z and w; the z-subsystem
incorporates both the state of the system being regu-
lated (the plant) and the state of the controller, and
the equation ẇ=Sw describes the exosystem that gen-
erates the disturbance or tracking signals of interest.
This is a system without inputs; later we explain how
inputs may be introduced into the model as well.
As an illustration, take the stabilization of the po-

sition y of a second-order system �y − y = u + w
under the action of all possible constant disturbances
w. The conventional proportional-integral-derivative
(PID) controller uses a feedback law u(t) = c1q(t) +
c2y(t) + c3v(t), for appropriate gains c1; c2; c3, where
q=

∫
y and v= ẏ. Let us take c1 =−1, c2 = c3 =−2.

If we view the disturbances as produced by the “ex-
osystem” ẇ = 0, the complete system becomes

q̇= y; ẏ = v; v̇=−q− y − 2v+ w; ẇ = 0

with output y. That is, the plant=controller state z is
col(q; y; v), and

S = Q = 0; A=


 0 1 0
0 0 1
−1 −1 −2


 ;
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C = (0 1 0); P =


 0
0
1


 :

In linear regulator theory, the routine way to verify
that the regulation objective has beenmet is as follows.
Suppose that the matrix A is Hurwitz and that there is
some matrix � such that the following two identities
(“Francis’ equations”) are satis�ed:

�S = A� + P;
0 = C� + Q:

(The existence of � is necessary as well as suf-
�cient for regulation, provided that the problem is
appropriately posed, cf. [2,3].) Consider the new
variable ŷ:=z − �w. The �rst identity for � allows
decoupling ŷ from w, leading to ˙̂y= Aŷ. Since A is a
Hurwitz matrix, one concludes that ŷ(t) → 0 for all
initial conditions. As the second identity for � gives
that y(t)=Cŷ(t), one has the desired conclusion that
y(t)→ 0.
Let us now express this convergence in a much

more informative form. For that purpose, we introduce
the map ĥ : x = (z; w) 7→ |z − �w| = |ŷ|. We also
denote, for ease of future reference, �(r):=r=|C| and
�(r; t)=r|etA|=|C|, using | · | to denote Euclidean norm
of vectors and also the corresponding induced matrix
norm. So, y = Cŷ gives

�(|y|) = �(|h(x)|)6ĥ(x) = |ŷ| (2)

for all x, and we also have |y(t)|6�(|ŷ(0)|; t) and in
particular

|y(t)|6�(|x(0)|; t); ∀t¿0 (3)

along all solutions. This estimate quanti�es the rate of
decrease of y to zero, and its overshoot, in terms of
the initial state of the system. For the auxilliary vari-
able ŷ, we have in addition the following “stability”
property:

|ŷ(t)|6�(|ŷ(0)|); ∀t¿0 (4)

where �(r):=r supt¿0|etA|.
The use of ŷ (or equivalently, �nding a solution �

for the above matrix identities) is a key step in the
analysis of regulation problems. Note the fundamen-
tal contrast between the behaviors of ŷ and y: because
of (4), a zero initial value ŷ(0) implies ŷ ≡ 0, which
in regulation problems corresponds to the fact that the
initial state of the “internal model” of the exosignal
matches exactly the one for the exosignal; on the other
hand, for the output y, typically an error signal, it may

very well happen that y(0) = 0 but y(t) is not identi-
cally zero. The fact about ŷ which allows deriving (3)
is that ŷ dominates the original output y, in the sense
of (2). One of the main results in this paper provides
an extension to very general nonlinear systems of the
technique of output rede�nition.
To illustrate again with the PID example: one �nds

that � = col(1; 0; 0) is the unique solution of the re-
quired equations, and the change of variables consists
of replacing q by q − w, the di�erence between the
internal model of the disturbance and the disturbance
itself, and ĥ(q; y; v; w)=(|q−w|2+ |y|2+ |v|2)1=2. For
instance, with x(0) = y(0) = v(0) = 0 and w(0) = 1
we obtain the output y(t) = 1

2 t
2e−t . Notice that this

output has y(0) = 0 but is not identically zero, which
is consistent with an estimate (3). On the other hand,
the dominating output ŷ=(q−w; y; v)) cannot exhibit
such overshoot.
The discussion of regulation problems was for

systems ẋ = f(x) which are subject to no exter-
nal inputs. This was done in order to simplify the
presentation and because classically one does not
consider external inputs. In general, however, one
should study the e�ect on the feedback system of
perturbations which were not exactly represented
by the exosystem model. A special case would
be, for instance, that in which the exosignals are
not exactly modeled as produced by an exosystem,
but have the form w + u, where w is produced
by an exosystem. Then one may ask if the feed-
back design is robust, in the sense that “small”
u implies a “small” asymptotic (steady-state) er-
ror for y, or that u(t) → 0 implies y(t) → 0.
Experience with the notion of ISS then suggests
that one should replace (3) by an estimate as
follows:

(IOS) |y(t)|6�(|x(0)|; t) + (‖u‖):
By this we mean that for some functions  of class
K and � of class KL which depend only on the
system being studied, and for each initial state and
control, such an estimate holds for the ensuing out-
put. We suppose as a standing hypothesis that the
system is forward-complete, that is to say, solutions
exist (and are unique) for t¿0, for any initial con-
dition and any locally essentially bounded input u.
(Recall that a function  : [0;∞) → [0;∞) is of
class K if it is strictly increasing and continuous,
and satis�es (0) = 0, and of class K∞ if it is also
unbounded, and that KL is the class of functions
[0;∞)2 → [0;∞) which are of class K on the �rst
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argument and decrease to zero on the second ar-
gument.) The reason that inputs u are not usually
incorporated into the regulation problem statement
is probably due to the fact that for linear systems
it makes no di�erence: it is easy to see, from the
variation of parameters formula, that IOS holds for all
inputs if and only if it holds for the special case
u ≡ 0.
Property (4) generalizes when there are inputs to

the following “output Lagrange stability” property:

(OL) |y(t)|6�1(|y(0)|) + �2(‖u‖):
As mentioned earlier when discussing the classical
tools of regulation theory, one of our main results is
this: if a system satis�es IOS, then we can always �nd
another output, let us call it ŷ, which dominates y, in
the sense of (2), and for which the estimate OL holds
in addition to IOS.
As ˙̂y=Aŷ and A is a Hurwitz matrix, in the case of

linear regulator theory the rede�ned output ŷ satis�es
a stronger decay condition, which in the input case
leads naturally to an estimate as follows:

(SIIOS) |y(t)|6�(|y(0)|; t) + (‖u‖)
(we write y instead of ŷ because we wish to de�ne
these notions for arbitrary systems). We will study this
property as well. For linear systems, the conjunction
of IOS and OL is equivalent to SIIOS. (Sketch of proof:
with zero input and any initial state x such that Cx=0,
OL gives us that CetAx ≡ 0, which means that the
kernel of C coincides with the unobservable subspace
O(A; C). Therefore, using the Kalman observability
decomposition and the notations in [18, Eq. (6:8)],
now y can be identi�ed to the �rst r coordinates of the
state, which represent a stable system.) Remarkably,
this equivalence breaks down for general nonlinear
systems, as we will show.
Finally, as in the corresponding ISS paper [19], there

are close relationships between output stability with
respect to inputs, and robustness of stability under
output feedback. This suggests the study of yet an-
other property, which is obtained by a “small gain”
argument from IOS: there must exist some � ∈ K∞
so that

(ROS) |y(t)|6�(|x(0)|; t) if |u(t)|6�(|y(t)|) ∀t:
For linear systems, this property is equivalent to IOS,
because applied when u ≡ 0 it coincides with IOS. One
of our main contributions will be the construction of
a counterexample to show that this equivalence also
fails to generalize to nonlinear systems.

In summary, we will show that precisely these im-
plications hold:

SIIOS ⇒ OL & IOS ⇒ IOS ⇒ ROS

and show that under output rede�nition the two middle
properties coincide.

1.2. Related notions

We caution the reader not to confuse IOS with the
notion named input=output to state stability (IOSS) in
[23] (also called “detectability” in [17,20], and “strong
unboundedness observability” in [5]). This other no-
tion roughly means that “no matter what the initial
conditions are, if future inputs and outputs are small,
the state must be eventually small”. It is not a notion of
stability; for instance, the unstable system ẋ=x, y=x
is IOSS. Rather, it represents a property of zero-state
detectability. There is a fairly obvious connection be-
tween the various concepts introduced, however: a
system is ISS if and only if it is both IOSS and IOS. This
fact generalizes the linear systems theory result “inter-
nal stability is equivalent to detectability plus external
stability” and its proof follows by routine arguments
[16,10,5].

2. De�nitions, statements of results

We assume, for the systems (1) being considered,
that the maps f : Rn × Rm → Rn and h : Rn → Rp
are locally Lipschitz continuous. We also assume that
f(0; 0) = 0 and h(0) = 0. We use the symbol | · | for
Euclidean norms in Rn, Rm, and Rp.
By an input we mean a measurable and locally es-

sentially bounded function u :I → Rm, where I is
a subinterval of R which contains the origin. When-
ever the domain I of an input u is not speci�ed, it
will be understood thatI=R¿0. The Lm∞-norm (pos-
sibly in�nite) of an input u is denoted by ‖u‖, i.e.
‖u‖=(ess)sup{|u(t)|; t ∈ I}. Given any input u and
any � ∈ Rn, the unique maximal solution of the ini-
tial value problem ẋ = f(x; u), x(0) = � (de�ned on
some maximal open subinterval of I) is denoted by
x(·; �; u). WhenI=R¿0, this maximal subinterval has
the form [0; tmax), where tmax = tmax(�; u). The system
is said to be forward complete if for every initial state
� and for every input u de�ned on R¿0, tmax = +∞.
The corresponding output is denoted by y(·; �; u), that
is, y(t; �; u)= h(x(t; �; u)) on the domain of de�nition
of the solution.
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2.1. Main stability concepts

De�nition 2.1. A forward-complete system is:

• input to output stable (IOS) if there exist a
KL-function � and aK-function  such that

|y(t; �; u)|6�(|�|; t) + (‖u‖); ∀t¿0; (5)

• output-Lagrange input to output stable (OLIOS) if
it is IOS and there exist some K-functions �1; �2
such that

|y(t; �; u)|6max{�1(|h(�)|); �2(‖u‖)}; ∀t¿0 ;
(6)

• state-independent IOS (SIIOS) there exist some � ∈
KL and some  ∈ K such that

|y(t; �; u)|6�(|h(�)|; t) + (‖u‖); ∀t¿0: (7)

In each case, we interpret the estimates as holding for
all inputs u and initial states � ∈ Rn.

To each given system (1) and each smooth function
� : R¿0 → R, we associate the following system with
inputs d(·):
ẋ = g(x; d):=f(x; d�(|y|)); y = h(x); (8)

where d∈MB, with B denoting the closed unit ball
{|�|61} in Rm, and where, in general, M
 denotes
a system with controls restricted to take values in
some subset 
⊆Rm. For a given function �, we let
x�(·; �; d) (and y�(·; �; d), respectively) denote the tra-
jectory (and the output function, respectively) of (8)
corresponding to each initial state � and each input
d(·). Note that the system need not be complete even if
the original system (1) is, but on the domain of de�ni-
tion of the solution, one has that x�(t; �; d)= x(t; �; u),
where u(t) = �(x�(t; �; d)). Also note that, for system
(8), �= 0 is an equilibrium for every d.

De�nition 2.2. A forward-complete system (1) is ro-
bustly output stable (ROS) if there exists a smooth
K∞-function � such that the corresponding system (8)
is forward complete, and there exists some � ∈ KL
such that

|y�(t; �; d)|6�(|�|; t); (9)

for all t¿0; � ∈ Rn; d ∈ MB.

The function � in (9) represents a robust output gain
margin. It quanti�es the magnitude of output feedback
that can be tolerated by the system without destroying
output stability.

Remark 2.3. Suppose system (8) is forward com-
plete. Then, the existence of a � as in Property (9) is
equivalent to the following:

1. there is aK∞-function �(·) such that for any �¿ 0,
it holds that

|y�(t; �; d)|6�; ∀t¿0; ∀d;
whenever |�| ≤ �(�); and

2. for any r¿0 and any �¿ 0, there exists some
Tr;� ¿ 0 such that

|y�(t; �; d)|6�
for all t¿Tr;�, all d, and all |�|6r.

This can be shown by following exactly the same steps
as done in the proof of Proposition 2:5 of [11].

The following implications hold:

SIIOS ⇒ OLIOS ⇒ IOS ⇒ ROS

and all the reverse implications are false. The �rst
two implications are clear from the de�nitions, and,
not surprisingly, they cannot be reversed, as shown by
counterexamples in Section 2.2. The last implication
follows from this result, whose proof is provided in
Section 3.2:

Lemma 2.4. If a system is IOS ; then it is ROS.

This lemma is a generalization of a “small gain”
argument for ISS (for systems with full outputs y =
x, IOS and ISS coincide), and its proof is analogous,
although technically a bit more complicated, to the
one given for the ISS case in [19]. Since in the special
case of ISS the converse is true, it would be reasonable
to expect that ROS and IOS be equivalent. Thus, the
following result is surprising, cf. Section 4:

Lemma 2.5. There is a ROS system which is not IOS.

As explained in the introduction, we will prove
the following result. We say that a system (1) is
OLIOS under output rede�nition if there exist a locally
Lipschitz map h0 :Rn → R¿0 with h(0) = 0, and a
�∈K∞, such that

h0(�)¿�(|h(�)|)
for all �, so that the system

ẋ = f(x; u); y = h0(x) (10)

is OLIOS.
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Theorem 2.1. The following are equivalent for a
system (1):

1. The system is IOS.
2. The system is OLIOS under output rede�nition.

2.2. Some remarks

The estimate (5) can be restated in various equiv-
alent ways. By causality, one may write (‖u‖[0; t])
instead of (‖u‖), where ‖u‖[0; t] denotes the L∞
norm of u restricted to the interval [0; t]. Similarly,
the sum �(|�|; t) + (‖u‖) could be replaced by
max{�(|�|; t); (‖u‖)} (just use 2� and 2).
When h is the identity, IOS coincides with the by

now well-known ISS property.
It is an easy exercise to show that for any class-KL

function � and any class-K function  there are
a function �̂ and a class-K function ̂ so that
min{�(s); �(r; t)}6�̂(s; t=(1 + ̂(r))) for all s; r; t. It
follows that a system is OLIOS if and only if there exist
� ∈ KL; � ∈ K, and  ∈ K such that

|y(t; �; u)|6 �
(
|h(�)|; t

1 + �(|�|)
)
+ (‖u‖);

∀t¿0;
holds for all trajectories of the system. Note that
this property nicely encapsulates both the IOS and
output-Lagrange aspects of the OLIOS notion.
The paper [24] provides necessary and suf-

�cient characterizations for each of the proper-
ties studied here, for systems that are uniformly
bounded-input bounded-state (UBIBS), i.e., systems
for which there exists some K-function � such
that the solution x(t; �; u) is de�ned for all t¿0
and |x(t; �; u)|6max{�(|�|); �(‖u‖)} for all t¿0,
every input u, and every initial state �. Among
many other results, an equivalence is established
between IOS and the existence of some smooth func-
tion V : Rn → R¿0 such that, for some �1; �2 ∈
K∞; �1(|h(�)|)6V (�)6�2(|�|) for all states � and,
for some � ∈ K; DV (�)f(�; �)¡ 0 whenever
V (�)¿�(|�|) (for all states � and control values �).
Such a V can be alternatively interpreted as a new
output ŷ, which dominates the original output y, and
which has the property that ŷ(t) converges to zero
monotonically (at least while it is larger than a cer-
tain function of the current input). One obtains in
this manner another output rede�nition result. This
appears to be the best possible result, since it follows
from a counterexample given in [24] that, for sys-

tems with inputs, it is in general impossible to make
a system SIIOS under output rede�nition. (For systems
without inputs, a rede�nition result does hold.)
As promised, here are simple counterexamples to

the �rst two implications. Consider the following
system:

ẋ1 =−x1 + x2 + u; ẋ2 =−x1 − x2 + u; y = x2:

(11)

System (11), being linear and stable, is ISS, and hence,
it is IOS. However, this system is not OLIOS because
x2(0) = 0 and u ≡ 0 do not imply x2(t) ≡ 0.
For an example of a OLIOS yet not SIIOS system, we

consider

ẋ1 = 0; ẋ2 =−2x2 + u
1 + x21

; y = x2: (12)

System (12) is OLIOS. This can be shown by a
Lyapunov approach. Let V (�) = �22=2. Then, along
any trajectory x(t) of the system,

V̇ (x(t)) =−x2(t)2x2(t) + u(t)1 + x21(t)
6− V (x(t))

1 + x1(0)2

whenever ‖u‖6√
V (x(t)). Using a standard compar-

ison argument (cf. [16, p. 441]), one can show that

V (x(t))6max{V (x(0))e−t=(1+x1(0)2); ‖u‖2};
∀t¿0:

Consequently, the system is OLIOS. But this system is
not SIIOS, as the decay rate of x2(t) depends on x1(0).
Finally, we remark that, for any linear system (not

merely for those arising in regulation problems), the
OLIOS output rede�nition can be done in terms of linear
functions. Indeed, suppose that the output y=Cx of a
linear system ẋ = Ax satis�es y(t) → 0 for all initial
states, and let ŷ denote the states of the “observable
part” of the system. Then ŷ is a stable variable and
there is also a function � so that (2) holds. (Sketch of
proof, using the Kalman observability decomposition
and the notations in [18, Eq. (6:8)]: let ŷ denote the
�rst r coordinates of the state, so that ˙̂y=A1ŷ. By de-
tectability of (A1; C1); y(t)→ 0 implies that ŷ(t)→
0 for all solutions. Moreover, y = C1ŷ.)

3. Proofs

We will �rst prove Theorem 2.1, and then we will
prove Lemma 2.4.
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3.1. Proof of Theorem 2.1

An outline of the proof is as follows. It is natural, if
we wish for future outputs to be small when the initial
output is small and small inputs are applied, to start by
de�ning a map h0(�) as the supremum, over all future
inputs, of the di�erence ‖y‖−(‖u‖) (this is basically
the value function for an L∞ di�erential game). After
showing that the required estimates are satis�ed, the
next step is to show that h0 is locally Lipschitz, and
then to smooth-out h0 away from the set where h0=0.
The �nal step is to “atten” h0 near the latter set.
Assume that system (10) with y=h(x) is IOS. Thus,

for all � and u,

|y(t; �; u)|6max{�(|�|; t); (‖u‖)}; ∀t¿0;
where � ∈ KL and, without loss of generality,  ∈
K∞. Let h0 : Rn → R¿0 be de�ned by

h0(�) = sup
t¿0; u

{max{|y(t; �; u)| − (‖u‖); 0}}: (13)

Observe that forward completeness is being used in
this de�nition. Since |y(0; �; u)| − (‖u‖)= |h(�)|¿0
for u ≡ 0, the above is equivalent to
h0(�) = sup

t¿0; u
{|y(t; �; u)| − (‖u‖)}:

It is clear that

|h(�)|6h0(�)6�0(|�|); ∀� ∈ Rn;
where �0(s) = �(s; 0). Since, for any u0 with
(‖u0‖)¿�0(s),
max{�(|�|; t); (‖u0‖)} − (‖u0‖)
6max{�0(|�|); (‖u0‖)} − (‖u0‖) = 0;

it follows that

h0(�) = sup
t¿0;‖u‖6−1(�0(|�|))

{|y(t; �; u)| − (‖u‖)}:

(14)

Also note that for any �¿0 and any v,

h0(x(�; �; v)) = sup
t¿0; u

{|y(t; x(�; �; v); u)| − (‖u‖)}

= sup
t¿0; u

{|y(t + �; �; v]�u)|

− (‖v]�u‖[�;∞))}
6 sup

t¿0; u
{�(|�|; t + �) + (‖v]�u‖)

− (‖v]�u‖[�;∞))}
6 �(|�|; �) + (‖v‖[0; �)); (15)

where v]�u is the concatenation of v and u de�ned by

v]�u(t) =
{
v(t) if 06t ¡ �;
u(t − �) if t¿�:

This shows that the system (10) with the output map
y = h0(x) satis�es an IOS-type estimate (5), with the
same functions � and  as the original system.
Next, let us show that (10) with y = h0(x) also

satis�es an output Lagrange estimate (6), with �1(r)=
2r and �2(r) = 2(r). Indeed, for any input v and any
�¿0, we have

h0(x(�; �; v))

= sup
t¿0; u

{|y(t; x(�; �; v); u)| − (‖u‖)}

= sup
t¿0; u

{|y(t + �; �; v]�u)| − (‖v]�u‖[�;∞))}

6 sup
s¿0; u

{|y(s; �; v]�u)| − (‖v]�u‖) + (‖v‖)}

6 sup
s¿0;ũ

{|y(s; �; ũ)| − (‖ũ‖) + (‖v‖)}

=h0(�) + (‖v‖)6max{2h0(�); 2(‖v‖)};
(16)

as desired.
De�ne C:={�: h0(�) = 0}. Then for any � 6∈ C, it

holds that

h0(�) = sup
06t6t�;‖u‖6−1(�0(|�|))

{|y(t; �; u)| − (‖u‖)};

where t� = T|�|(h0(�)=2), and Tr(s) is associated with
� as in Lemma A.1.

Lemma 3.1. The function h0 is locally Lipschitz on
the set where h0(�) 6= 0 and continuous everywhere.

Proof. We �rst remark that

lim inf
�→�0

h0(�)¿h0(�0); ∀�0 ∈ Rn; (17)

that is, h0(�) is lower semi-continuous on Rn. Indeed,
pick �0 and let c:=h(�0). Take any �¿ 0. Then there
are some u0 and t0 so that |y(t0; �0; u0)|−(‖u0‖)¿c−
�=2. By continuity of y(t0; ·; u0), there is some neigh-
borhood Ũ 0 of �0 so that |y(t0; �; u0)|−(‖u0‖)¿c−�
for all � ∈ Ũ 0. Thus h0(�)¿c− � for all � ∈ Ũ 0, and
this establishes (17).
Fix any �0 =∈C, and let c0 = h0(�0)=2. Then there

exists a bounded neighborhood U0 of �0 such that

h0(�)¿c0; ∀� ∈ U0:
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Let s0 be such that |�|6s0 for all � ∈ U0. Then
h0(�) = sup{|y(t; �; u)|−(‖u‖): t ∈ [0; t1]; ‖u‖6b};

∀� ∈ U0;
where t1 = Ts0 (c0=2), and b = 

−1(�0(s0)). By [11,
Proposition 5:5], one knows that x(t; �; u) is Lipschitz
in � uniformly on the set ‖u‖6b; � ∈ U0, and t ∈
[0; t1], and therefore, so is y(t; �; u). Let L1 be a con-
stant such that

|y(t; �; u)− y(t; �; u)|6L1|�− �|; ∀�; � ∈ U0;
∀06t6t1; ∀‖u‖6b:

For any �¿ 0 and any � ∈ U0, there exist some t�; � ∈
[0; t1] and some u�;� such that

h0(�)6|y(t�; �; �; u�;�)| − (‖u�;�‖) + �:
It then follows that, for any �; � ∈ U0, for any �¿ 0,

h0(�)− h0(�)6 |y(t�; �; �; u�;�)| − (‖u�;�‖) + �
− (|y(t�; �; �; u�;�)| − (‖u�;�‖))

6 L1|�− �|+ �:
Consequently,

h0(�)− h0(�)6L1|�− �|; ∀�; � ∈ U0:
By symmetry,

h0(�)− h0(�)6L1|�− �|; ∀�; � ∈ U0:
This proves that h0 is locally Lipschitz on Rn\C.
We now show that h0 is continuous on C. Fix

�0 ∈ C. One would like to show that
lim
�→�0

h0(�) = 0: (18)

Assume that this does not hold. Then there exists a
sequence {�k} with �k → �0 and some �0¿ 0 such
that h0(�k)¿�0 for all k. Without loss of generality,
one may assume that

|�k |6s1; ∀k;
for some s1¿0. It then follows that

h0(�k) = sup{|y(t; �k ; u)| − (‖u‖): t ∈ [0; t2];
‖u‖6b1};

where t2 =Ts1 (�0=2), and b1 =
−1(�0(s1)). Hence, for

each k, there exists some uk with ‖uk‖6b1 and some
�k ∈ [0; t2] such that
|y(�k ; �k ; uk)| − (‖uk‖)¿h0(�k)− �0=2¿�0=2:

(19)

Again, by the locally Lipschitz continuity of the tra-
jectories, one knows that there is some L2¿ 0 such
that

|y(t; �k ; u)− y(t; �0; u)|6L2|�k − �0|; ∀k¿0;
∀06t6t2; ∀‖u‖6b1:

Hence,

|y(�k ; �0; uk)| − (‖uk‖)
¿|y(�k ; �k ; uk)| − �0=4− (‖uk‖)¿�0=4

for k large enough, contradicting the fact that
h0(�)=0. This shows that (18) holds on C.

Now we show how to modify h0 to get an output
function h̃ that is locally Lipschitz everywhere so that
system (10) with h̃ is OLIOS.
We �rst pick a function �h(�) that is smooth onRn\C

with the property

h0(�)
2
6 �h(�)62h0(�); ∀� ∈ Rn:

This can be done according to, e.g., Theorem B.1 in
[11]. According to Lemma 4:3 in [11], there exists a
K∞-function � such that � ◦ �h is smooth everywhere.
Let h̃= � ◦ �h. Note then that
�(h0(�)=2)6h̃(�)6�(2h0(�)): (20)

Combining this with the fact that h0(�)¿|h(�)|, one
sees that

h̃(�)¿�(|h(�)|); ∀�;
where �(s) = �(s=2). Because of (15), one has

h̃(x(t; �; u))6�̃(|�|; t) + ̃(‖u‖); ∀t¿0;
where �̃(s; t) = �(8�(s; t)), and ̃(s) = �(8(s)), and
because of (20) and (16), one has

h̃(x(t; �; u))6 �(2h0(x(t; �; u)))

6max{�(4h0(�)); �(4(‖u‖))}
6max{�(8�−1(h̃(�))); �(4(‖u‖))};

∀t¿0;
that is,

h̃(x(t; �; u))6max{�̃1(h̃(�)); �̃2(‖u‖)}; ∀t¿0;
for all � and all u, where �̃1(s) = �(8�−1(s)) and
�̃2(s) = �(4(s)). We conclude that system (10) with
the output function y = h̃(x) is OLIOS.
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3.2. Proof of Lemma 2.4

An outline of the proof is as follows. After providing
a generalization of the “small-gain” result for ISS given
in [19], we show that any OLIOS system is ROS. Then,
we use an output rede�nition in order to transform our
IOS system into a OLIOS one, and �nally apply the result
to the transformed system.

3.2.1. Output Lagrange stability under small
output feedback

Lemma 3.2. Assume that the system (1) is forward
complete and admits an output-Lagrange estimate as
in (6). Then, there is a smooth K∞ function � such
that the resulting system (8) is forward complete and

�2(|d(t)|�(|y�(t; �; d)|))6 1
2 |h(�)| (21)

holds a.e. on [0;∞).

Proof. Let �1; �2 beK-functions such that (6) holds.
Without loss of generality, we assume that both are in
K∞ and that �1(s)¿s for all s¿0. Hence, �−11 (s)6s
for all s¿0. Let � be any smoothK∞-function such
that

�2(�(s))¡ 1
4�

−1
1 (s); ∀s¿ 0:

Below we show that with such a choice of �, the re-
sulting system (8) satis�es the desired properties.
Recall that we use x�(t; �; d) and y�(t; �; d) denote

the trajectory and the output for system (8) corre-
sponding to the initial state � and the input function
d. To show that system (8) is complete, we �rst prove
that (21) holds a.e. on the maximal interval of de�ni-
tion [0; tmax) of the solution.
Pick any � and any d, and use simply x�(t) and

y�(t) to denote x�(t; �; d) and y�(t; �; d), respectively.
To prove (21) on [0; tmax), it is enough to show that

�2(�(|y�(t)|))6 1
2 |h(�)| (22)

for such t.
Case 1: h(�) 6=0. Since �2(�(|y�(0)|)) = �2

(�(|h(�)|))¡ 1
4�

−1
1 (|h(�)|)6 1

4 |h(�)|, it follows that
�2(�(|y�(t)|))6 1

4 |h(�)| for t small enough. Let

t1 = inf
{
t ∈ (0; tmax): �2(�(|y(t)|))¿ 1

2
|h(�)|

}

with t1 = tmax if the set is empty. Suppose by way of
contradiction that t1¡tmax. Then (22) holds on [0; t1),
and hence, (21) holds a.e. on [0; t1). Note that on

[0; tmax); y�(t) = y(t; �; u) with u(t) = d(t)�(|y�(t)|).
With (6), one sees that |y�(t)|6�1(|h(�)|) for all
06t6t1, and in particular, |y(t1)|6�1(|h(�)|). Con-
sequently,

�2(�(|y(t1)|))6 1
4�

−1
1 (|y(t1)|)6 1

4 |h(�)|;
contradicting the de�nition of t1. Thus, (22) holds for
all t ∈ [0; tmax).
Case 2: h(�) = 0. In this case, it is enough to

show that y�(t) = 0 for all t ∈ [0; tmax). Suppose this
is not true. Then there exists some �¿ 0 and some
t2 ∈ (0; tmax) such that |y�(t2)|¿�. Let 0¡�0¡� be
such that �−1(�−12 (�0))¡�=2. Then there is some � ∈
(0; t2) such that |y�(�)|=�0. Applying (22) proved for
case 1 to the new initial state �1:=x�(�), one sees that

|y�(t)|6�−1(�−12 ( 12 |y�(�)|))6�−1(�−12 (�0))¡�=2

for all t ∈ [�; tmax), and in particular, |y�(t2)|¡�=2,
a contradiction. This shows that y�(t) = 0 for all t ∈
[0; tmax).
We have showed that in both cases, (22) holds for

all t ∈ [0; tmax), which implies that, for any � and any d,
the function u(t):=d(t)�(|y�(t; �; d)|) remains essen-
tially bounded on [0; tmax). Suppose tmax¡∞, then,
by the forward completeness property of system (1),
the trajectory x�(t; �; d) (which is in fact x(t; �; u) with
u(t)=d(t)�(|y�(t; �; d)|)) is bounded on [0; tmax). This
contradicts the maximality of tmax. Therefore, tmax=∞
for every � and every d. Consequently, (21) holds for
all t ∈ [0;∞).

3.2.2. Output asymptotic stability under small
output feedback

Lemma 3.3. If a system (1) is OLIOS; then it is ROS.

Proof. Estimates as in (5) and (6) hold. Without loss
of generality, we assume that the functions appear-
ing in the latter satisfy �1(r)¿r for all r and �2 ∈
K∞. Furthermore, rede�ning if necessary � and , we
replace (5) by a maximum, and use the same �2 func-
tion, so that the following estimate holds:

|y(t; �; u)|6max{�(|�|; t); �2(‖u‖)}; ∀t¿0: (23)

Let the function � be as in Lemma 3.2 so that sys-
tem (8) is forward complete and (21) holds for al-
most all t¿0. By [1, Lemma 2:3], there exist some
K-functions %1; %2 and some c¿0 such that

|x�(t; �; d)|6%1(t) + %2(|�|) + c (24)

for all �, all d, and all t¿0.
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Below we will show that system (8) satis�es the
two properties listed in Remark 2.3. First, by (21) and
(6), one has

|y�(t; �; d)|6max{�1(|h(�)|); 12 |h(�)|}
= �1(|h(�)|)6�̃(|�|); ∀t¿0;

where �̃ is anyK-function such that �1(|h(�)|)6�̃(|�|)
for all �. Property 1 follows readily. To prove Prop-
erty 2, we �rst show the following:

Claim. For each r ¿ 0; s¿ 0, there is some Tr;s ¿ 0
such that

t¿Tr;s; |�|6r; |h(�)|6s ⇒ |y�(t; �; d)|6s=2:
(25)

To prove the claim, note that by (23) and (21), one
has, for all � as in (25),

|y�(t; �; d)|6max
{
�(|�|; t); |h(�)|

2

}

6max
{
�(r; t);

s
2

}
; ∀t¿0:

Since �∈KL, there is some Tr;s ¿ 0 such that
�(r; t)6s=2 for all t¿Tr;s, and consequently,

|y(t; �; u)|6 s
2
; ∀t¿Tr;s:

This Tr;s satis�es the requirements of the claim.
Let � be a K-function such that |h(�)|6�(|�|)

for all �. Let �¿ 0 be given. Pick any � 6=0. Let
r = |�|. Then |h(�)|6�(r). Let l¿ 0 be such that
2−l�(r)¡�. Let s1 = �(r) and si = si−1=2 for i¿2.
By (25), there is some Tr;s1¿ 0 such that

|y�(t; �; d)|6s1=2; ∀t¿Tr;s1 ; ∀d:
By (24), one has

|x�(Tr;s1 ; �; d)|6%1(Tr;s1 ) + %2(r) + c:=r2; ∀d:
Applying (25) to r2 and s2, one sees that there is some
Tr2 ;s2 such that the following holds:

|y�(t + Tr;s1 ; �; d)|6s2=2; ∀t¿Tr2 ; s2 ; ∀d:
Inductively, letting T̃ k=

∑k
i=1 Tri; si (where r1=r) and

applying (25) to sk+1 and

rk+1:=%1(T̃ k) + %2(r) + c;

one sees that there is some Trk+1 ;sk+1 such that

|y�(t + T̃ k ; �; d)|6 sk2 ; ∀t¿Trk ;sk ; ∀d:

Finally, we let T = T̃ 1 + T̃ 2 + · · ·+ T̃ l. Then, for any
t¿T and any d,

|y�(t; �; d)|6 s
2l
¡ �:

Observe that in the above argument, T only depends
on |�| and �. Thus, the system satis�es Property 2
of Remark 2.3. Consequently, system (8) admits an
estimate (9).

3.2.3. Proof of Lemma 2.4
Lemma 2.4 follows easily from Theorem 2.1 and

Lemma 3.3. Suppose system (1) is IOS. By Theorem
2.1, there is some locally Lipschitz function h0 and
some K∞-function � as in Theorem 2.1 such that
system (10) with y = h0(x) as output is OLIOS. By
Lemma 3.3, there is some smooth �0 ∈ K∞ such that
the system

ẋ = f(x; d�0(|h0(x)|)); y = h0(x); d ∈ MB;

is forward complete, and there is some �0 ∈ KL such
that

|h0(x�0 (t; �; d))|6�0(|�|; t); ∀t¿0; ∀d: (26)

Recall that � ∈ K∞ such that �(|h(�)|)6h0(�) for all
�. Let �= �0 ◦ � ∈ K∞. Then, �(|h(�)|)6�0(|h0(�)|)
for all �.
Consider the system

ẋ = f(x; d�(|h(x)|)); y = h(x); d ∈ MB: (27)

Pick any � and any d. Suppose the corresponding so-
lution x�(t; �; d) is de�ned on [0; T ) for some T6∞.
For t ∈ [0; T ), let

d0(t) =
�(|h(x�(t; �; d))|)
�0(|h0(x�(t; �; d))|)d(t)

if h(x�(t; �; d)) 6= 0, and d0(t) = 0 otherwise. Extend
d0 to [0;∞) by letting d0(t)=0 if t¿T in case T ¡∞.
Observe that d0 ∈ MB, and by the uniqueness prop-
erty,

x�(t; �; d) = x�0 (t; �; d0); ∀t ∈ [0; T ): (28)

Suppose T ¡∞. Then x�0 (t; �; d0) remains bounded
on [0; T ), and hence, x�(t; �; d) remains bounded
on [0; T ). This contradicts the maximality of T .
Consequently, T =∞. This shows that system (27)
is forward complete, and thus, (28) holds on [0;∞).
Observe that

|h(x�(t; �; d))|6�−1(h0(x�0 (t; �; d0)));
from which it follows by (26) that

|y�(t; �; d)|6�(|�|; t); ∀t¿0; ∀d;
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where �(s; t):=�−1(�0(s; t)). This shows that system
(1) is ROS.

4. Example

In this section we show, by means of a counterex-
ample, that ROS and IOS are not equivalent. We will
then modify the example to get a system which is in
addition bounded-input bounded-output stable (UBIBS),
thus showing that even under this very strong stability
assumption, ROS does not imply IOS.
Consider the following two-dimensional system:

ẋ = �(|u| − 1− |y|)x − y�(x; y);
ẏ = �(|u| − 1− |y|)y + x�(x; y); (29)

with output y (we write x and y instead of x1 and x2),
where � is de�ned by

�(s) =




−1 if s¡− 1;
s if |s|61;
1 if s¿ 1;

and �(x; y) is de�ned by

�(x; y) = �0(|y| − 4) + (1− �0(|y| − 4)) 1=�+ |y|
max{1; |x|} ;

and �0 is any smooth function such that �0(s) = 1 if
s¿0, �(s) = 0 if s6 − 2 and 0¡�0(s)61 for s ∈
(−2; 0).
First observe that the system is forward complete.

This is because for the function V (x; y):=(x2 +y2)=2,
it holds that

DV (x; y)f(x; y; u) = �(|u| − 1− |y|)(x2 + y2)
6 2�(|u|)V (x; y)62|u|V (x; y);

which implies that, along any trajectory (x(t); y(t)),
one has V (x(t); y(t))6V (x(0); y(0))e2‖u‖t . This
shows that all trajectories corresponding to (locally)
bounded inputs are de�ned for all t¿0. Also note
that DV (x; y)f(x; y; u) = �(|u| − 1 − |y|)(x2 + y2)
implies that

|y|¿|u| ⇒ DV (x; y)f(x; y; u)6− (x2 + y2): (30)

This means that every solution of the system (8), with
� the identity function, satis�es the estimate x(t)2 +
y(t)26(x(0)2 + y(0)2)e−t . In particular, the output
y(t) satis�es a decay estimate (9), and in fact much
more holds, since the origin of the system is globally
asymptotically stable. Next, we show that property (5)
fails to hold for the system. We do this by �nding a

Fig. 1. The trajectory of (31) starting from z0.

bounded control (namely, u ≡ 5) and an initial state
such that y(t) is unbounded.
Pick the input function u0 ≡ 5. For this input, the

system satis�es the equations

ẋ = �(4− |y|)x − y�(x; y);
ẏ = �(4− |y|)y + x�(x; y): (31)

Using polar coordinates, onR2\{0}, the equations can
also be written as

ṙ = �(4− |y|)r;
�̇= �0(|y| − 4) + (1− �0(|y| − 4)) 1=�+ |y|

max{1; |x|} :

Note that ṙ ¿ 0 when |y|¡ 4 and ṙ ¡ 0 when |y|¿ 4.
Also note that �̇¿ 0, and �̇= 1 when |y|¿4.
Pick a point z0 = (x0; y0) with x0¿ 0 large

enough and y0 = 4, and consider the trajectory
&(t) = (x(t); y(t)) with the initial state &(0) = z0.
Let D0 denote the region {y¿ 4}. Since ẏ¿ 0 at
z0 and �̇ = 1 on D0, there exists 0¡t16� such
that &(t) ∈ D0 for all t ∈ (0; t1), and y(t1) = 4.
Let p = (x(t1); y(t1)), and for any point a ∈ R2,
let ra = |a|, and let xa (ya, respectively) denote the
x-coordinate (y-coordinate, respectively) of a. Since
ṙ¿ − r in D0, one sees that rp¿rz0e

−t1¿rz0e
−�:

Suppose x0 is large enough such that |xp|¿ 5 (this
is possible because r2p = x

2
p + 16¿r

2
z0e

−2�). Since
ẏ¿ 0 on any point where x¿ 0 and y = 4, it is
impossible to have xp ¿ 0. Hence, xp ¡ − 5 (cf.
Fig. 1). Let D1 = {(x; y): x¡ − 5; 2¡y¡ 4}, and
letD2={(x; y): x¡−5; 0¡y¡ 2}. Since ẏ¡ 0 on
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the line y=4 where x¡ 0, and in D1∪D2, ẋ ¡ 0 and

ẏ6 y + x�0(|y| − 4)− x(1− �0(|y| − 4))1=�+ yx

6 y +max
{
x;−

(
1
�
+ y

)}
6− 1

�
;

it follows that there exist t1¡t2¡t3¡∞ such that
&(t) ∈ D1 for t ∈ (t1; t2), &(t) ∈ D2 for t ∈ (t2; t3),
and y(t3)= 0. Furthermore, on D2, ṙ= r and ẏ= y+
x(1=� + y)= − x = −1=�: This implies that t3 − t2 =
2�, and hence, rs = rqe2�, where q = &(t2); s = &(t3).
Combining this with the fact that ṙ¿0 in D1, one sees
that rs¿rpe2�¿rz0e

�.
Let D3 denote the region {(x; y): x¡ − 5; −4¡

y¡ 0}. Then in D3; ṙ ¿ 0; ẋ = �(4 − |y|)x −
y�(x; y)6|y|max{1; 1=�+ |y|}620; and

ẏ6 x�0(|y| − 4) + x(1− �0(|y| − 4))1=�− y−x

6max
{
x;−

(
1
�
− y

)}
6− 1

�
;

it follows that if |xs| is large enough, then there exists
t4 ∈ (t3; t3 + 4�] such that &(t) ∈ D3 for all t ∈
(t3; t4) and y(t4) = −4. We assume that x0 is large
enough such that this happens (again, this is possible

because |xs|¿|xp|=
√
r2p − 16 and r2p¿(x20+16)e−�).

Let w = &(t4). Since in D3 ṙ¿0, rw¿rs¿rz0e
�. Also

observe that |xw|¿x0 (because rw ¿ rz0 , which implies
−xw ¿x0, and |yw|= |y0|).
By symmetry, one can show that there exists T1¿ 0

such that x(T1)¿ 0 and y(T1) = 4 (i.e., at some mo-
ment T1, &(t) returns to the line y=4), and moreover,
with z1 = &(T1); rz1¿rwe

�¿rz0e
2�.

Remark 4.1. In the above we have seen that �̇=1 on
D0, and ẏ6 − 1=� on D1 ∪ D2 ∪ D3. Thus, t46t1 +
8�69�. By symmetry, one concludes that T1618�.

Let z0; z1; z2; : : : be the consecutive points where &(t)
intersects the line y = 4 where x¿ 0. The above ar-
gument shows that rzk¿rz0e

2k�. Let y0; y1; y2; : : : be
the consecutive points where &(t) intersects the y-axis
in the upper half plane. Then (using once more that
ṙ¿−r and �̇=1 onD0) yk¿rzk e−�=2¿rz0e2k�−�=2 →
∞: This shows that the output y(t) corresponding to
the initial state z0 and the bounded input u ≡ 5 is un-
bounded, contradicting property (5).
Finally, we modify the above example in the

following way to get a UBIBS system. Consider the

two-dimensional system:

ẋ = �(’(x; y)|u| − 1− |y|)x − y�(x; y);
ẏ = �(’(x; y)|u| − 1− |y|)y + x�(x; y); (32)

where �; � are still de�ned the same as before,
and the function ’ is a smooth function de�ned
in the following way. For any point �z = ( �x; �y)∈
C := {(x; y): x¿ 0; y = 4} with x large enough,
let T �z = inf{t ¿ 0: &(t; �z) ∈ C}; where &(t; �z) de-
notes the trajectory of (31) with &(0; �z) = �z. It was
shown that |&(Tz)|¿|z|e2�. Now for each k ¿ 0,
let Ak be the set {z ∈R2: rk6|z|6r′k}, where
0¡r1¡r′1¡r2¡r′2¡r3¡r′3¡ · · · →∞ are
such that, for any k, there exists some zk ∈ Ak ∩ C
so that for the trajectory &(t; zk) of (31), it holds
that &(t; zk) ∈ Ak for all t ∈ [0; Tzk ]. Then ’ can be
taken as any smooth function such that ’(x; y) = 1
on Ak , ’(x; y) = 0 for all z = (x; y) such that
|z| = (r′k + rk+1)=2 for all k¿1, and 06’(x; y)61
everywhere else. In addition, we assume ’(x; y) = 0
on the set A0:={|z|6r1=2}.
To show that the system is UBIBS, we still let

V (x; y) = (x2 + y2)=2. Pick any input u and any
initial point z0 = (x0; y0). Let (x(t); y(t)) denote
the corresponding trajectory. Let Ãk be the set
{|z|6r′′k :=(r′k+rk+1)=2}. ThenÃk is forward invariant
because on the set {|zk | = r′′k }, DV (x; y)f(x; y; u) =
2�(−1 − |y|)V (x; y)¡ 0: Hence, if |z0|6r′′k , then
|(x(t); y(t))|6r′′k for all t¿0. Observe that A0 is
also forward invariant, and if (x(0); y(0))∈A0,
(d=dt)V (x(t); y(t))62�(−1−y(t))V (x(t); y(t))60;
which implies that V (x(t); y(t))6V (x(0); y(0)) for
all t¿0. Now let � be any K∞-function such that
�(s)¿s for 06s6r′′0 , and �(s)¿r

′′
k+1 for r

′′
k6s6r

′′
k+1

for all k¿0. Then V (x(t); y(t))6�(|z(0)|) for all
t¿0. This shows that the system is UBIBS. It can also
be seen that V still satis�es (30) for system (32), and
hence, arguing as before, system (32) is ROS.
To show that the system fails to be IOS, we again

pick the input function u0 ≡ 5. With this input, the
system satis�es the equations

ẋ = �(5’(x; y)− 1− |y|)x − y�(x; y);
ẏ = �(5’(x; y)− 1− |y|)y + x�(x; y): (33)

Observe that, for each k¿1, equations in (33) are
the same as in (31) on Ak . For each z ∈ R2, let
#(t; z) denote the trajectory of (33) with the initial
state #(0; z)=z. Then, for each k¿1, #(t; zk)=&(t; zk)
for all t ∈ [0; Tzk ]. Let Dk be the complement of the re-
gion enclosed by the curve {#(t; zk): 06t6Tzk} and
the line segment Lk between zk and #(Tzk ) on the line
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y = 4. Then Dk is forward invariant by uniqueness
and the fact that ẏ¿ 0 on Lk . This implies that for all
t ¿Tzk , |#(t; zk)|¿rk .
For each k¿1, let (xk(t); yk(t)) = #(t; zk). Be-

low we will show that, for each k, there exists
t1¡t2¡t3¡ · · · → ∞ such that yk(tl)¿rk for all
l¿1. It then will follow that lim supt→∞ yk(t)¿rk .
For this purpose, we consider the angular movement
�k(t) of #(t; zk). It can be seen that �k(t) satis�es the
equation

�̇= �0(|y| − 4) + (1− �0(|y| − 4)) 1=�+ |y|
max{1; |x|} :

SinceÃk is forward invariant, it holds that |#(t; zk)|6r′′k
for all t¿0, and hence,

d
dt
�k(t)¿min

{
1;
1=�+ |yk(t)|
max{1; |xk(t)|}

}

¿min
{
1;

1=�
max{1; r′′k }

}
:

From this, we know that �k(t) → ∞. This shows
that there exist 0¡t1¡t2¡t3¡ · · · → ∞ such that
�k(tl)=2l�+�=2. Hence, |yk(tl)|= |#(tl; zk)|¿rk for
all l¿1. This shows that it is impossible to have some
 ∈ K such that lim supt→∞ |yk(t)|6(‖u0‖) = (5)
for all k. We conclude that the system is not IOS.

Appendix. A lemma regardingKL functions

Lemma A.1. For anyKL-function �; there exists a
family of mappings {Tr}r¿0 such that

• for each �xed r ¿ 0; Tr :R¿0
onto−→R¿0 is contin-

uous and strictly decreasing; and T0(s) ≡ 0;
• for each �xed s¿ 0; Tr(s) is strictly increasing as
r increases; and is such that �(r; Tr(s))¡s; and
consequently; �(r; t)¡s for all t¿Tr(s).

Proof. For each r¿0 and each s¿ 0, let T̂ r(s) :=
inf{t: �(r; t)6s}: Then T̂ r(s)¡∞, for any r; s¿ 0,
�(r; T̂ r(s))6s for all r¿0, all s¿ 0, and it satis�es

T̂ r(s1)¿T̂ r(s2) if s16s2 and

T̂ r1 (s)6T̂ r2 (s) if r16r2:

Note also that T̂ 0(s) = 0 for all s¿ 0. Follow-
ing exactly the same steps as in the proof of [11,

Lemma 3.1], one can modify T̂ r(s) to obtain T̃ r(s)
so that for each �xed r¿0, T̃ r(·) is decreasing and
continuous; and for each �xed s, T̃ (·)(s) is increasing.
Finally, one lets Tr(s)= T̂ r(s)+ r=(1+ s): Then Tr(s)
satis�es all conditions required in Lemma A.1.
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