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Abstract 27 

A significant challenge in the field of biomedicine is the development of methods to 28 

integrate the multitude of dispersed data sets into comprehensive frameworks to be used 29 

to generate optimal clinical decisions. Recent technological advances in single cell 30 

analysis allow for high-dimensional molecular characterization of cells and populations, 31 

but to date, few mathematical models have attempted to integrate measurements from 32 

the single cell scale with other types of longitudinal data. Here, we present a framework 33 

that actionizes static outputs from a machine learning model and leverages these as 34 

measurements of state variables in a dynamic model of treatment response. We apply 35 

this framework to breast cancer cells to integrate single cell transcriptomic data with 36 

longitudinal bulk cell population (bulk time course) data. We demonstrate that the explicit 37 
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 2 

inclusion of the phenotypic composition estimate, derived from single cell RNA-38 

sequencing data (scRNA-seq), improves accuracy in the prediction of new treatments 39 

with a concordance correlation coefficient (CCC) of  0.92 compared to a prediction 40 

accuracy of CCC = 0.64 when fitting on longitudinal bulk cell population data alone. To 41 

our knowledge, this is the first work that explicitly integrates single cell clonally-resolved 42 

transcriptome datasets with bulk time-course data to jointly calibrate a mathematical 43 

model of drug resistance dynamics. We anticipate this approach to be a first step that 44 

demonstrates the feasibility of incorporating multiple data types into mathematical models 45 

to develop optimized treatment regimens from data.  46 

Introduction  47 

The development of resistance to chemotherapy is a major cause of treatment failure in 48 

cancer. Intratumoral heterogeneity and phenotypic plasticity play significant roles in 49 

therapeutic resistance (1)(2) and individual cell measurements such as flow and mass 50 

cytometry (3) and scRNA-seq (4) have been used to capture and analyze this cell 51 

variability (5–8). Although these assays destructive nature can limit the time resolution of 52 

data acquisition, snapshot information alone has provided immense insight to the field: 53 

illuminating novel molecular insight about distinct subpopulations (9), developing detailed 54 

hypothesis about population structure (10), and even demonstrating the ability to predict 55 

clinical outcomes (1). However, outside of the field of differentiation (11), most information 56 

gleamed from “omics” data sets have not been directly linked to growth and treatment 57 

response dynamics of the bulk cell population—which are critical to understanding the 58 

dynamics of cancer progression. 59 

Longitudinal bulk cell population data in cancer have been used to calibrate 60 

mathematical models of heterogeneous subpopulations (10,12,13) of cancer cells. These 61 

models describe cancer cells dynamically growing and responding to drug with differential 62 

growth rates and drug sensitivities. Knowledge of these model parameters have enabled 63 

the theoretical optimization of treatment protocols (14–16), and have been applied to 64 

prolong tumor control in both mice (10) and patients (12,17). Critical to the success of 65 

these modeling endeavors is the ability to identify and validate critical model parameters 66 

from available data (18). Identifiable and practical models are necessarily limited in their 67 
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 3 

capacity to explain biological complexity based on the availability and feasibility of 68 

longitudinal data, which is often limited to total tumor volume or total cell number in time. 69 

While complex relationships between distinct cell subpopulations is critical to some 70 

responses (9), the ability to track the relevant subpopulations longitudinally for model 71 

calibration and parameter estimation remains a challenge (19).  72 

One way to resolve this challenge would be to work with both types of data and 73 

use them jointly to inform the calibration of a dynamic model.  In this study, we sought to 74 

develop a flexible framework for integrating informatics outputs from high-throughput 75 

single-cell resolution data with bulk time-course data to demonstrate the feasibility of 76 

utilizing multimodal data sources in mathematical oncology. The integration of single cell 77 

data into a mathematical modeling framework has been successfully employed in the field 78 

of differentiation by quantifying the changing proportion of cells in distinct cell states over 79 

time (11).  This approach is more complex in cancer, where the effects of exponential 80 

growth and death due to drug exposure results in changes in phenotypic composition that 81 

may be independent of directed transitions between cell states. To better understand 82 

these dynamics, we collect bulk time-course data throughout treatment with 83 

chemotherapy doxorubicin. We combine this with snapshots of lineage-traced scRNA-84 

seq data and build a classifier to estimate phenotypic composition, via the proportion of 85 

sensitive and resistant cells, at distinct time points during treatment response. Despite 86 

differences in data acquisition, time resolution, and data uncertainty, we demonstrate that 87 

these two measurement sources can be used to estimate cell number in time and 88 

phenotypic composition in time, which can be compared to their corresponding model 89 

outputs. To account for different time resolutions in the measurement sources, we 90 

develop an integrated calibration scheme to incorporate both data types. We validate the 91 

model results by demonstrating that they can accurately predict the response dynamics 92 

to new treatment regimens. We propose this framework as a crucial next step towards 93 

combining tumor composition information with bulk time-course data to improve prediction 94 

and optimization of treatment outcomes.  95 

 96 

Results 97 
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Utilizing a Model of Sensitive and Resistant Subpopulations to Describe and 98 

Optimize Drug Response Dynamics 99 

To describe and predict the dynamics of cancer cells in response to treatment, we chose 100 

to use a mathematical model that describes sensitive and resistant cell subpopulations 101 

growing, dying, and transitioning from the sensitive, S,  to resistant, R, state as a direct 102 

result of treatment (15). This model was chosen because it represents a relatively simple 103 

phenomenological model of two subpopulations differing in their degree of drug 104 

sensitivity, that accounts for the ability of cells to transition directly from sensitive to 105 

resistant phenotypes following drug exposure, as has been observed in cancer cell 106 

systems (20).  107 

	108 

𝜕𝑆
𝜕𝑡 = 𝑟'𝑆 (1 −

𝑆 + 𝑅
𝐾 . − 𝛼𝑢(𝑡)𝑆 − 𝑑'𝑢(𝑡)𝑆	 109 

 110 

𝜕𝑅
𝜕𝑡 = 𝑟4𝑅 (1 −

𝑆 + 𝑅
𝐾 . + 𝛼𝑢(𝑡)𝑆 − 𝑑4𝑢(𝑡)𝑅	 111 

(Eq. 1) 112 

 113 

In this model (Fig 1A), sensitive and resistant cells grow via a logistic growth hypothesis 114 

at their own intrinsic growth rates (rS and rR) and a joint carrying capacity (K), which will 115 

vary based on the experimental scenario: either taking the value of KN for the carrying 116 

capacity of the cells in the bulk time course experiment or Kf for the carrying capacity of 117 

the cells in the scRNA-seq experiment (Table 1, Supp Table S1). Sensitive and resistant 118 

cells are killed by the drug at a rate of dS and dR respectively, that is proportional to the 119 

number of cells in each subpopulation and the effective dose, u(t), following the log-kill 120 

hypothesis. By definition, we set dS > dR such that sensitive cells will be more susceptible 121 

to death due to treatment than resistant cells. Treatment drives cells from the sensitive 122 

subpopulation into the resistant subpopulation at a rate a, which is linearly proportional 123 

to the number of sensitive cells present and u(t).  124 
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 125 
Fig 1. Mathematical Model of Treatment-induced Resistance and its Implications. A. Sketch of 126 
the model structure (Eq 1). The model describes sensitive and resistant subpopulations growing 127 
exponentially at independent growth rates. In response to treatment, sensitive and resistant cells are 128 
killed by the drug. The exposure to drug drives sensitive cells into the resistant phenotype. B. Example 129 
trajectory of model predicted total cell number in time for a constant dose (black) and a pulsed dose 130 
(blue) for the case where there is no drug-induced resistance (a = 0), indicating that the optimal 131 
treatment is the constant dose C. Example trajectory of model predicted total cell number in time for a 132 
constant dose (black) and a pulsed dose (blue) for the case where the drug does induce resistance (a 133 
> 0), indicating that in this case the optimal treatment is a pulsed treatment. D. Schematic of 134 
experimental set-up using time-resolved fluorescence microscopy to measure the number of MDA-135 
MB-231 GFP labeled breast cancer cells in response to doxorubicin concentrations ranging from 0-136 
200 nM treated for 24 hours and then allowed to recover in growth media. E. Estimated effective dose 137 
dynamics (u(t)) of the various pulse-treatments of doxorubicin. F. Measured number of cells in time, 138 
colored by drug concentration as in B, from six replicate wells. Error bars represent 95% confidence 139 
intervals around the mean cell number at each time point. Images were converted to cell number 140 
estimates every 4 hours. Time of monitoring ranged from 1 week (168 hours) for the untreated control 141 
to ~2.5 weeks (469 hours) for the 200 nM dose. 142 
 143 
 144 
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 6 

To incorporate time-dependent effects of a treatment on the cell population, we 145 

make a simple assumption about the pharmacokinetics of pulsed drug treatments, 146 

assuming exponential decay of the effective dose, u(t), of the drug, as has been shown 147 

by others in greater detail (21,22).  148 

𝑢(𝑡) = 𝑘6𝐶89:;𝑒=>?@, 149 

(Eq. 2) 150 

where Cdrug is the concentration of doxorubicin in nM, k1 is a scaling factor used to non-151 

dimensionalize the effective dose, and k2 is an estimated rate of decay of the effect of 152 

doxorubicin pulse-treatment on breast cancer cells. The effective dose decays over a time 153 

scale consistent with experimental measurements of doxorubicin fluorescence dynamics 154 

in vitro (21,22) .  155 

Previous work has demonstrated the theoretical implications of treatment-induced 156 

resistance (a in our model) on determining optimal treatment regimens (15). Simulations 157 

from our model (Eq.1) also revealed the importance of the degree of drug-induced 158 

resistance (a) in treatment optimization. We simulated a resistance-preserving therapy 159 

(i.e., a = 0), and found that a constant dosing regimen optimizes tumor control (black line 160 

Fig 1B), leading to a lower maximum tumor cell number than the pulsed treatment (blue 161 

line Fig 1B), whereas for a resistance-inducing therapy (i.e., a > 0) a pulsed treatment 162 

regimen (blue line Fig 1C) reduced tumor cell number over time.  163 

We employ an experimental in vitro model system of MDA-MB-231 triple negative 164 

breast cancer cells exposed to the chemotherapeutic doxorubicin. By applying a range of 165 

24-hour pulse treatments (Fig 1D), we can estimate the effective dose (u(t)) for each 166 

treatment (Fig 1E) and measure the total cell number over time using time-lapsed 167 

microscopy on the 6 replicate wells for each dose (Fig 1F)(see Methods: Longitudinal 168 

Treatment Response Monitoring). The mean and 95% confidence intervals of cell number 169 

in time are shown in Fig 1F.  The measurements of total cell number in time acquired 170 

experimentally can be compared directly to the model predicted cell number in time. 171 

However, while we may not feasibly be able to measure the resistant and sensitive cell 172 

number longitudinally, we will demonstrate how we can estimate the “phenotypic 173 

composition”; the proportion of cells in the sensitive state fS(t) (or simply f(t)), throughout 174 

treatment response using lineage-traced transcriptomic data. Model outputs of N(t) and 175 
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 7 

f(t) can be used directly to compare to measurements of cell number in time and 176 

phenotypic composition in time following a drug treatment (Supp Fig S1). A full description 177 

of the parameters in the modeling workflow are described in Table 1, and their values and 178 

confidence intervals are listed in Supp Table S1.   179 

 180 

Parameter Description Units Determination 

N(t) Total cell number over time, measured directly 
and predicted by the model 

Number of 
cells 

Directly 
measured 

𝜙(t) Phenotypic composition: the fraction of sensitive 
cells over time, estimated from scRNA-seq data 

and predicted by the model 

Cell fraction Estimated from 
classifier output 
from scRNA-seq 

data 
r
S
, r

R
 Growth rate of sensitive and resistant cell 

subpopulations  
hour -1 Fit from N(t) & 

𝜙(t) data 
α Drug-induced rate of transition from sensitive to 

resistant state 
nM-1 x hour -1 Fit from N(t) & 

𝜙(t) data 
d

S
, d

R
 Death rate of sensitive and resistant cell 

populations due to drug, d
R
<d

S  
nM-1 x hour -1 Fit from N(t) & 

𝜙(t) data 

𝜙0 Initial proportion of sensitive cells number of 
cells 

Fit from N(t) & 
𝜙(t) data 

K
N
 Carrying capacity for the longitudinal treatment 

experiment performed in a 96 well plate to 
measure N(t) 

number of 
cells 

Fit from N(t) 
untreated 

control 
K
𝜙
 Carrying capacity of the scRNAseq experiment 

performed in a 10 cm dish to measure 𝜙(t) 
number of 

cells 
Fixed 

k
1
 Scaling factor to non-dimensionalize 

concentration in nM of doxorubicin 
nM-1  Fixed 

k
2
 Estimated rate of decay of effect of doxorubicin 

after pulse-treatment 
hour -1 Fixed 

Table 1. Description of model parameters to describe resistance dynamics.  Descriptions of 181 
the parameters either from measured data (Data), fit of the model to the N(t) (Fit from N(t)) or	𝜙(t) 182 
(Fit from 𝜙(t)), the model assumptions (Fixed), or predicted from the parameter estimation from 183 
the fitted model (Predicted).  We fit for six free parameters in the calibration scheme, as listed by 184 
the first four rows of the table.  185 

 186 

Integrated Modeling Workflow for Estimating the Phenotypic Composition from 187 

scRNA-seq Data 188 
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 8 

The combined experimental-computational workflow (Fig 2) starts by tagging 189 

individual cells with unique barcodes that are integrated into the genome and expressed 190 

as sgRNA’s; this COLBERT cell barcoding platform has been described previously (23). 191 

The barcode-labeled cell population is expanded to generate the naïve population for 192 

these studies (305 unique barcodes represents 305 clonal subpopulations).  Cells are 193 

then treated with doxorubicin (LD95, 550 nM) for 48 hours and allowed to recover; scRNA-194 

seq is performed prior to treatment and from two parallel replicates after the population 195 

had regrown following the pulse treatment, corresponding to seven and ten week post-196 

treatment timepoints.  197 

 198 
Fig 2. Schematic of the workflow for identifying model parameters from data. At t=0 wks prior to 199 
treatment, individual cells are tagged with a unique, heritable, expressed COLBERT barcode. Cells 200 
are treated with a pulse treatment of doxorubicin and allowed to recover from treatment, at which time 201 
the barcode abundance is quantified. Lineages whose barcode abundance increased from pre- to 202 
post-treatment are assumed to have been in a phenotypic state at t=0 wks that conferred them more 203 
resistant to drug than cells whose barcodes significantly decreased in abundance after treatment. 204 
Samples of the population were taken before and from parallel replicates sampled at two different time 205 
points after treatment for scRNA-seq. The transcriptomes in the pre-treatment samples of the cells are 206 
assigned resistant or sensitive if they fall on the extreme tails of this distribution and are used as the 207 
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 9 

labeled training set.  Using the gene-cell matrix and labeled class identities of sensitive or resistant 208 
from the pre-treatment time point only, a classifier is built using Linear SVM to distinguish between 209 
sensitive and resistant cells. The classifier is applied to the remainder of transcriptomes of the cells, 210 
resulting in a prediction for each cell as either sensitive or resistant. These machine learning outputs 211 
are made actionable as state variables by using them to quantify the proportion of sensitive cells (f(t)) 212 
at the three time points. This is combined with separate experiments of longitudinal treatment response 213 
dynamics (N(t)) of the bulk population of the same cell type, and both serve as measured data to be 214 
compared to model predicted outputs for parameter estimation.  215 

 216 

The transcribed barcode sequence indicating lineage identity is measured 217 

alongside other transcripts in scRNA-seq in each cell. Cells from the pre-treatment 218 

time point whose lineage abundance increased by any amount after treatment were 219 

designated as “resistant”, and cells whose lineage abundance decreased by more 220 

than 5% were designated as “sensitive” (Fig 3A). These thresholds were chosen 221 

because they represent the tail ends of the distribution of cells with changes in lineage 222 

abundance, and therefore were assumed to be most likely to be in a phenotypically 223 

drug-sensitive or drug-resistant state at pre-treatment. This training set consisting of 224 

47 resistant and  768 sensitive cells and their expression levels of 20,645 genes (Fig 225 

2, Fig 3A) was used to build a classifier capable of predicting whether a newly 226 

observed cell of unknown identity (Fig 3B) is more likely to be in a resistant or sensitive 227 

state based on its gene expression levels alone. See Methods: Machine Learning of 228 

Cell Phenotypes for full description of building of the classifier. The type of classifier 229 

was chosen by comparing the accuracy of classification of labeled cells, using 5-fold cross 230 

validation on the pre-treatment training set, for two types of classifiers: principal 231 

component analysis (PCA) with k-nearest neighbors (KNN) and linear support vector 232 

machine (Linear SVM) (Supp Fig S2). These two methods were chosen because both 233 

methods return not only estimates of a cells most likely class, but also the gene weightings 234 

used to make this estimate, making the results interpretable in the context of differential 235 

gene expression analysis. The Linear SVM classifier model was shown to be most 236 

accurate (Supp Fig S2D) and was used going forward to classify all of the remaining cells 237 

based on their gene expression levels alone, and UMAPs were used to visualize the high-238 

dimensional cell transcriptomes (Fig 3C). The PCA+KNN classifier generated similar 239 

results in terms of estimates of f(t)(Supp Fig S3).  One of the advantages of using Linear 240 

SVM as a classifier is that we can examine the highest weighted genes in the classifier 241 
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 10 

to reveal new mechanistic insights into the phenotypes relevant to functional treatment 242 

resistance. Although this is not the focus of this manuscript, our results comparing 243 

expression levels for specific genes associated with resistance can be found in Supp Fig 244 

S4. A goal of future work is to further investigate mechanistic underpinnings behind how 245 

these genes might drive resistance and find targets for these genes to identify novel 246 

therapeutic combination strategies.  247 

 For each of the data sets from the three time points, the estimates of the class of 248 

each cell were used to quantify the proportion of cells labeled as sensitive (f(t)) (Fig 2, 249 

Fig 3G).  This phenotypic composition estimate at three time points can then be combined 250 

with bulk time-course data from drug treatments at different concentrations, compared to 251 

corresponding model outputs, and serve to calibrate the mathematical model of drug-252 

induced resistance (Fig 2, Supp Fig S1). 253 

 254 
 255 
Fig 3. Functional Read-out of Changes in Lineage Abundance Allows Mapping of Phenotypes 256 
to Transcriptome A. Distribution of changes in lineage abundance from pre- to post-treatment 257 
indicates separation of lineages whose cells survive and proliferate and those that are more likely 258 
to have been killed by the drug treatment. B. Lineage-abundance guided training set of sensitive 259 
(S, green) and resistant (R, red) cells visualized using UMAP projections. C. Cells of unknown 260 
drug sensitivity identity are estimated as sensitive (pink) or resistant (olive green) based on their 261 
transcriptome using a Linear SVM classifier. D. Cells from pre-treatment (t=0 wks) labeled as and 262 
estimated as sensitive and resistant E. Cells from t=7 wks post-treatment estimated as sensitive 263 
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 11 

and resistant. F. Cells from t=7 wks post-treatment estimated as sensitive and resistant. G. 264 
Proportion of cells that are classified as sensitive (green) and resistant (red) at each time point.  265 
 266 
Integrating estimates of phenotypic composition with longitudinal treatment 267 

response data is necessary for identifiable model calibration 268 

 To utilize all possible pieces of information available about the treatment response 269 

of this experimental system, we sought to develop an integrated model calibration 270 

scheme that is capable of integrating information from multimodal data sources. Here, we 271 

expect there to be a trade-off between goodness-of-fit in each of the two data sources: 1) 272 

from longitudinal population data, N(t), sampled at a high temporal resolution and for a 273 

number of doses, and 2) machine learning outputs that estimate the phenotypic 274 

composition f(t) at three distinct time points before and after treatment. For the following 275 

dual-objective function, we weight by the number of data points in order to assign equal 276 

weight to the cell number and phenotypic composition measurement sources. We use a 277 

weighted, non-linear, least squares as the simplest possible calibration method: 278 

𝐽(𝜃) = 6
EF
∑

HIJK=IL(M,:)O

PFL
?

Q
EF
RS6 +	 6

ET
∑ ∑

HUV,WK =UXYM,:X,WZO

PTX,W
?

Q
ET
[S6

E\]^_^
>S6 (Eq. 3) 279 

where nf(t) is the number of f(t) time points, fj is the experimentally estimated f at time 280 

point j, f(q,uj) is the model predicted f for a given effective dose u at time j, s2fj is the 281 

variance in the measurement of f at time j, nN(t) is the number of total N(t) time points, 282 

ndoses is the number of different doses applied, nN(t)k is the number of time points in the 283 

kth dose, Ni,k is the measured number of cells at the ith time point for the kth dose, N(q,u) 284 

is the model predicted number of cells at time i for the kth effective dose, and s2N is the 285 

variance in the measurement of N at time i for the kth dose. The resulting objective 286 

function J(q), minimizes the sum of the squared error in the f(t) and N(t) data compared 287 

to the model predicted f(t) and N(t). The errors are weighted by the experimentally 288 

observed uncertainty in those estimates and normalized by the number of f(t) and N(t) 289 

data points.  290 

Using the effective dose regimens (Fig. 1E)  and treatment response data (Fig 1F) 291 

we calibrate the model using three of the selected doses- the untreated control (0 nM), 292 

the 50 nM dose, and the 100 nM dose. The remaining treatments will be used for 293 

validation. The results of the integrated parameter estimation from the N(t) data from 294 
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 12 

these three doses and the f(t) data from the three scRNA-seq time points, are shown in 295 

Fig 4. We compare the model fit to the experimental N(t) data (Fig 4A) and the phenotypic 296 

composition estimates (Fig 4B). The overall goodness of fit between the mean cell 297 

number data and the model estimated cell number over time is shown in Fig 4C, with a 298 

concordance correlation coefficient (CCC) of 0.94. In order to compare methods, we also 299 

performed the calibration with only the longitudinal (N(t)) data to obtain a parameter set 300 

estimated without the additional information provided by the phenotypic composition 301 

(Supp Fig S5). We note that the goodness of fit in N(t) for the model calibrated only to 302 

N(t) is higher (Supp Fig S5C, CCC=0.97) than the integrated fit (Fig 4C, CCC=0.94). The 303 

trade-off in goodness of fit in N(t) for the integrated calibration allows for an improvement 304 

in fit to phenotypic composition (Fig 4B, versus Supp. Fig. S5B). 305 

 306 

  307 
Fig 4. Integrated model calibration incorporating both measurement sources. A. Calibration 308 
results for longitudinal N(t) data from the four doses (0, 50, and 100 nM) used for calibration B. 309 
Calibration results for phenotypic composition (𝜙(t)) C. Measured cell number N(t) versus model 310 
calibrated cell number, yielding a concordance in N(t) of CCC = 0.94.  311 
 312 

In the model development process, we tested that each of the parameters was 313 

sensitive to the relevant model outputs, in this case 1) the time to reach two times the 314 

initial cell number and 2) the phenotypic composition at this time, for a range of 315 

doxorubicin doses. Results from the global sensitivity analysis (See Methods: Sensitivity 316 

Analysis of Model Parameters) revealed that all parameters are globally sensitive (i.e. 317 

contribute to least 5% of the overall value) in at least one of the model outputs for at least 318 

one of the drug doses (Supp Fig S6), except for the carrying capacities (KN and Kf) of the 319 

two experimental systems. We used this analysis to inform our decision to set the carrying 320 

capacities from separate experiments (Supp Fig S7) and literature (24) and to fit all six 321 

remaining unknown parameters. In order to ensure the identifiability of the remaining 322 
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model parameters (Table 1), we demonstrated the structural identifiability of the system 323 

(See Methods: Structural Identifiability of Model Parameters) under the assumption of 324 

perfect data. To test for practical identifiability and obtain confidence intervals on our 325 

parameter estimates, we used bootstrapping with replacement to generate synthetic data 326 

sets and repeatedly fit for model parameters (25,26) (Supp Fig S8, Supp Fig S9, Table 327 

S1).  328 

 329 

Model Validation Using Functional Isolation of “Sensitive” and “Resistant” Cells 330 

Predicted from Classifier 331 

 Because we rely on the machine learning classifier of cell phenotypes from 332 

transcriptomic data, we sought to validate our classifier model experimentally to ensure 333 

that cells labeled as “resistant” and “sensitive” were exhibiting these expected 334 

phenotypes. Our mathematical model assumes that sensitive cells proliferate more 335 

rapidly than resistant cells (i.e. exhibit a higher growth rate) and that resistant cells are 336 

capable of higher survival rates in response to doxorubicin treatment. To test these 337 

attributes functionally, we used the COLBERT barcoding system (23) to identify one of 338 

each lineage from the pre-treatment sample that was labeled as sensitive or resistant 339 

based on their changes in lineage abundance. The COLBERT recall system enables 340 

Fluorescence Activated Cell Sorting (FACS) isolation of specific lineages from the 341 

replicate pre-treatment population by transfection with a gene circuit to activate lineage-342 

specific reporter expression (23) (Fig 5A). Once isolated, cells were sorted into single cell 343 

clones for functional analysis of growth dynamics and drug sensitivity. Cells from the 344 

isolated sensitive lineage grow more quickly than the isolated resistant lineage (Fig 5B), 345 

with overall growth rates of gS=0.011 and gR= 0.005 per hour respectively (Supp Fig S10). 346 

Drug sensitivity was assessed by dosing cells at 400 nM and 2.5 µM for 48 hours and 347 

immediately quantifying cell viability via a live-dead assay. The resistant lineage had 348 

higher percent viability at both doxorubicin concentrations, with a statistically significant 349 

difference in viability at the higher dose (Fig 5C).  350 

 351 
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 352 
Fig 5. Combined Model Validation via Lineage Isolation and Prediction of Treatment Response. 353 
A. UMAP visualization of classified sensitive and resistant cells at the pre-treatment time point, with 354 
cells from an isolated sensitive lineage (AA170) in bright green, and an isolated resistant lineage 355 
(AA161) in hot pink B. Growth rates of the 12 replicate wells of each isolated lineage reveal that the 356 
resistant lineage grows significantly more slowly than the sensitive lineage (p = 2.7e-6), as is predicted 357 
from the model parameters where rS > rR. C. Functional testing of the drug sensitivity of each lineage 358 
indicates that the cells from resistant lineage (AA161, pink) have a higher resistance, measured by 359 
cell viability at 48 hours, at both 400 nM and 2.5 µM doses of doxorubicin, with p-values of p = 0.1942 360 
and p = 0.0023, respectively.   D. Prediction of treatment response at 25 nM, E. 75 nM, F. 150 nM, 361 
and G. 200nM from the integrated calibration. The mean measured cell number in time and 95% 362 
confidence interval from six replicate wells are shown for each treatment response. H. Scatterplot of 363 
model predicted N(t) from the integrated calibration versus experimental N(t) data for all four new 364 
treatment conditions with an overall CCC = 0.92. I. Scatterplot of model predicted N(t) from longitudinal 365 
data calibration alone versus experimental N(t) data for all four new treatment conditions with an 366 
overall CCC = 0.64.  367 
 368 
Multimodal Data Sources can be Leveraged to Predict Response Dynamics to 369 

New Drug Concentration  370 

A key advantage of leveraging multimodal data sources for parameter estimation 371 

is that we can use them to make predictions about the response dynamics to new 372 

treatment regimens. We validate the model predictions, obtained from running the model 373 

forward with the integrated calibration parameter set with input effective doses described 374 

in Fig 1E for the four remaining pulse treatment of doxorubicin that were not used to 375 

calibrate the model. The model predictions compared to the experimental measurements 376 

are shown for doses of 25 nM (Fig 5D), 75 nM (Fig 5E), 150 nM (Fig 5F), 200 nM (Fig 377 

5G). We evaluated the overall accuracy in all the model predictions over all four not-378 

previously-observed doses and see that we are able to predict the treatment response 379 

with reasonable accuracy (Fig 5H) with an overall CCC of 0.92 for each model predicted 380 
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and measured cell number (N(t)) in time. When we compare this to the prediction 381 

accuracy of the calibration performed without the phenotypic composition data, we get an 382 

overall predictive accuracy of CCC=0.64 (Fig 5I, Supp Fig S11), indicating the 383 

improvement in predictive capabilities with insight of the phenotypic dynamics. These 384 

results demonstrate the improved predictive capacity of an integrated modeling 385 

framework, in which molecular data from scRNA-seq during treatment response improves 386 

our ability to predict response to new treatments. 387 

 388 

Discussion 389 

Recent technological advances have enabled unprecedented, high-throughput 390 

single-cell molecular level insight of intratumor heterogeneity (27,28). The ability to 391 

precisely quantify intratumor heterogeneity (1), and illuminate key subpopulations 392 

involved in response to treatment (9), has the potential to improve both prognostic and 393 

therapeutics for cancer treatment. These genomic and transcriptomic data sets can direct 394 

the choice of specific cancer drugs and illuminate novel resistance pathways, as well as 395 

provide a prognostic marker for patients who receive it. Simultaneously, the role of 396 

mathematical modeling in oncology has been widely recognized (29) and utilized to 397 

improve both our understanding of the dynamic mechanisms of drug response (10,30,31)  398 

as well as to develop approaches to guide the design of adaptive patient-specific 399 

treatment plans (12,17,18,32,33). However, connecting the wealth of “omics” data at the 400 

molecular level with temporal dynamics used to calibrate mathematical models for 401 

adaptive therapies remains a major challenge in the field.  402 

Recognizing the critical roles of heterogeneity in cancer dynamics, mathematical 403 

models of tumor progression often include distinct subpopulations, such as cancer stem 404 

cells (12,34,35), or drug resistant and sensitive subpopulations (15,16,19,36). However, 405 

despite these models being calibrated to observed experimental or clinical data, the 406 

underlying phenotypic composition that these model calibrations suggest cannot easily 407 

be validated, since the degree of resistance or stemness of a cancer cell population in 408 

time is not easily measured longitudinally via a single biomarker.  A few studies utilizing 409 

multimodal imaging modalities have harnessed the ability to quantify different aspects of 410 

tumor composition—such as vasculature, necrosis, and cellularity, to develop an 411 
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integrated model calibration of multiple tumor system components (37,38). However, this 412 

integrated, multimodal approach has not explicitly included data on the composition of 413 

heterogeneous subpopulations taken from separate “omics” datasets for direct calibration 414 

of a dynamical systems model. 415 

Here, we introduce an experimental-computational framework for utilizing 416 

transcriptomic and  bulk time course data to parametrize a dynamic model of treatment 417 

response in cancer. We demonstrate the applicability of this framework when applied to 418 

clonally-resolved scRNA-seq data combined with bulk time course treatment response 419 

data from a cancer cell line and assess the ability of the model to predict treatment 420 

response dynamics. To this end, we developed a machine learning classifier built upon 421 

clonal abundance quantification which estimates the class identity of an individual cell 422 

based on its transcriptome. The output of the classifier enabled us to assign values related 423 

to the state variables in the dynamic model: the proportion of cells in the sensitive or 424 

resistant phenotypic state at each time point. We combined these estimates of phenotypic 425 

composition with population-level treatment response data to calibrate a mathematical 426 

model of drug-resistance dynamics. We validated our machine learning classifier by 427 

isolating cells from lineages labeled as sensitive or resistant and testing them functionally 428 

in growth and treatment response assays. We showed that the presence of multiple 429 

measurement sources of data allows us to more accurately predict the effect of new drug 430 

treatments on the cell population.  431 

 The power of mathematical models in oncology, especially those calibrated to real 432 

data, is that we can use them to learn about the underlying system behavior to inform 433 

decision-making (39,40). High-throughput single cell transcriptomics or other types of 434 

high throughput snapshot data can give an abundance of information about the 435 

heterogeneity and potential mechanisms of resistance of cell populations (9,41). 436 

However, the ability to use this information beyond hypothesis generation (10), but to 437 

actually inform model calibrations, is still lacking. In this work, we leverage a high-438 

throughput “omics” data set, taken at just a few snapshots of time, to estimate the 439 

phenotypic composition and demonstrate one way to include this data alongside 440 

longitudinal data for model calibration. We by no means claim that this is the only way to 441 

integrated multimodal data sources in oncology, and present this work as an example of 442 
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one such plausible way, in hopes that it will prompt further investigation into how to 443 

incorporate experimental and clinical data from a variety of measurement sources and 444 

scales into mathematical modeling frameworks, ideally incorporating multiple “omics” 445 

data sets in future expanding work.  446 

The functional characterization of single cells via changes in lineage abundance 447 

post-treatment enabled us to identify cells that group together based on response to 448 

treatment. While unsupervised clustering of cells by their transcriptomes can enable 449 

identification of novel cell states, these cell states are not necessarily relevant to drug-450 

tolerance. Once can see this quite simply in scRNA-seq pipelines as failure to remove 451 

cell cycle genes from the analysis reveals that cells will often cluster by cell cycle state 452 

(42), leading them to be commonly regressed out if they are not relevant to the biological 453 

question of interest. However, we cannot regress out other unknown phenotypic 454 

subpopulations, and thus these are what can emerge from unsupervised clustering 455 

algorithms. While these can provide novel insight about population structure, they may 456 

not be what is relevant to driving changes in treatment response behavior. Thus, the 457 

ability to read-out lineage identities represents a novel functional component that enables 458 

us to zoom in at the right phenotypic state-space relevant to our question- what cells are 459 

more capable of surviving treatment and which are more sensitive to treatment, and what 460 

is driving these changes? Because we used a classifier that can output gene loadings 461 

most relevant to the separation of sensitive and resistant cells, we can look at the 462 

differences in the gene expression patterns and propose potential novel interactions and 463 

biomarkers. In this manuscript, we only demonstrate the feasibility of this endeavor; 464 

further mechanistic insight into the role of key genes and their related pathways in drug 465 

response will be a subject of future work.   466 

We acknowledge that the modeling framework describe here has a number of 467 

limitations. In the dynamic model calibrated to the two data types, we make a number of 468 

assumptions in order for the model parameters to remain identifiable. First, we assume 469 

that the sensitive and resistant cells do not affect each other’s growth rates directly, with 470 

intrinsic growth rates (rS and rR) independent of population composition. This does not 471 

take into account recent work in non-small cell lung cancer that has demonstrated that 472 

resistant cell growth rate was  suppressed in the presence of sensitive cells, implying a 473 
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persister-like phenotype of resistant cells (43). Additionally, we do not explicitly model the 474 

reverse phenotypic transition from the resistant to the sensitive state as this would 475 

introduce an additional parameter and render parameter estimation more difficult. 476 

However, we note that a relaxation towards increased sensitivity can occur in the model 477 

as its written due to the higher growth rate of sensitive cells in the absence of treatment. 478 

In the classifier model, we acknowledge the limitation of making continuous, high-479 

dimensional, gene expression vectors into a single binary classification scheme of 480 

sensitive and resistant. In reality, cells likely exist on a drug sensitivity spectrum, with a 481 

distribution of cells in different regions. This makes the definition of “sensitive” and 482 

“resistant” cells, which we defined via a threshold change in lineage abundance, 483 

somewhat arbitrary. We intended to overcome these limitations by validating the 484 

predictions of the dynamic model to new drug treatments and by functional 485 

characterization via isolation and functional testing of the cell phenotypes. Because of the 486 

destructive nature of scRNAseq assays, we weren’t able to sample the cell population 487 

while it was depleted significantly due to drug, rendering the predicted drop in proportion 488 

of sensitive cells to lack validation. In future work, we intend to design a study with a lower 489 

dose and higher initial cell number, so that the population can be sampled at this critical 490 

intermediate time point, and used for either calibration or validation.  491 

While scRNA-seq has limitations in the clinical setting due to its high cost, in 492 

experimental settings barcode labeling fits flexibly into existing scRNA-seq workflows and 493 

can add a critical functional component to the phenotypic read-out, as we show in this 494 

work. In the clinical setting, other types of approaches to learn more about cancer cell 495 

composition are being employed in the era of precision medicine. From radiomics to 496 

genomics, it is becoming increasingly common for patients to have access to high-497 

throughput measurements, or at least some insight into their mutational burden at certain 498 

time points. This information may be integrated into the clinical or tumor board’s decision-499 

making process (44).  500 

 We suggest that the general approach presented here could be applied to 501 

integrate available types of data in different experimental or clinical settings, potentially 502 

with the model used here or with different models aimed at addressing a relevant 503 

question. While transcriptomic and longitudinal data have been used together in a number 504 
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of studies, this is the first work to our knowledge that allows for explicit parameter 505 

estimation using these two measurement sources of varying time resolutions. This work 506 

represents one example of the opportunities for synergy of machine learning with dynamic 507 

modeling to integrate multimodal datasets and open up new approaches to describe, 508 

predict, and ultimately optimize treatment response in cancer. 509 

 510 
Methods 511 
 512 
Key Resources Table 513 
See Attached Template 514 
 515 
Contact for Reagent and Resource Sharing 516 
amy.brock@utexas.edu 517 
 518 
Experimental Model and Subject Details 519 
 520 
Cell culture 521 
The human breast cancer cell line MDA-MB-231(ATCC) was used throughout this study. 522 
Cells were maintained in Dulbecco’s Modified Eagle Medium (Gibco) and supplemented 523 
with 1% Penicillin-Streptomycin (Gibco) and 10% fetal bovine serum (Gibco) under 524 
standard culture conditions (5% CO2, 37°C).   525 
 526 
A subline of the MDA-MB-231 breast cancer cell line was engineered to constitutively 527 
express EGFP (enhanced green fluorescent protein) with a nuclear localization signal 528 
(NLS). Genomic integration of the EGFP expression cassette was accomplished through 529 
the Sleeping Beauty transposon system (45). The EGFP-NLS sequence was obtained as 530 
a gBlock from IDT and cloned into the optimized sleeping beauty transfer vector 531 
containing the EGFP-NLS expression cassette and the pCMV(CAT)T7-SB100 plasmid 532 
containing the Sleeping Beauty transposase was co-transfected into a MDA-MB-231 cell 533 
population using Lipofectamine 2000. mCMV(CAT)T7-SB100 was a gift from Zsuzsanna 534 
Izsvak (Addgene plasmid #34879) (46). GFP+ cells were collected by fluorescence 535 
activated cell sorting. MDA-MB-231 cells are maintained in DMEM (Gibco), 10% fetal 536 
bovine serum (Gibco) and 200 µg/mL G418 (Caisson Labs). Cells were seeded into the 537 
center 60 wells of a 96 well plate (Trueline) at about 2000 cells per well. During the 538 
monitoring and treatment, plates were kept in the Incucyte Zoom, a combined incubator 539 
and time-lapsed microscope. Cells were fed fresh media every 2-3 days for up to 5 weeks. 540 
HEK293T cells were cultured in DMEM with GlutaMAX supplemented with 10% FBS, 4.5 541 
g/L D-glucose, 110 mg/L sodium pyruvate, streptomycin (100ug/mL) and penicillin (100 542 
units/mL). 543 
 544 
Longitudinal treatment response data  545 
The EGFP-labeled subline of MDA-MB-231 breast cancer cells were used for longitudinal 546 
treatment response. Cells were passaged into the center 60 wells of 96 well plates at a 547 
density of about 2000 cells per well. Two days later, cells were treated with a 24-hour 548 
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pulse-treatment of doxorubicin at concentrations ranging from 0-200 nM (0 nM, 25 nM, 549 
50 nM, 75 nM, 100 nM, 150 nM, 200 nM), with 6 replicate wells of each dose. Dosed 550 
media was applied to cells and treatment response was monitored using the Incucyte. 551 
After 24 hours, the dosed media was replaced with normal media and monitoring 552 
continued. Cells were fed fresh media every 2-3 days for the duration of the monitoring 553 
period (up to 2.5 weeks).  554 
 555 
Integration, expression, and capture of COLBERT barcodes 556 
 557 
Lentiviral Assembly  558 
Lentiviral assembly was performed using Lipofectamine 2000 (ThermoFisher). Prior to 559 
transfection 0.25x106 HEK293T cells were plated in each well of a 6 well. 48 hours 560 
following plating, each well was transfected with 1.5 ug PsPax2 (Addgene # 12260), 561 
0.4ug VSV-G (Addgene # 14888), 3 ug CROPSseq-BFP-WPRE-TS-hU6-N20 and 9 uL 562 
of Lipofectamine 2000 in 150 ul of Opti-mem (Thermo Fisher). Media was replaced with 563 
fresh growth medium after 18 hours of transfection. Media containing viral particles was 564 
collected at 48 and 72 hours, centrifuged for 5 minutes and passed through a 45 uM 565 
(PES) low protein Binding filter. Virus was concentrated for 1 hour at 4000g in a 566 
Vivaspin (Sartorius) filtration column then aliquoted and stored at -80 for later use.  567 
 568 
Barcode Labeling  569 
MDA-MB-231 cells were transduced with the Cropseq-BFP-WPRE-TS-hU6-N20 570 
lentivirus in growth media with 1 μg/mL polybrene. After 48 hours of incubation, 1000 571 
BFP+ cells were isolated by FACS to establish a population with initial diversity of ~1000 572 
unique barcodes. To reduce the likelihood that two viral particles enter a single cell, the 573 
lentiviral transduction multiplicity of infection was kept below 0.1.   574 
 575 
Drug Treatment of Barcoded Cells for scRNAseq and Recovery 576 
Barcode labeled MDA-MB-231 cells (5 replicate wells) were treated with doxorubicin (550 577 
nM) for 48 hours in growth media, washed and replaced with fresh growth media.  578 
Surviving cells were maintained in growth media and passaged up serially from 0.1 x 106 579 
to 20 x 106 cells.  580 
 581 
scRNA-seq  582 
Cryopreserved samples from drug-naïve and two samples of doxorubicin-treated cells 583 
frozen at 7 and 10 weeks post-treatment were harvested, sorted by FACS to collect the 584 
BFP+ population. Cells were loaded into wells of a Chromium A Chip, and libraries were 585 
prepared using the 10XGenomics 3’ Single Cell Gene Expression (v2) protocol. Paired 586 
end (PE) sequencing of the libraries was conducted using a NovaSeq 6000 with an S1 587 
chip (100 cycles) according to the manufacturer’s instructions (Illumina). 588 
 589 
Plasmid Assembly for Isolation of Lineages 590 
After selecting the lineages of interest for isolation, an array of barcodes  was assembled 591 
as described in (23). Briefly, oligonucleotide pairs for the barcode of interest were ordered 592 
with specific overlapping sequences to both direct assembly of barcode array and 593 
integration into the plasmid for isolation. The barcode arrays were ligated, and gel purified 594 
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to proceed with only a fully assembled array in cloning. The fully assembled barcode array 595 
was cloned into the BbsI site with standard restriction digest cloning. This double stranded 596 
barcode array was inserted into a plasmid backbone upstream of a minimal core promotor 597 
(miniCMV) and sfGFP to generate the Recall plasmid. This was repeated with individual 598 
barcodes of interest.  599 
 600 
Recall of Isolated Sensitive and Resistant Clones by COLBERT 601 
Barcoded MDA-MB-231 cells were seeded in 6 well plates and transfected using 602 
Lipofectamine 3000 (ThermoFisher) with 225 ng dCas9-VPR-Slim and 275 ng Recall 603 
Plasmid per well. Forty eight hours after transfection, GFP+ cells were single cell sorted 604 
by FACS into a 96 well plate and spun for 1 minute at 1000g. Sorted cells were expanded 605 
until 80% confluency and passaged into a single well of a 48 well plate. Upon first passage 606 
following sort, 1/6 of the cells or ~5000 live cells were resuspended in a PCR reaction mix 607 
to confirm lineage identity through PCR amplification and subsequent Sanger sequencing 608 
of barcode region.  609 
 610 
Alignment to Reference Genome 611 
The GTF file included with cellranger’s GRCh38 3.0.0 reference was modified to create 612 
a “pre-mRNA” GTF file so that pre-mRNAs would be included as counts in the later 613 
analysis. Cellranger’s (v3.0.2) mkref command was then used to create a pre-mRNA 614 
reference from the GTF file and a genome FASTA file from the GRCh38 3.0.0 reference. 615 
FASTQ files of the scRNA-seq libraries were then aligned to the new pre-mRNA reference 616 
using the cellranger count command, producing gene expression matrices. The matrices 617 
for the different samples were concatenated into a single matrix using the cellranger aggr 618 
command with normalization turned off, so that the raw counts would remain unchanged 619 
at this point. 620 
  621 
Filtering and Normalization 622 
The filtered matrices produced by cellranger were loaded into scanpy (v1.4.4)(47). Cells 623 
were annotated by sample and lineage membership. Only cells meeting the following 624 
requirements were retained for further analysis: (a) a minimum of 10000 and maximum 625 
of 80000 transcript counts, (b) a maximum of 20% of counts attributed to mitochondrial 626 
genes, and (c) a minimum of 3000 genes detected. Genes detected in fewer than 20 cells 627 
were removed. Normalization was conducted based on the recommendations from 628 
multiple studies that compared several normalization techniques against each 629 
other(42,48,49). In brief, three steps were performed: (a) preliminary clustering of cells by 630 
constructing a nearest network graph and using scanpy’s implementation of Leiden 631 
community detection(50), (b) calculating size factors using the R package scran(51), and 632 
(c) dividing counts by the respective size factor assigned to each cell. Normalized counts 633 
were then transformed by adding a pseudocount of 1 and taking the natural log. 634 
  635 
Regressing Out Cell Cycle Expression Signatures 636 
Using a list of genes known to be associated with different cell cycle phases (52), cells 637 
were assigned S-phase and G2M-phase scores. The difference between the G2M and S 638 
phase scores were regressed out using scanpy’s regress_out function. 639 
 640 
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Quantification and Statistical Analysis 641 
 642 
Machine Learning of Cell Phenotypes 643 
The machine learning classifier of sensitive and resistant cell phenotypes was built from 644 
the normalized, pre-processed single cell gene expression matrix with lineage identities. 645 
For the cells in the pre-treatment sample, the lineage abundance at the pre-treatment 646 
time point (proportion of cells in each lineage) was calculated and compared to the lineage 647 
abundance from the combined post-treatment time points (7 and 10 week samples). If the 648 
lineage was not observed in the post-treatment time points, the lineage abundance post-649 
treatment was assigned a zero. The change in lineage abundance (% post -% pre) was 650 
found for each lineage in the pre-treatment time point (See Supp. Fig. S3A). Based on 651 
this change in lineage abundance distribution, only cells on the pronounced tails of the 652 
distribution were used for classification, since these extremes were most likely to exhibit 653 
characteristics that made them significantly more or less likely to survive drug treatment. 654 
Cells from the pre-treatment timepoint whose lineage abundance increased post-655 
treatment were labeled as resistant. Cells whose lineage abundance decreased by more 656 
than 5% were labeled as sensitive in the pre-treatment time point. These thresholds for 657 
calling a cell from the pre-treatment time point sensitive or resistant were determined 658 
based on the assumption that these cells with pronounced changes in lineage abundance 659 
represented more pronounced differences in initial drug-sensitivity phenotypes. Because 660 
drug sensitivity is not binary, but is more likely to exist on a spectrum, this threshold can 661 
in theory be shifted to encompass a wider range of phenotypes considered “sensitive” 662 
and resistant”.  663 

The current threshold resulted in 815 cells and their corresponding 20,645 664 
normalized gene expression levels being used to form the training set gene-cell matrix 665 
containing a cell’s gene expression vector and corresponding identity. This gene-cell 666 
matrix was then used to build a classifier capable of predicting the identity of new cells 667 
based on an individual gene expression vector. A Linear Support Vector Machine and a 668 
principal component with k-nearest neighbors were both tested as possible classifiers 669 
because of the interpretability of the output of the classifiers in terms of gene loadings. 670 
Cross validation was performed on models built using both types of classifiers, and the 671 
average accuracy and area under the curve (AUC) of the Receiver Operating 672 
Characteristic (ROC) curve were evaluated for each training-test set combination (Supp 673 
Fig S2C &D). The Linear SVM method was found to be more accurate. The ROC curves 674 
for the full training set were used to determine an optimal probability score threshold for 675 
calling a cell sensitive or resistant (Supp Fig S2 A &B). While many appeared to be 676 
reasonable, we chose a threshold value of P(resistant)= 0.9 as our cut-off for calling a 677 
cell resistant in the Linear SVM model, as this generated a realistic proportion of cells in 678 
each class at the pre-treatment time point, as we don’t expect a large proportion of the 679 
naïve cancer cell line to be resistant.  680 
 The Linear SVM classifier was built using python’s sklearn package svm function, 681 
with the gene-cell matrix as the input, and trained on the labels from the pre-treatment 682 
training set, as were all downstream analyses of the classifier’s outputs. The principal 683 
component classifier + k-nearest neighbors (PCA+KNN) was built using python’s sklearn 684 
package PCA function with the same inputs. However, for PCA+KNN, both the number 685 
of principal components used in the classifier, and the number of nearest neighbors used 686 
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to predict a cell’s class based on the class of the k cells its closest to, needed to be 687 
optimized. This was done using the 5-fold CV training and testing sets and coordinate 688 
optimization was then used to iteratively find the optimal number of both nearest 689 
neighbors (k) and number of principal components (n) for correctly identifying the class 690 
of each cell. Coordinate optimization works by essentially iteratively optimizing the two 691 
variables of interest, here k and n, until they no longer change values. In this case, we 692 
first set the number of principal components to a single value and iterated through a range 693 
of nearest neighbors to find the number which gave the highest mean AUC (area under 694 
the curve) over all 5 folds of cross validation (Supp Fig 12C). Once the optimal number 695 
of neighbors was found for that number of principal components, the number of neighbors 696 
was set to that value and the optimal number of principal components was varied over a 697 
range of values, and again the highest mean AUC over all 5 folds of cross validation was 698 
found (Supp. Fig. S12D). Then we set the number of neighbors to this value and repeated 699 
the search for the optimal number of principal components. This process was repeated 700 
until the optimal number of neighbors and number of principal components no longer 701 
changed with each iteration. The percent of variance explained by each PC was recorded 702 
(Supp Fig S12A) and the cumulative variance (Supp. Fig. S12B). The entire classification 703 
and output results were performed for PCA + KNN and results are in the supplement, 704 
visualized in the space of PC1 and PC2 (Supp. Fig. S3).  705 
 706 
Model of Drug Resistance Dynamics 707 
 The mathematical model of drug-induced resistance, in which treatment exposure 708 
directly induced phenotypic transitions into the resistant cell state, was introduced in (15). 709 
Their original model described sensitive cells (S) and resistant cells (R) independently 710 
growing according to logistic growth and independently dying due to drug treatment (u(t)) 711 
via a log-kill hypothesis. The model includes an explicit role for the transition of sensitive 712 
cells into resistant cells via a rate of drug-induced resistance (a) which is modeled as a 713 
linear function of treatment u(t). Additionally, their full model included additional terms of 714 
spontaneous, treatment-independent resistance (e) proportional to the number of 715 
sensitive cells present, as well as a resensitization term (g) describing treatment-716 
independent transition from the resistant to the sensitive cell state.  717 

𝜕𝑆
𝜕𝑡 = 𝑟'𝑆 (1 −

𝑆 + 𝑅
𝐾 . − Ye+ 𝛼𝑢(𝑡)Z𝑆 − 𝑑`𝑢(𝑡)𝑆 + g𝑅	 718 

𝜕𝑅
𝜕𝑡 = 𝑟4𝑅 (1 −

𝑆 + 𝑅
𝐾 . + (e+ 𝛼𝑢(𝑡))𝑆 − 𝑑4𝑢(𝑡)𝑅 − g𝑅			 719 

In order to have the best possible chance of identifying these model parameters from 720 
data, we simplified the original model. We assume that the treatment-independent 721 
transition into the resistant state (e) and the resensitization (g) are negligible, yielding the 722 
following system of equations. 723 

𝜕𝑆
𝜕𝑡 = 𝑟'𝑆 (1 −

𝑆 + 𝑅
𝐾 . − 𝛼𝑢(𝑡)𝑆 − 𝑑`𝑢(𝑡)𝑆	 724 

𝜕𝑅
𝜕𝑡 = 𝑟4𝑅 (1 −

𝑆 + 𝑅
𝐾 . + 𝛼𝑢(𝑡)𝑆 − 𝑑4𝑢(𝑡)𝑅	 725 

Where rS and rR are the sensitive and resistant subpopulation growth rates and dS and dR 726 
are the sensitive and resistant subpopulation death rates, assumed to be linearly 727 
proportional to the effective dose (u(t)). We assume that the sensitive cells grow faster 728 
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than the resistant cells so that rs>rr , as is consistent with the mechanism of action of 729 
cytotoxic therapies targeting rapidly proliferating cells (15,53). We assume dS>dR as 730 
sensitive cells should die more quickly in response to drug than resistant cells, by 731 
definition. We modeled the effect of the pulse-treatments as single pulses of u(t) whose 732 
maximum is given by the concentration of doxorubicin and whose effectiveness in time 733 
decays exponentially. 734 

𝑢(𝑡) = 𝑘6𝐶89:;𝑒>?@ 735 
The constants k1 and k2 were chosen so that u(t) is scaled between 0 and 5 and so that 736 
the effective dose decays over a time scale consistent with experimental observations of 737 
doxorubicin fluorescent dynamics in vitro (21,22). Numerical simulations of the forward 738 
model for a given treatment regimen were implemented in MATLAB using the backward 739 
Euler method. 740 
   741 
Sensitivity Analysis of Model Parameters 742 
As part of the model development process, we performed a sensitivity analysis to assess 743 
the effect of individual model parameters on the model output. Although there are a 744 
number of choices to use for model outputs, we chose to capture the broad drug response 745 
of the population using the time to reach two times the initial cell number, which we call 746 
tcrit, and the phenotypic composition f(t=tcrit) at that time, as we expect these are two 747 
outputs we would feasibly observe in an experimental setting, as the time to population 748 
rebound and the phenotype observable via scRNAseq or some other phenotypic 749 
characterization. We first performed a global sensitivity analysis on the set of parameter 750 
bounds that were well outside the parameter ranges of the calibrated parameters and 751 
their associated errors. The results of the sensitivity analysis will reveal the most important 752 
parameters of the system, causing the greatest variation in outputs. This exercise should 753 
identify any model parameters that the model is insensitive to, and therefore may present 754 
opportunities to simplify the model to capture the same dynamics while reducing 755 
uncertainty by eliminating the number of free parameters to be fit.  A Sobol’s global 756 
sensitivity method is applied, which is a method that utilizes the analysis of variance 757 
(ANOVA) decomposition to define its sensitivity indices (54).  As a global method, random 758 
sampling is performed twice over the parameter space of the eight parameters (six free, 759 
two carrying capacities), with the number of parameters by N simulations matrices 760 
denoted by X and Z. The bounds of the global sensitivity analysis were chosen to be well 761 
outside of the 95% confidence intervals around each best fitting parameter from the profile 762 
likelihood analysis. The total effects are then calculated using the following: 763 

𝑆:̅ =
1

2𝑁𝜎Q e H𝑓Y𝑥RZ − 	𝑓Y𝑧R:, 𝑥R=:ZO
Q

U^ijk^

RS6

 764 

Where s2 is the variance of the outputs from the first set of N random samples computed 765 
from evaluating over all xj in X, and the function evaluations of f(xj) and f(zj, xj-u) are the 766 
outputs (tcrit or f(t=tcrit)) of the model at parameter values xj compared to the function 767 
evaluated at parameter values zj for one parameter, and xj for all the remaining 768 
parameters. The total effects were calculated for each parameter value for outputs of both 769 
critical time (tcrit) and phenotypic composition (f(t=tcrit)) for four doses ranging from 0 to 770 
500 nM. Large sensitivity indices between parameters and model outputs characteristics 771 
indicate that small changes in the parameter values will result in large variations in the 772 
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output behavior. For this investigation, to ensure the convergences of the indices, a base 773 
simulation size of N=5000 is chosen, resulting in (5000 x 2 x 4 doses x 2 outputs x 8 774 
parameters=640,000) simulations to generate the indices. For this study, only the total 775 
effects of the model outputs of tcrit and f(t=tcrit) are reported (Supp. Fig. S5 A & B). 776 
Specifically, the critical time and phenotypic composition at critical time is recorded for 777 
each random simulation and each dose, and per the Sobol method, the total effects 778 
indices derived from the variances of these outputs is calculated, which account for 779 
variations in individual parameters as well as additional effects resulting from the 780 
combined variation of parameters. A sensitivity cut-off of 0.05 is used, indicating 781 
parameters that cause less than 5% of the total variation of that model output.  782 
 To perform a local sensitivity analysis, we varied each parameter independently 783 
from the best fitting parameter set. To perturb each parameter, we chose a high parameter 784 
value of two times its optimal value, and a low parameter value of half its optimal value. 785 
We used these high and low parameter values, holding all other parameters constant, 786 
and ran the forward model and recorded the response over a range of doxorubicin doses 787 
from 0-200 nM, for both the effect in critical time (tcrit) and phenotypic composition at 788 
critical time (f(t=tcrit)). For each independent parameter perturbation, we computed a high 789 
and low sensitivity score for the the ith parameter, for the two model outputs (tcrit or 790 
f(t=tcrit)) as: 791 

𝑆[	l = e H𝑓RY𝑥mn@Z − 𝑓RY𝑥o[;oZO
Q

E\]^_^

RS6

 792 

𝑆[	= = e H𝑓RY𝑥mn@Z − 𝑓RY𝑥o[;oZO
Q

E\]^_^

RS6

 793 

Which is the sum-squared difference between the output values (tcrit or f(t=tcrit)) for each 794 
jth dose in the range of doses, for both the high and low parameter sets, for each ith 795 
parameter.  The sum of the high and low sensitivity scores for each parameter were than 796 
ranked for the two outputs of tcrit and (f(t=tcrit)) (Supp. Fig. S5C-F). This analysis reveals 797 
the most important parameter in driving changes in output behavior of the model locally 798 
around the best fitting parameters.  799 
 800 
Model Fitting with Multiple Measurement Sources  801 
To perform model fitting, we used two sources of measurement data: cell number in time 802 
(N(t)) in response to the pulsed doxorubicin treatments, and estimates of the phenotypic 803 
composition, f(t), at three time points total (before and two post-treatment). The data were 804 
collected in two separate experimental settings, with two different carrying capacities, 805 
which we refer to as KN and Kf. The longitudinal cell number data was recorded in 96 well 806 
plates, resulting in a different carrying capacity than the lineage-traced single cell RNA 807 
sequencing experiment in which the population was expanded out to a 15 cm dish due to 808 
the need for large cell numbers for running on the 10x Genomics system. The carrying 809 
capacity of the longitudinal data, KN, was found by fitting the untreated control to a logistic 810 
growth model and allowing both the effective growth rate of the total population (geff) and 811 
KN to be fit to the data (See Supp. Fig. S6).  812 

𝜕𝑁
𝜕𝑡 = 𝑔qrr𝑁 (1 −

𝑁
𝐾U
. 813 
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We set this carrying capacity in the model going forward for fitting the longitudinal data. 814 
For the carrying capacity of the single cell RNA sequencing experiment, Kf, we used 815 
Thermo-Fisher published “Useful Numbers for Cell Culture” as an estimate (24), where 816 
the manufacturer cites the number of cells at confluency of 20 million cells. Going forward, 817 
we fit the remaining 6 parameters of q=[f0, rS, rR,a, dS, dR] where these represent: the 818 
initial fraction of sensitive cells prior to treatment, the sensitive cell growth rate, the 819 
resistant cell growth rate, the rate of drug-induced resistance, the sensitive cell death rate, 820 
and the resistant cell death rate, respectively. All six parameters were found to be globally 821 
sensitive in one or more of the treatment conditions when looking at either tcrit or f(t=tcrit), 822 
and so we decided it was reasonable to try to fit them all from the observed data. 823 
 To estimate the model parameters q, we used both measurement sources N(t) and 824 
f(t) and compared them to their corresponding model outputs. The data were fitted using 825 
a weighted-sum-of-squares-residual function described below: 826 
 827 

𝐽(𝜃) =
1
𝑛I

e
H𝜙tK − 𝜙R(𝜃, 𝑢)O

𝜎IL
Q

QEF

RS6

+	
1
𝑛U

e e
H𝑁u,>K − 𝑁[Y𝜃, 𝑢[,>ZO

𝜎UX,W
Q

QET

[S6

E\]^_^

>S6

 828 

(Eq.3) 829 
For the N(t) data, the uncertainty in the data (s2N) at each time point was quantified using 830 
the standard deviation of the cell number over the six replicate wells. For the uncertainty 831 
in the f(t) estimates due to sampling a subset of cells from a population of 20 million cells, 832 
we compute the Bernoulli sample variance of  833 

𝜎IQ =
𝜙(1 − 𝜙)

𝑛  834 

where n is the number of Bernoulli samples (n=3115, 5251, and 4857  cells in each time 835 
point respectively) at each of the three time points. Therefore, the maximum expected 836 
sample variance is at f=0.5 and n = 3115, meaning we expect the estimate of the sample 837 
f on average to be off by less than 1% from the true mean. However, this is given a true 838 
prevalence. This true prevalence is dependent on where the threshold for calling a cell 839 
sensitive or resistant is chosen to be, with any values between 0 and 1 technically 840 
possible. For this reason, we added an uncertainty term of technical noise stech=0.01 to 841 
this estimate. In reality, the magnitude of the uncertainty in the f(t) is not necessarily 842 
known, so we had to estimate a reasonable measurement uncertainty of this magnitude.  843 

In this experimental set up, we have significantly higher time and dose resolution 844 
in our N(t) data (472 data points) compared to our f(t) data (3 data points), and thus chose 845 
to include normalization terms in our objective function  (Eq. 3) to account for the different 846 
resolutions of the data N(t) and f(t) data, and to effectively weight them equally. Because 847 
the data come from distinct measurement sources, the robust quantification of 848 
comparative uncertainty is not known a priori, as we do not intuitively know whether or 849 
not the f(t) estimates from scRNA-seq are inherently more or less reliable than the 850 
longitudinal population size data.  851 

We use the lsqnonlin function in MATLAB to search for a set of parameters, q, that 852 
minimizes J(q). This set of parameter values was used to make predictions of new doses 853 
and also used for the local sensitivity analysis. Additionally, we also performed the 854 
calibration without the f(t) data to compare the goodness of fit and accuracy of a more 855 
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“traditional” method. The following objective function was used for the fitting on 856 
longitudinal data only, essentially identical to the integrated calibration just without the f(t) 857 
data.  858 

𝐽(𝜃) =
1
𝑛U

e e
H𝑁u,>K − 𝑁[Y𝜃, 𝑢[,>ZO

𝜎UX,W
Q

QET

[S6

E\]^_^

>S6

 859 

 860 
 861 
Structural Identifiability of Model Parameters 862 
We will demonstrate the structural identifiability of the individual model parameters using 863 
the differential algebra approach. Structural identifiability of a model and its parameters 864 
from a set of measurable outputs tells us that in theory, given perfect data, it is possible 865 
to uniquely identify model parameters. Structural identifiability is a pre-requisite for 866 
practical identifiability of model parameters from observed data. We start by presenting 867 
the non-dimensionalized model and measurement equations, assuming we can measure 868 
both N(t) and f(t). 869 

𝜕𝑆
𝜕𝑡 =

(1 − (𝑆 + 𝑅))𝑆 − 𝛼𝑢(𝑡)𝑆 − 𝑑`𝑢(𝑡)𝑆	 870 
𝜕𝑅
𝜕𝑡 = 𝑝4(1 − (𝑆 + 𝑅))𝑅 + 𝛼𝑢(𝑡)𝑆 − 𝑑4𝑢(𝑡)𝑅			 871 

𝑁(𝑡) = 𝑆(𝑡) + 𝑅(𝑡)	 872 

𝜙(𝑡) =
𝑆(𝑡)

𝑆(𝑡) + 𝑅(𝑡) 873 

We assume all parameters are non-negative and 0 < 𝑝9 < 1 represents the relative 874 
growth rate of the resistant population with respect to the sensitive population scaled by 875 
the carrying capacity, and 𝑝9 < 1 assumes that resistant cells grow more slowly than 876 
sensitive cells. In work by Greene et al (14), they demonstrate that, if they assume dr=0, 877 
i.e. resistant cells are not killed by drug, and that the initial state of the population is 878 
completely comprised of sensitive cells (i.e. N0=S0), than the remaining parameters are 879 
uniquely identifiable from observations of total cell number alone. 880 
 We would like to extend this analysis by determining the identifiability of a new 881 
experimental system in which not only can N(t) = S(t) + R(t) be observed, but so also can 882 
the fraction of cells in each state over time, here denoted as f(t). Under these 883 
circumstances, we want to test the identifiability of the model which now allows for a net-884 
positive death rate due to drug, dR, and can have any composition of initial sensitive and 885 
resistant cells. 886 

We follow the same arguments outlined in (14), along with the complete 887 
explanation of the approach with illustrative examples, for the case of multiple outputs 888 
from (55). We start by formulating the dynamical system relevant to our in vitro 889 
experimental system. Of note, even though we separately measure N(t) and f(t) at 890 
discrete time points, since this analysis is for structural identifiability and assumes perfect, 891 
noise-free data, we will transform the observable outputs of N(t) and f(t) into: 892 

𝑆(𝑡) = 𝜙(𝑡)𝑁(𝑡) 893 
𝑅(𝑡) = (1 − 𝜙(𝑡))𝑁(𝑡) 894 

Treatment is initiated at time t=0, at which we make no assumptions about the 895 
composition of the population such that S(0) = S0, R(0) = R0. Here 0<S0+R0<1. We note 896 
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this is due to the non-dimensionalization in which we now track the proportion of confluent 897 
cells i.e. 𝑆(𝑡) = 'x(@)

y
 and	𝑅(𝑡) = 4x(@)

y
 (see (14)) for additional details. We can now 898 

formulate our system in input/output form as: 899 
𝑥̇(𝑡) = 𝑓Y𝑥(𝑡)Z + 𝑢(𝑡)𝑔Y𝑥(𝑡)Z 900 

𝑥(0) = 𝑥{ 901 
Where f and g are: 902 

𝑓(𝑥) = |
(1 − (𝑥6 + 𝑥Q))𝑥6
𝑝9Y1 − (𝑥6 + 𝑥Q)Z𝑥Q

}		 903 

 904 

𝑔(𝑥) = |
−(𝛼 + 𝑑`)𝑥6
𝛼𝑥6 − 𝑑9𝑥Q

}		 905 

and x(t) = (S(t), R(t)). As is standard in control theory, the output is denoted by the variable 906 
y which in this work corresponds to S(t) and R(t) obtained from the transformations of the 907 
measured variables N(t) and f(t)  908 

𝑦6(𝑡) = ℎ6Y𝑥(𝑡)Z = 𝑥6(𝑡) 909 
𝑦Q(𝑡) = ℎQY𝑥(𝑡)Z = 𝑥Q(𝑡) 910 

A system in this form is said to be uniquely structurally identifiable if the map (𝑝, 𝑢(𝑡)) →911 
(	𝑥(𝑡, 𝑝), 𝑢(𝑡)) is injective (55–57), where p is the vector of parameters to be identified. In 912 
this instance p = (S0, R0, ds, dr, a, pr), the initial states and the parameters. Local 913 
identifiability and non-identifiability correspond to the map being finite-to-one and infinite-914 
to-one, respectively. Our objective is then to demonstrate unique structural identifiability 915 
for model system and hence recover all parameter values p from the assumption of 916 
perfect, noise-free data. 917 

To analyze identifiability, we utilize results appearing in (14) and (55), where a 918 
differential-geometric perspective is used. For the structural identifiability, we hypothesize 919 
that we have perfect (hence noise-free) input-output data is available of the form of y1 and 920 
y2 and its derivatives on any interval of time. We then, for example, make measurements 921 
of: 922 

𝑦6(0) = ℎ6(𝑥6(0)) 923 

𝑦6̇(0) =
𝜕
𝜕𝑡�@S{

ℎ6(𝑥6(𝑡)) 924 

𝑦Q(0) = ℎQ(𝑥Q(0)) 925 

𝑦Q̇(0) =
𝜕
𝜕𝑡�@S{

ℎQ(𝑥Q(𝑡)) 926 

We can relate their values to the unknown parameter values p. If there exists inputs u(t) 927 
such that the above system of equations may be solved for p, the system is identifiable. 928 
The right-hand sides of the above the equation for x(t) may be computed in terms of the 929 
Lie derivatives of the vector fields f and g. The Lie differentiation LxH of a function H by a 930 
vector field X is given by: 931 

𝐿�𝐻(𝑥) = ∇𝐻(𝑥) ∙ 𝑋(𝑥) 932 
Iterated Lie derivatives are well-defined, and should be interpreted as the function 933 
composition, so that for example 𝐿�𝐿�𝐻(𝑥) = L�(𝐿�𝐻) and 𝐿�Q𝐻(𝑥) = 𝐿�(𝐿�𝐻). 934 
 Defining observable quantities at the zero-time derivatives of the generalized 935 
output y = h(x): 936 
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𝑌(𝑥{, 𝑈) =
𝜕>

𝜕𝑡>�
@S{

ℎ(𝑥(𝑡)) 937 

Where 𝑈 ∈ 𝑅> is the value of the control u(t) and its derivatives evaluated at 𝑡 = 0:	𝑈 =938 
(𝑢(0), 𝑢x(0), …𝑢>=6(0)). The initial conditions x0 appear due to evaluation at t=0. The 939 
observation space is then defined as the span of the 𝑌(𝑥{, 𝑈) elements: 940 

𝐹6 = 𝑠𝑝𝑎𝑛4{𝑌(𝑥{|𝑈) ∈ 𝑅>, 𝑘 ≥ 0} 941 
We also defined the span of iterated Lie derivatives with respect to the output vector fields 942 
f(x) and g(x): 943 

𝐹Q:= 𝑠𝑝𝑎𝑛4{𝐿[6, … 𝐿[>ℎR(𝑥{)|(𝑖6, … 𝑖>)Î{𝑔, 𝑓}>, 𝑘	³	0, 𝑗Î{1,2}} 944 
As is outlined in (55), (58) proved that F1=F2, so that the iterated Lie derivatives F2 may 945 
be considered as the set of “elementary observables”. Hence, identifiability may be 946 
formulated in terms of the reconstruction of parameters p from elements in F2. Parameters 947 
p are then identifiable if the map 948 

𝑝 → {𝐿[6, … 𝐿[>ℎR(𝑥{)|(𝑖6 … 𝑖>) ∈ {𝑔, 𝑓}>, 𝑘 ≥ 0, 𝑗	𝑗Î{1,2}} 949 
Is one-to-one. For the remainder of this analysis, we investigate the mapping defined 950 
here, because if one can reconstruct the values of p from the elementary observables 951 
(evaluated at the initial state), we can uniquely identify the parameters. This enables us 952 
to find the Lie derivatives for the two outputs h1(x) and h2(x), which will be found in terms 953 
of the parameters p and x1 and x2. Then we can recall the evaluation at t=0 given by x0 = 954 
(S0, R0), and our ability to observe these at t=0 allows us to set x1 = S0 and x2 = R0 and 955 
isolate the parameter p recursively from the observables and the Lie derivatives. 956 
 Using the input-output system written in terms of f and g we can write the following 957 
Lie derivatives: 958 

𝐿rℎ6 = (1 − x6 − xQ)x6 959 
𝐿rℎQ = 𝑝9(1 − x6 − xQ)xQ 960 

𝐿;ℎ6 = (α + d�)x6 961 
𝐿;ℎQ = 𝛼𝑥6 − 𝑑9𝑥Q 962 

𝐿r𝐿;ℎQ = 𝛼𝑥6(1 − 𝑥6 − 𝑥Q) − 𝑑9𝑝9𝑥Q(1 − 𝑥6 − 𝑥Q) 963 
 964 
Recursively solving using x0 = (S0, R0) to find the parameters p: 965 

𝑆{ = ℎ6(𝑥{) 966 
𝑅{ = ℎQ(𝑥{) 967 

𝑝9 =
𝐿rℎQ

𝑅{(1 − 𝑆{ − 𝑅{)
 968 

 969 

𝑑9 =
1

𝑅{(1 − 𝑝9)
|

𝐿r𝐿;ℎQ
1 − 𝑆{ − 𝑅{

− 𝐿;ℎQ} 970 

𝛼 =
𝐿;ℎQ + 𝑑9𝑅{

𝑆{
 971 

𝑑` =
𝐿;ℎ6
𝑆{

− 𝛼 972 

 973 
Since F1 = F2, all of the above Lie derivatives are observable via appropriate treatment 974 
protocols. Thus by incorporating knowledge of f(t), all parameters in system 1 are 975 
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structurally identifiable. This represents an improvement over the identifiability with N(t) 976 
alone as a measurable output and allows us to introduce a non-zero dR parameter, which 977 
we have reason to believe based on experimental evidence, is the more biologically 978 
relevant scenario.  979 
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predict therapeutic resistance in cancer 
 
Kaitlyn Johnson, Daylin Morgan, Eric Brenner, Andrea Gardner, Russ Durrett, Grant 
Howard, Eduardo Sontag, Angela Jarrett, Thomas E. Yankeelov, Amy Brock 
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Integrated 
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0.0212 
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fit 
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0.9063] 
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Supplementary Table S1. Estimated parameter values from the integrated model fit 
(using N(t) and phi(t) and using N(t) only. The first six parameters are calibrated to data, 
the last four are set (and thus are the same for both calibration schemes). Confidence 
intervals from fit parameters are estimated using bootstrapping parameter estimates.  
 

 
Supplementary Figure S1. Measured and model predicted outputs to be used for 
parameter estimation from observed data A. Observed estimated fraction of sensitive 
cells (green) and resistant cells (red) from scRNAseq classifier at three time points 𝜙(t). 
B. Model predicted output of sensitive cell fraction dynamics (green) and resistant cell 
fraction dynamics (red) for an example parameter set. C. Observed number of tumor cells 



in time for pulse treatments of doxorubicin at 0, 50, and 100 nM, the doses used for model 
calibration. D. Model predicted output of total cell number in time for a single pulse 
treatment simulated from the model and an arbitrary example parameter set. 
 
 
 
 

 
Supplementary Figure S2. Comparison of classifiers for estimating sensitive and 
resistant cells. A. ROC curve from PCA + KNN classifier B. ROC curve from Linear SVM 
classifier C. AUC from ROC curve for each of 5 folds cross validation data sets D. 
Accuracy of classification of the testing set data in each fold of cross validation reveals 
Linear SVM is consistently more accurate than PCA + KNN  



 
Supplementary Figure S3. Single cell transcriptomes from each time point 
projected into principal component space and classified using nearest neighbors 
A. Lineage-abundance guided “labeled” cells projected into principal component space 
separate along components (PC1 and PC2 shown here for visual effect). B. Unknown 
cells are projected into the principal component space of the labeled cells. C. Remaining 
cells from t=0 projected onto labeled cells in PC space and estimated as sensitive (olive) 
or resistant (green). D. Cells from t=7 weeks projected alongside labeled cells. E. Cells 
from t=10 weeks projected alongside labeled cells. F. Proportion of cells in each time point 
that are estimated or labeled as sensitive (green), or resistant (red).   



 
Supplementary Figure S4. Differential Gene Expression Analysis Provide Molecular Insight 
into Drug Resistance Interactions A. UMAP projection of single cell transcriptomes colored by 
time point B. Single cells colored by sensitive and resistant cell labels visualized via UMAP 
projections indicates drug sensitivity phenotypes cluster together, but not exclusively by the 
apparent UMAP clustering n C. Heat map of the top 50 gene weights in the Linear SVM, 
comparing the average expression across the sensitive and resistant cell groups in the three time 
points. The colorbar is scaled within each gene (row).  D. UMAP projections of cells colored by 
expression level of ESAM indicates high expression of UBE2S is associated with sensitivity. G. 
UMAP projections of cells colored by expression level of SOX4 indicates that low expression of 
SOX4 is associated with sensitivity. I. UMAP projections of cells colored by expression level of 
IL11 indicates that high expression of IL11 is associated with sensitivity. 

 
Supplementary Figure S5. Model calibration using only N(t) data. A. Calibration results for 
longitudinal N(t) data from the four doses (0, 50, and 100 nM) used for calibration B. Comparison of 
model fit to estimates of phenotypic composition (𝜙(t)). This information was not used for calibration, 
hence why the error is extremely large. C. Measured cell number N(t) verses model calibrated cell 
number, yielding a concordance in N(t) of CCC = 0.975.  
 



 
Supplementary Figure S6. Sensitivity Analysis of Model Parameters Reveals All 
Parameters are Locally and Globally Sensitive Under Treatment. A. Sobol’s total 
effects of each parameter globally on critical time for 0,75, 200, and 500 nM pulse 
treatments reveals that all fit parameters are above the threshold of sensitivity for at least 
one of those doses (the parameter contributes at least 5% to the critical time for at least 
one of the doxorubicin concentrations). B. Sobol’s total effects of each parameter globally 
on sensitive cell fraction for 0, 75, 200 and 500 nM pulse treatments reveals that most fit 
parameters are above the threshold of sensitivity for at least one of the doses. The 
carrying capacity of the single cell RNA sequencing experiment (K2) is the only parameter 
that is not above the threshold for any sensitivity analysis output or dose, and for this 
reason supports our decision to set that carrying capacity from a literature value (the 
expected number of 231 cells at confluence in a 10 cm dish, which the cells were 
expanded up to). C. An example of the model predicted critical time as a function of 
doxorubicin concentration, taken from the selected parameter set in red in Fig 5A. Critical 
time is chosen as an output for model sensitivity because it evaluates treatment response 
and drug sensitivity in of a cell population:drug concentration combination without biasing 
for response dynamics that might vary from system to system, and because it is most 
relevant to what we experimentally are able to observe (i.e. the cells rebounded to 2 times 
their initial cell number on this day). D. An example of the model predicted sensitive cell 
fraction at the critical time as a function of doxorubicin concentration, again for the 
selected parameter set in red in Fig 5A. This was chosen again because of its relevance 
to experimental workflows, as the time at which the population rebounds to 2 the seeding 
population might be a good time at which we could perform an experimental analysis of 
the tumor cell composition (i.e. scRNAseq). E. Local sensitivity in critical time produced 
by varying the selected parameter set by 50% above and below its value and recording 
the resulting change in critical time trajectory over a doxorubicin range of 0 to 500 nM. F. 
Local sensitivity in sensitive cell fraction at critical time produced by again varying the 
selected parameter set by 50% above and below its value and recording the resulting 
change in sensitive cell fraction over a doxorubicin range of 0 to 500 nM.  



 
Supplementary Figure S7. Fit to untreated control to find carrying capacity (KN) of 
MDA-MB- 231 cells in a 96 well plate. 
 

 
Supplementary Figure S8. Visualization of the distribution of parameter estimates 
in the bootstrapped parameter set for the integrated calibration (from N(t) and f(t)). 
For each parameter, the 2.5th and 97.5th percentiles were found from 100 simulated data 
sets to construct the 95% confidence intervals around each parameter value.  
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Supplementary Figure S9. Visualization of the distribution of parameter estimates 
in the bootstrapped parameter set for calibration from N(t) data only. For each 
parameter, the 2.5th and 97.5th percentiles were found from 100 simulated data sets to 
construct the 95% confidence intervals around each parameter value. It is evident that 
the growth rate parameter is not identifiable as it doesn’t change from the initial guess. 
This is likely due to insufficient data for the N(t) calibration scheme to fit to the 6 free 
parameters of interest. If we were only able to use this data, we would need to set some 
parameters from literature or other experiments in order to obtain identifiability.  
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Supplementary Figure S10. Growth dynamics of isolated sensitive and resistant 
cell lineages indicates that sensitive cells growth on more quickly than the resistant cells, 
validating our modeling assumptions. 
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Supplementary Figure S11. Model predicted treatment response from longitudinal 
N(t) calibration only.  Prediction of treatment response at A. 25 nM B. 75 nM C. 150 nM 
and D. 200nM from the N(t) calibration using the other doses. No phenotypic composition 
data was used to calibrate the model parameters that were used to predict the new 
treatment response.  
 

 
Supplementary Figure S12. Variance explained in each PC and hyperparameter 
optimization for PCA + KNN. A. Proportion of variance explained by the top 50 principal 
components PCs B. Cumulative variance in each successive principal component for the 
top 50 PCs. C. Number of nearest neighbors used in the classifier versus mean AUC from 



5-fold CV to determine optimal number of neighbors of k=73. C. Number of principal 
components used in the classifier versus mean AUC from 5-fold CV to determine optimal 
number of components, n=500. D. ROC curve from classifier with optimized number of 
nearest neighbors and components for separating labeled cells.  
 
 
 
 
 
 
 
 
 
 
 
 
 


