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of Spatially Distributed Systems With a
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Abstract—A class of distributed systems with a cyclic intercon-
nection structure is considered. These systems arise in several bio-
chemical applications and they can undergo diffusion-driven in-
stability which leads to a formation of spatially heterogeneous pat-
terns. In this paper, a class of cyclic systems in which addition of
diffusion does not have a destabilizing effect is identified. For these
systems global stability results hold if the “secant” criterion is sat-
isfied. In the linear case, it is shown that the secant condition is
necessary and sufficient for the existence of a decoupled quadratic
Lyapunov function, which extends a recent diagonal stability result
to partial differential equations. For reaction–diffusion equations
with nondecreasing coupling nonlinearities global asymptotic sta-
bility of the origin is established. All of the derived results remain
true for both linear and nonlinear positive diffusion terms. Similar
results are shown for compartmental systems.

Index Terms—Biochemical reactions, cyclic interconnections,
passivity, secant criterion, spatially distributed systems.

I. INTRODUCTION

THE FIRST gene regulation system to be studied in detail
was the one responsible for the control of lactose metab-

olism in E. Coli, the lac operon studied in the classical work
of Jacob and Monod [1], [2]. Jacob and Monod’s work led
Goodwin [3] and later many others [4]–[15] to the mathematical
study of systems made up of cyclically interconnected genes
and gene products. In addition to gene regulation networks,
cyclic feedback structures have been used as models of certain
metabolic pathways [16], of tissue growth regulation [17], of
cellular signaling pathways [18], and of neuron models [19].

Generally, cyclic feedback systems (of arbitrary order) were
shown by Mallet-Paret and Smith [20], [21] to have behaviors
no more complicated that those of second-order systems: for
precompact trajectories, -limit sets can only consist of equi-
libria, limit cycles, or heteroclinic or homoclinic connections,
just as in the planar Poincaré–Bendixson Theorem. When the
net effect around the loop is positive, no (stable) oscillations are
possible, because the overall system is monotone [22]. On the
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other hand, inhibitory or “negative feedback” loops give rise to
the possibility of periodic orbits, and it is then of interest to pro-
vide conditions for oscillations or lack thereof.

Besides the scientific and mathematical interest of the study
of cyclic negative feedback systems, there is an engineering mo-
tivation as well, which rises from the field of synthetic biology.
Oscillators will be fundamental parts of engineered gene bac-
terial networks, used to provide timing and periodic signals to
other components. A major experimental effort, pioneered by
the construction of the “repressilator” by Elowitz and Leibler
[23], is now under way to build reliable oscillators with gene
products. Indeed, the theory of cyclic feedback systems has been
proposed as a way to analyze the repressilator and similar sys-
tems [24], [25].

In order to evaluate stability properties of negative feedback
cyclic systems, [9] and [15] analyzed the Jacobian linearization
at the equilibrium, which is of the form

. . .
. . .

...
...

. . .
. . .

. . .

(1)

, , , and showed that is Hurwitz if
the following sufficient condition holds:

(2)

This “secant criterion” is also necessary for stability when the
’s are identical.
An application of the secant condition in a “systems biology”

context was in Kholodenko’s [18] (see also [26]) analysis of a
simplified model of negative feedback around mitogen activated
protein kinase (MAPK) cascades. MAPK cascades constitute a
highly conserved eukaryotic pathway, responsible for some of
the most fundamental processes of life such as cell proliferation
and growth [27]–[29]. Kholodenko used the secant condition to
establish conditions for asymptotic stability.

A. Global Stability Considerations

It appears not to be generally appreciated that (local) sta-
bility of the equilibrium in a cyclic negative feedback system
does not rule out the possibility of periodic orbits. Indeed, the
Poincaré–Bendixson Theorem of Mallet-Paret and Smith [20],

/ © 2008 IEEE
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Fig. 1. Trajectory of (3) starting from initial condition � = [1:2 1:2 1:2] ,
projected onto the � -� plane.

[21] allows such periodic orbits to coexist with stable equilibria.
As an illustration consider the system

(3)

where

(4)

and is a saturation1 function. The
function (4) is decreasing, and its slope has magnitude
at the equilibrium . With

and , the secant criterion (2) is satisfied and,
thus, the equilibrium is asymptotically stable. However, simula-
tions in Fig. 1 show the existence of a periodic orbit in addition
to this stable equilibrium.

To delineate global stability properties of cyclic systems with
negative feedback, [30] studied (by building on a passivity in-
terpretation of the secant criterion in [31]) the nonlinear model

...

(5)

and proved global asymptotic stability of the origin2 under the
conditions

(C1)

(C2)

(C3)

(C4)

1One can easily modify this example to make '(�) smooth while retaining
the same stability properties.

2In the rest of the paper we assume that an equilibrium exists and is unique
(see [30] for conditions that guarantee this) and that this equilibrium has been
shifted to the origin with a change of variables.

The conditions (C1)–(C4) encompass the linear system (1), (2)
in which , , and .

A crucial ingredient in the global asymptotic stability proof
of [30] is the observation that the secant criterion (2) is neces-
sary and sufficient for diagonal stability of (1), that is for the
existence of a diagonal matrix such that

(6)

Using this diagonal stability property, [30] constructs a Lya-
punov function for (5) which consists of a weighted sum of de-
coupled functions of the form . In the
linear case this construction coincides with the quadratic Lya-
punov function .

B. Spatial Localization

Ordinary differential equation models such as de-
scribed above implicitly assume that reactions proceed in
a “well-mixed” environment. However, in cells, certain pro-
cesses are localized to membranes (activation of pathways by
receptors), to the nucleus (transcription factor binding to DNA,
production of mRNA), to the cytoplasm (much of signaling),
or to one of the specialized organelles in eukaryotes. The ex-
change of chemical species between these spatial domains has
been found to be responsible for dynamical behavior, such as
emergence of oscillations, in fundamental cell signaling path-
ways, see for instance [32]. These exchanges often happen by
random movement (diffusion), although transport mechanisms
and gated channels are sometimes involved as well.

When each of a finite set of spatial domains is reasonably
“well mixed,” so that the concentrations of relevant chemicals
in each domain are appropriately described by ordinary differ-
ential equations (ODEs), a compartmental model may be used.
In a compartmental model, several copies of an ODE system are
interconnected by “pipes” that tend to balance species concen-
trations among connected compartments. The overall system is
still described by a system of ODEs, but new dynamical prop-
erties may emerge from this interconnection. For example, two
copies of an oscillating system may synchronize, or two multi-
stable systems may converge to the same steady state.

On the other hand, if a well-mixed assumption in each of a
finite number of compartments is not reasonable, a more ap-
propriate mathematical formalism is that of reaction–diffusion
partial differential equations (PDEs) [33]–[37]: instead of a dy-
namics , one considers equations of the general form

(7)

where now the vector depends on both time and
space variables belonging to some domain , is the Lapla-
cian of the vector with respect to the space variables, is
a matrix of positive diffusion constants, and denotes
the directional derivative in the direction of the normal to the
boundary of the domain , representing a no-flux or Neu-
mann boundary condition. (Technical details are given later, in-
cluding generalizations to more general elliptic operators that
model space-dependent diffusions.)
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Diffusion plays a role in generating new behaviors for the
PDE as compared to the original ODE . In fact, one of
the main areas of research in mathematical biology concerns the
phenomenon of diffusive instability, which constitutes the basis
of Turing’s mechanism for pattern formation [38]–[41], and
which amounts to the emergence of stable non-homogeneous in
space solutions of a reaction–diffusion PDE. The Turing phe-
nomenon has a simple analog, and is easiest to understand in-
tuitively, for an ODE consisting of two identical compartments
[41], [42]. Also in the context of cell signaling, and in partic-
ular for the MAPK pathway mentioned earlier, reaction–diffu-
sion PDE models play an important role [43].

If diffusion coefficients are very large, diffusion effects may
be ignored in modeling. As an illustration, the stability of uni-
form steady states is unchanged provided that the diffusion co-
efficient is sufficiently large compared to the “steepness” of
the reaction term , measured for instance by an upper bound

on its Lipschitz constant or equivalently the maximum of
its Jacobians at all points (for chemical reaction networks, this
is interpreted as the inverse of the kinetic relaxation time, for
steady states). Introducing an energy function using the integral
of , and then integrating by parts and using Poincaré’s
inequality, one obtains an exponential decrease of this energy,
controlled by the difference of and ([44], Chapter 11). For
instance, Othmer [45] provides a condition in terms
of the smallest nonzero eigenvalue of the Neumann Laplacian

to guarantee expo-
nential convergence to zero of spatial nonuniformities, and esti-
mates that his condition is met for intervals of length

m, with diffusion of at least about cm
and .

On the other hand, if diffusion is not dominant, it is neces-
sary to explicitly incorporate spatial inhomogeneity, whether
through compartmental or PDE models. The goal of this paper is
to extend the linear and nonlinear secant condition to such com-
partmental and PDE models, using a passivity-based approach.
To illustrate why spatial behavior may lead to interesting new
phenomena even for cyclic negative feedback systems, we take
a two-compartment version of the system shown in (3)

(8)

and pick . We simulated this system with initial con-
dition , so that the first-compart-
ment coordinates start approximately on the limit cycle,
and the second-compartment coordinates start at the equi-
librium. The resulting simulation shows that a new oscillation
appears, in which both components oscillate, out of phase (no
synchronization), with roughly equal period but very different
amplitudes. Fig. 2 shows the solution coordinates and
plotted on a window after a transient behavior. This oscillation
is an emergent behavior of the compartmental system, and is

Fig. 2. New oscillations in two-compartment system: � (solid) and �

(dashed) shown.

different from the limit cycle in the original three-dimensional
system. (One may analyze the existence and stability of these
orbits using an ISS-like small-gain theorem.)

Our goal is to show that—in contrast to this example—if
the secant condition does apply to a negative cyclic feedback
system, then no non-homogeneous limit behavior can arise, in
compartmental or in PDE models, no matter what is the magni-
tude of the diffusion effect.

II. PROBLEM FORMULATION

In this paper, we extend the linear and nonlinear results of [9],
[15], [30] to spatially distributed models that consist of a cyclic
interconnection of reaction–diffusion equations

...

(RD)

where denotes the state of the th subsystem which depends
on spatial coordinate and time , , and , , de-
note static nonlinear functions of their arguments. We consider
a situation in which the spatial coordinate
belongs to a bounded domain in , , 2 or 3, with
a smooth boundary and outward unit normal . The state
of each subsystem satisfies the Neumann boundary conditions,

on , is the gradient of ,
is the divergence of a vector , and the domain of the -dimen-
sional Laplacian is given by [46], [47]

(DM)

Here, denotes a Sobolev space of square integrable func-
tions with square integrable second distributional derivatives.
The standard inner product is given by

where and .
As explained in the introduction, the study of stability proper-

ties for distributed system (RD) is important in many biological
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applications. Our first result, presented in Section III, studies
the linearization of (RD) and shows that the secant condition (2)
is sufficient for the exponential stability despite the presence of
diffusion terms. It further shows that the secant condition is nec-
essary and sufficient for the existence of a decoupled Lyapunov
function, thus extending the diagonal stability result of [30] to
partial differential equations. The next result of the paper, pre-
sented in Section IV, studies the nonlinear reaction–diffusion
equation (RD) and proves global asymptotic stability of
under assumptions that mimic the conditions (C1)–(C3) of [30],
and under the additional assumptions that the functions and

, , be nondecreasing and positive, respectively.
This additional assumption on the -functions ensures convexity
of the Lyapunov function which is a crucial property for our sta-
bility proof. Indeed, a similar convexity assumption has been
employed in [48] to preserve stability in the presence of linear
diffusion terms. Finally, Section V studies a compartmental or-
dinary differential equation model instead of the partial differen-
tial equation (RD), and proves global asymptotic stability using
the same nondecreasing assumption for ’s.

III. CYCLIC INTERCONNECTION OF LINEAR

REACTION–DIFFUSION EQUATIONS

We start our analysis by considering an interconnection of
spatially distributed systems (RD) with

(9)

where each , , and represents a positive parameter. In
this case, system (RD) simplifies to a cascade connection of
linear reaction–diffusion equations where the output of the last
subsystem is brought to the input of the first subsystem through
a negative unity feedback. Abstractly, the dynamics of system
(RD), (DM) with , , and satisfying (9) are given
by

(LRD)

where denotes the vector Laplacian, that is
, , and

. . .
. . .

...
...

. . .
. . .

. . .

A. Exponential Stability and the Secant Criterion in One
Spatial Dimension

In this section, we focus on systems with one spatial dimen-
sion . We show that operator with (DM) gen-
erates an exponentially stable strongly continuous semi-
group on if the secant criterion (2) is satisfied.

We note that the exponential stability of in Theorem 1 can
be also established using a Lyapunov based approach that we
develop for systems with two or three spatial coordinates. How-
ever, the proof of Theorem 1 is of independent interest because
of the explicit construction of the -semigroup and block-di-
agonalization of operator (LRD), (DM) (which is well suited for
a modal interpretation of stability results in one spatial coordi-
nate).

It is well known (see, for example [47]) that the operator
with Neumann boundary conditions is self-adjoint with the

following set of eigenfunctions and corresponding eigen-
values :

Since the eigenfunctions represent an orthonormal basis
of each can be represented as

where denote the spectral coefficients given by

Thus, a spectral decomposition of operator in (LRD) yields
the following infinite-dimensional system on of decoupled

th order equations:

(10)

with

. . .
. . .

...
...

. . .
. . .

. . .

and . Based on [9], [15]
we conclude that each is Hurwitz if (2) holds. Therefore,
each subsystem in (10) is exponentially stable and there exist

such that

Now, since is the infinitesimal generator of the following
-semigroup:
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we have

We will show the exponential stability of the -semigroup
on by establishing convergence of the infinite sum

for each [47, Lemma
5.1.2]. Let denote the th partial sum, i.e.

(11)

For we have

(12)

Now, we represent , for , as

and use perturbation analysis to express as

where

(13)

with . Solution to (13) is determined by

which can be used to obtain

Clearly, for the geometric series in the last in-
equality converges. This immediately gives the following upper
bound for :

and inequality in (12) simplifies to

Hence, for each partial sum (11) repre-
sents a Cauchy sequence which guarantees convergence of

and consequently

Since is dense in , by an argument as in [46, p.
51] this inequality can be extended to all which
implies exponential stability of [47, Lemma 5.1.2].

Theorem 1: The -semigroup generated by operator
(LDR)-(Dm) on is exponentially stable if the secant
criterion (2) is satisfied.

B. The Existence of a Decoupled Quadratic Lyapunov
Function

The following theorem extends the diagonal stability result
of [30] to PDEs with spatial coordinates:

Theorem 2: For system (LRD), (DM) there exist a decoupled
quadratic Lyapunov function

(14)

that establishes exponential stability on if and only if (2)
holds.

Proof: We prove the theorem for a system given by

(15)

where , and

. . .
. . .

...
...

. . .
. . .

. . .

(16)

This is because all operators of the form (LRD) can be obtained
by acting on from the left with a diagonal matrix which does
not change the existence of a decoupled quadratic Lyapunov
function. We will prove that the secant criterion (C3) is both nec-
essary and sufficient for the existence of a decoupled quadratic
Lyapunov function.
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Necessity: Suppose that there exist a Lyapunov function of
the form (14) that establishes exponential stability of (15). The
derivative of (14) along the solutions of (15) is given by

where we have used Green’s integral identity [49] with sat-
isfying the Neumann boundary conditions on , and the fact
that and commute. The exponential stability of (15) and
the above expression for imply that is Hurwitz.
But (C3) is a necessary condition for a matrix with equal di-
agonal entries to be Hurwitz [9].

Sufficiency: Suppose that (C3) holds. Following [30] we de-
fine:

and differentiate (14) along the solutions of (15) to obtain

If (C3) holds then is a positive definite matrix [30]

and hence , where
denotes the smallest eigenvalue of . Upon integration, we get

which yields

Since is dense in , the last inequality can be ex-
tended to all [46], [47]. Thus, for every

there is such that

which proves the exponential stability of [47, Lemma
5.1.2].

Remark 1: The exponential stability of in Theorem 1
can be also established using a Lyapunov based approach with

However, the proof of Theorem 1 is of independent interest
because of the explicit construction of the -semigroup and
block-diagonalization of operator (LRD), (DM).

IV. EXTENSION TO NONLINEAR

REACTION–DIFFUSION EQUATIONS

We next show global asymptotic stability of the origin of the
nonlinear distributed system (RD), (DM). This result holds in
the sense under the following assumption:

Assumption 1: The functions , , and in (RD)
are continuously differentiable. Moreover, the functions
and satisfy (C1)–(C3), the functions are positive, and
the functions are nondecreasing, i.e.

(C5)

A new ingredient in Assumption 1 compared to the proper-
ties of and in (5) is a nondecreasing assumption on
the functions . This additional assumption provides con-
vexity of the Lyapunov function, which is essential for estab-
lishing stability in the presence of linear diffusion terms. For
nonlinear diffusion terms we also assume that each is a
positive function.

Theorem 3: Suppose that system (RD), (DM) satisfies As-
sumption 1. Consider the Lyapunov function candidate

where the ’s are defined as in Section III, and suppose that
there exists some function of class such that

(C6)

Then is a globally asymptotically stable equilibrium
point of (RD), (DM), in the sense.

Remark 2 (Well-Posedness): Standard arguments (see, for ex-
ample, [36], [50], [51]) can be used to establish that (RD), (DM)
has a unique solution on . The existence of a unique so-
lution on the time interval follows from the asymptotic
stability of the origin of (RD), (DM).

Proof: We represent the th subsystem of (RD), (DM) by:
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The derivative of

(17)

along the solutions of is determined by

Green’s integral identity [49], in combination with the Neumann
boundary conditions on , can be used to obtain

Now, from (C5) we have . Using this property and the
fact that (cf. (C1)–(C2)) we arrive at

This upper bound on and the following Lyapunov function
candidate yield

(18)

Since the ’s are defined as in Section III, we have used the fact
that represents a positive definite
matrix (see the proof of Theorem 2).

Now, since for each , with
, for any there exist such that

implies for all . This follows from posi-
tive invariance of the set ,

, and continuity of Lyapunov function [34]. Further-
more, is a nonincreasing function of time bounded below
by zero and, thus, there exists a limit of as time goes to
infinity. If this limit is positive then (C1), (C6), and (18) imply
the existence of such that . But
then and will eventually
become negative which contradicts nonnegativity of ,
for all . Therefore, both and converge
asymptotically to zero. From the radial unboundedness of
(cf. (C6)) and the above analysis we conclude global asymptotic
stability of the origin, in the sense.

Remark 3: The condition (C6) on can be weakened by
working on , in which case Jensen’s inequality, applied
to (17), provides the desired estimate (see Appendix A). This
relaxation allows for inclusion of many relevant nonlinearities
arising in biological applications; one such example is provided
in Section VI. Using a similar argument to the one presented in
Theorem 3, the global asymptotic stability of the origin in the

sense can be established (with keeping in mind that, in
this case, denotes a symbol for ).

V. STABILITY ANALYSIS FOR A COMPARTMENTAL MODEL

An alternative to the partial differential equation represen-
tation (RD) is a compartmental model which divides the re-
action into compartments that are individually homogeneous
and well-mixed, and represents them with ordinary differential
equations. Compartmental models are preferable in situations
where reactions are separated by physical barriers such as cell
and intracellular membranes which allow limited flow between
the compartments [52]. Instead of the lumped model (5) we now
consider compartments where the dynamics of the th com-
partment, , are given by

...

(CM)

The functions , , represent
the diffusion terms between the compartments and possess the
property

(C7)

For the first and last compartments and , respec-
tively the first and the second terms in the right-hand side of
(CM) must be dropped because and are not defined.

In the absence of the diffusion terms, the dynamics of
the compartments in (CM) are decoupled, and coincide with
(5) which is shown in [30] to be globally asymptotically
stable under the conditions (C1)–(C4). The following theorem
makes an additional assumption that the function be
nondecreasing and proves that global asymptotic stability is
preserved in the presence of diffusion terms:

Theorem 4: Consider the compartmental model (CM),
, where for and , respectively the first

and the second terms in the right-hand side of (CM) are to be
interpreted as zero. If the functions and satisfy the
conditions (C1)–(C4) and if, further, is a nondecreasing
function and is as in (C7) then the origin is
globally asymptotically stable.

Proof: We first introduce the notation

(19)

In the absence of the diffusion terms in (CM), the reference [30]
constructs a Lyapunov function of the form

(20)
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where , , are the diagonal entries of a matrix
obtained from (6) with selected as in (16), and proves that its
time derivative satisfies the estimate

(21)

for some . In the presence of the diffusion terms in (CM),
the estimate (21) becomes

(22)

while for :

(23)
and for :

Then the Lyapunov function

(24)

satisfies

(25)

Substituting (19) and

(26)

which is obtained from (20), we get

(27)

Because is a nondecreasing function by assumption,
we note that possesses the same
sign as . We next recall from property (C7) that

also possesses the same sign as
and, thus,

(28)

which, according to (27) and (25), implies

(29)

Because the Lyapunov function is proper from property
(C4) and because the right-hand side of (29) is negative definite
from property (C1), we conclude that the origin is glob-
ally asymptotically stable.

Remark 4: Theorems 3 and 4 both rely on the assumption
that is nondecreasing, which translates to the convexity of
the Lyapunov functions (17) and (20). A similar convex Lya-
punov function assumption has been employed in [48] to pre-
serve asymptotic stability in the presence of diffusion terms.
Unlike the local result in [48], however, in this paper we have es-
tablished global asymptotic stability and allowed nonlinear dif-
fusion terms by exploiting the specific structure of the system.

VI. EXAMPLE

We illustrate our main results with the analysis of a negative
feedback loop around a simple MAPK cascade model. As de-
scribed in the introduction, MAPK cascades are functional mod-
ules, highly conserved throughout evolution and across species,
which mediate the transmission of signals generated by receptor
activation into diverse biochemical and physiological responses
involving cell cycle regulation, gene expression, cellular me-
tabolism, stress responses, and other functions. The control of
MAPK and similar kinase cascades by therapeutic intervention
is being investigated as a target for drugs, particularly in the
areas of cancer and inflammation [53]. Several MAPK cascades
have been found in yeast [54] and at least a dozen in mammalian
cells [55], and much effort is directed to the understanding of
their dynamical behavior [28], [56], [57].

There are many models of MAPK cascades, with varying
complexity. The simplest class of models [18], [58], using
quasi-steady-state approximations for enzymatic mechanisms
and a single phosphorylation site, involves a chain of three
subsystems

where is an input and is seen as an output. The variables
denote the “active” forms of each of three proteins, and the
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terms indicate the inactive forms of the respective proteins
(after nondimensionalizing and assuming that the total concen-
tration of each of the ). For example, the term

indicates the rate at which the
inactive form of the second protein is being converted to active
form. This rate is proportional to the concentration of the active
form of the protein , which facilitates the conversion. Simi-
larly, active facilitates the activation of the third protein. The
first term in each of the right-hand sides models the inactivation
of the respective protein, a mechanism that proceeds at a rate
that is independent of the activation process. The saturated form
of the nonlinearities reflects the assumption that reactions are
rate limited by resources such as the amount of enzymes avail-
able (an assumption that is not always valid). For this model,
Kholodenko proposed in [18] the study of inhibitory feedback
from the last to the first element, mathematically represented
by a feedback law . See [18] for a descrip-
tion of the physical mechanism (an inhibitory phosphorylation
of “SOS” protein, upstream of the system, by the last protein,
p42/p44 MAPK or ERK) that might produce this inhibition.

Linearizing the system about an equilibrium, there results a
linear system to which one may apply the secant condition [18].
A linear model also arises when considering weakly activated
pathways, the behavior of the pathway when there is only a low
level of kinase phosphorylation. In this case, one assumes that
the inactive forms dominate: ; this is the analysis
in [58] and [59]. An intermediate case would be that in which
activations are weak but the coefficients are small enough that
the negative terms in the above equations cannot be replaced by
linear functions; in that case, we are lead to equations as follows,
for the closed-loop system:

(30)

Both linearizations, as well as this nonlinear system, can be ana-
lyzed using our techniques. For our simulations we pick the non-
linear model, as it is more interesting. Denoting by the equi-
librium of (30) and introducing the shifted variable ,
we represent system (30) as in (5) with

We first note that condition (C1) is satisfied because and
, ,2,3, are strictly increasing functions. Next, we re-

call from [30, Section 6] that a set of gains , ,2,3, that
do not depend on the specific location of can be obtained by

Fig. 3. Plots of  (�; t) := � (�; t) � ��, i = 1,2,3, for system (EX) with
�(�; 0) = [16� (1� � ) 5 + cos�� 2] .

evaluating the maximum value of the slope ratio in the in-
terval in which evolves. Upon trivial calculations,
we obtain

We pick the parameters , ,2,3, ,
, which satisfy the secant condition (C3).

(Although we chose the parameters to be as in [58], we do
not claim that these are physiologically realistic, nor are the dif-
fusion constants that we pick below. We are merely interested in
illustrating the theoretical results.) Adding diffusion terms with
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coefficients , we obtain the reaction–dif-
fusion equations

(EX)

with the Neumann boundary conditions,
. System (EX) can be brought to the form (RD) using the fol-

lowing coordinate transformation: , where
denotes the equilibrium point of (EX).

Asymptotic convergence of to is illustrated in Fig. 3.
A spatial discretization of the diffusion operator with Neumann
boundary conditions is obtained using a Matlab Differentiation
Matrix Suite [60].

VII. CONCLUDING REMARKS

We identify a class of systems with a cyclic interconnection
structure in which addition of diffusion does not have a destabi-
lizing effect. For these systems, we demonstrate global stability
if the “secant” criterion is satisfied. In the linear case, we show
that the secant condition is necessary and sufficient for the exis-
tence of a decoupled Lyapunov function, which extends the di-
agonal stability result [30] to spatially distributed systems. For
reaction–diffusion equations with nondecreasing coupling non-
linearities, we establish global asymptotic stability of the origin.
Under some fairly mild assumptions, we also allow for non-
linear diffusion terms by exploiting the specific structure of the
system.

APPENDIX

A. Relaxation of Condition (C6)

Let us represent in (17) by

and let (respectively, ) denote the set of points in where
is positive (respectively, negative), i.e.

Then, can be rewritten as

where

We observe that the first two derivatives of the functions and
, respectively, satisfy

which implies that both these functions are of class and
convex. Using convexity, we may apply Jensen’s inequality [49]
to obtain

where denotes the measure of set , and is the
-norm of . Since and are -functions we

conclude that condition (C6) on always holds if the un-
derlying state-space is (that is, there exists some function

of class such that , .
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