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Abstract

Biochemical reaction networks (BRNs) in a cell frequently consist of reactions with disparate

timescales. The stochastic simulations of such multiscale BRNs are prohibitively slow due to

high computational cost for the simulations of fast reactions. One way to resolve this prob-

lem uses the fact that fast species regulated by fast reactions quickly equilibrate to their sta-

tionary distribution while slow species are unlikely to be changed. Thus, on a slow timescale,

fast species can be replaced by their quasi-steady state (QSS): their stationary conditional

expectation values for given slow species. As the QSS are determined solely by the state of

slow species, such replacement leads to a reduced model, where fast species are elimi-

nated. However, it is challenging to derive the QSS in the presence of nonlinear reactions.

While various approximation schemes for the QSS have been developed, they often lead to

considerable errors. Here, we propose two classes of multiscale BRNs which can be

reduced by deriving an exact QSS rather than approximations. Specifically, if fast species

constitute either a feedforward network or a complex balanced network, the reduced model

based on the exact QSS can be derived. Such BRNs are frequently observed in a cell as the

feedforward network is one of fundamental motifs of gene or protein regulatory networks.

Furthermore, complex balanced networks also include various types of fast reversible

bindings such as bindings between transcriptional factors and gene regulatory sites. The

reduced models based on exact QSS, which can be calculated by the computational pack-

ages provided in this work, accurately approximate the slow scale dynamics of the original

full model with much lower computational cost.

Author summary

Molecules inside a cell undergo various transformations via biochemical reactions with

disparate rates. For instance, while transcriptional factors bind and unbind gene promot-

ers in a time scale of seconds, mRNA transcription takes at least several minutes. For such

systems regulated by both fast and slow reactions together, most of the computation time
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in stochastic simulations is spent on simulating the fast reactions, even if our interest is in

the dynamics of slow reactions such as transcription. This problem can be resolved by

deriving a reduced system, which can accurately approximate the slow dynamics of the

original system without simulating fast reactions. However, when nonlinear reactions

exist, the accurate reduction is often impossible. Here, we describe that two classes of non-

linear systems, both of which appear frequently as models of natural biochemical reaction

networks, can be effectively reduced, and we provide a computational package to carry

out the reduction. We find that the resulting reduced systems accurately capture the sto-

chastic dynamics of the original system, while saving considerable simulation time.

Introduction

Many biochemical reaction networks (BRNs) in a cell include species whose copy numbers are

small [1–3] (e.g. one or a few copies of genes or tens of mRNAs), which lead to large fluctua-

tions in the system. Such stochastic dynamics of BRNs can be described by the chemical master

equation (CME), but the analytic solutions of the CME cannot be calculated in most cases.

Thus, to obtain numerical solutions of the CME, the Gillespie algorithm has been widely used,

which generates exact sample paths of the CME [4]. However, such numerical simulation

becomes extremely inefficient in the presence of stochastic stiffness [5, 6]. Specifically, in the

presence of fast reactions, stochastic simulations become slow as the computation is predomi-

nantly spent on simulating fast reactions. Thus, it becomes computationally prohibitive to use

the Gillespie algorithm to simulate multiscale BRNs.

One approach to resolve this problem is utilizing timescale separation among species in

multiscale BRNs [7–13]. In such networks, fast species regulated by fast reactions will quickly

equilibrate to their stationary distributions while slow species remain constant. Thus, on the

slow timescale, the fast species in propensity functions of reactions rapidly average out to

their quasi-steady-state (QSS): their stationary conditional expectation value for given states of

slow species. As the QSS is solely determined by the state of slow species, replacement of the

fast species with their QSS leads to a reduced model, where fast species are eliminated. This

reduced system accurately captures the dynamics of slow species of the original full system on

the slow timescale without simulating fast species and thus with much lower computational

cost.

In the presence of nonlinear reactions, moment equations usually involve infinite ODEs

and thus deriving the exact QSS becomes challenging. Thus, various approximations for QSS

have been proposed [8, 14–27]. However, the validity conditions have often been tested with

some toy examples and thus general validity conditions of such approximations have not been

fully understood. For instance, a popular approximation is using the QSS of the corresponding

deterministic system (e.g. large volume limit of the stochastic system) [8, 21–23]. Specifically,

deterministically derived QSS such as Michaelis-Menten and Hill functions has been used to

approximate the stochastic QSS and derive the propensity functions of the Gillespie algorithm.

Despite the popularity of this approach [28–44], it can lead to considerable errors depending

on the parameter choice [9, 45–51]. Furthermore, its validity conditions have been investigated

only recently [45–51] and have not been fully identified yet for general cases.

Despite the difficulty in the derivation of the exact QSS in general, recent studies have

revealed that such derivations are possible for several special cases of nonlinear BRNs (see [52]

for a recent review for this topic). Stationary solutions of CMEs associated to enzyme kinetics

have been studied in [53–55]. In particular, Levine and Hwa used the exact QSS of an enzyme
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kinetics system to reduce various types of models that appear in metabolic pathways [56]. Fur-

thermore, the stationary distribution for a single gene regulatory model was also derived

recently [57–59].

In this work, rather than focusing on a specific case, we investigate the exact QSS of two

general classes of nonlinear BRNs, which are frequently found in many natural biological sys-

tems. The first class is BRNs whose fast subnetwork is a feedforward network. In contrast to

linear systems, moment equations of nonlinear systems depend on higher orders, and lead in

general to an infinite system of coupled ODEs. However, in the recent work [60], Sontag and

Singh proved that all moments of a certain class of nonlinear feedforward networks can be

computed by finite linear differential equations. We will describe how this theory can be used

to derive an accurate reduction of a nonlinear BRN whose fast subnetwork is a feedforward

network. To aid in implementations, we provide a computational package, FEEDME, which

calculates the moments of interest for systems with a linear moment closure property and thus

the exact QSS of the embedded feedforward network.

In [61], Anderson, Craciun, and Kurtz showed how stationary distributions of a certain

broad class of BRNs, namely complex balanced networks, have the form of a multivariate Pois-

son distribution normalized by an appropriate partition function which accounts for conserva-

tion laws; they then applied their result to several examples, including a model of multiscale

enzyme kinetics. The key difficulty in obtaining the stationary distribution and thus stationary

moments becomes then to compute this partition function. In [62], Sontag and Zeilberger

developed an approach, based on transforms and factorial moments, to compute this function

as well as all first and higher-order moments, for complex balanced networks. Moreover,

Wilf-Zeilberger theory led to a formula that computes the partition function recursively on

integer conserved amounts (see Methods for details on the basic theorems from [61] and [62]).

The applicability of these results for the model reduction was not studied in [62], however.

Recently, Mélykúti, Hespanha, and Khammash in [63] derived analytic expressions for an

extensive collection of nonlinear BRNs, including reversible bindings on path-like, circular,

and ladder-shaped state spaces, also framing the discussion in the context of complex balanc-

ing, and explained how those results can be used in model reduction, but [63] did not take

advantage of the methods and formulas in the paper [62] which provide a general theoretical

and algorithmic approach in the complex balanced case. In the present paper, we make full use

of the theory in [62] in order to effectively derive an exact QSS for complex balanced networks.

This provides a systematic way to perform the time-scale reduction for the second class of

BRNs, those whose fast subnetwork constitutes a complex balanced network.

We illustrate the procedure of QSS derivation, and thus reduction, for both classes of sys-

tems with several examples, including a transcriptional negative feedback loop combined with

a fast feedforward signaling pathway, a genetic oscillator with a fast reversible binding and a

transcriptional positive feedback loop with fast competitive reversible bindings. In every case,

we show how the reduced models based on the exact QSS outperform those based on the

approximate QSS.

Results

Reduction of a multiscale feedforward network

Feedforward networks are frequently observed in gene and protein regulatory networks as

they play the critical roles in response of system for given signals [64, 65]. In the class of feed-

forward networks considered in this work, species can be partitioned into a series of layers so

that every nonlinear reaction among multimers lead to the production of a new species in

later layers without destruction of multimers (see Methods for details). Importantly, such
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feedforward networks have the linear moment closure property, and thus any of their

moments can be calculated using Eq (15) recursively even in the presence of nonlinear reac-

tions [60]. Our algorithm, FEEDME, uses such a property to calculate moments of interest.

In particular, the stationary conditional moments of fast species given slow species can be

derived, which allows for accurate reductions of multiscale stochastic systems.

Here, we illustrate this reduction process using an example of multiscale nonlinear feedfor-

ward network (Fig 1). This system consists of 4 species and 8 reactions (Table 1): S1 is constitu-

tively produced. S1, a heterodimer consisting of S1 and S2, and a heterodimer consisting of S1

and S3 promote the production of S2, S3, and S4, respectively. Si degrades with its own rate. Pro-

pensity functions are derived based on mass action kinetics by defining Xi(t) be the abundance

of the species Si at time t (Table 1).

As reactions involving the synthesis and degradation of S1 and S3 are faster than

other reactions (Fig 1 and Table 1), S1 and S3 are fast species that rapidly fluctuate and

quickly equilibrate to their stationary distribution conditioned on the slow species. Thus,

Fig 1. Model diagram of the feedforward network of the full model and the reduced model. In the

diagram of the full model (left), red arrows indicate fast reactions. In the diagram of the reduced model (right),

which consists of slow species S2 and S4 and slow reactions, hS1i and hS1S3i represent conditional moments,

hX1|X2, X4i and hX1X3|X2, X4i, respectively. In both of the diagrams, degradation reactions are not shown, for

simplicity.

https://doi.org/10.1371/journal.pcbi.1005571.g001

Table 1. Reactions and propensity functions in the feedforward network (Fig 1).

Reactions Propensity functions

!
a1 S1

α1Ω

S1!
b1 β1X1

S1!
a2 S1 þ S2

α2X1

S2!
b2 β2X2

S1 þ S2!
a3 S1 þ S2 þ S3

a3

O
X1X2

S3!
b3 β3X3

S1 þ S3!
a4 S1 þ S3 þ S4

a4

O
X1X3

S4!
b4 β4X4

Here, α1Ω = 2/�m−1, α3/Ω = 2/� m−1, α2 = 2 m−1, α4/Ω = 2 m−1, β1 = β3 = 1/� m−1, and β2 = β4 = 1 m−1. Ω
represents the volume of the system and �� 1.

https://doi.org/10.1371/journal.pcbi.1005571.t001
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the propensity functions of slow reactions involving fast species, α2X1 and (α4/O)X1X3,

rapidly equilibrate to their stationary conditional expectation values, α2hX1|X2, X4i and

(α4/O) hX1X3|X2, X4i, respectively. Our algorithm, FEEDME, allows for calculating these

moments in terms of slow species:

a2hX1jX2;X4i ¼
a1a2O

b1

; ð1Þ

a4=OhX1X3jX2;X4i ¼ a4X2

a2
1
a3

b
2

1
b3

þ
a1a3

ðb1 þ b3Þb1O

� �

: ð2Þ

By substituting these QSS for the original propensity functions, we can derive a reduced sys-

tem, which solely consists of slow species S2 and S4 (Fig 1). We refer to this reduced model as

the EMB model (exact-moment based model) for this example. When such exact moments

cannot be calculated, an alternative popular approach uses the deterministically derived QSS

under the moment closure assumption (hXiXji = hXiihXji) [8, 21–23] as follows:

a4=O1hX1X3jX2;X4i � a4=OhX1jX2;X4ihX3jX2;X4i ¼ a4X2

a2
1
a3

b
2

1
b3

� �

: ð3Þ

Note that this approximate moment is the limit of the exact moment Eq (2) as O!1 (i.e.

as one gets closer to the deterministic system). We refer to the reduced model based on

this approximate moment as the AMB model (approximate-moment based model) for this

example.

We compared the stochastic simulations of the full model with � = 0.01, the EMB model

and the AMB model. The mean and standard deviation of simulated trajectories of the full

model is accurately captured by the EMB model (Fig 2A), but not by the AMB model (Fig 2B).

In addition, as � decreases, both the mean and the standard deviation of S4 at the steady state

of the full model approach those of the EMB model (Fig 2C), but not those of the AMB model

(Fig 2D). This indicates that the stochastic reduction based on exact moments is accurate as

long as there is a large enough timescale separation. This is consistent with previous theoretical

studies [8, 26]. Furthermore, note that as � decreases, not only does the accuracy of the EMB

model increase, but also a longer computation time would be required for the simulation of

the full model, rendering even more clear the benefit of our reduction. Taken together, these

results provide evidence that our algorithm, FEEDME, allows for accurate stochastic reduc-

tions for mutli-scale feedforward networks.

Next, we illustrate how a key property of the original full model can be revealed only by the

EMB model, but not by the AMB model. In the feedforward network that we study, a critical

issue is understanding the relationship between input molecules (S1) and downstream output

molecules (S4). Suppose that the production rate (α1) and the degradation rate (β1) of S1

change proportionally, which ensures that the average copy number of S1 is invariant. A natu-

ral question is: do the average copy number and the fluctuation level of S4 change? From

Eq (3), the stationary average number of S4 in the AMB model can be derived as follows:

hX4i ¼
a4

b4

hX2i
a2

1
a3

b
2

1
b3

� �

¼ O
a1

b1

� �3
a2a3a4

b2b3b4

; ð4Þ

which predicts that hX4i does not change as long as
a1

b1
and thus hX1i ¼ O

a1

b1
are maintained.

However, the stationary average number of S4 derived with the EMB model using Eq (2) leads

Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation
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to a different conclusion, namely:

hX4i ¼
a4

b4

hX2i
a2

1
a3

b
2

1
b3

þ
a1a3

ðb1 þ b3Þb1O

� �

¼ O
a1

b1

� �3
a2a3a4

b2b3b4

þ
a1

b1

� �2
a2a4

b2b4

a3

ðb1 þ b3Þ
; ð5Þ

which decreases even when α1 and β1 increase proportionally. This is consistent with the simu-

lation of the full model (Fig 2E). Furthermore, as, in contrast to the original full model, the

AMB and the EMB model are linear, the coefficient of variation of S4 in both the AMB and the

EMB model can be easily derived, and it is

1þ
hX4i

hX2i

1

1þ b2=b4

:

In the AMB model, hX4i does not change, as long as hX1i is maintained constant, and thus

the C.V. of S4 remains constant. On the other hand, the C.V. of S4 in the EMB model decreases

even when hX1i is maintained constant due to a proportional increase in its production and

degradation rate, a behavior which is also consistent with the full model (Fig 2F). Taken

together, these two observations show that EMB model, but not the AMB model, can accu-

rately capture an important feature of the original full model, namely that average copy num-

ber and fluctuation level of the output molecule (e.g. S4) in the feedforward loop depends both

Fig 2. EMB model provides much more accurate approximation of the original feedforward network

model than AMB model. (A-B) Trajectories of original full model with � = 0.01 and the EMB model (A) and the

AMB model (B). The lines and colored ranges indicate the mean of X4 and standard deviations of X4 from their

mean, respectively. Histograms represent distributions of X4 at the steady state. Here, X1(0) = α1/β1, X2(0) =

X3(0) = X4(0) = 0. Here, 104 stochastic simulations were performed. (C-D) Mean (C) and standard deviation

(D) of stationary distribution (t = 8) simulated with the full model with varying � = 0.1, 0.05, 0.01, the EMB

model and the AMB model. (E-F) As β1 = α1 increases, the EMB model, but not the AMB model, predicts that

the mean and the CV of S4 decrease, which is consistent with the simulations of the original full model.

https://doi.org/10.1371/journal.pcbi.1005571.g002
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on the timescale of the input molecule (i.e. S1) and on its average level. This illustrates the

importance of the accurate model reduction and its advantage over the original full model.

Reduction of a multiscale system with an embedded fast feedforward

subnetwork

Previously, we illustrated how our algorithm, FEEDME can be used to derive the accurate

reduction of the multiscale feedforward network (Fig 1). In fact, FEEDME can be used to

obtain an accurate reduction of more general BRNs. For the reduction, calculation of all the

moments is not necessary, and knowing the conditional moments of certain fast species

involved with the slow propensity functions is enough. Thus, as long as the fast subnetwork of

the BRN is a feedforward network, the conditional moments of the fast species can be derived

with the FEEDME algorithm, and thus an accurate reduction is possible.

We illustrate this case using an example of a transcriptional negative feedback loop with a

dimerization (Fig 3). This system consists of 16 reactions including fast feedforward reactions

and slow reversible bindings (Table 2): active gene (G) promotes the transcription of mRNA

(M), which is then translated to the protein (P). This protein acts as an enzyme which triggers

the production of repressor (R) via a fast feedforward network, which involves fast species, Q,

E and F. Specifically, E functions as a cofactor for the protein P to be able to promote the pro-

duction of Q. Similarly, F also functions as a cofactor for the protein Q so that Q can promote

the production of repressor protein R. Then, dimerized R: R reversibly binds with G to form

repressed DNA complex (GR).

Among slow reactions, dimerization of R to R: R depends on the state of fast species

R. Thus, we need to derive the QSS of the propensity function for the dimerization,

kf2
O
hXRðXR � 1ÞjXPi. This QSS can be derived using the FEEDME algorithm since all fast

Fig 3. Model diagram of a transcriptional negative feedback loop with a fast feedfoward subnetwork

and a slow dimerization. In the diagram of the full model (top), red arrows indicate fast reactions. Note that

the subnetwork consisting of the fast species E, Q, F, and R with fast reactions (red arrows) is feedforward. In

the diagram of the reduced model (bottom), which solely consists of slow species and slow reactions,

hR(R − 1)i represents a conditional moment, hXR(XR − 1)|XPi. In both of the diagrams, all degradation

reactions are not shown, for simplicity.

https://doi.org/10.1371/journal.pcbi.1005571.g003
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species, E, Q, F and R constitute a feedforward network (Fig 3):

kf2

O
hXRðXR � 1ÞjXPi ¼ kf2

XP
XP

O
þ

1

O

7XP=Oþ 4

8
þ

1

O
2

2XP=Oþ 3

9

� �

ð6Þ

By substituting this QSS of the propensity function into the original propensity function for

the dimerization, we can derive a reduced model (Fig 3 below), which is referred to as the

EMB model for this example. On the other hand, the following approximate moment under

the moment closure assumption (hXiXji = hXiihXji) can be used:

kf2

O
hXRðXR � 1ÞjXPi �

kf2

O
hXRjXPihXR � 1jXPi ¼ kf2

XP
XP � 1

O

� �

: ð7Þ

The reduced model, where the approximate moment is substituted by
kf2
O
hXRðXR � 1ÞjXPi, is

referred to as the AMB model for this example. Again, when O!1 and thus the system

becomes closer to the deterministic system, the approximate moment Eq (7) and the exact

moment Eq (6) become equivalent.

When O is instead small, so that the system has large fluctuations, the AMB model fails to

approximate the full model with � = 0.01 (Fig 4B). On the other hand, the EMB model provides

an accurate approximation (Fig 4A). Specifically, the mean and standard deviation of trajecto-

ries of the full model are accurately captured by the EMB model, but not by the AMB model.

Furthermore, as � decreases so that the feedforward subnetwork becomes faster, the mean and

standard deviation of the slow species R: R at the steady state of the full model converge to

those of the EMB model, but not to those of the AMB model (Fig 4C and 4D). Our example

Table 2. Reactions and propensity functions in the transcriptional negative feedback loop with a

dimerization (Fig 3).

Reactions Propensity functions

Gþ R : R � !
kf1 GR

kf1
O
XGXR:R

GR � !
kb1 Gþ R : R kb1

XGR

G � !
aM GþM αMXG

M � !
bM βMXM

M � !
aP Mþ P αPXM

P � !
bP βPXP

� !
aE E αEΩ

E � !
bE βEXE

E þ P � !
aQ E þ PþQ

aQ
O
XEXP

Q � !
bQ βQXQ

� !
aF F αFΩ

F � !
bF βFXF

Qþ F � !
aR Qþ F þ R aR

O
XQXF

R � !
bR βRXR

Rþ R � !
kf2 R : R

kf2
O
XRðXR � 1Þ

R : R � !
bR:R Rþ R βR: RXR: R

Here aM ¼ aP ¼ bM ¼ bP ¼
kf1
O
¼ kb1

¼
kf2
O
¼ kb2

¼ 1 m� 1 and

aEO ¼ bE ¼
aQ
O
¼ bQ ¼ aFO ¼ bF ¼

aR
O
¼ bR ¼

1

�
m� 1. Ω represents the volume of the system and �� 1.

https://doi.org/10.1371/journal.pcbi.1005571.t002
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example illustrates how FEEDME can be used to reduce a multiscale BRN whose fast subnet-

work is feedforward. In fact, FEEDME can be used for the reduction of more general BRNs as

long as their fast subnetwork has a linear moment closure property and thus the QSS can be

calculated using Eq (15) recursively.

Reduction of a stochastic system with a fast reversible binding

Next, we consider a different class of multiscale BRNs, those whose fast subnetwork is a com-

plex balanced network. When a network follows mass action kinetics, the network is complex

balanced if it is weakly reversible and its deficiency is zero. Weak reversibility means that if

there is a path from a given component to another, there is also a reverse (possibly different)

path back from the second component to the first one. The deficiency is an integer calculated

as the number of components or nodes minus the number of connected components, minus

the rank of stoichiometry matrix (see Methods for details). Complex balanced networks

can include fast reversible bindings, which are not allowed in the definition of feedforward

networks.

We next study multiscale BRNs whose fast subnetwork is complex balanced. This fast sub-

network can be accurately reduced using a formula for stationary moments given later, Eq

(19), which is valid even in the presence of conservation laws (see Methods for details) [61,

62]. We illustrate this with an example of a transcriptional negative feedback loop (Fig 5 and

Table 3), where the transcription of mRNA (M) occurs proportionally to active promoter (DA)

and then M is translated into protein (P), which promotes the production of the repressor (R).

The repressor reversibly binds with DA to form repressed promoter complex (DR), thus com-

pleting a transcriptional negative feedback loop. Since this model can generate oscillations, it

has been widely used to study circadian rhythms [66–70].

When binding and unbinding reactions are fast, DA, DR and R become fast species. Among

slow reactions, the transcription depends on the states of fast species DA, and thus we need to

derive the QSS of the propensity function, aMXDA
for the reduction. The exact QSS can be

Fig 4. The EMB model provides more accurate approximation of the transcriptional negative

feedback loop model than AMB model. (A-B) Trajectories of the full model with � = 0.01 and the EMB model

(A) and the AMB model (B). The lines and colored ranges represent E(XR: R) and E(XR: R) ± SD(XR: R)/2 of 104

stochastic simulations. Here Xi(0) = 0. (C-D) Mean (C) and standard deviation (D) of steady state distribution

of the full model with varying � = 0.1, 0.05, 0.01, the EMB model and the AMB model.

https://doi.org/10.1371/journal.pcbi.1005571.g004
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derived since the subnetwork of fast species with a following fast reversible binding is a com-

plex balanced network as described in Eq (S1) (see S1 Appendix for details):

DA þ RÐ
kf

kb
DR: ð8Þ

Note that there is a conservation law as the total number of promoter (XDT
:¼ XDA

þ XDR
) is

conserved. Furthermore, the total repressor species (XT :¼ XR þ XDR
) is a slow species as it is

not affected by the fast binding and unbinding reactions (i.e. the fast binding and unbinding

reactions in R and DR are canceled). As T evolves slowly, although T is not constant on a slow

timescale, it can be treated as constant or conserved on a fast timescale. Thus, on a fast time-

scale when slow species are treated as constant, the complex balanced network Eq (8) obeys

two conservation laws: DT = DA + DR and T = R + DR. For such a complex balanced network

with conservations, we can derive the stationary conditional moment of any species using Eq

(19). In particular, when p ¼ XDT
¼ 10 and n = XT, our code based on Eq (19) and Eq (S3)

derives hXDA
jXTi as follows (see S1 Appendix for details).

hXDA
jXTi ¼ f ðXTÞ=gðXTÞ:

f ðXTÞ ¼ 10þ 2:58274 � 1016XT � 7:04208 � 1016XT
2 þ 7:62519 � 1016XT

3

� 4:36905 � 1016XT
4 þ 1:46859 � 1016XT

5 � 2:99466 � 1015XT
6

þ3:64482 � 1014XT
7 � 2:43525 � 1013XT

8 þ 6:87195 � 1011XT
9;

gðXTÞ ¼ 1 � 3:72234 � 1017XT þ 1:0559 � 1018XT
2 � 1:21071 � 1018XT

3

þ7:50742 � 1017XT
4 � 2:81072 � 1017XT

5 þ 6:65138 � 1016XT
6

� 1:00206 � 1016XT
7 þ 9:32029 � 1014XT

8 � 4:87908 � 1013XT
9

þ1:09951 � 1012XT
10

By substituting this QSS of the propensity function into aMXDA
, we can derive a reduced

model (Fig 5), which is referred to as the EMB model for this example. On the other hand, pre-

vious studies used the deterministic QSS as an approximation [48, 49]:

hXDA
jXTi�

ðXDT
� XT � O=K þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXDT
� XT � O=KÞ2 þ 4O=K

q

Þ

2

:

By substituting this approximating moment for XDA
, we can derive another reduced model,

which is referred to as the AMB model for this example. The deterministic QSS used in the

Fig 5. Model diagram of a genetic oscillator with a fast reversible binding. In the diagram of the full

model (left), red arrows indicate the fast reversible binding and unbinding reactions. Note that the fast species

R, DA and their complex form a complex balanced network. In the diagram of the reduced model (right), which

consists solely of slow species and reactions, hDAi represents the conditional moment hXDA jXTi, where

XT ¼ XR þ XDR . In both of the diagrams, degradation reactions are not shown, for simplicity.

https://doi.org/10.1371/journal.pcbi.1005571.g005
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AMB model is derived with the total QSSA, which uses the new slow variable (T) to improve

the accuracy of the reduction. The stochastic reduction based on the total QSSA has been

known to provide more accurate approximation for the stochastic simulations of the full

model than the model based on the standard QSSA (see [22, 23, 48, 49] for details). However,

the EMB model provides an even more accurate approximation (Fig 6A and 6B). Specifically,

both Fourier transforms and the distribution of periods of simulated trajectories with the full

model is more accurately captured by the EMB model than the AMB model. The mean and

standard deviation of the periods of the full model approach to those of the EMB model, but

not the AMB model as the reversible binding becomes faster (i.e. � decreases) (Fig 6C and 6D).

Table 3. Reactions and propensity functions in the genetic oscillator (Fig 5).

Reactions Propensity functions

DA � !
aM DA þM aMXDA

M � !
bM

� βMXM

M � !
aP Mþ P αPXM

P � !
bP
� βPXP

P � !
aR Pþ R αRXP

R � !
bR

� βRXR

DR � !
bR DA bRXDR

DA þ R � !
kf DR

kf
O
XDAXR

DR � !
kb DA þ R kbXDR

Here αM = 10 h−1 and αP = αR = βM = βP = βR = 1 h−1.
kf
O
¼ K

O

1

�
h� 1 and kb ¼

1

�
h� 1. K

O
¼ 103

625
is an inverse of a

dissociation constant whose unit is the number of molecules. Total number of promoter (XD
T

:¼ XDA þ XDR ) is

10. Ω represents the volume of the system and �� 1.

https://doi.org/10.1371/journal.pcbi.1005571.t003

Fig 6. Period distributions of full and reduced models. (A) Fourier transforms of stochastic trajectories

with about 104 cycles of the EMB model, the AMB model and the full model with � = 0.1. (B) After partitioning

the trajectory of 104 cycles into 2�103 trajectories so that each trajectory consists of about 5 cycles, the

autocorrelation of each trajectory is calculated to estimate the period of each trajectory. The period distribution

of 2�103 trajectories of the EMB model (above) better captures that of the full model with � = 0.1 than that of the

AMB model (bottom). (C-D) The mean and the standard deviation of period distributions of the EMB model,

the AMB model, and the full model with � = 10, 1, 0.1.

https://doi.org/10.1371/journal.pcbi.1005571.g006
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In summary, when fast species form a complex balanced network with conservation laws, we

can find the stationary conditional moments of fast species using Eq (19) and thus derive a

more accurate reduction of the stochastic system.

Reduction of a stochastic system with a coupled fast competitive

bindings

Here we consider another multiscale stochastic system, a transcriptional positive feedback

loop with decoys (Fig 7A and Table 4) whose fast timescale subnetwork consists of coupled

competitive reversible bindings and is complex balanced. This was developed to investigate the

influence of decoys on gene expression noise [71]. In the model, transcription factors (P) can

bind to both a promoter site (G0) and N identical nonregulatory decoy binding sites (D).

When P is bound to the promoter site, the gene becomes active (GA) and thus the transcrip-

tional rate increases. While decoy is assumed to protect the transcription factor from degrada-

tion in the original model [71], here we assume that the transcriptional factor degrades equally

regardless of its binding status (Table 4).

Fig 7. Model diagram of a positive feedback loop with decoys. (A) In the diagram of the full model, red

arrows indicate the fast reversible binding and unbinding reactions between transcriptional factor (P) and

either a regulatory promoter site (A) or one of N identical nonregulatory decoy binding sites (D). These two

fast reversible bindings form a complex balanced network with species P, G0, GA, D, and P: D with

conservations, XG0
þ XG1

¼ 1 and XD + XP: D = N. (B) The reduced model consists solely of a slow species,

which is the total number of transcription factors T (XT ¼ XP þ XGA þ XP:D). hGAi represents stationary

conditional moment, hXGA jXTi. In both of the diagrams (A and B), degradation reactions are not shown, for

simplicity. (C) The exact moment hXGA jXTi, which is used for the EMB model and its approximation, which is

used for the AMB model. When XT < N = 10, they show a discrepancy.

https://doi.org/10.1371/journal.pcbi.1005571.g007
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Because reversible bindings between P and G0 or D are faster than other reactions, the fol-

lowing competitive bindings form the fast timescale subnetwork.

G0 þ PÐ
kfA

kbA
GA

Dþ PÐ
kfD

kbD
D : P

This subnetwork is a complex balanced network as described in Eq (S4) in S1 Appendix. This

network obeys two conservation laws: total gene number (XG0
þ XGA

) and total decoy sites

(XD + XD: P) are 1 and 10, respectively. Furthermore, total transcriptional factors (T: = P + GA +

D: P) slowly evolve as they are not affected by fast binding and unbinding reactions. Thus, on a

fast timescale, T can be treated as a constant or conserved. Since this is a complex balanced net-

work, we can use Eq (19) to derive any of the stationary moments, subject to the three conser-

vations. In particular, Eq (S6) in S1 Appendix with nA = XT and nC = XD + XD: P = 10 yields

hXGA
jXTi, which can be calculated with the code provided in this work (Fig 7C). This derives

the exact QSS of slow propensity functions, aPXGA
and a0XG0

¼ a0ð1 � XGA
Þ, describing the

production of the slow species T: aAhXGA
jXTi and a0ð1 � hXGA

jXTiÞ. By using the exact QSS,

the reduced model, which is solely determined by the slow species T can be derived (Fig 7B).

This reduced model is referred to as the EMB model for this example. On the other hand, the

previous study [71] used the following approximate moment:

hXGA
jXTi �

ðXT � KD=O � N þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXT � KD=O � NÞ2 þ 4KDXT=O

q

Þ

2KA=Oþ ðXT � KD=O � N þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXT � KD=O � NÞ2 þ 4KDXT=O

q

Þ

; ð9Þ

where KD ¼ kbD
=kfD

and KA ¼ kbA
=kfA

. The reduced model based on this approximate moment

is referred to as the AMB model for this example. The previous study found that the accuracy

of the AMB model decreases as the decoy binding becomes tighter (i.e. smaller KD) [71]. Thus,

Table 4. Reactions and propensity functions in the positive feedback loop with decoys (Fig 7A).

Reactions Propensity functions

G0 � !
a0 G0 þ P a0XG0

GA � !
aA GA þ P aAXGA

G0 þ P � !
kfA GA

kfA
O
XG0
XP

GA � !
kbA G0 þ P

kbAXGA

Dþ P � !
kfD D : P

kfD
O
XDXP

D : P � !
kbD Dþ P kbAXD:P

P � !
bP
� βPXP

D : P � !
bP D βPXD: P

GA � !
bP G0

bPXGA

Here α0 = 4 m−1, αA = 10 m−1 (Fig 8A and 8B) or α0 = 8 m−1, αA = 20 m−1 (Fig 8C and 8D).
kfA
O
¼ 2000 m� 1,

kbA ¼ 100m� 1,
kfD
O
¼ 10000 m� 1, kbD ¼ 100m� 1, βP = 0.8 m−1. Total number of promoter (XG0

þ XGA ) is 1. Total

number of decoy sites (N: = XD + XD: P) is 10. Ω represents the volume of the system.

https://doi.org/10.1371/journal.pcbi.1005571.t004
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we investigated whether the EMB model can provide an accurate approximation even when

the KD is small. Despite the small value of KD, the EMB model provides an accurate approxima-

tion in contrast to the AMB model (Fig 8A and 8B). This describes that the inaccuracy of

the AMB model when KD is small stems from the inaccuracy of the approximate moment Eq

(9). Indeed, when we compared the exact moment and the approximate moment (Fig 7C), we

characterized the discrepancy between them. In particular, the discrepancy mainly occurs

when T is less than the total number of decoy sites (i.e. 10). Thus, we hypothesized that the

accuracy of the AMB model increases as T increases. To investigate this, we increased the tran-

scription rates αA and α0 so that overall level of T increases. In this case, the accuracy of the

AMB model considerably increases (Fig 8C and 8D). This indicates that by comparing the

exact moment and the approximate moment, we can find validity conditions for the AMB

model and thus when the stochastic analysis based on the approximation Eq (9) in the previous

study [71] is valid (e.g. when T� N).

Discussion

Stochastic multiscale BRNs can be reduced by replacing the fast species with their QSS, which

accelerates stochastic simulations. For the reduction, approximate QSS of fast species are fre-

quently used in the presence of nonlinear reactions [8, 14–27]. However, the validity condi-

tions for such approximations have not been fully understood or are often difficult to test [45–

50]. In this work, we have demonstrated that a fairly large class of nonlinear BRNs can be

reduced by deriving the exact QSS of fast species rather than the approximate QSS even in the

presence of nonlinear reactions. Specifically, when fast species constitute either a feedforward

network or a complex balanced network with conservations, their exact QSS can be derived

using our computational packages based on the Eq (15), Eq (S3), or Eq (S6) (S1 Appendix) [60,

62]. Reduced models in this way accurately approximate the stochastic dynamics of the origi-

nal full models as long as disparate timescales exist (Figs 2, 4, 6 and 8).

As complex balanced networks with conservations include various types of reversible bind-

ings, they are frequently observed as a fast subnetwork of gene regulatory networks where fast

Fig 8. Trajectories of the full model, the EMB model and the AMB model of the positive feedback loop

with decoys. (A-B) The lines and colored ranges represent E(XT) and E(XT) ± SD(XT)/2 of 104 stochastic

simulations when αA = 10 and α0 = 4. Here Xi(0) = 0. (C-D) When αA = 20 and α0 = 8, so that overall XT is

greater than the total number of decoy sites (i.e N = 10), the AMB model also becomes accurate.

https://doi.org/10.1371/journal.pcbi.1005571.g008
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bindings occur between molecules such as transcriptional factors and RNA polymerase and

regulatory or non-regulatory sites of genes [57]. Complex balanced networks are also embed-

ded in many signalling networks such as receptor-ligand signal pathways in response to vari-

ous stimuli such as heat [26, 72], inflammation [73], and blood glucose [74]. Furthermore, a

feedforward network is one of fundamental motifs of gene and protein regulatory networks

[64, 65]. Interestingly, a feedforward network is also observed in the networks of neuronal

cells where stochastic multiscale dynamics of ion channels exist [75–78]. Extension of our

work to such multiscale stochastic neuronal networks would be an interesting direction for

future work. Another interesting future work would be to investigate other classes of nonlinear

BRNs whose exact moments can be derived. In particular, our computational package,

FEEDME can be used to derive the exact moment for any BRNs which have linear moment

closure property as well as the feedforward network.

Various approximation schemes for the QSS of fast species have been usually tested by com-

paring the simulated distributions or trajectories of a reduced model and an original full

model [8, 14–27]. Such a test is computationally expensive because it requires stochastic simu-

lations of a multiscale full model for many times. Such high computational cost is prohibitive

when testing the accuracy of the approximation for complex examples or a wide range of

parameters. On the other hand, if an exact QSS is known, the accuracy of the approximation

can be tested easily by comparing the exact QSS and the approximate QSS as seen in Fig 7C.

Furthermore, in this way, we can understand more intuitively under which conditions the

approximation becomes accurate or not (Fig 8). Thus, non-linear feedforward networks or

complex balanced networks can be an effective test platform for various approximate schemes

such as normal or log-normal moment closure [52].

Methods

Chemical master equation

A BRN consists of a finite set of reactions R ¼ fRj; j ¼ 1; 2; . . . ;mg acting on species,

S ¼ fSi; i ¼ 1; 2; . . . ng. By defining

SiðtÞ ¼ the number of species Si at time t

we can denote the probability that the state of the system, S = (S1, . . ., Sn)0 equals

k ¼ ðk1; . . . ; knÞ 2 Z
n
�0

at t as

pkðtÞ ¼ P SðtÞ ¼ k½ �:

For reactions,

Rj :
Xn

i¼1

aijSi � !
Xn

i¼1

bijSi ; j 2 f1; 2; . . . ;mg; ð10Þ

where aij and bij are stoichiometry coefficients, their stochastic behaviors are described by

propensity functions:

rj : Zn
�0
! R�0; j ¼ 1; . . . ;m; with rjð0Þ ¼ 0

Specifically, ρj(k1, . . ., kn)dt is the probability that reaction Rj takes place, in a short interval

of length dt, provided that the complete state was S = (k1, . . ., kn) at the beginning of the

interval. Mass action kinetics based on collision theory assumes that the propensity function

is proportional to the number of ways in which species can combine to form the jth source

complex (see [79]) when temperature and volume are constant, and the system is well-
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mixed:

rjðkÞ ¼ kj

Yn

i¼1

ki
aij

� �
j ¼ 1; . . .;m: ð11Þ

where ð
ki
aij
Þ is the combinatorial number and is zero by definition when any ki < aij. The

coefficients κj are non-negative “kinetic constants” represents quantities related to the vol-

ume, shapes of the reactants, chemical and physical information, and temperature. In par-

ticular, kj ¼
k0j

O

Pn
i¼1

aij � 1 when k0j is macroscopic reaction rate in terms of concentration and O

is the volume of system.

Using the propensity functions, we can derive a Chemical Master Equation (CME), which is

the differential form of the Chapman-Kolmogorov forward equation for pk(t):

dpk

dt
¼
Xm

j¼1

rjðk � gjÞ pk� gj
�
Xm

j¼1

rjðkÞ pk ; k 2 Zn
�0 ð12Þ

where γj is a vector whose ith component is bji−aji, which represents the net change in the

number of Si each time that Rj occurs. Note that the propensity function ρj has the property

that ρj(k−γj) = 0 unless k� γj (coordinatewise inequality). There is one equation for each

k 2 Zn
�0

, so this is an infinite system of linked equations. When discussing the CME, we will

assume that an initial probability vector p(0) has been specified, and that there is a unique solu-

tion of Eq (12) defined for all t� 0. We do not discuss existence and uniqueness results, which

are subtle. See [80] for details.

Feedforward networks

Derivatives of moments are expressed as linear combinations of moments. Here, we

review how to derive equations for derivatives of moments with arbitrary orders using simple

algebra of polynomials. First, note that each rate ρj(k) as in Eq (11) can be expanded into a

polynomial in which each variable ki has an exponent less or equal to aij for suitably redefined

coefficients kcj
’s:

rjðkÞ ¼
X

cj�aj

kcj
kcj ;

ð13Þ

where kcj ¼ kc1j
1 . . . kcnj

n and “�” is understood coordinatewise. For a monomial function

M : Zn
�0
! R:

MðkÞ ¼ ku ¼ ku1
1 ku2

2 . . . kun
n ;

the expectation of the random variable M(S) is

E MðSðtÞÞ½ � ¼
X

k2Zn
�0

pkðtÞMðkÞ ;

since pkðtÞ ¼ P ½SðtÞ ¼ k�. After taking the derivative of this equation and substituting CME

Eq (12) to
dpk
dt , the following can be derived (see [81] for more details):

d
dt
E MðSðtÞÞ½ � ¼

Xm

j¼1

E rjðSðtÞÞDgj;M
ðSðtÞÞ

h i
; ð14Þ
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where Δγj, M(k): = M(k + γj) − M(k). For instance,

Dð1;0Þ;k2
1
k2
ðk1; k2Þ ¼ ðk1 þ 1Þ

2k2 � k2
1
k2 ¼ 2k1k2 þ k2:

Note that k2
1
k2 is canceled. Such cancelation in M(k + γj)−M(k) leads to

Dgj;M
ðkÞ ¼

X

n2Iðu;jÞ

dnk
n

for appropriate coefficients dν, where

Iðu; jÞ :¼ n 2 Zn
�0

n ¼ u � m; u � m 6¼ 0

mi ¼ 0 for each i such that gij ¼ 0

�
�
�
�
�

( )

:

Combining this with Eq (13), the derivative of the moment of order u = (u1, . . ., un) can be

described as a linear combination of other moments (ν + cj):

d
dt
E SðtÞu½ � ¼

Xm

j¼1

X

cj�aj

X

n2Iðu;jÞ

dnkcj
E SðtÞnþcj
� �

: ð15Þ

To solve this equation, we need to know all E½SðtÞnþcj �, which typically results in an infinite

set of coupled linear ordinary differential equations of moments. Often, for given a particular

moment of order u of interest, there is a finite set of moments, including the desired one, that

satisfies a finite set of differential equations (i.e. linear moment closure). Specifically, a given

moment of order u is under linear moment closure when there exist x(t) = {u1, . . ., uN}, where

u1 = u, and A 2 RN�N such that _xðtÞ ¼ AxðtÞ for all t� 0. The matrix A can be identified

using Eq (15) recursively. It is well known that if all reactions have order 0 or 1, any moments

are under a linear moment closure. Recent work found that such linear moment closure can

be obtained for more general class of models such as nonlinear feedforward networks or some

non-feedforward networks with conservations laws [60].

Linear moment closure property of feedforward network. A BRN is a feedforward net-
work if its n species can be partitioned into p layers, in such a way that each reaction whose

order is higher than one and involves species in layer π must have the form:

ai1 j
Si1
þ . . . aiqj

Siq
� ! ai1 j

Si1
þ . . . aiqj

Siq
þ biqþ1j

Siqþ1
þ . . . biqþq0 j

Siqþq0

where all the species Si1
; . . . ; Siq

belong to layers having indices <π, and the species

Siqþ1
; . . . ; Siqþq0

are in layer π. In other words, multimers of species in “previous” layers can

“catalyze” the production of species in the given layer, but are not affected by these reac-

tions. This can be summarized by saying that for reactions at any given layer π, the only spe-

cies that appear as reactants in nonlinear reactions are those in layers <π and the only ones

that can change are those in layer π.

It was shown in [60] that given any desired moment u of the feedforward network, there is

a finite linear differential equation _xðtÞ ¼ AxðtÞ for a suitable set of N moments

xðtÞ :¼ E Su1ðtÞ½ �; . . . ;E SuN ðtÞ½ �ð Þ
0
;

which contains the moment u of interest. In practice, we simply compute Eq (15) starting

from a desired moment, then recursively apply the same rule to the moments newly appear-

ing in the right-hand side, and so forth until no new moments appear. The integer N at

which the system closes might be very large, but the procedure is guaranteed to stop. An esti-

mation of the integer N can be done based on the solution of a linear program whose
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structure depends on the network. This is discussed in detail in [60]. To help performing this

recursive calculation, we provide a computational package, FEEDME (FEEDforward

Moment Equations) in this work. Then, the stationary moments can be computed by simply

solving Ax = 0, which allows for the reduction of multi-scale feedforward network. For

instance, the example in Fig 3 requires, for the computation of the conditional second

moment of R, the following moments (N = 24): 0002, 0001, 0110, 0111, 0010, 0011, 0220,

1100, 1101, 0020, 0100, 0101, 0120, 0210, 1000, 1001, 1200, 1210, 0200, 1010, 1110, 2200,

2000, 2100, where we are using the convention that the string “ijkl” represents the expecta-

tion of Ei Fj Qk Rl. (The sample FEEDME.m script produces this output). The highest-order

moments have order 4 (0220 and 2200). We also remark that non-feedforward networks also

lead to the linear moment closure, provided that conservation laws ensure that variables

appearing on nonlinear reactions take only a finite set of possible values (see [60]). Note that

FEEDME can be used to derive moment equations for any BRNs who have linear moment

closure property as well as the feedforward network.

Complex balanced networks

Stationary moments of complex balanced networks with conservations. The large vol-

ume or thermodynamic limit of the CME is a deterministic system [82, 83]. For this associated

deterministic network, a steady state �l 2 Rn
>0

is complex-balanced if, for each individual com-

plex c 2 C, the rate at which c is produced is equal to the rate at which it is consumed; i.e., out-

flows of c and inflows of c balance out.

Foundational results in deterministic complex balanced network theory were obtained by

Horn, Jackson, and Feinberg (see [84, 85]). One of the key theorems is that a complex balanced

steady state exists if the network is weakly reversible and have deficiency zero. Weak reversibility

means that each connected component of the reaction graph must be strongly connected (i.e.

if there is a direct path from a component to another, the vice versa is true). The deficiency is

computed as nc − ℓ − r, where nc is the number of complexes, r is the rank of the matrix Γ, and

ℓ is the number of “linkage classes” (connected components of the reaction graph). One of the

most interesting features of this theorem is that no assumption needs to be made about the

kinetic constants (Of course, the steady state will depend on kinetic constants). We refer the

reader to the citations for details on deficiency theory, as well as, of interest in the present con-

text, several examples discussed in [62]. The theorems for weakly reversible deficiency zero

networks are actually far stronger, and they show that every possible steady state of the corre-

sponding deterministic network is complex balanced, and also that they are asymptotically sta-

ble relative to stoichiometry classes.

The connection between the deterministic complex balanced steady state and the solutions

of steady state CME (ssCME) was a beautiful observation made in [61], but can be traced to

the “nonlinear traffic equations” from queuing theory, described in Kelly’s textbook [86],

Chapter 8 (see also [87] for a discussion). Specifically, when the steady state vector, �l 2 Rn
>0

is

complex-balanced,

P ¼ pk ¼
�lk

k!
; k 2 Zn

�0

� �

ð16Þ

becomes a solution of the ssCME equations. The elements of P add up to:

X

k2Zn
�0

pk ¼
X1

k1¼0

. . .
X1

kn¼0

�lk
1

k1!
. . .

�lk
n

kn!
¼ Z :¼ e�l1 . . . e�ln
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Thus, normalizing by the total, fpk=Z; k 2 Z
n
�0
g is a probability distribution satisfying the

ssCME equations. The interpretation of this solution is that at the steady state, Si, i = 1, . . ., n
are n independent Poisson random variables with parameters �l i respectively, so

P S1 ¼ k1; S2 ¼ k2; . . . ; Sn ¼ kn½ � ¼ e� ð�l1þ...þ�lnÞ
�l

k1
1

k1!

�l
k2
2

k2!
. . .

�lkn
n

kn!
ð17Þ

for k� 0 (and zero otherwise). Next, let’s consider the case when the network satisfies addi-

tional stoichiometric constraints of the network (e.g. conservation laws):

Yj :¼
Xn

i¼1

ajiSi ¼ bj ; j ¼ 1; . . . ; q : ð18Þ

Observe that

P Y1 ¼ b1; . . . ;Yq ¼ bq

h i

¼
X

k1; . . . ; kn � 0

a11k1 þ . . .þ a1nkn ¼ b1; . . . ; aq1k1 þ . . .þ aqnkn ¼ bq

e� ð�l1þ...þ�lnÞ
�l

k1
1

k1!

�l
k2
2

k2!
. . .

�lkn
n

kn!

¼: e� ð�l1þ...þ�lnÞZðb1; . . . ; bqÞ ;

where Z(β1, . . ., βq) is referred to as the partition function. This leads to the following condi-

tional probability at the steady state if k satisfies the stochiometric constrains:

P S1 ¼ k1; S2 ¼ k2; . . . ; Sn ¼ kn jY1 ¼ b1; . . . ;Ym ¼ bm½ � ¼
1

Zðb1; . . . ; bqÞ

�l
k1
1

k1!

�l
k2
2

k2!
. . .

�lkn
n

kn!

and is zero otherwise. If our interest is in computing this conditional probability, the main

effort goes into computing the partition function, Z(β1, . . ., βq). The main contribution of the

paper [62] was to provide effective algorithms for the computation of Z(β1, . . ., βq) recursively

on the βi’s. A package for that purpose, called MVPoisson, was included with that paper.

Importantly, the stationary conditional moment of any species at the steady state can be

obtained using the following formula:

E½Sr
j ; jY� ¼ �l j �

Zðb1 � ra1j; b2 � ra2j; . . . ; bq � raqjÞ

Zðb1; . . . ; bqÞ
ð19Þ

when all βi� αij, and zero otherwise. Mixed moments can be also calculated using the partition

function [62]. Thus, as long as the participation can be calculated, any desired stationary

moments can be derived and thus model can be accurately reduced.

Summary of the procedure to derive stationary moments of complex balanced

networks.

Step 1. Check whether the given network is complex balanced, which can be done by checking

deficiency and weak reversibility of the network.

Step 2. Find all conservation laws, which can be done by finding the left nullspace of the stoi-

chiometry matrix.

Step 3. Choose any steady state vector �l 2 Rn>0 of the deterministic system describing the net-

work (usually a simple one).
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Step 4. For the choice of �l 2 Rn>0, derive the partition function with the stoichiometric con-

straints given by the conservation laws.

Step 5. Calculate the partition function by rewriting the sum of the partition function with

minimal indices using the conservation laws, using the algorithm described in S1 Appendix.

Alternatively, such calculation can be done by deriving the recursion relations among parti-

tion functions with the MVPoisson package [62].

Step 6. Calculate the desired stationary moments using Eq (19).

Detailed description of this procedure is illustrated in S1 Appendix using the examples of Figs

5 and 7.

Supporting information

S1 Appendix. Detailed illustration of the procedure to derive stationary moments of com-

plex balanced networks.

(PDF)
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Supplementary Methods

Stationary moments of a complex balanced network with a reversible
binding

We illustrate how to use (19) to calculate the conditional moment of complex balanced
networks with a simple example. Suppose that S1 and S2 can reversibly bind to form a
complex S3:

S1 + S2

κf−−⇀↽−−
κb

S3 . (S1)

Since the deficiency of this network is nc − `− r = 2− 1− 1 = 0 and it is reversible and
hence weakly reversible as well, we know that there is a complex-balanced equilibrium
and every equilibrium is complex balanced [1,2]. First, we can pick any potential steady
state, λ̄ = (1, 1,K), where K := κf/κb. Note that the choice of the steady state does
not affect the final result. There are two conservations: S1 + S3 = p and S2 + S3 = n,
where p and n are determined by the initial conditions. Thus, we have α11 = α13 = 1,
α22 = α23 = 1, α12 = α21 = 0, β1 = p, β2 = n in (18). Due to the conservations, all pk
should vanish except those corresponding to vectors k = (k1, k2, k3) such that
k1 + k3 = p and k2 + k3 = n. The set consisting of all such vectors is invariant, so

pk =

 λ̄k11
k1!

λ̄k22
k2!

λ̄k33
k3!

if k1 + k3 = p and k2 + k3 = n

0 otherwise

is a solution of the ssCME. In order to obtain a probability density, we must normalize
them by the sum of these pk’s (i.e. the partition function, Z(p, n)). Because of the two
conservations, the sum can be expressed in terms of just one of the indices, let us say k1.
Since k1 + k3 = p and k3 ≥ 0, necessarily k1 ≤ p. Since k2 = n− k3 = n+ k1 − p must
be non-negative, we also have the constraint k1 ≥ max{0, p− n}. Thus, pk is nonzero
only when k1 ∈ {max{0, p− n}, . . . , p} with k2 = n+ k1 − p, k3 = p− k1, and we have:

Z(p, n) =

p∑
`=max{0,p−n}

Kp−`

`! (n+ `− p)! (p− `)!
=

p∑
`=0

Kp−`

`!n!

(
n

n+ `− p

)
, (S2)
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where second equality comes from the convention that
(

n
n+`−p

)
:= n!

(n+`−p)! (p−`)! = 0 if

n+ `− p < 0 or ` < p− n.
In particular, we have;

Z(0, n) =
1

n!
,

Z(1, n) =
Kn+ 1

n!
,

Z(2, n) =
K2n2 +

(
−K2 + 2K

)
n+ 1

2n!
,

Z(3, n) =
K3n3 +

(
−3K3 + 3K2

)
n2 +

(
2K3 − 3K2 + 3K

)
n+ 1

3!n!

and so forth.
Another way to derive Z(p, n) is using the following recursion formula, which can be

obtained by using the computaional package MVPoisson from [3] based on
Wilf-Zeilberger theory:

Z(p, n+ 2) =
K

n+ 2
Z(p, n) +

−Kn+Kp−K + 1

n+ 2
Z(p, n+ 1) .

Note that by symmetry, a recursion on p can be found by exchanging n and p.
Furthermore, in terms of the Gauss’s hypergeometric function 2F0, we can also write:

Z(p, n) =
2F0(−n,−p; ; K)

p!n!

Since Z(p, n) is calculated, we can derive the conditional mean of the first species using
(19):

ϕ(p, n) := E[S1

∣∣S1 + S3 = p, S2 + S3 = n] =
Z(p− 1, n)

Z(p, n)
. (S3)

for p ≥ 1, n ≥ 0, and zero otherwise. For example,

ϕ(1, n) =
1

Kn+ 1

ϕ(2, n) =
2(Kn+ 1)

K2n2 + (−K2 + 2K)n+ 1
.

A Matlab code allowing for the calculation of (S3) is provided in this work.

A complex balanced network with competitive reversible bindings

Here, we apply (19) to calculate stationary conditional moments of another complex
balanced network, this one with two competing reversible bindings:

A+B
κfB−−⇀↽−−
κbB

D (S4)

A+ C
κfC−−⇀↽−−
κbC

E

Since the deficiency of this network is nc − `− r = 4− 2− 2 = 0 and it is weakly
reversible, there is a complex-balanced equilibrium and every equilibrium is complex
balanced [1, 2]. The steady states of the associated deterministic system satisfy
κfBAB = κbBD and κfCAC = κbCE, so one such equilibrium is

(1, 1, 1, L,K) (S5)
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where
L :=

κfB
κbB

, K :=
κfC
κbC

.

Note that following quantities are conserved:

A+D + E = nA

B +D = nB

C + E = nC

Subject to these constraints, we can pick the following partition function:

Z(nA, nB , nC) =
∑

(kA,kB ,kC ,kD,kE)∈S

1

kA!

1

kB !

1

kC !

LkD

kD!

KkE

kE !

where

S = {(kA, kB , kC , kD, kE) ≥ 0 | kA + kD + kE = nA, kB + kD = nB , kC + kE = nC} .

Thu sum can be re-written as a double sum because S is equal to the following set due
to the three conservations.

S ′ = {(kA, kB , kC , kD, kE) | 0 ≤ kD ≤ nB , 0 ≤ kE ≤ min{nA − kD, nC},
kA = nA − (kD + kE), kB = nB − kD, kC = nC − kE} .

Suppose that (kA, kB , kC , kD, kE) ∈ S so that ki ≥ 0 for all i. Then from
kB + kD = nB , we have that kD = nB − kB ≤ nB . Similarly, kC + kE = nC and
kA + kD + kE = nA lead to kE = nC − kC ≤ nC and kE ≤ nA − kA − kD ≤ nA − kD,
respectively, so that kE ≤ min{nA − kD, nC}. Thus (kA, kB , kC , kD, kE) ∈ S ′.
Conversely, suppose that (kA, kB , kC , kD, kE) ∈ S ′. We have that kD and kE are
non-negative. From kE ≤ nA − kD, it follows that kA = nA − (kD + kE) ≥ 0, from
kD ≤ nB , it follows kB = nB − kD ≥ 0, and from kE ≤ nC , we have kC = nC − kE ≥ 0.
Therefore, (kA, kB , kC , kD, kE) ∈ S. Since S = S ′, (kA, kB , kC , kD, kE) ∈ S can be
described with two indices (kD, kE) = (i, j) as
(kA, kB , kC , kD, kE) = (nA − i− j, nB − i, nC − j, i, j). The procedure used to find the
set S ′ is a special case of an algorithmic approach described in the following section.

Using the equality S = S ′, we can rewrite the partition function as follows :

Z(nA, nB , nC) =

nB∑
i=0

Li

(nB − i)! i!

min{nA−i,nC}∑
j=0

Kj

((nA − i)− j)! (nC − j)! j!

=

nB∑
i=0

Li

(nB − i)! i!
Q(nA − i, nC)

=
1

nA!

nB∑
i=0

(
nA
i

)
Li

(nB − i)!
Q̃(nA − i, nC) ,

where we may use either alternative expressions in terms of Q or Q̃ defined as follows:

Q(p, n) :=

min{p,n}∑
`=0

K`

(p− `)!(n− `)!`!
, Q̃(p, n) := p!Q(p, n) =

min{p,n}∑
`=0

(
p

`

)
K`

(n− `)!
.
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The sum in Q̃ is numerically better performed than that in Q when p is large and n is
small. With a change of indices ` = p− `, it can be shown that Q is the partition
function Z(p, n) given by formula (S2) for the single binding example

S1 + S2 −⇀↽− S3 ,

Thus, Q can also be written as

1

p!n!
2F0(−p,−n; ; K) ,

in terms of 2F0, Gauss’s hypergeometric function. When nB = 0, the partition function
becomes

Z(nA, 0, nC) = Q(nA, nC),

which is expected as when nB = 0 the species B can only be zero, so the system reduces
to the previous example, with S1 = A, S2 = C, and S3 = E. When nB = 1, we get

Z(nA, 1, nC) = Q(nA, nC) + LQ(nA − 1, nC).

Using this, the conditional mean of species D given the constraints (nA, 1, nC) is
derived by (19):

E[D |nA, 1, nC ] = L
Z(nA − 1, 0, nC)

Z(nA, 1, nC)
= L

Q(nA − 1, nC)

Q(nA, nC) + LQ(nA − 1, nC)
.

Using Q̃, we may write, alternatively,

Z(nA, 0, nC) =
1

nA!
Q̃(nA, nC)

Z(nA, 1, nC) =
1

nA!

(
Q̃(nA, nC) + LnA Q̃(nA − 1, nC)

)
and thus, cancelling the nA! terms, and using Z(nA − 1, 0, nC) = nA

nA! Q̃(nA − 1, nC),

E[D |nA, 1, nC ] = L
nA Q̃(nA − 1, nC)

Q̃(nA, nC) + LnA Q̃(nA − 1, nC)
(S6)

which is far better behaved numerically when nA is large. A Matlab code allowing for
the calculation of (S6) is provided in this work.

Rather than the direct summation, partition functions and thus stationary moments
can also be derived using the recursion method from [3]. For this example, a third-order
recursion for Z can be obtained by the algorithm MVPoisson from [3]. In order to
conveniently display the recurrences, let us use the following notations. We will write Z
instead of Z(b1, b2, b3), and a notation like Z+···+

i means a shift of the ith argument by
the indicated number of plus signs. For example, Z++

3 means Z(b1, b2, b3 + 2). There
are three recurrences of order three, as follows, for each of the three arguments:

(3 + b1)Z+++
1 = LKZ

− (LKb1 − LKb2 − LKb3 + LK − L−K)Z+
1

− (Lb1 − Lb2 +Kb1 −Kb3 + 2L+ 2K − 1)Z++
1

M(3 + b3)(b2 + 2)Z+++
2 = (L2 − LK)Z

+ (L2b1 − L2b2 − LKb1 + 2LKb2 + LKb3 − L2 + 3LK + L−K)Z+
2

+ (LKb1 b2 − LKb22 − LKb2 b3 + 2LKb1 − 4LKb2 − 2LKb3

− 4LK − Lb2 + 2Kb2 − 2L+ 4K)Z++
2
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L(3 + b3)(b3 + 2)Z+++
3 = (−LK +K2)Z

+ (−LKb1 + LKb2 + 2LKb3 +K2b1 −K2b3 + 3LK −K2 − L+K)Z+
3

+ (LKb1 b3 − LKb2 b3 − LKb32 + 2LKb1 − 2LKb2

− 4LKb3 − 4LK + 2Lb3 −Kb3 + 4L− 2K)Z++
3 .

The algorithm provides 27 initial conditions, the values of Z for the triples (1, 1, 1),
(1, 1, 2), (1, 1, 3), . . . (3, 3, 3) listed in that order. We display them as three matrices,
respectively shown below. The first matrix lists the elements of the form (1, ?, ?), the
next one (2, ?, ?), and the last one (3, ?, ?). In each matrix, elements are listed in the
usual matrix order: (?, i, j) is the (i, j)th entry of the matrix.

L+K + 1 L
2
+K + 1

2
L
6
+ K

2
+ 1

6

L+ K
2
+ 1

2
L
2
+ K

2
+ 1

4
L
6
+ K

4
+ 1

12

L
2
+ K

6
+ 1

6
L
4
+ K

6
+ 1

12
L
12

+ K
12

+ 1
36




(K + 1)L+K + 1
2

(K + 1
2
)L+ 1

2
K2 +K + 1

4
κ1

1
2
L2 + (K + 1)L+ K

2
+ 1

4
1
4
L2 + (K + 1

2
)L+ 1

4
K2 + K

2
+ 1

8
κ2

1
2
L2 + 1

2
(K + 1)L+ K

6
+ 1

12
1
4
L2 + 1

2
(K + 1

2
)L+ 1

12
K2 + K

6
+ 1

24
κ3




1
2
(2K + 1)L+ K

2
+ 1

6
γ1 γ2

1
2
(K + 1)L2 + 1

2
(2K + 1)L+ K

4
+ 1

12
β1 β2

1
6
L3 + 1

2
(K + 1)L2 + 1

4
(2K + 1)L+ K

12
+ 1

36
α1 α2


where we are using these notations:

κ1 = (
K

2
+

1

6
)L+

1

2
K2 +

K

2
+

1

12

κ2 =
1

12
L2 + (

K

2
+

1

6
)L+

1

4
K2 +

K

4
+

1

24

κ3 =
1

12
L2 +

1

2
(
K

2
+

1

6
)L+

1

12
K2 +

K

12
+

1

72

γ1 =
1

2
(K2 + 2K +

1

2
)L+

1

2
K2 +

K

2
+

1

12

γ2 =
1

2
(K2 +K +

1

6
)L+

1

6
K3 +

1

2
K2 +

K

4
+

1

36

β1 =
1

2
(K +

1

2
)L2 +

1

2
(K2 + 2K +

1

2
)L+

1

4
K2 +

K

4
+

1

24

β2 =
1

2
(
K

2
+

1

6
)L2 +

1

2
(K2 +K +

1

6
)L+

1

12
K3 +

1

4
K2 +

K

8
+

1

72

α1 =
1

12
L3 +

1

2
(K +

1

2
)L2 +

1

4
(K2 + 2K +

1

2
)L+

1

12
K2 +

K

12
+

1

72

α2 =
1

36
L3 +

1

2
(
K

2
+

1

6
)L2 +

1

4
(K2 +K +

1

6
)L+

1

36
K3 +

1

12
K2 +

K

24
+

1

216

so, reading-out entries from the matrices above we have, for example:

Z(1, 1, 1) = L+K+1 , Z(2, 2, 2) = L2/4+ (K+1/2)L+K2/4+K/2+1/8 , Z(3, 2, 3) = β2 .

Computing reduced sums

We remark that the reduced indices for the sums defining the partition function can be
obtained in a more systematic form, through the use of Smith canonical forms. Suppose
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that P is a matrix in Zq×n that represents q conservation laws on n species. For
instance,

P =

 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1


in the competitive binding example. We assume, as in this and other examples, that
q ≤ n and that the matrix P has full row rank q. Under this assumption, the integer
matrix P can be represented in Smith canonical form (see for example [4]), meaning
that there exist two unimodular (that is to say, invertible over the ring of integers)
matrices U ∈ Zq×q and V ∈ Zn×n so that

UPV = [∆ 0]

where ∆ = diag (δ1, . . . , δq), 0 is a q × (n− q) matrix of zeroes, and the δi’s are the
elementary divisors of the matrix P . The elementary divisors are unique up to sign
change, there are formulas that express then in terms of the minors of P (see [4] for
details). For example, for the above example, we have U = I (3× 3 identity matrix),

V =


1 0 0 −1 −1
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1


and δ1 = δ2 = δ = 3 = 1, so UPV = [I 0]. In general, if we wish to find non-negative
integer solutions of Ak = b, for a given (non-negative) integer vector b, we use that
UPV V −1k = Ub, so, using the indices ` = V −1k,

[∆ 0]` = Ub

which means that the last n− q indices ` are free, and the constraint V ` ≥ 0 is imposed
to insure non-negativity of k. For instance, in the competitive binding example, and
recalling that U = I and ∆ = I, the equation [∆ 0]` = Ub gives that `1 = b1, `2 = b2,
`3 = b3, and `4 = i, `5 = j are arbitrary. Thus we can express the sum as a sum over
the two indices k4 = i and k5 = j, with k1 = b1 − (i+ j), k2 = b2 − i, and k3 = b3 − j.
The non-negativity condition V ` ≥ 0, applied with the above matrix V , says that these
expressions must be non-negative: which means that the sum can be re-expressed as a
sum over i ≥ 0, j ≥ 0, subject to i ≤ b2, j ≤ b3, and i+ j ≤ b1. This is exactly the same
as the set S ′ computed by hand.
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