
Vapnik-Chervonenkis Dimension of
Recurrent Neural Networks

Pascal Koiran∗

Laboratoire de l’Informatique du Parallélisme

Ecole Normale Supérieure de Lyon – CNRS

46 allée d’Italie, 69364 Lyon Cedex 07

France

koiran@lip.ens-lyon.fr

Eduardo D. Sontag†

Department of Mathematics

Rutgers University

New Brunswick, NJ 08903

USA

sontag@hilbert.rutgers.edu

Abstract

Most of the work on the Vapnik-Chervonenkis dimension of neural networks has
been focused on feedforward networks. However, recurrent networks are also widely
used in learning applications, in particular when time is a relevant parameter. This
paper provides lower and upper bounds for the VC dimension of such networks. Several
types of activation functions are discussed, including threshold, polynomial, piecewise-
polynomial and sigmoidal functions. The bounds depend on two independent parame-
ters: the number w of weights in the network, and the length k of the input sequence.
In contrast, for feedforward networks, VC dimension bounds can be expressed as a
function of w only. An important difference between recurrent and feedforward nets
is that a fixed recurrent net can receive inputs of arbitrary length. Therefore we are
particularly interested in the case k � w. Ignoring multiplicative constants, the main
results say roughly the following:

• For architectures with activation σ = any fixed nonlinear polynomial, the VC
dimension is ≈ wk.

• For architectures with activation σ = any fixed piecewise polynomial, the VC
dimension is between wk and w2k.

• For architectures with activation σ = H (threshold nets), the VC dimension is
between w log(k/w) and min{wk logwk,w2 + w logwk}.

• For the standard sigmoid σ(x) = 1/(1 + e−x), the VC dimension is between wk
and w4k2.

An earlier version of this paper has appeared in Proc. 3rd European Workshop on
Computational Learning Theory, LNCS 1208, pages 223–237, Springer, 1997.

∗This research was carried out in part while visiting DIMACS and the Rutgers Center for Systems and
Control (SYCON) at Rutgers University.
†This research was supported in part by US Air Force Grant AFOSR-94-0293.

1 Introduction

In this paper we deal with questions that arise when training and testing data have a time
series structure. This is a fairly common situation in many applications. It arises in control
problems, when the inputs to a regulator are time-dependent measurements of plant states,
or in speech processing, where inputs are windowed Fourier coefficients and signal levels at
each instant.

In PAC-theoretic terms, it is natural to take into account this additional structure through
the use of hypotheses classes F which consist of dynamical systems. We will take the inputs
(for training and testing) to be functions of time, and the hypotheses classes will be defined
by means of dynamical recognizers, which allow one to exploit the information inherent in
the correlations and dependencies that exist among the terms of the input sequence. (As
a close analogy, Kalman filtering, which relies on linear dynamical systems for extracting
information — filtering of noise — from a stream of data, is perhaps the most successful
known example of an application of the idea of using dynamical systems as data processors.)
Through a limitation of the memory and power (dynamic order, number of adjustable pa-
rameters) of the elements of F , and analyzing behavior for longer and longer input sequences,
one is able to focus on the properties that truly reflect the dependence of f(u) on long-term
time correlations in the input sequence u. This paradigm is inspired by the use of finite
automata for the recognition of languages, and the use of recursive least squares techniques
in statistical problems, but the interest here is in nonlinear, continuous-state, dynamical sys-
tems. In particular, we use recurrent (sometimes “feedback” or “dynamic”) neural networks.
In contrast to feedforward nets, which only contain static units, recurrent nets incorporate
dynamic elements (delay lines), and their behavior is described by means of systems of dif-
ference equations. (It is also possible to study continuous-time nets, which are defined in
terms of differential equations, but we restrict attention in this paper to the discrete time
case. Similar results can be obtained in the continuous-time framework, however.)

Recurrent networks are among the models considered by Grossberg (see e.g. [8]) and his
school during the last twenty or more years, and include the networks proposed by Hopfield
(see e.g. [9]) for associative memory and optimization. Among other applications, they have
been employed in the design of control laws, speech recognition and speaker identification,
formal language inference, and sequence extrapolation for time series prediction. For ref-
erences, see for instance the book [2], which emphasizes digital signal processing, [6] for
formal language learning, and ([12] for control. In addition, theoretical results about neural
networks established their universality as models for systems approximation ([16]) as well as
analog computing devices ([13, 14]).

As a simple example, consider the network in Figure 1. The behavior of this net is
described by the following system of difference equations:

x1(t + 1) = σ1(2x1(t) + x2(t)− u1(t) + u2(t)) (1a)

x2(t + 1) = σ2(− x2(t) + 3u2(t)) (1b)

y(t) = x1(t) , (1c)

where σ1 and σ2 are two scalar nonlinear functions R→ R (called the “activation functions”
of the net), the input to the system is given by the vector u(t) = (u1(t), u2(t)), and the

1

u2

u1

--�
�
��
-

3

1

−1

−1

2

1

6
h6
h?
-

-

σ2l
σ1l
-

-

∆

∆ -

x2

x1 y

Figure 1: Example of Recurrent Net (∆ indicates a unit delay)

output at time t is the current value of x1. (We usually write “x+(t)” instead of “x(t + 1)”
and often omit arguments “t”.)

One way to associate an input/output behavior to a dynamic net, given a specified set
of initial conditions, is by looking at the last output that results after a finite-length input
has been presented. For instance, in the above example, suppose that we fixed the initial
state as x1(0) = x2(0) = 0. Then, given any sequence of inputs u(t) = (u1(t), u2(t)) defined
for t = 0, . . . , T − 1, we may solve iteratively the system of difference equations (1) with u
substituted into the right-hand side. In this way we obtain a state trajectory (x1(t), x2(t)).
We may then read-out the output y(T) = x1(T) and interpret it as the output of the network
in response to the forcing function u.

2 Precise Definitions

In order to be able to formally state our main results, we now provide precise definitions
of recurrent nets. However, just as one does with Turing machines – or similar models
of computation – in the design and analysis of algorithms we revert to a more informal
approach, leaving implicit the precise specification of networks in the formalism introduced
here.

By an n-dimensional, m-input, p-output initialized recurrent net we mean a 5-tuple

Σ = (A,B,C, x0,σ) (2)

consisting of three matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, a vector x0 ∈ Rn, and a diagonal
mapping

σ : Rn → Rn :

 x1
...

xn

 7→
 σ1(x1)

...
σn(xn)

 , (3)

where σ1, . . . , σn are maps R → R. The (discrete time) system induced by the net (2) is the
set of n coupled difference equations, plus measurement function:

x(t + 1) = σ (Ax(t) + Bu(t)) , x(0) = x0 , y(t) = Cx(t) . (4)

One also writes (4) simply as x+ = σ (Ax + Bu), x(0) = x0, y = Cx. The component maps
σ1, . . . , σn of σ are the activations of the net . If it is the case that all the σi are equal to a

2

fixed function σ, we say that the net is homogeneous with activation σ and write also ~σ(n)

instead of σ. The spaces Rm, Rn, and Rp are called respectively the input, state, and output
spaces of the net.

As an illustration, take again the diagram in Figure 1. This is a pictorial representation
of a 2-dimensional, 2-input, single-output recurrent net defined by

A =

(
2 1
0 −1

)
, B =

(
−1 1
0 3

)
, C = (1 0) , σ =

(
σ1

σ2

)
where the inital state x0 was left unspecified. It induces the system (1).

In the present context, one interprets the vector equations for x in (4) as representing the
evolution of an ensemble of n “neurons” (also called sometimes “units”, or “gates”) where
each coordinate xi of x is a real-valued variable which represents the internal state of the ith
neuron, and each coordinate ui, i = 1, . . . ,m of u is an external input signal. The vector x0

lists the initial values of these states. The coefficients Aij, Bij denote the weights, intensities,
or “synaptic strengths,” of the various connections. The coordinates of y(t) represent the
output of p probes, or measurement devices, each of which averages the activation values of
many neurons. Often C is just a projection onto some coordinates, that is, the components
of y are simply a subset of the components of x.

The linear systems customarily studied in control theory (see e.g. the textbook [15]) are
precisely the homogeneous initialized recurrent nets with identity activation and x0 = 0.

Figure 2 gives a “block diagram” of (4).

u - B - h+ - σ - ∆ - C - y
xr

�A

6

Figure 2: Recurrent Net (∆ indicates a unit delay)

To each initialized recurrent net (A,B,C, x0,σ) we associate a discrete time input/output
behavior. Assume given a sequence u = u(0), . . . , u(k − 1) of elements of the input space
Rm. One may iteratively solve the difference equation (4) starting with x(0) = x0, thereby
obtaining a sequence of state vectors x(1), . . . , x(k). In this manner, each initialized recurrent
net induces a mapping, on inputs of fixed length k,

λk
Σ

: (Rm)k → Rp : u 7→ y(k) = Cx(k) (5)

which assigns to the input u the last output produced in response.

Remark 1 One may broaden the notion of initialized recurrent net by allowing “biases”
or “offsets”, i.e. nonzero vectors d ∈ Rn and e ∈ Rp in the update and the measurement
equations respectively. These equations would then take the more general form x+ = σ(Ax+

3

Bu + d), y = Cx + e. Despite the fact that biases are useful, and we employ them in proofs,
we do not need to include such an extension in the formal definition. This is because the
input/output behavior of any such net also arises as the input/output behavior of a net
in the sense defined earlier (zero biases), with state space Rn+1 and same activations. The
simulation is achieved by means of the introduction of an additional variable z whose value is
constantly equal to a nonzero number z0 in the range of one of the activations, say σ, in such
a manner that the equations become x+ = σ(Ax + zd′ + Bu), z+ = σ(a0z), y = Cx + ze′,
where a0 is chosen so that σ(a0z0) = z0 and d′, e′ are so that z0d

′ = d and z0e
′ = e (if the

only activation is σ ≡ 0, there would be nothing to prove).

In the sequel, we will always take the the number of output components of our networks to
be one. This makes it possible to see their input/output behavior as classifiers. Moreover,
C will always be the vector C = (1 0 · · · 0). In other words, there is a designated output
unit among the n state units, and we assume without loss of generality that it is x1. The
network’s output is taken to be the state of this unit at the end of a computation. If one
is interested in averaging the state of several units, this effect can often be obtained with
the above convention by adding an additional unit to the network, which will also serve as
output unit.

2.1 Architectures

Roughly, by an “architecture” one means a choice of interconnection structure and of the
activation functions σ for each neuron, leaving weights and initial states unspecified, as
parameters. One may also stipulate that the initial state, or just certain specific coordinates
of it, should be zero (as with linear systems in control theory). Feedback networks with a
fixed architecture provide parametric classes of dynamical systems. We formalize the notion
of architecture by means of incidence matrices, employing binary matrices in order to specify
the allowed interconnection patterns and initial states.

By an n-dimensional m-input recurrent architecture we mean a quadruple

A = (α, β, ξ,σ) (6)

consisting of two matrices α ∈ {0, 1}n×n and β ∈ {0, 1}n×m, a vector ξ ∈ {0, 1}n, and a
diagonal mapping σ as in Equation (3). An initialized recurrent net with architecture A is
an instantiation obtained by choosing values for the nonzero entries, that, is, any initialized
recurrent net (A,B,C, x0,σ′) such that σ = σ′, C = (1 0 · · · 0) and the entries of the
matrices and vector satisfy Aij = 0 whenever αij = 0, Bij = 0 whenever βij = 0, and x0

i = 0
whenever ξi = 0.

We say also here that the component maps σ1, . . . , σn of σ are the activations of the net,
which is homogeneous with activation σ if all σi are equal to a fixed function σ. The spaces
Rm and Rn are respectively the input and state spaces of the architecture.

Suppose that the binary matrices α, β and the vector ξ have exactly κ, λ and ν nonzero
entries respectively; then we call the number w := κ + λ + ν the number of parameters
or weights of A, and call Rw the parameter or weight space. Arrange the indices of the
nonzero entries in any fixed manner, for instance by listing their nonzero entries row by

4

row, for α, β and ξ in that order. These indices are in one-to-one correspondence with the
coordinates of vectors in Rw. In this manner, one may view the architectureA as representing
a parameterized system x+ = σ (αx + βu), x(0) = ξ, y = x1 where, by substituting the
parameters ρ ∈ Rw into the nonzero entries of (α, β, ξ), every possible initialized recurrent
net Σ = A(ρ) with architecture A results.

For example, if arbitrary initial states are allowed, the diagram in the right part of
Figure 1 is a recurrent net with architecture A, where

α =

(
1 1
0 1

)
, β =

(
1 1
0 1

)
, ξ =

(
1
1

)
, σ =

(
σ1

σ2

)
and the corresponding parameterized system (with parameter space R8) is

x1(t + 1) = σ1(ρ1x1(t) + ρ2x2(t) + ρ4u1(t) + ρ5u2(t)) (7a)

x2(t + 1) = σ2(ρ3x2(t) + ρ6u2(t)) (7b)

x1(0) = x0
1 (7c)

x2(0) = x0
2 (7d)

y(t) = x1(t) . (7e)

Recalling the notations in Equation (5), for each recurrent architecture A and each k > 0,
we may introduce the set

FA,k :=
{
λk

Σ
, Σ = A(ρ), ρ ∈ R

}
(8)

of mappings (Rm)k → R. Elements of this set are the input/output mappings induced on
inputs of length k by each possible initialized recurrent net with architecture A.

2.2 VC Dimension

In all our results, we will take the number of input components (m) to be one, and, except
in Theorem 7, we consider only homogeneous (all activations equal) architectures. By σ-
architecture, we mean an architecture where all activations are the same function σ : R→ R.
The choice of m = 1 makes our lower bounds more interesting. It is fairly easy, though
notationally somewhat more cumbersome, to extend the upper bounds to vector inputs.
The same can be said about the homogeneity assumption, although it is the case that some
proofs use nonhomogeneous nets in intermediate steps.

Given any A with m = 1, and any k > 0, we denote R

BA,k :=
{
H◦λk

Σ
, Σ = A(ρ), ρ ∈ Rw, ξ ∈ Rn

}
(9)

where H is the threshold function: H(x) = 0 if x ≤ 0 and H(x) = 1 if x > 0. This is a class
of mappings Rk → {0, 1}, and we write vc(A, k) to denote its VC dimension (we recall that
the VC dimension of a family of boolean functions on a domain X is the cardinality of the
largest subset of X that is shattered by F , and that A ⊆ X is said to be shattered if the
restriction of F to A is {0, 1}A). We refer to this quantity also as the “VC dimension of A
when receiving inputs of length k”.

5

We are particularly interested in understanding the behavior of vc(A, k) as k →∞, for
various recurrent architectures, as well as the dependence of this quantity on the number
of weights and the particular type of activation being used. In particular, we continue the
work described in [5] (see also [18] for related work), which had obtained estimates of these
quantities for architectures with identity activations.

By a threshold recurrent architecture we mean a homogeneous one with σ = H. As in
[17], we say that σ : R→ R is sigmoidal , or a sigmoid , if:

1. σ is differentiable at some point x0 where σ′(x0)6=0.

2. limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1. (the limits 0 and 1 can be replaced by any
distinct numbers).

In particular, the standard sigmoid is σ(x) = 1/(1 + e−x). By σ-gate, or σ-unit, we mean a
gate with activation σ. These two special cases are worth recording: by linear (respectively,
threshold) unit we mean a unit with activation a linear or threshold function.

2.3 Statements of Main Results

For each A and k, by “unfolding” the iterations, one may also see the class BA,k as a class
of classifiers representable by feedforward neural nets (with k “hidden layers”). This trivial
fact allows one to easily obtain estimates, based on those bounds which were developed (cf.
[4, 1], [7], [10]) for the feedforward case.

Theorem 1 For recurrent architectures, with w weights receiving inputs of length k:

1. The VC dimension of threshold recurrent architectures is O(kw log kw).

2. If σ : R → R is a fixed piecewise-polynomial function, the VC dimension of recurrent
architectures with activation σ is O(kw2).

3. The VC dimension of recurrent architectures with activation the standard sigmoid is
O(k2w4).

The bounds would seem to be too conservative, since they completely disregard the fact
that the weights in the different layers of the “unfolded” net are actually the same. The
surprising aspect of the results to be stated next (and of the results in [5]) is that we obtain
lower bounds which do not look much different. We first state two more upper bounds.
The first one is interesting because for fixed w, it shows a log k dependence, rather than the
k log k obtained by unfolding.

Theorem 2 The VC dimension of an n-dimensional threshold recurrent architecture, with
w weights and receiving inputs of length k, is O(wn + w log kw).

Theorem 3 Let σ : R→ R be a fixed polynomial function. The VC dimension of recurrent
architectures with activation σ, with w weights and receiving inputs of length k, is O(kw).
Moreover, if σ is linear this bound can be improved to O(w log k).

6

For a corresponding lower bound in the linear case, see [5]. We now turn to other lower
bounds.

Theorem 4 The VC dimension of threshold recurrent architectures, with w weights and
receiving inputs of length k = Ω(w), is Ω(w log(k/w)).

Here and throughout the paper, the Ω symbol is to be interpreted as follows: “there
exist universal constants c1, c2, c3 > 0 such that for every w ≥ c1 and every k ≥ c2w, there
exists a threshold recurrent architecture with w weights which has VC dimension at least
c3w log(k/w) for inputs of length k.”

Theorem 5 Let σ be an arbitrary sigmoid. The VC dimension of recurrent architectures
with activation σ, with w weights and receiving inputs of length k, is Ω(wk).

It is possible to generalize Theorem 5 to even more arbitrary gate functions:

Theorem 6 Let σ be a function which is twice continuously differentiable function in an
open interval containing some point x0 where σ′′(x0)6=0. The VC dimension of recurrent
architectures with activation σ, with w weights and receiving inputs of length k, is Ω(wk).

This is an intermediate technical result, but it seems of interest in its own right:

Theorem 7 The VC dimension of recurrent architectures with threshold and linear activa-
tions, with w weights and receiving inputs of length k, is Ω(wk).

It is interesting to contrast the situation with the one that holds for feedforward nets.
For the latter, it holds, in general terms, that linear activations provide VC dimension
proportional to w, threshold activations give VC dimension proportional to w log(w), and
piecewise polynomial activations result in VC dimension proportional to w2.

Proofs and a few additional results can be found in sections 3 and 4.

3 Threshold Networks

3.1 Lower Bounds

Lemma 1 Given two integers m,L > 0 such that L is a power of 2, let k = mL and consider
the following family F of boolean functions on {0, 1}k: the functions in F are indexed by
m parameters t0, . . . , tm−1 ∈ {0, . . . , L − 1}. The corresponding function maps an input
u = (u(k − 1), . . . , u(0)) ∈ {0, 1}k to

ft0,...,tm−1(u) =
m−1∨
j=0

u(jL + tj),

i.e., we select one input in each interval of the form [jL, (j + 1)L − 1] and take the logical
OR of these boolean values.

The VC dimension of F is exactly m log L.

7

Proof. Since each parameter tj can take L distinct values, there are at most Lm = 2m logL

functions in F . Hence the VC dimension of F is at most m log L. In order to show that
this upper bound is tight, we will construct a set S of s = m log L inputs u0, . . . , us−1

such that each labeling (ε0, . . . , εs−1) ∈ {0, 1}s of S can be obtained in the following way:
let tj be the integer with binary digits (from the low-order bit to the high-order bit)
εj logL, εj logL+1, . . . , ε(j+1) logL−1. Then ft0,...,tm−1(ui) = εi.

Input ui is defined as follows: write i = q log L + r, with q ∈ {0, . . . ,m − 1} and r ∈
{0, . . . , log L− 1}. Then ui(t) = 0 for every t6∈[qL, (q + 1)L− 1]. For t ∈ [qL, (q + 1)L− 1],
one can write t = qL + r′ where r′ ∈ {0, . . . , L− 1}. We set ui(t) = 1 if the bit of weight 2r

of r′ is equal to 1; otherwise, ui(t) = 0.

To see that for any labeling ε0, . . . , εs−1 one has ft0,...,tm−1(ui) = εi (with t0, . . . , tm−1

as defined above), note that by construction of ui, ui(jL + tj) = 0 for all j 6=q. Hence
ft0,...,tm−1(ui) = ui(qL + tq). Again by construction of ui, this is just the bit of weight 2r of
tq. However, by construction of the tj’s, this bit is nothing but εq logL+r = εi. Hence we get
the correct output. 2

Remark. An explicit description of the inputs constructed in the above proof is as follows.
Consider the L by log L matrix

V =


1 0 · · · 0
0 1 · · · 0
1 1 · · · 0
...

...
...

...
1 1 · · · 1


which is obtained by listing all binary row vectors of size log L in the reverse of their natural
order (i.e., the leftmost bit is the least significant bit). Let U be the direct sum matrix V ⊕
V ⊕· · ·⊕V (this is the block-diagonal matrix with m copies of V on the diagonal). The input
set S is the same as the set of columns of this matrix. We may also describe the functions in
F in this manner. Let ei, i = 0, . . . , L−1 be the unit row vector (0, . . . , 0, 1, 0, . . . , 0) (with a
“1” in the (i + 1)st position) and consider the row vector Et0,...,tm−1 = (et0 , . . . , etm−1). Then,
ft0,...,tm−1(ui) is the product of Et0,...,tm−1 and the ith column of U .

Proof of Theorem 4. We first assume that w is of the form 8m+ 2, for some m ≥ 1. We also
assume that L = κ/m is a power of 2, where κ = k−2, and that L ≥ 2. The (straightforward)
generalization to arbitrary values of w and k is explained at the end of the proof.

We shall construct an architecture N of w weights which implements the family F of
Lemma 1 for inputs of length κ. It will become clear that in the initialized recurrent network
implementation, we need two additional inputs at time κ and κ + 1. This explains why
k = κ+2. According to Lemma 1, our shattered set S ′ will be of size m log L = [(w− 2)/8] ·
log[8(k − 2)/(w − 2)]. This is indeed Ω(w log(k/w)).

S ′ is defined as follows. For each input u in the shattered set S of Lemma 1 there is
an input u′ ∈ S ′ satisfying u′(t) = 2t + u(t) for t = 0, . . . , κ − 1. There are two additional
“dummy” inputs u′(κ) = 0 and u′(κ+1) = 0 (the values (0, 0) can be replaced by an arbitrary
pair of real numbers).

8

Let us now describe network N . We need m subnetworks to perform the tests “u(jL +
tj) = 1 ?” for j = 0, . . . ,m− 1. By construction of S ′, this question has a positive answer if
and only if there exists t ∈ {0, . . . , κ− 1} such that u′(t) = 2(jL + tj) + 1. The outcome Ej

of this test can be computed by a simple network of 3 threshold units and 7 weights:

Ej = H[H(u′ − θj + 0.5) + H(θj + 0.5− u′)− 1.5]

where θj = 2(jL + tj) + 1. The network has one additional threshold gate o which serves
as output unit. It keeps computing the OR of the Ej’s and of the previous output (to make
sure that if some Ej is equal to 1 at some time, the output remains 1 ever after). This can
be implemented with m + 2 weights as follows: o+ = H(o +

∑m
j=1 Ej − 0.5). Therefore N

has 7m + (m + 2) = w weights.

Note that the last two inputs u′(κ) and u′(κ+1) are “wasted”, i.e., they do not influence
the final output o(k). All gates are initialized to 0. This guarantees that the outputs at
t = 1 and t = 2 are both 0. These outputs are “bogus” in the sense that they occur before
even the first input u′(0) is processed. If one of these bogus outputs was equal to 1 then the
final output would be 1, no matter what the input sequence is (and we certainly don’t want
that to happen).

The generalization to arbitrary values of w and k is as follows: let m = b(w− 2)/8c and
L the largest power of 2 which is not larger than (k − 2)/m (we can assume that L ≥ 2).
The construction above yields a network of w′ = 8m+2 weights with VC dimension m log L.
This is still Ω(w log(k/w)), albeit with a slightly smaller constant. One can obtain a network
of exactly w weights by adding to the present construction w′−w “dummy” units which are
completely disconnected from the rest of the network (for instance, each dummy unit might
be of the form x+ = H(x)). 2

3.2 Upper Bounds

Proof of Theorem 1 (threshold case). By unfolding, the recurrent architecture can be simu-
lated by a (depth k) feedforward threshold architecture with kw weights. By this, we mean
that any recurrent network obtained as an instantiation of the recurrent architecture can be
simulated by a feedforward network obtained as an instantiation of the feedforward archi-
tecture (note that the threshold values in the first layer of that feedforward net depend on
the weights of the recurrent network as well as on its initial state x(0) ∈ Rn). The result
then follows from the Baum-Haussler bound [1]. 2

Proof of Theorem 2. Let S = {u1, . . . , us} be a set of s inputs. We will bound the number
of distinct transition functions of the architecture for inputs in S. The transition function
is of the form

φ : (x, u) 7→ ~H(n)(Ax + Bu) ,

where the network state x is in {0, 1}n and the input u in R. Since we are considering only
inputs from S, u can take any of the (at most) ks values ui(t) (i = 1, . . . , s; t = 0, . . . , k−1).
Hence the domain D of φ has at most |{0, 1}n|ks = 2nks elements. Let Ti be the threshold
function computed by gate number i. If this gate has wi incoming weights, then Ti can induce

9

at most 2|D|wi distinct functions on D by, e.g., Sauer’s lemma (see for instance [3]). Hence
there are at most

∏n
i=1 2|D|wi = 2n|D|w−ν distinct transition functions, where ν is the number

of entries equal to 1 in ξ (in other words, ν is the number of “unspecified” coordinates of initial
states; by definition, the total number of parameters is w =

∑n
i=1 wi + ν). If two settings of

the architecture’s parameters give rise to the same transition function and the initial states
are the same, the functions induced on S will be identical. Therefore if S is to be shattered,
2s ≤ 2n(2nks)w−ν×2ν ≤ 2n(2nks)w. This implies that s ≤ n(w+1)+w log k+w log s, hence
s/2 ≤ n(w + 1) + w log k or s/2 ≤ w log s. In both cases, s = O(wn + w log kw). 2

We don’t know if a O(w log kw) bound applies for all values of k, w ≥ 2. It is clear from
the proof of this theorem that the “extra” term wn comes from the 2n bound on the number
of network states. One may be able to give better bounds for networks with a smaller number
of “accessible” states.

Theorem 8 The VC dimension of a recurrent architecture of n threshold units and w
weights receiving boolean inputs of length k is O(wn + w log w). (Note that this bound
is independent of k.)

Proof. This follows from the proof of Theorem 2. The domain of the transition function φ
has only 2n+1 elements since u ∈ {0, 1}. Hence one can set |D| = 2n+1 in the proof of that
theorem. 2

The same result applies to architectures taking their inputs in any fixed finite set. This is
in sharp contrast with the case of feedforward architectures, where maximum VC dimension
Ω(w log w) can be achieved with boolean inputs.

4 Sigmoidal Networks

4.1 Upper Bounds

Proof of Theorem 1 (piecewise-polynomial case). It takes O(w) arithmetic operations to
update the network’s state after a new input component is received. Hence the whole com-
putation requires O(kw) operations for inputs of length k. The architecture has w +n ≤ 2w
programmable parameters, where n is the number of units in the network. Hence by [7]
(Theorem 2.3) its VC dimension is O(w × kw). 2

Interestingly, one can give a better upper bound for polynomial activation functions than
for piecewise-polynomial activation functions. The linear case is included in [5].

Proof of Theorem 3. We denote by W the vector listing all weights in the three systems
matrices α, β, γ, so that the parameter vector ρ can be partitioned as (W, ρ0), where ρ0

lists the weights in ξ. Let P : Rw−ν+1+n → Rn be the function mapping W , the input
u ∈ R, and the network’s current state x ∈ Rn to the next state x+ ∈ Rn. For instance, the
network’s state after reading u(0) and u(1) is P (W,u(1), P (W,u(0), x(0))). If σ is a degree-d

10

polynomial then each component of P is a polynomial of degree 2d. (this twofold increase is
due to multiplications between weight and input or state variables; the degree in the weight
variables is only d.) After the whole input u ∈ Rk has been read, the state of any unit in the
network (and in particular the state of the output unit) can be expressed as a polynomial Pk
in u ∈ Rk, W ∈ Rw−ν and the parameters ρ0 for the nonzero coordinates of x(0) ∈ Rn. The
degree of Pk in the programmable parameters is at most Dk = 2dk +

∑k−1
j=1 dj. This follows

from: D1 = 2d, and Dk+1 = d(Dk + 1). Here “Dk + 1” accounts for multiplication between
weight and state variables, and multiplication by d accounts for the application of σ). By
[7] (Theorem 2.2) the VC dimension is bounded by 2w log(8eDk). (note that the degree in
the input variables does not appear in this bound.) The theorem follows from the obvious
observations: Dk = k + 1 for d = 1 and Dk < 2dk+1 for d ≥ 2. 2

Proof of Theorem 1 (standard-sigmoidal case). By unfolding, the recurrent architecture can
be simulated by a feedforward net with kn nodes, where n be the number of nodes in the
original architecture, and the same number w of programmable parameters. By [10] there
is a O((kn)2w2) upper bound on the VC dimension of that architecture. This is O(k2w4) as
claimed.

Note: one can argue that the feedforward architecture has kw weights, but many of those
weights are “shared” and there are only w + n ≤ 2w programmable parameters. The result
in [10] explicitly allows such weight-sharing arrangements (see condition e in section 4.1 of
their paper). 2

4.2 Lower Bounds

Theorem 6 shows that the O(kw) upper bound of Theorem 3 is tight (for non-linear polyno-
mials). In fact, the matching Ω(kw) lower bound applies to a much wider class of functions
than just polynomials. Let us consider first the simpler case of sigmoidal functions.

Proof of Theorem 5. This follows from Theorem 7 and the fact on any finite set of inputs,
linear and threshold gates can be simulated by gates with activation σ. 2

Proof of Theorem 7. We can assume that κ = k − 2 ≥ 1. We also assume that w is of the
form 14ν + 2. As in Theorem 4, the generalization to other values of w is straightforward.
We first define the shattered set S: a sequence u ∈ Rκ is in S if it has exactly one non-
zero component, and that component is in {1, . . . , ν} (obviously, |S| = κν). Next we define
a family F of functions which shatters S. The functions in this family are indexed by ν
parameters w1, ..., wν ∈ [0, 1]. Each parameter is assumed to have a finite κ-bit binary
expansion 0.wi1 . . . wiκ. Given an input u ∈ S with i = u(j) as non-zero component, the
corresponding output simply is fw1,...,wν (u) := wij (i.e., we select bit number j of wi). It
is clear that F shatters S: any function f : S → {0, 1} can be implemented by setting
wij = f(iej) (ej denotes the element of S with a 1 in the j-th position).

In a recurrent network implementation of this, the set S ′ of shattered sequences is ob-
tained by adding two “dummy” inputs u(κ) = u(k − 2) = 0 and u(κ + 1) = u(k − 1) = 0 at
the end of a sequence (u(0), . . . , u(κ− 1)) ∈ S, as in the proof of Theorem 4.

11

The parameters w1, . . . , wν are stored in the initial states of units x1, . . . , xν . As the
computation proceeds, these units will store shifted versions of the parameters. The leading
bits of x1, . . . , xν are stored in ν other units y1, . . . , yν . The initial state of xi is wi/2; all
other units are initialized to 0. (note that this implies in particular that at t = 0, yi indeed
stores the leading bit of xi.) New values of xi and yi can be computed at each time step by
the following 5-weight system:

x+
i = 2xi − yi

y+
i = H(4xi − 2yi − 1)

The network should output 1 if the current input u is equal to i 6=0, and yi = 1. This can be
checked by computing Ei = H[H(u− i + 0.5) + H(i + 0.5− u) + yi − 2.5] (this requires 3ν
threshold gates and 8ν weights). There is one additional threshold gate o which serves as
output unit. It keeps computing the OR of the Ei’s and of the previous output This can be
implemented with ν + 2 weights as in the proof of Theorem 4: o+ = H(o +

∑ν
i=1 Ei − 0.5).

The architecture described above has 5ν + 8ν + (ν + 2) = 14ν + 2 = w weights. The
output fw1,...,wν (u(0), . . . , u(κ − 1)) is carried by the output unit at time (κ − 1) + 3 = k.
Note that the last two inputs u(κ) and u(κ + 1) are “wasted”, i.e., they do not influence the
final output o(k). Note also that the outputs at t = 1 and t = 2 are both 0 as needed. 2

Theorem 6 generalizes Theorem 5 to even more arbitrary activations. For this we need some
of the machinery of [11]. In particular, we need to allow networks with multiplication and
division gates. These gates have fan-in two and number of weights also two (even though
there is no natural numerical parameter associated to the gate; we need to assign weights
to multiplication and division gates to account for the numerical parameters that will occur
when simulating these gates by σ-gates). The output of a multiplication gate is defined as
the product of its two inputs. The output of a division gate is defined as the quotient of its
two inputs, assuming that the second input is nonzero. An input to a circuit is said to be
valid if it does not cause a division by zero at any division gate. We will only work with sets
of valid inputs (so the domain of the function computed by such a generalized network is a
subset of Rm and shattering is only defined for subsets of this domain).

We will use feedforward architectures as building blocks in our recurrent architectures.
The necessary background is standard and can be found for instance in [11]. To be self-
contained, we recall that the units of feedforward architecture are grouped into layers. We
use the same type of units as in recurrent architectures (in particular, multiplication and
division gates are allowed, as mentioned earlier in this section). The inputs to the architecture
are fed to units in the first layer. For i > 1, units in layer i receive their inputs from layer
i− 1. The last layer is made of a single gate: the output gate. The function computed by a
gate is defined by a straightforward induction on its depth in the architecture. The function
computed by the architecture is the function computed by the output gate.

Readers familiar with feedforward nets will notice that we do not allow connections
between non-adjacent layers. For synchronization reasons, such connections are to be avoided
in recurrent nets. One can always convert a non-layered feedforward architecture into a
layered one by introducing delays (identity gates).

The following two lemmas from [11] are needed (the first one is well-known and easy to
prove).

12

Lemma 2 Let φ : [0, 1] → [0, 1] be the logistic map φ(x) = 4x(1 − x). For every n ≥ 1
and every ε ∈ {0, 1}n there exists x1 ∈ [0, 1] such that the sequence (xk)1≤k≤n defined by
xk+1 = φ(xk) for k = 1, . . . , n − 1 satisfies the following property: 0 ≤ xk < 1/2 if εk = 0
and 1/2 < xk ≤ 1 if εk = 1.

The next result is essentially Lemma 1 from [11].

Lemma 3 For every n ≥ 0, there is a feedforward architecture A with inputs (x,W0, . . . ,Wn)
in Rn+2 such that the following property holds: for every ε > 0 there exists a choice
of the weights of A such that the function fε implemented by the network satisfies
lim
ε→0

fε(i,W0, . . . ,Wn) = Wi for i = 0, . . . , n.

This architecture is made of linear, multiplication and division gates. It has Θ(n) weights
and depth Θ(log n).

Lemma 4 The VC dimension of recurrent architectures of linear, multiplication and division
gates with w weights receiving inputs of length k = Ω(log w) is Ω(wk).

Proof. It is similar to that of Theorem 7. In particular, the shattered set S ⊆ Rκ is the same
and the class F of functions shattering S is indexed in the same way. Hence we will just
sketch the main differences with the linear-threshold case in the implementation of F on a
recurrent network. The bit-extracting device in Theorem 7 can be replaced by the following
system:

x+
i = 4xi(1− xi). (10)

A value of xi smaller than 1/2 should be understood as encoding the binary digit 0 (“reject”)
and a value larger than 1/2 the digit 1 (“accept”). By Lemma 2, any (finite) binary sequence
can be produced by (10) with a suitable choice of xi(0). This system can be implemented
by a subnetwork of two linear gates (computing 1 − xi and 4xi) and one product gate.
It produces an output at every other time step. Therefore we can only feed an input to
the network at every other time step, too (the gaps in the input sequence can be filled by
arbitrary, meaningless values).

The output of (10) should be selected if the current input u is equal to i 6=0. By Lemma 3,
this can be done (approximately) as follows:

E = fε(u, 0, x1, . . . , xν). (11)

Note that the subnetwork implementing this function has depth Θ(log w), whence the con-
dition k = Ω(log w) in the lemma’s statement (we need to add Θ(log w) dummy inputs at
the end of the input sequence). Since the network has to work only on a finite set of inputs,
the construction will be correct if ε is small enough (this can be justified as in [11]).

Finally, the output unit accumulates the values of E, starting from the initial state
o = 0. Note that these accumulated values are all (approximately) zero, except at most
one of them. This is because any input in the shattered set S of Theorem 9 has only one
non-zero component. And whenever the current input component u is zero, the function fε
in (11) selects the first number in the sequence (0, x1, . . . , xν), that is, 0.

13

In order to implement this on a recurrent network, we have to introduce a delay since
meaningful values of E come only at every other time step. Therefore one would like to write

o+ = Id(o) + E (12)

where the identity function Id is implemented by a linear gate. An input would be rejected
if the output at time k is smaller than 1/2; it would accepted if the output is larger than
1/2. The only problem with this construction is that the output unit might accumulate
non-zero values of E which occur even before the first input can be processed. In the proof
of Theorem 7 we have checked “by hand” that this problem does not occur. Here we prefer
to use instead a special-purpose device: we replace (12) by

o+ = Id(o) + s0E (13)

where s0 is designed to output 0 for the first few T = O(log ν) time steps, and 1 thereafter.
This can be done with the following system of T +1 units: s+

i = si+1 for i = 0, . . . , T −1 and
s+
T = sT . These units are initialized as follows: si(0) = 0 for i = 0, . . . , T − 1, and sT (0) = 1.

2

Theorem 9 The VC dimension of recurrent architectures of linear and multiplication gates
with w weights receiving inputs of length k = Ω(log w) is Ω(wk).

Proof. The theorem follows from Lemma 4 and the (simple) simulation of networks with
linear, multiplication and division gates by networks with linear and multiplication gates
only ([11]). This simulation applies to feedforward as well as to recurrent networks. Note
that since the length of the longest path in the network increases by a constant factor, it is
necessary to pad the input sequence with O(log w) dummy inputs. This changes only the
implied constants in the Ω symbols. 2

As in [11], this result makes it possible to prove good VC dimension lower bounds for a wide
class of transfer functions. The most important case is Theorem 6, which we can now prove.

Proof of Theorem 6. Linear and multiplication gates can be simulated by σ-gates as in [11].
The input sequence must be padded by a small number of dummy inputs as in the proof of
Theorem 9. 2

5 Final Remarks

We have left several questions unanswered:

1. For piecewise-polynomial functions, can one close the gap between the O(kw2) upper
bound and the Ω(kw) lower bound ?

2. This gap is even bigger for the standard sigmoid: O(k2w4) versus Ω(kw). A tight
bound is probably too much to ask for since even for feedforward architectures there
is a gap: O(w4) versus Ω(w2). A less ambitious goal would be to replace the k2 factor
in the upper bound by k.

14

3. For threshold architectures, we have a tight Θ(w log k) bound for k � w. However this
tight bound applies only when k is exponentially larger than w. It would be interesting
to have a tight bound when k is polynomial in w.

References

[1] E.B. Baum and D. Haussler, “What size net gives valid generalization?”, Neural Com-
putation, 1(1989), pp. 151-160.

[2] Y. Bengio, Neural Networks for Speech and Sequence Recognition, Thompson Computer
Press, Boston, 1996.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler and M. Warmuth, “Learnability and the
Vapnik-Chervonenkis Dimension”, Journal of the ACM, 36(1989), pp. 929-965.

[4] T.M. Cover, “Capacity problems for linear machines”, in: Pattern Recognition (L. Kanal
ed.), Thompson Book Co., 1968, pp. 283-289

[5] B. Dasgupta and E.D. Sontag, “Sample complexity for learning recurrent perceptron
mappings,” IEEE Trans. Inform. Theory , September 1996, to appear. (Summary in
Advances in Neural Information Processing Systems 8 (NIPS95) (D.S. Touretzky, M.C.
Moser, and M.E. Hasselmo, eds.), MIT Press, Cambridge, MA, 1996, pp. 204-210.)

[6] C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee and D. Chen, “Higher order recurrent
networks and grammatical inference”, in Advances in Neural Information Processing
Systems 2, D.S. Touretzky (ed.), Morgan Kaufmann, San Mateo, CA, 1990.

[7] P. Goldberg and M. Jerrum, “Bounding the Vapnik-Chervonenkis dimension of concept
classes parametrized by real numbers,” Machine Learning 18(1995), pp. 131-148.

[8] S. Grossberg, The Adaptive Brain, 2 vols, Elsevier, Amsterdam, 1987.

[9] J.J. Hopfield, “Neural networks and physical systems with emergent computational
abilities,” Proceedings Natl. Acad. Sci. USA 79 (1982), pp. 2554-2558.

[10] M. Karpinski and A. Macintyre, “Polynomial bounds for VC dimension of sigmoidal
and general Pfaffian neural networks,” J. Computer Sys. Sci. 54(1997), 169-176.

[11] P. Koiran and E.D. Sontag, “Neural networks with quadratic VC dimension,” J. Com-
puter Sys. Sci. 54(1997), pp. 190–198.

[12] M.M. Polycarpou, and P.A. Ioannou, “Neural networks and on-line approximators for
adaptive control,” in Proc. Seventh Yale Workshop on Adaptive and Learning Systems ,
pp. 93-798, Yale University, 1992.

[13] H. Siegelmann and E.D. Sontag, “On the computational power of neural nets,” J. Comp.
Syst. Sci. 50(1995): 132-150.

15

[14] H. Siegelmann and E.D. Sontag, “Analog computation, neural networks, and circuits,”
Theor. Comp. Sci. 131(1994): 331-360.

[15] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems ,
Springer, New York, 1990.

[16] E.D. Sontag, “Neural nets as systems models and controllers,” in Proc. Seventh Yale
Workshop on Adaptive and Learning Systems , pp. 73-79, Yale University, 1992.

[17] E.D. Sontag, “Feedforward nets for interpolation and classification,” J. Comp. Syst.
Sci. 45(1992): 20-48.

[18] A.M. Zador and B.A. Pearlmutter, “VC dimension of an integrate-and-fire neuron
model,” Neural Computation 8(1996): 611-624.

16

