
ELSEVIEK

DISCRETE
APPLIED

Discrete Applied mathematics 86 (1998) G-79

Vapnik-Chervonenkis dimension
of recurrent neural networks

Pascal Koiran a$*.‘, Eduardo D. Sontag b,2

.a Luhorcltoire de I’lnjhnutique du ParulMisn~e, Ecole Normale SupGrieure de Lyon CNRS.
46 u&e d’hlie, 69364 L.yon Cede-v 07, Frurzce

b Dep~lrt~ent of ~~tile~l~t~c.~, Rutyers Unicersify, Nets Brumu~ick, NJ 08903, C:S4

Received 19 December 1996; received in revised form 15 July 1997: accepted 23 October 1997

Abstract

Most of the work on the Vapnik-~he~one~~s dimension of neural networks has been fo-
cused on feedforward networks. However, recurrent networks are also widely used in learning
applications, in particular when time is a relevant parameter. This paper provides lower and
upper bounds for the VC dimension of such networks. Several types of activation tinctions are
discussed, including threshold, polynomial, piecewise-polynomial and sigmoidal functions. The
bounds depend on two independent parameters: the number w of weights in the network, and
the length k of the input sequence. In contrast, for feedforward networks, VC dimension bounds
can be expressed as a fimction of w only. An important difference between recurrent and feed-
forward nets is that a fixed recurrent net can receive inputs of arbitrary length. Therefore we are
particularly interested in the case k > w. Ignoring multiplicative constants, the main results say
roughly the following:

For architectures with activation G =any fixed nonlinear polynomial, the VC dimension is
X W -k.

For architectures with activation rr=any fixed piecel&e polynomial, the VC dimension is
between wk and w’k.

For architectures with activation a=%’ (threshold nets), the VC dimension is between
w log(kiw) and min{wk log wk, w2 + w log wk}.

For the standard sigmoid O(X)= l/(1 + e-*), the VC dimension is between wk and w”k’.
An earlier version of this paper has appeared in Pmr. 3rd Et~~u~~aiz ~~~rks~up m C~~r~p~~~ff-

tiutznl Leur~jn~ Theory, Lecture Notes in Computer Science vol. 1208, Springer, Berlin, 1997,
pp. 223-237. 0 1998 Elsevier Science B.V. All rights reserved.

* Corresponding author.
’ This research was carried out in part while visiting DIMACS and the Rutgers Center for Systems and

Control (SYCON) at Rutgers University.
’ This research was supported in part by US Air Force Grant AFOSR-94-0293.

0144-2l~X/98/$19.00 0 1998 Elsevier Science B.V. All rights resensed.
PIISO166-218X(98)00014-6

64 P. Koimn, E. D. Sowtag I Discrete Applied Mathematics 86 (1998) 63-79

1. Introduction

In this paper we deal with questions that arise when training and testing data which

have a time series structure. This is fairly a common situation in many applications.

It arises in control problems, when the inputs to a regulator are time-dependent mea-

surements of plant states, or in speech processing, where inputs are windowed Fourier

coefficients and signal levels at each instant.

In PAC-theoretic terms, it is natural to take into account this additional structure

through the use of hypotheses classes B which consist of dynamical systems. We will

take the inputs (for training and testing) to be functions of time, and the hypotheses

classes will be defined by means of dynamical recognizers, which allow one to exploit

the information inherent in the correlations and dependencies that exist among the terms

of the input sequence. (As a close analogy, Kalman filtering, which relies on linear dy-

namical systems for extracting information - filtering of noise - from a stream of data,

is perhaps the most successful known example of an application of the idea of using

dynamical systems as data processors.) Through a limitation of the memory and power

(dynamic order, number of adjustable parameters) of the elements of 9, and analyzing

behavior for longer and longer input sequences, one is able to focus on the properties

that truly reflect the dependence of f(u) on long-term time correlations in the input

sequence U. This paradigm is inspired by the use of finite automata for the recognition

of languages, and the use of recursive least squares techniques in statistical problems,

but the interest here is in nonlinear, continuous-state, dynamical systems. In particular,

we use recurrent (sometimes “feedback” or “dynamic”) neural networks. In contrast to

feedforward nets, which only contain static units, recurrent nets incorporate dynamic

elements (delay lines), and their behavior is described by means of systems of differ-

ence equations. (It is also possible to study continuous-time nets, which are defined

in terms of differential equations, but we restrict attention in this paper to the discrete

time case. Similar results can be obtained in the continuous-time framework, however.)

Recurrent networks are among the models considered by Grossberg (see e.g. 181)

and his school during the last 20 or more years, and include the networks proposed

by Hopfield (see e.g. [9]) for associative memory and optimization. Among other ap-

plications, they have been employed in the design of control laws, speech recognition

and speaker identification, formal language inference, and sequence extrapolation for

time series prediction. For references, see for instance the book [Z], which emphasizes

digital signal processing, [6] for formal language learning, and [12] for control. In ad-

dition, theoretical results about neural networks established their universality as models

for systems approximation [16] as well as analog computing devices [13, 141.

As a simple example, consider the network in Fig. 1. The behavior of this net is

described by the following system of difference equations:

xt(t+ 1)=ol(2xl(t)t_Xi?(t>-ul(t>+U2(f)),

xz(t + 1) = a-X2(t) + 3U2(t)),

v(t)-.v(t),

P. Koiran, E. D. Sontag I Discrete Applied Mulhemutics 86 (1998) 63-79 65

Fig. 1. Example of recurrent net (A indicates a unit delay)

where ~1 and 02 are two scalar nonlinear functions R + R (called the “activation

functions” of the net), the input to the system is given by the vector u(t) = (u,(t), z~(t)),

and the output at time t is the current value of XI. (We usually write “x+(t)” instead

of “x(t + 1)” and often omit arguments “t”.)

One way to associate an input/output behavior to a dynamic net, given a specified

set of initial conditions, is by looking at the last output that results after a finite-length

input has been presented. For instance, in the above example, suppose that we fixed the

initial state as xi(O) =x2(0) = 0. Then, given any sequence of inputs u(t) = (u,(t), UZ(~))

defined for t = 0,. . , T - 1, we may solve iteratively the system of difference equations

(1) with u substituted on the right-hand side. In

(~i(t),x2(t)). We may then read-out the output

output of the network in response to the forcing

2. Precise definitions

this way we obtain a state trajectory

y(T) =x1(7’) and interpret it as the

function U.

In order to be able to formally state our main results, we now provide precise

definitions of recurrent nets. However, just as one does with Turing machines - or

similar models of computation - in the design and analysis of algorithms we revert to

a more informal approach, leaving implicit the precise specification of networks in the

formalism introduced here.

By an n-dimensional, m-input, p-output initialized recurrent net we mean a Stuple

C=(A,B,C,xO,a) (2)

consisting of three matrices A E Rnx”, BE EFXm, C E Rpxn, a vector x0 E R”, and a

diagonal mapping

(3)

where al,..., an are maps R + R. The (discrete time) system induced by the net (2)

is the set of n coupled difference equations, plus measurement function:

x(t + 1) =a(Ax(t) + Bu(t)), x(O) =x0, y(t) = Cx(t). (4)

66 P. Koiran, E.D. SontaglDiscrete Applied Mathematics 86 (1998) 63-79

Fig. 2. Recurrent net (A indicates a unit delay).

One also writes (4) simply as X+ = a(Ax + Bu), x(O) =x0, y = Cx. The component

maps ~1,. . . , CT, of 0 are the activations of the net. If it is the case that all the (TV are

equal to a fixed function c, we say that the net is homogeneous with activation (r and

write also 8) instead of G. The spaces R”, Rn, and IWJ’ are called respectively the

input, state, and output spaces of the net.

As an illustration, take again the diagram in Fig. 1. This is a pictorial representation

of a two-dimensional, 2-input, single-output recurrent net defined by

‘4q; II)_ B=(_d $ C=(l 01, cr=(g;),
where the inital state x0 was left unspecified. It induces the system (I).

In the present context, one interprets the vector equations for x in (4) as representing

the evolution of an ensemble of II “neurons” (also called sometimes “units”, or “gates”)

where each coordinate xi of x is a real-valued variable which represents the internal

state of the ith neuron, and each coordinate ui, i = 1,. . . , m of II is an external input

signal. The vector x0 lists the initial values of these states. The coefficients Aij,B,

denote the weights, intensities, or “synaptic strengths,” of the various connections. The

coordinates of y(t) represent the output of p probes, or measurement devices, each of

which averages the activation values of many neurons. Often C is just a projection onto

some coordinates, that is, the components of y are simply a subset of the components

of x.

The linear systems customarily studied in control theory (see e.g. the textbook [15])

are precisely the homogeneous recurrent nets with identity activation and x0 = 0.

Fig. 2 gives a “block diagram” of (4).

To each initialized recurrent net (A, B, C,X’, a) we associate a discrete time input/

output behavior. Assume given a sequence u = u(O), . . . , u(k - 1) of elements of the

input space R”. One may iteratively solve the difference equation (4) starting with

x(O) =x0, thereby obtaining a sequence of state vectors X(I), . . . ,x(k). In this manner,

each initialized recurrent net induces a mapping, on inputs of fixed length k,

2; : (UP)k -+ Rp : u F+ y(k) = Cx(k)

which assigns to the input u the last output produced in response.

(5)

Remark 1. One may broaden the notion of recurrent net by allowing “biases” or

“offsets”, i.e. nonzero vectors d E R” and e E [WJ’ in the update and the measurement

P. Koiran, E.D. Sontayl Discrete Applied Mathematics X6 11998J 63-79 67

equations respectively. These equations would then take the more general form x+ =

a(Ax+B~+d), y = Cx+e. Despite the fact that biases are useful, and we employ them

in proofs, we do not need to include such an extension in the formal definition. This

is because the input/output behavior of any such net also arises as the input/output

behavior of a net in the sense defined earlier (zero biases), with state space iw”’ ’

and same activations. The simulation is achieved by means of the introduction of an

additional variable z whose value is constantly equal to a nonzero number zo in the

range of one of the activations, say cr, in such a manner that the equations become

x+ = cr(Ax+zd’+Bu), z+ = o(aaz), y = Cxfze’, where a0 is chosen so that o(aoz~~) = zo

and d’, e’ are so that z,$’ = d and zge’ = e (if the only activation is CT = 0, there would

be nothing to prove).

In the sequel, \ve &I always take the number of output components of our netbcmks

to be one. This makes it possible to see their input/output behavior as classifiers.

Moreover, C will always be the vector C= (1 0. ‘0). In other words, there is a

designated output unit among the n state units, and we assume without loss of generality

that it is xl. The network’s output is taken to be the state of this unit at the end of

a computation. If one is interested in averaging the state of several units, this effect

can often be obtained with the above convention by adding an additional unit to the

network, which will also serve as output unit.

2.1. .4rchitectures

Roughly, by an “architecture” one means a choice of interconnection structure and of

the activation functions cr for each neuron, leaving weights and initial states unspecified,

as parameters. One may also stipulate that the initial state, or just certain specific

coordinates of it, should be zero (as with linear systems in control theory). Feedback

networks with a fixed architecture provide parametric classes of dynamical systems.

We formalize the notion of architecture by means of incidence matrices, employing

binary matrices in order to specify the allowed interconnection patterns and initial

states.

By an n-dimensional m-input recurrent architecture we mean a quadruple

.!d = (c?, /J, 5, a) (6)

consisting of two matrices a E (0, l}“” and /I E (0, I}“,, a vector l E (0, l}“, and a

diagonal mapping IJ as in Eq. (3). An initialized recurrent net bvith architecture .rJ

is an instantiation obtained by choosing values for the nonzero entries, that is, any

initialized recurrent net (A, B, C,x”, 6’) such that G = LT’, C = (1 0. . 0) and the entries

of the matrices and vector satisfy Aii = 0 whenever r,, = 0, B,i = 0 whenever b,, = 0.

and x0 = 0 whenever & = 0.

We say also here that the component maps g1,. , cn of d are the activations of the

net, which is homogeneous with activation 0 if all gi are equal to a fixed function 0.

The spaces [Wm and [w” are, respectively, the input and state spaces of the architecture.

68 P. Koiran, E.D. Sontayl Discrete Applied Mathemutics 86 (1998) 63-79

Suppose that the binary matrices CC, /? and the vector 5 have exactly K, A and v nonzero

entries, respectively; then we call the number w := K + ;L + v the number of parameters

or weights of d, and call W the parameter or weight space. Arrange the indices of the

nonzero entries in any fixed manner, for instance by listing their nonzero entries row

by row, for c(, p and t in that order. These indices are in one-to-one correspondence

with the coordinates of vectors in W’. In this manner, one may view the architecture

LZZ as representing a parameterized system xf = a(ax + Bu), x(0) = 5, y =x1 where, by

substituting the parameters p E [w” into the nonzero entries of (CI, /I, <), every possible

initialized recurrent net C = G?‘(P) with architecture AZZ results.

For example, if arbitrary initial states are allowed, the diagram in the right part of

Fig. 1 is a recurrent net with architecture &, where

and the corresponding parameterized system (with parameter space E?) is

Xl(f + 1) = ~l(Wl(~) + p2x2cq + P4Ul(t) + wz(t)), Ua)

X2(t + 1) = 02(P3X2(t) + P6U2(t)), G’b)

Xl(O) =x;, (7c)

x2(0) =g, U’d)

v(t) =.x1(t). Ve)

Recalling the notations in Eq. (5), for each recurrent architecture LX? and each k > 0,

we may introduce the set

&,k := {A$, c = d(p), p E LQ} (8)

of mappings ([Wm)k -+ [w. Elements of this set are the input/output mappings induced

on inputs of length k by each possible initialized recurrent net with architecture d.

2.2. VC dimension

In all our results, we will take the number of input components (m) to be one,

and, except in Theorem 7, we consider only homogeneous (all activations equal) ar-

chitectures. By o-architecture, we mean an architecture where all activations are the

same function r~ : R -+ R. The choice of m = 1 makes our lower bounds more interest-

ing. It is fairly easy, though notationally somewhat more cumbersome, to extend the

upper bounds to vector inputs. The same can be said about the homogeneity assump-

tion, although it is the case that some proofs use nonhomogeneous nets in intermediate

steps.

P. Koiran, E. D. Sontayl Discrete Applied Mathematim 86 (1998) 63-79 69

Given any ,LZZ with m = 1, and any k > 0, we denote

a,/,,, := {H 0 ?&, c = d(p), p E R”‘. rr E iv}, (9)

where H is the threshold function: H(x) = 0 if x <O and H(x) = 1 if x >O. This is a

class of mappings R” --f (0, l}, and we write VC(.d, k) to denote its VC dimension

(we recall that the VC dimension of a family of binary-valued functions on a domain

X is the cardinality of the largest subset of X that is shattered by 9, and that A CX

is said to be shattered if the restriction of .F to A is (0, 1)"). We refer to this quantity

also as the “VC dimension of d when receiving inputs of length k”.

We are particularly interested in understanding the behavior of VC(.&‘, k) as k - X,

for various recurrent architectures, as well as the dependence of this quantity on the

number of weights and the particular type of activation being used. In particular, we

continue the work described in [5] (see also [181 for related work), which had obtained

estimates of these quantities for architectures with identity activations.

By a threshold recurrent architecture we mean a homogeneous one with r~ = H. As

in [171, we say that CJ : R + iw is sigmoidul. or u sigmoid, if:

1. CJ is differentiable at some point xa where (T’(xo) # 0.

2. lim,__, g(x) = 0 and lim,,+, o(x) = 1. (the limits 0 and 1 can be replaced by

any distinct numbers).

In particular, the stundard sigmoid is g(x) = l/(1 + ee’). By o-gate, or u-unit, we

mean a gate with activation 0. These two special cases are worth recording: by linear

(respectively, threshold) unit we mean a unit with activation a linear or threshold

function.

2.3. Statements of’ muin results

For each .d and k, by “unfolding” the iterations, one may also see the class ad,k as

a class of classifiers representable by feedforward neural nets (with k “hidden layers”).

This trivial fact allows one to easily obtain estimates, based on those bounds which

were developed (cf. [l, 4, 7, lo]) for the feedforward case.

Theorem 1. For recurrent architectures, with w \Yeiyhts receiving inputs of length k:

1. The VC dimension of threshold recurrent architectures is O(kw log kw).

2. IJ’ CT : R + R is a jixed piecewise-polynomial junction, the VC dimension qf’ rccur-

rent architectures with activution g is 0(kw2).

3. The VC dimension of recurrent architectures u?th activation the standard siymoid

is 0(k2w4).

The bounds would seem to be too conservative, since they completely disregard the

fact that the weights in the different layers of the “unfolded” net are actually the same.

The surprising aspect of the results to be stated next (and of the results in [5]) is

that we obtain lower bounds which do not look much different. We first state two

70 P. Koiran, E. D. Sontag I Discrete Applied Mathematics 86 (1998) 63-79

more upper bounds. The first one is interesting because for fixed w, it shows a log k

dependence, rather than the klog k obtained by unfolding.

Theorem 2. The VC dimension of an n-dimensional threshold recurrent architecture,

with w weights and receiving inputs of length k, is O(wn + w log kw).

Theorem 3. Let o: R’ --f R be a fixed polynomial function. The VC dimension of

recurrent architectures with activation o, with w weights and receiving inputs of length

k, is O(kw). Moreover, if o is linear this bound can be improved to O(w log k).

For a corresponding lower bound in the linear case, see [5]. We now turn to other

lower bounds.

Theorem 4. The VC dimension of threshold recurrent architectures, with w weights

and receiving inputs of length k = Q(w), is Q(w log(k/w)).

Here and throughout the paper, the Q symbol is to be interpreted as follows: “there

exist universal constants cl, ~2, c-3 > 0 such that for every w >cl and every k >c~w,

there exists a threshold recurrent architecture with w weights which has VC dimension

at least CJW log(k/w) for inputs of length k”.

Theorem 5. Let o be an arbitrary sigmoid The VC dimension of recurrent architec-

tures with activation o, with w weights and receiving inputs of length k, is Q(wk).

It is possible to generalize Theorem 5 to even more arbitrary gate functions:

Theorem 6. Let o be a function which is twice continuously dtfherentiable in an open

interval containing some point x0 where o”(x0) # 0. The VC dimension of recurrent

architectures with activation o, with w weights and receiving inputs of length k, is

Q(wk).

This is an intermediate technical result, but it seems of interest in its own right:

Theorem 7. The VC dimension of recurrent architectures with threshold and linear

activations, with w weights and receiving inputs of length k, is Q(wk).

It is interesting to contrast the situation with the one that holds for feedforward nets.

For the latter, it holds, in general terms, that linear activations provide VC dimension

proportional to w, threshold activations give VC dimension proportional to w log(w),

and piecewise polynomial activations result in VC dimension proportional to w2.

Proofs and a few additional results can be found in Sections 3 and 4.

P. Koiran. E. D. Sontayl Discrete Applied Mathematics 86 (19981 63-79 71

3. Threshold networks

3. I. Lonler bounds

Lemma 1. Given two integers m, L >O such that L is u power of 2, let k = mL crnd

consider the ,following family d of boolean functions on (0, 1)“: the jimctions in .F

ure indexed by m parameters to,. , t,_l E (0,. . , L - 1). The corresponding ,fimction

mups un input u =(u(k - l),...,u(O)) E (0, l}” to

m-l

.fi, . . t,_,(u)= v u(jL+t,),
j=O

i.e., Ire select one input in each interval of the form [jL, (j + 1)L - l] and take the

logicul OR of these boolean values.

The VC dimension of 9 is esuctly m log L.

Proof. Since each parameter t, can take L distinct values, there are at most L” = 2” log’

functions in ~9. Hence the VC dimension of 9 is at most m 1ogL. In order to show

that this upper bound is tight, we will construct a set S of s = m log L inputs ~0,. . , u,>_ 1

such that each labeling (~0 , . . . , E,_I) E (0, 1)” of S can be obtained in the following

way: let t, be the integer with binary digits (from the low-order bit to the high-order

bit) I:jlogL,C,logL+I,...,&(j+l)logL-l. Then f;O....,~,-,(~I)=c.
Input U; is defined as follows: write i = q 1ogL + r, with q E (0,. . . , m ~ I } and

r E (0,. .logL - l}. Then u;(t)= 0 for every t 4 [qL,(q + l)L - I]. For t E [qL,

(q + 1)L ~ 11, one can write t = qL + r’ where Y’ E (0,. . . , L - l}. We set ui(t) = 1 if

the bit of weight 2’ of Y’ is equal to I ; otherwise, u;(t) = 0.

To see that for any labeling Ed,. , c,_~ one has Ji,,, n,_, (u,) = E, (with to,. . . t,_ I

as defined above), note that by construction of ui, u,(jL + t,) = 0 for all j # q. Hence

,fi,,.....,,,_, (u,) = ui(qL + tq). Again by construction of ui, this is just the bit of weight 2’

of tq. However, by construction of the t/‘S, this bit is nothing but ~~t~a~+,- = c,. Hence,

we get the correct output. 0

Remark. An explicit description of the inputs constructed in the above proof is as

follows. Consider the L by 1ogL matrix

0 1 “’ 0

which is obtained by listing all binary row vectors of size 1ogL in the reverse of their

natural order (i.e., the leftmost bit is the least significant bit). Let U be the direct sum

matrix V @ V $. . f $ V (this is the block-diagonal matrix with m copies of V on the

diagonal). The input set S is the same as the set of columns of this matrix. We may

72 P. Koiran, E.D. Sontagl Discrete Applied Mathematics 86 (1998) 63-79

also describe the functions in F in this manner. Let ej, i = 0,. . . , L - 1 be the unit row

vector (0, . . . , 0, 1, 0, . . . , 0) (with a “1” in the (i + 1)st position) and consider the row

vector 40,...,,_, = (et,, . . . , et,,_, 1. Then, ,A, ,,.,, f,-, (u;) is the product of 4, ,,.,, fm-, and the
ith column of U.

Proof of Theorem 4. We first assume that w is of the form 8m + 2, for some m 3 1.

We also assume that L = rc/m is a power of 2, where K = k - 2, and that L 3 2. The

(straightforward) generalization to arbitrary values of w and k is explained at the end

of the proof.

We shall construct an architecture JY of w weights which implements the family

F of Lemma 1 for inputs of length K. It will become clear that in the recurrent

network implementation, we need two additional inputs at time K and K + 1. This

explains why k = K + 2. According to Lemma 1, our shattered set S’ will be of size

m 1ogL = [(w - 2)/S] . log[8(k - 2)/(w - 2)]. This is indeed Q(w log(k/w)).

S’ is defined as follows. For each input u in the shattered set S of Lemma 1 there is

an input U’ E S’ satisfying u’(t) = 2t + u(t) for t = 0,. . . , K - 1. There are two additional

“dummy” inputs U’(K) = 0 and u’(K + 1) = 0 (the values (0,O) can be replaced by an

arbitrary pair of real numbers).

Let us now describe network Jf. We need m subnetworks to perform the tests

“U(jL+tj)=l?‘forj=O,.,., m - 1. By construction of S’, this question has a positive

answer if and only if there exists t E (0,. , K - l} such that u’(t) = 2(jL + tj) + 1. The

outcome Ej of this test can be computed by a simple network of 3 threshold units and

7 weights:

Ej =H[H(u’ - 0, + 0.5) + H(Qj + 0.5 - u’) - 1.51,

where Qj = 2(jL + tj) + 1. The network has one additional threshold gate o which serves

as output unit. It keeps computing the OR of the Ej’s and of the previous output (to

make sure that if some Ej is equal to 1 at some time, the output remains 1 ever after).

This can be implemented with m + 2 weights as follows: o+ = H(o + C,“=, Ej - 0.5).

Therefore, M has 7m + (m + 2) = w weights.

Note that the last two inputs U’(K) and U’(K + 1) are “wasted”, i.e., they do not

influence the final output o(k). All gates are initialized to 0. This guarantees that the

outputs at t = 1 and t = 2 are both 0. These outputs are “bogus” in the sense that they

occur before even the first input u’(0) is processed. If one of these bogus outputs was

equal to 1 then the final output would be 1, no matter what the input sequence is (and

we certainly do not want that to happen).

The generalization to arbitrary values of w and k is as follows: let m = L(w - 2)/8]

and L the largest power of 2 which is not larger than (k - 2)/m (we can assume

that L 3 2). The construction above yields a network of w’ = 8m + 2 weights with VC

dimension mlogL. This is still Q(wlog(k/w)), albeit with a slightly smaller constant.

One can obtain a network of exactly w weights by adding to the present construction

w’ -w “dummy” units which are completely disconnected from the rest of the network

(for instance, each dummy unit might be of the form x+ =H(x)). 0

P. Koiran. E.D. SontaglDiscrete Applied Mathematics 86 (1998~ 63-79 73

3.2. Upper bounds

Proof of Theorem 1 (Threshold case). By unfolding, the recurrent architecture can

be simulated by a (depth k) feedforward threshold architecture with kuj weights. By

this, we mean that any recurrent network obtained as an instantiation of the recurrent

architecture can be simulated by a feedforward network obtained as an instantiation of

the feedforward architecture (note that the threshold values in the first layer of that

feedforward net depend on the weights of the recurrent network as well as on its initial

state x(0) E Rn). The result then follows from the Baum-Haussler bound [11. ?

Proof of Theorem 2. Let S = (~1,. . . , ~4,~) be a set of s inputs. We will bound the

number of distinct transition functions of the architecture for inputs in S. The transition

function is of the form

f$: (x, u) H H’“‘(Ax + Bu),

where the network state x is in (0, 1 }” and the input u in R. Since we are consider-

ing only inputs from S, u can take any of the (at most) ks values ui(t) (i = 1,. . ,s;

t=o,..., k - 1). Hence the domain D of 4 has at most I{ 0, 1 }” Iks = 2”b elements. Let

Ti be the threshold function computed by gate number i. If this gate has w, incoming

weights, then T, can induce at most 21D/“‘l distinct functions on D by, e.g., Sauer’s

lemma (see for instance [3]). Hence, there are at most fly=, 2/Dj”1 = 2”1D/“-’ distinct

transition functions, where v is the number of entries equal to 1 in 5 (in other words,

1’ is the number of “unspecified” coordinates of initial states; by definition, the total

number of parameters is w = C?=, wi+v). If two settings of the architecture’s parame-

ters give rise to the same transition function and the initial states are the same, the func-

tions induced on S will be identical. Therefore if S is to be shattered, 2’ d 2”(2”ks)“-” x

2” < 2”(2nks)M’. This implies that s < n(w + 1) + w log k + w logs, hence s/2 d n(~, + 1)

+ w log k or s/2 <w logs. In both cases, s = O(wn + w log kw). 0

We do not know if a O(wlogkw) bound applies for all values of k, w>2. It is clear

from the proof of this theorem that the “extra” term wn comes from the 2” bound on

the number of network states. One may be able to give better bounds for networks

with a smaller number of “accessible” states.

Theorem 8. The VC dimension of a recurrent architecture qf’n threshold units and

w weights receiving boolean inputs of length k is O(wn + w logw). (Note that this

bound is independent of k.)

Proof. This follows from the proof of Theorem 2. The domain of the transition function

4 has only 2”+’ elements since u E (0, 1 }. Hence one can set IDI = 2”+’ in the proof

of that theorem. 0

74 P. Koiran, E. D. Sontag! Discrete Applied Mathematics 86 (1998) 63-79

The same result applies to architectures taking their inputs in any fixed finite set.

This is in sharp contrast with the case of feedforward architectures, where m~imum

VC dimension Q(w log w) can be achieved with boolean inputs.

4. Sigmoidal networks

4.1. Upper bounds

Proof of Theorem 1 (Piecewise-polynomial case). It takes O(w) arithmetic operations

to update the network’s state after a new input component is received. Hence, the

whole computation requires O(kw) operations for inputs of length k. The architecture

has w+n < 2w proratable parameters, where n is the number of units in the network.

Hence by [7] {Theorem 2.3) its VC dimension is O(w x kw). Cl

Interestingly, one can give a better upper bound for polynomial activation functions

than for piecewise-polynomial activation functions. The linear case is included in [5].

Proof of Theorem 3. We denote by FY the vector listing all weights in the two systems

matrices CI and j?, so that the parameter vector p can be partitioned as (I?‘, pa), where

po lists the weights in 5. Let P : lRw-vflin -+ R’” be the function mapping W, the input

u E R, and the network’s current state x E R” to the next state X+ E R”. For instance,

the network’s state after reading ~(0) and u(1) is P(W, u(1), P(W, ~(O),~(O))). If 0 is

a degree-d polynomial then each component of P is a polynomial of degree 2d. (this

twofold increase is due to multiplications between weight and input or state variables;

the degree in the weight variables is only d.) After the whole input u E Rk has been

read, the state of any unit in the network (and in particular the state of the output unit)

can be expressed as a polynomial Pk in u E Wk, W E R”-” and the parameters ps for the

nonzero coordinates of x(0) E R”. The degree of Pk in the prog~mmable parameters

is at most Dk = 2dk + x;z: dj. This follows from Dl =2d, and &+I =d(Dk + 1).

Here “Dk + 1” accounts for multiplication between weight and state variables, and

multiplication by d accounts for the application of (T. By [7] (Theorem 2.2) the VC

dimension is bounded by 2w lOg(8&). (Note that the degree in the input variables

does not appear in this bound.) The theorem follows from the obvious obse~ations:

Dk=k+l ford=1 and&<2dk+’ fordk2. q

Proof of Theorem 1 (Standard-sigmoidal case). By unfolding, the recurrent architec-

ture can be simulated by a feedforward net with kn nodes, where p1 is the number of

nodes in the original architecture, and the same number w of proratable parameters.

By [lo] there is a 0((~)2w2) upper bound on the VC dimension of that architecture.

This is O(k2w4) as claimed.

Note: One can argue that the feedforward architecture has kw weights, but many of

those weights are “shared” and there are only w + n <2w programmable parameters.

P. Koiran, E. D. Sontay I Discrete Applied Mathematics 86 (1998) 63-79 75

The result in [lo] explicitly allows such weight-sharing arrangements (see condition e

in Section 4.1 of their paper). q

4.2. Lower bounds

Theorem 6 shows that the O(b) upper bound of Theorem 3 is tight (for non-linear

polynomials). In fact, the matching R(kw) lower bound applies to a much wider class

of functions than just polynomials. Let us consider first the simpler case of sigmoidal

functions.

Proof of Theorem 5. This follows from Theorem 7 and the fact on any finite set of

inputs, linear and threshold gates can be simulated by gates with activation cr. n

Proof of Theorem 7. We can assume that K = k - 2 3 1. We also assume that w is

of the form 14~ + 2. As in Theorem 4, the generalization to other values of UJ is

straightforward. We first define the shattered set S: a sequence u E 1w” is in S if it

has exactly one non-zero component, and that component is in { 1,. . . , v} (obviously,

ISI = KV). Next we define a family F of functions which shatters S. The functions in

this family are indexed by v parameters WI,. . , w,, E [0, 11. Each parameter is assumed

to have a finite K-bit binary expansion O.Wii . wiK. Given an input u E S with i = u(j)

as non-zero component, the corresponding output simply is fw,,....w,(u) := w,, (i.e., we

select bit number j of wi). It is clear that F shatters S: any function ,f : S ---f { 0, l}

can be implemented by setting wlj = J’(iej) (ej denotes the element of S with a 1 in

the jth position).

In a recurrent network implementation of this, the set S’ of shattered sequences is

obtained by adding two “dummy” inputs U(K) = u(k - 2) = 0 and u(K + 1) = u(k - 1) = 0

at the end of a sequence (u(O), . . . , U(K - 1)) E S, as in the proof of Theorem 4.

The parameters WI,. . . , w, are stored in the initial states of units xi,. . ,x,,. As the

computation proceeds, these units will store shifted versions of the parameters. The

leading bits of xi , . . . ,xv are stored in v other units yi,. . , y,,. The initial state of x,

is wj/2; all other units are initialized to 0. (Note that this implies in particular that at

t = 0, yi indeed stores the leading bit of xi. j New values of xi and y1 can be computed

at each time step by the following 5-weight system:

.X+ = 2X; - yi,

y+ = H(4Xj - 2yi - 1).

The network should output 1 if the current input u is equal to i # 0, and J+ = 1. This

can be checked by computing Ei = H[H(u - i + 0.5) + H(i + 0.5 - u) + y; - 2.51 (this

requires 3v threshold gates and 8v weights). There is one additional threshold gate o

which serves as output unit. It keeps computing the OR of the El’s and of the previous

output. This can be implemented with v + 2 weights as in the proof of Theorem 4:

o+ = H(0 + cy=, Ej - 0.5).

16 P. Koiran, E.D. Sontagl Discrete Applied Mathematics 86 (1998) 63-79

The architecture described above has 5v + 8v + (v + 2) = 14v + 2 = w weights. The

output fw,,...,,,(u(O), . . ., U(K - 1)) is carried by the output unit at time (K- 1)+3 =k.

Note that the last two inputs u(rc) and u(K + 1) are “wasted”, i.e., they do not influence

the final output o(k). Note also that the outputs at t = 1 and t = 2 are both 0 as

needed. 0

Theorem 6 generalizes Theorem 5 to even more arbitrary activations. For this we

need some of the machinery of [111. In particular, we need to allow networks with

multiplication and division gates. These gates have fan-in two and number of weights

also two (even though there is no natural numerical parameter associated to the gate; we

need to assign weights to multiplication and division gates to account for the numerical

parameters that will occur when simulating these gates by o-gates). The output of a

multiplication gate is defined as the product of its two inputs. The output of a division

gate is defined as the quotient of its two inputs, assuming that the second input is

nonzero. An input to a circuit is said to be valid if it does not cause a division by zero

at any division gate. We will only work with sets of valid inputs (so the domain of

the function computed by such a generalized network is a subset of [Wm and shattering

is only defined for subsets of this domain).

We will use feedforward architectures as building blocks in our recurrent architec-

tures. The necessary background is standard and can be found, for instance, in [l 11.
To be self-contained, we recall that the units of feedforward architectures are grouped

into layers. We use the same type of units as in recurrent architectures (in particular,

multiplication and division gates are allowed, as mentioned earlier in this section). The

inputs to the architecture are fed to units in the first layer. For i > 1, units in layer i

receive their inputs from layer i - 1. The last layer is made of a single gate: the output

gate. The function computed by a gate is defined by a straightforward induction on

its depth in the architecture. The function computed by the architecture is the function

computed by the output gate.

Readers familiar with feedforward nets will notice that we do not allow connec-

tions between non-adjacent layers. For synchronization reasons, such connections are

to be avoided in recurrent nets. One can always convert a non-layered feedforward

architecture into a layered one by introducing delays (identity gates).

The following two lemmas from [l l] are needed (the first one is well-known and

easy to prove).

Lemma 2. Let 4:[0,1] -+ [O,l] be th e I ogistic map &x)=4X(1 -x). For every n 2 1

and every E E (0, 1)” there exists x1 E [0, l] such that the sequence (+)I <kGn dejined

by xk+l =&xk) for k=l,..., n - 1 satis$es the following property: O<xk < l/2 if

&k=O and 1/2<Xk<1 if&k=l.

The next result is essentially Lemma 1 from [111.

Lemma 3. For every n 30, there is a feedforward architecture ~4 with inputs

(x,Wo,...,Wn) in Rn+2 such that the following property holds: for every E >O there

P. Koiran, E. D. Sontag I Discrete Applied Mathematics 86 (1998) 63-79 17

exists a choice of the weights of ~2 such that the function f8 implemented by the

network satisjes lim,,a fc(i, Wo, . . . , W,,) = Wi for i = 0,. , n.

This architecture is made of linear, multiplication and division gates. It has O(n)

weights and depth O(logn).

Lemma 4. The VC dimension of recurrent architectures of linear, multiplication and

division gates with w weights receiving inputs of length k = sZ(log w) is Q(wk).

Proof. It is similar to that of Theorem 7. In particular, the shattered set 5’ & R” is the

same and the class 9 of functions shattering S is indexed in the same way. Hence, we

will just sketch the main differences with the linear-threshold case in the implementation

of .5 on a recurrent network. The bit-extracting device in Theorem 7 can be replaced

by the following system:

x: =4xj(l -xi). (10)

A value of x, smaller than l/2 should be understood as encoding the binary digit 0

(“reject”) and a value larger than l/2 the digit 1 (“accept”). By Lemma 2, any (finite)

binary sequence can be produced by (10) with a suitable choice of xi(O). This system

can be implemented by a subnetwork of two linear gates (computing 1 - xi and 4xi)

and one product gate. It produces an output at every other time step. Therefore we can

only feed an input to the network at every other time step, too (the gaps in the input

sequence can be filled by arbitrary, meaningless values).

The output of (10) should be selected if the current input u is equal to i # 0. By

Lemma 3, this can be done (approximately) as follows:

E = fd~,O,xl,. ,xv). (11)

Note that the subnetwork implementing this function has depth @(log w), whence the

condition k = R(log w) in the statement of the lemma (we need to add @(log w) dummy

inputs at the end of the input sequence). Since the network has to work only on a

finite set of inputs, the construction will be correct if F is small enough (this can be

justified as in [l 11).
Finally, the output unit accumulates the values of E, starting from the initial state

o = 0. Note that these accumulated values are all (approximately) zero, except at most

one of them. This is because any input in the shattered set S of Theorem 7 has only

one non-zero component. And whenever the current input component u is zero, the

function fc in (11) selects the first number in the sequence (0,x1,. . . ,x1,), that is, 0.

In order to implement this on a recurrent network, we have to introduce a delay since

meaningful values of E come only at every other time step. Therefore, one would like

to write

o+ = Id(o) + E, (12)

where the identity function Id is implemented by a linear gate. An input would be

rejected if the output at time k is smaller than l/2; it would accepted if the output

78 P. Koiran, E.D. SontaglDiscrete Applied Mathematics 86 (1998) 63-79

is larger than l/2. The only problem with this construction is that the output unit

might accumulate non-zero values of E which occur even before the first input can be

processed. In the proof of Theorem 7 we have checked “by hand” that this problem

does not occur. Here we prefer to use instead a special-purpose device: we replace

(12) by

o+ = Id(o) + soE, (13)

where SO is designed to output 0 for the first few T = O(log v) time steps, and 1

thereafter. This can be done with the following system of T + 1 units: SF = si+i

for i = 0,. . . , T - 1 and ,sf =sr. These units are initialized as follows: si(O) = 0 for

i=O,..., T - 1, and Q(O)= 1. 0

Theorem 9. The VC dimension of recurrent architectures of linear and multiplication
gates with w weights receiving inputs of length k = O(log w) is Q(wk).

Proof. The theorem follows from Lemma 4 and the (simple) simulation of networks

with linear, multiplication and division gates by networks with linear and multiplication

gates only [I 11. This simulation applies to feedforward as well as to recurrent networks.

Note that since the length of the longest path in the network increases by a constant

factor, it is necessary to pad the input sequence with O(logw) dummy inputs. This

changes only the implied constants in the 52 symbols.

As in [I 11, this result makes it possible to prove good VC dimension lower bounds

for a wide class of transfer functions. The most important case is Theorem 6, which

we can now prove.

Proof of Theorem 6. Linear and multiplication gates can be simulated by a-gates as

in [111. The input sequence must be padded by a small number of dummy inputs as

in the proof of Theorem 9. 0

5. Final remarks

We have left several questions unanswered:

(1) For piecewise-polynomial functions, can one close the gap between the O(kw2)

upper bound and the Q(kw) lower bound?

(2) This gap is even bigger for the standard sigmoid: O(k2w4) versus Q(kw). A tight

bound is probably too much to ask for since even for feedforward architectures

there is a gap: O(w4) versus Q(w2). A less ambitious goal would be to replace

the k2 factor in the upper bound by k.
(3) For threshold architectures, we have a tight O(w log k) bound for k >> w. However,

this tight bound applies only when k is exponentially larger than w. It would be

interesting to have a tight bound when k is polynomial in w.

P. Koiran, E.D. Sontay I Discrete Applied Mathematics 86 il998) 63-79 79

Acknowledgements

We thank an anonymous referee for his very careful reading of the manuscript and

many useful comments.

References

[II

PI

[31

[41

t51

[61

[71

PI

[91

[lOI

[1 II

[121

u31

[I41

[I51

U61

[I71

[181

E.B. Baum, D. Haussler, What size net gives valid generalization?, Neural Comput. I (1989) 15 I-160.

Y. Bengio, Neural Networks for Speech and Sequence Recognition, Thompson Computer Press, Boston,

1996.

A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth, Learnability and the Vapnik-Chervonenkis

Dimension, J. ACM 36 (1989) 9299965.

TM. Cover, Capacity problems for linear machines, in: L. Kanal (Ed.), Pattern Recognition, Thompson

Book Co., 1968, pp. 283-289.

B. Dasgupta, E.D. Sontag, Sample complexity for learning recurrent perceptron mappings, IEEE Trans.

Inform. Theory, 42 (1996) 1479-1487. Summary in: D.S. Touretzky, M.C. Moser, M.E. Hasselmo

(Eds.), Advances in Neural Information Processing Systems 8 (NIPS95), MIT Press, Cambridge. MA,

1996, pp. 204-210.

CL. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, D. Chen, Higher order recurrent networks and grammatical

inference, in: D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems 2, Morgan

Kaufmann, San Mateo, CA, 1990.

P. Goldberg, M. Jerrum, Bounding the Vapnik-Chervonenkis dimension of concept classes

parameterized by real numbers, Machine Learning 18 (1995) 13ll148.

S. Grossberg, The Adaptive Brain, 2 vols, Elsevier, Amsterdam, 1987.

J.J. Hopfield, Neural networks and physical systems with emergent computational abilities, Proc. Natl.

Acad. Sci. USA 79 (1982) 2554-2558.

M. Karpinski, A. Macintyre, Polynomial bounds for VC dimension of sigmoidal and general Pfaffian

neural networks, J. Comput. System Sci. 54 (1997) 1699176.

P. Koiran, E.D. Sontag, Neural networks with quadratic VC dimension, J. Comput. System Sci. 54
(1997) 190&198.

M.M. Polycarpou, P.A. Ioannou, Neural networks and on-line approximators for adaptive control, in:

Proc. 7th Yale Workshop on Adaptive and Learning Systems, Yale University, 1992, pp. 793-798.

H. Siegelmann, E.D. Sontag, On the computational power of neural nets, J. Comput. System Sci. 50

(1995) 132-150.

H. Siegelmann, E.D. Sontag, Analog computation, neural networks, and circuits, Theoret. Comput. Sci.

1.31 (1994) 331-360.

E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer,

New York, 1990.

E.D. Sontag, Neural nets as systems models and controllers, in: Proc. 7th Yale Workshop on Adaptive

and Learning Systems, Yale University, 1992, pp. 73-79.

E.D. Sontag, Feedforward nets for interpolation and classification, J. Comput. System Sci. 45 (1992)

20-48.

A.M. Zador, B.A. Pearlmutter, VC dimension of an integrate-and-fire neuron model, Neural Comput. 8

(1996) 61 l-624.

