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We analyze certain chemical reaction networks and show that every solution con-
verges to some steady state. The reaction kinetics are assumed to be monotone but oth-
erwise arbitrary. When diffusion effects are taken into account, the conclusions remain
unchanged. The main tools used in our analysis come from the theory of monotone
dynamical systems. We review some of the features of this theory and provide a self-
contained proof of a particular attractivity result which is used in proving our main
result.
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1. Introduction

The theoretical study of the dynamical behavior of chemical reactions has
been a fruitful and very active area of research throughout the past few decades.
One particular reason for this continued attention may be that a unified the-
ory, encompassing reaction networks of arbitrary topology as well as reactions
with arbitrary kinetics is presently not available. But if one is willing to put
restrictions on either the network topology or on the kinetics, then fairly general
results can be obtained. For example, the seminal work on what today is known
as the Feinberg–Horn–Jackson theory [11,19] – and [7,29] for recent results –
restricts the reaction rates to mass action kinetics, but considers quite general
topologies. The assumption of mass action kinetics enables the construction of
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Lyapunov functions, which allow one to conclude convergence of the solutions.
On the other hand, one can restrict the network topology, but relax the assump-
tion on the kinetics. One such relaxation is to assume that they are monotone
functions (of the concentrations of the reagentia of the reactions). For instance,
in [21], the following network was studied:

A1 + A2 � B1 � B2 � · · · Bn

in which only the first reversible reaction step is bimolecular and the remain-
ing steps are monomolecular. The purpose of that paper was to point out that
the solutions of this network satisfy certain monotonicity properties, in a sense
which we will explain below. A related idea can be found in [30], where it was
pointed out how certain reaction networks may be transformed into so-called
cooperative systems (also discussed below).

The purpose of this paper is to show how global convergence results can be
obtained for a particular network topology – which includes and generalizes the
one above – in the case of monotone but otherwise arbitrary reaction kinetics.
Moreover, our results remain valid if diffusion effects are taken into consider-
ation, thereby generalizing results from [23], which apply to the reversible reac-
tion A1 + A2 � B.

To appreciate why monotonicity can play a role in the context of chemi-
cal reactions, we will review the concept of a monotone system next and high-
light some of its features. The theory of monotone systems has been developed
by Hirsch in a series of papers about two decades ago (see [12–16]) and Smith’s
excellent monograph [27] for a review. In general, a monotone dynamical system
is a continuous semiflow Φ on a metric space X equipped with a compatible par-
tial order �, such that the partial order is preserved by the flow:

∀x, y ∈ X : x � y ⇒ Φt (x) � Φt (y), ∀t ∈ R+. (1)

Let’s consider a system of differential equations:

ẋ = f (x)

with x ∈ R
n and f a C1 vector field which is assumed to be forward complete

(although what follows is valid under much weaker conditions, both for the state
space and the smoothness of the vector field).

An immediate question that arises is when this system generates a mono-
tone dynamical system. Although in general an answer is not known, tests for
checking monotonicity are available in cases where the partial order is generated
by a cone K in R

n (recall that a cone K in R
n is a nonempty, closed set with

K + K ⊂ K , R+K ⊂ K , and K ∩ (−K ) = {0}). We will review some of these tests
next.
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Probably the most familiar example is the one where f is cooperative,
meaning that the Jacobian ∂ f/∂x has nonnegative off-diagonal entries. It is well-
known that in this case the flow of system ẋ = f (x) is monotone since it
preserves the usual componentwise order on R

n (see, e.g. proposition 3.1.1 and
remark 3.1.1 in [27]). More precisely, this order is generated by the positive orth-
ant cone R

n+ in R
n:

x � y ⇔ y − x ∈ R
n+.

This can be generalized to cases where the partial order is generated by any orth-
ant cone O of R

n as follows:

x �O y ⇔ y − x ∈ O. (2)

For checking monotonicity in this case, a simple graphical test is available, (see
p. 49 in [27]). It amounts to verifying whether the incidence graph of the sys-
tem does not contain loops of negative parity (the incidence graph consists of n
nodes, each representing a component of the state vector, and signed edges con-
necting the nodes; an edge from node j to node i is drawn carrying the sign of
the partial derivative ∂ fi/∂x j ; of course this requires that the derivative does not
change sign and is nonzero in at least one point; the parity of a loop is simply
the product of the signs of the edges which make up the loop; self-loops are not
taken into account for this test).

If the partial order is generated by an arbitrary cone K in R
n (simply

replace O by K in (2)), then checking monotonicity is still possible, although the
test is not graphical anymore (see [17,31]).

The main reason why monotone systems have been studied so extensively, is
probably that much is known about their asymptotic behavior. Roughly speak-
ing, most solutions converge to the set of equilibria. But two issues should
be mentioned in this context. First, most of the available convergence results
require a stronger monotonicity notion than (1). Typically it is assumed that
the semiflow is strongly order preserving (see p. 2 in [27]), or (eventually) strongly
monotone – which implies the former –, (see p. 3 in the same reference for pre-
cise definitions). Checking this condition in practice is often not so easy, or even
worse: a system may be monotone, but fails to satisfy one of these stronger
notions. Second, the proofs of these results are nontrivial and require the use of
fundamental results from the theory of monotone systems.

A particular result which seems to be an exception to this, was given in [20],
where global asymptotic stability of a cooperative system on R

n with a unique
equilibrium was proved. Following the ideas of that proof we generalize this in
appendix B to monotone continuous semiflows with a unique equilibrium. This
result may also be useful for infinite-dimensional systems (such as delay equa-
tions). Moreover, the proof given here is completely self-contained.
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Other examples of applications of monotone systems theory can be found
in the literature on chemostat models [28]. For instance, the variable-yield model
can be transformed in a monotone system for which the order is not the usual
componentwise order on R

n. In [10], this transformation is also exploited to ana-
lyze a similar model with multiple nutrients.

Monotone dynamical systems have recently been extended to monotone
input–output systems in [2] in order to facilitate the study of interconnections of
such systems (cascades, feedback). We refer to [3–6,8,9] for further developments
and applications of this theory, including examples from molecular biology, ecol-
ogy, and chemical reaction networks.

2. A Chemical reaction network

Consider the following reaction network:

C1 � · · · � Ci−1 � Ci � Ci+1 � · · · � Cn+1,

where each complex Ci is given by a weighted sum of distinct chemicals as fol-
lows:

Ci =
ni∑

k=1

ak
i Xk

i

for positive integers ak
i .

Some special cases of this network have been studied in [5] (where all com-
plexes consist of precisely one chemical and all chemicals in the network are dis-
tinct) and [21] (where C1 = X1 + X2 consists of two chemicals, all subsequent
complexes consist of precisely one chemical, all chemicals in the network are dis-
tinct and mass action kinetics is assumed).

Throughout this paper we assume that at least one complex is nontrivial.
Equivalently, there is at least one ni > 1. We also assume that each chemical is
part of precisely one complex, or Xk

i 
= Xl
j for all k, l whenever i 
= j . The con-

centration vector associated to complex Ci is denoted by xi = (x1
i , · · · , xni

i )T and
its associated stoichiometric vector by ai = (a1

i , . . . , ani
i )T . We will also use the

full concentration vector x = (xT
1 , . . . , xT

n+1)
T with x ∈ R

N+ where N is the sum
of all ni .

All reaction rates are assumed to be C1 monotone functions of the concen-
trations of the reagentia, zero when one of the reagentia is missing, and positive
when all of the reagentia are present. The forward reaction rate of the reaction
Ci � Ci+1 is denoted by Ri and the backward reaction rate by R−i . Formally,
for all i = 1, . . . , n it is assumed throughout the rest of this paper that:

Ri : R
ni+ → R+, Ri (xi ) = 0 ∀xi ∈ ∂R

ni+ , Ri (xi ) > 0 and,

∂T Ri/∂xi (xi ) ∈ int(Rni+ ), ∀xi ∈ int(Rni+ )
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and similarly for the backward reaction rates R−i . (But notice that R−i is defined
for xi+1 ∈ R

ni+1+ ).
The familiar example of mass action kinetics, where reaction rates are given

by Ri (xi ) = kiΠ
ni
k=1(xk

i )ak
i for some ki > 0, satisfies these requirements.

We define the reaction rate vector by:

R(x) = (R1(x1), Ri (x2), . . . , Rn(xn), R−n(xn+1))
T

and the stoichiometric matrix of the network by:

S =

⎛

⎜⎜⎜⎜⎜⎝

−a1 +a1 0 0 · · · 0
+a2 −a2 −a2 +a2 · · · 0

...
. . . · · ·

0 · · · +an −an −an +an
0 · · · 0 0 an+1 −an+1

⎞

⎟⎟⎟⎟⎟⎠
.

Then the differential equations for the concentrations are:

ẋ = S R(x). (3)

A standard argument shows that system (3) is positive, i.e. that the nonneg-
ative orthant R

N+ is forward invariant. Notice that this system is not monotone
with respect to any order generated by an orthant of R

N . This is seen by inspec-
tion of the incidence graph associated to system (3), which contains a loop of
negative parity. Indeed, consider a loop formed by two nodes corresponding to
chemicals in the same complex and a third node corresponding to an arbitrary
chemical in a neighboring complex (this is a complex which can be reached from
the first complex by a single reaction step). Clearly, such a loop has negative par-
ity. Our main result will be the following:

Theorem 1. Every solution of system (3) converges to an equilibrium point.

In our subsequent analysis, we will assume that there is at least one com-
plex with nonzero initial concentrations for all its constituent chemicals:

∃i : xk
i (0) > 0, ∀k = 1, . . . , ni . (4)

For if (4) would not hold, none of the reactions would take place. Note that such
initial conditions correspond to equilibria for which theorem 1 holds trivially, so
assumption (4) entails no loss of generality.

Associated to each complex Ci with ni >1, there are ni − 1 independent
linear first integrals. Indeed,

d
dt

(
xk

i

ak
i

− x1
i

a1
i

)
= 0, ∀k = 2, . . . , ni . (5)
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along solutions of (3) and thus we have that:

xk
i (t) = βk

i x1
i (t) + αk

i , ∀k = 2, . . . , ni (6)

for some αk
i ∈ R (which depends on the initial condition) and βk

i = ak
i /a1

i >0.
In fact, we claim that without loss of generality, we may assume that:

αk
i � 0, ∀k = 2, . . . , ni .

To see this, notice that after a possible relabeling of the chemicals within each
complex, there holds that:

xk
i (0)

ak
i

�
x1

i (0)

a1
i

, ∀k = 2, . . . , ni

from which our claim follows immediately.
By (6) it suffices to consider the dynamics of the concentrations of the first

chemical – x1
i – of every complex Ci . For every i , define:

yi := x1
i , ri (yi ) : = Ri

(
yi , β

2
i yi + α2

i , . . . , β
ni
i yi + α

ni
i

)
,

r−i
(
yi+1

) : = R−i

(
yi+1, β

2
i+1yi+1 + α2

i+1, . . . ,
)

.

Notice that each ri is a C1 function with the following properties:

ri : R+ → R+, ri (0) = 0, ri (yi ) > 0 and r ′
i (yi ) > 0 ∀yi > 0

and similarly for each r−i . Denoting y = (y1, . . . , yn+1)
T , r(y) = (r1(y1), r−1

(y2), . . . , rn(yn), r−n(yn+1))
T and setting:

S =

⎛

⎜⎜⎜⎜⎜⎝

−a1
1 +a1

1 0 0 . . . 0
+a1

2 −a1
2 −a1

2 +a1
2 . . . 0

...
. . . . . .

0 . . . +a1
n −a1

n −a1
n +a1

n
0 . . . 0 0 a1

n+1 −a1
n

⎞

⎟⎟⎟⎟⎟⎠
,

we arrive at the following system:

ẏ = S̃r(y), (7)

where y ∈ R
n+1+ \ {0} (note that 0 is excluded because of (4)).

Since y1(t)/a1
1 + y2(t)/a1

2 + · · · + yn+1/a1
n+1(t) = C along solutions for some

constant C >0 we can reduce the dimension by 1 by dropping the equation for
yn+1 and then introduce n new variables:

z j =
j∑

i=1

yi

a1
i

, j = 1, . . . , n.
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The inverse transformation is:

y1 = a1
1z1,

y j = a1
j (z j − z j−1), j = 2, . . . , n.

Using these new coordinates, the equations for the reduced system are:

ż1 = −r1(a
1
1z1) + r−1(a

1
2(z2 − z1)),

...

żk = −rk(a
1
k (zk − zk−1)) + r−k(a

1
k+1(zk+1 − zk)), k = 1, . . . , n − 1,

...

żn = −rn(a
1
n(zn − zn−1)) + r−n(a

1
n+1(C − zn)) (8)

with compact and convex state space:

Ω = {z ∈ Rn|0 � z1 � z2 � · · · � zn � C}.
Clearly, system (8) is cooperative (and tridiagonal).

Lemma 1. If z∗ ∈ Ω is a steady state of system (8), then z∗ ∈ int(Ω). Moreover,
z∗ is hyperbolic and locally asymptotically stable.

Proof. Suppose that z∗ ∈ ∂Ω is a steady state of system (8). Then either z∗
1 = 0

or z∗
n = C or z∗

k = z∗
k+1 for some k ∈ {1, . . . , n − 1}. Using that all functions ri

and r−i can only be zero at zero, each of these cases will lead to a contradiction
with the fact that C > 0. This establishes the first part of the lemma.

For the second part, notice that the Jacobian at a steady state has the fol-
lowing structure:

J =

⎛

⎜⎜⎜⎜⎜⎝

−a11 − a12 +a12 0 . . . 0
+a21 −a21 − a23 +a23 . . . 0

...
. . .

. . .
. . .

...

0 . . . +a(n−1)(n−2) −a(n−1)(n−2) − a(n−1)n +a(n−1)n
0 . . . 0 +an(n−1) −an(n−1) − ann

⎞

⎟⎟⎟⎟⎟⎠
,

where all ai j > 0.
We will prove that J is diagonally dominant and hence Hurwitz, as we

show in appendix A.
Recall that an n × n matrix B is called diagonally dominant if there are n

numbers di > 0 such that:

bii di +
∑

j 
=i

|bi j |d j < 0, ∀i = 1, . . . , n.
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For a cooperative matrix such as J , the absolute values can be dropped in the
above definition. Therefore, we must find a vector d with positive entries, such
that the vector Jd is a vector with negative entries. Notice that J1 – where 1
is a vector for which all entries are 1 – is a vector with negative first and last
entries (−a11, respectively, −ann) and all other entries are 0. This suggest that to
find d we could try to look for a suitable perturbation of the vector 1.

Define recursively n − 1 parameters ∈ j as follows:

0 < ε1 <
a11

a11 + a12
,

0 < ε j < ε j−1
a j ( j−1)

a j ( j−1) + a j ( j+1)

, j = 2, . . . , n − 1,

Clearly ε j < 1 for all j = 1, . . . , n − 1. Next define the vector d as follows:

di = 1 − εi , i = 1, . . . , n − 1 and dn = 1.

Then it can be checked that Jd is a vector with negative entries, showing that J
is diagonally dominant and hence a Hurwitz matrix. This concludes the proof.

Lemma 2. System (8) has a unique, globally asymptotically stable steady state in
Ω.

Proof. Since Ω is a compact, convex, forward invariant set for system (8), it
has at least one steady state. By the previous lemma, all steady states belong to
int(Ω). Then the Brouwer degree of the vector field F of system (8) with respect
to int(Ω) and value 0, is well defined and denoted by d(F; int(Ω); 0). Moreover,
we claim that:

d(F, int(Ω), 0) = (−1)n.

To see this, pick an arbitrary point x̄ ∈ int(Ω) and consider the following vector
field on Ω:

G(x) = x̄ − x .

Obviously,

d(G, int(Ω), 0) = (−1)n.

We will show that F and G are homotopic, and then our claim follows since the
Brouwer degree is a homotopy invariant. Define:

H(x, t) = t F(x) + (1 − t)G(x).
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Then H is continuous on Ω × [0, 1], H(x, 0) = G(x), and H(x, 1) = F(x). We
are left with proving that H(x, t) 
= 0 for all x ∈ ∂Ω and all t ∈ (0, 1). Suppose
that this is not the case, then there is a x̃ ∈ ∂Ω and t̃ ∈ (0, 1) such that:

F(x̃) = −1 − t̃

t̃
G(x̃).

This implies that F points outwards in x̃ (since G(x̃) clearly points inwards). But
this contradicts the fact that Ω is forward invariant and establishes our claim.

By the previous lemma, we know that the Jacobian at each steady state of
(8) is nonsingular and hence the number of steady states is finite. By definition
of the Brouwer degree for C1 mappings:

d(F, int(Ω), 0) =
∑

i

sign det J (x∗
i ),

where J (x∗
i ) is the Jacobian at a steady state of system (8) and the summation

runs over all steady states.
Now by the previous lemma every steady state x∗

i is hyperbolic and locally
asymptotically stable, so there holds that:

sign det J (x∗
i ) = (−1)n,

and hence there can only be one steady state.
Global asymptotic stability follows from lemma 5, which is proved in

appendix B. To see that this result can be applied, note first that since Ω is com-
pact and forward invariant, system (8) generates a continuous semiflow. Condi-
tion 4, is clear by compactness of Ω. Condition 2, follows from the fact that
system (8) is cooperative in Ω and therefore, generates a monotone semiflow with
the order given by the usual componentwise order on R

n.1 Condition 3, has just
been proved and condition 1, is satisfied as well. (Proof: for any compact K ⊂ Ω,
for all i = 1, . . . , n, let p∗

i ∈ K be some point in K with maximal i component.
Note that p∗

i exists in K since the projection on the ith component is continu-
ous and K is compact. Now, Ω is a lattice, i.e. sup(a, b) ∈ Ω whenever a, b ∈ Ω.
Therefore, p := supi (p∗

i ) ∈ Ω and it is easy to see that sup(K ) = p. The proof
that inf(K ) ∈ Ω is similar. Alternatively, we could have proved this claim using
lemma 4.)

Remark 1. We could also have proved global asymptotic stability using results
of [26] or even of [22]. But these require verification of stronger monotonicity
properties of the flow, which has been avoided here. For a proof using Smillie’s
results for the case where each complex consists of only one chemical (see [5]).

1Here we have used that Ω is convex, hence p–convex. The conclusion then follows from
proposition 3.1.1 and remark 3.1.1 in [27].
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Proof of theorem 1. This follows from the reduction and transformation of sys-
tem (3) to system (8), combined with lemma 2.

3. Adding diffusion

Ordinary differential equation models such as considered in (3) implicitly
assume that reactions proceed in a well-mixed environment. While this is a rea-
sonable assumption when diffusion is fast compared to the time scales of reac-
tions, it is of interest as well to incorporate explicitly the effect of diffusion. This
leads to reaction–diffusion (also known as semilinear parabolic) partial differen-
tial equations.

In this section, we show how to extend our results to the case when diffu-
sion is included in the model. Our results intersect, for the special example of
the reaction X1 + X2 � X3, and assuming mass action kinetics, with those given
in [23]. That paper dealt with the extension of the FHJ theory of chemical reac-
tions (see, e.g. [7,11,19,29]) from ODE’s to reaction–diffusion problems. (See also
[24] for the statement of convergence results for reaction–diffusion FHJ systems,
but with incomplete proofs.) The techniques in [23,24] are based upon Lyapu-
nov functions, and are thus different from our approach, which allows treating
a different class of reactions and we do not need to restrict ourselves to mass
action kinetics. On the other hand, there is an abundance of examples of chem-
ical systems which are of FHJ type but are not monotone, and thus cannot be
treated with our techniques.

Our goal in this section is to show how the analogous convergence results
for the PDE model follow as easy corollaries from those for ODE’s. (An alterna-
tive would be to prove all results ab initio in the framework of monotone reac-
tion–diffusion systems, but the reduction to ODE’s is far simpler.) In general,
we consider initial/Neumann-boundary “no-flux” PDE problems for functions
x(q, t) of space and time, where dot indicates derivative with respect to time, xν

indicates normal derivative, f is a monotone vector field, and L is a diffusion
partial differential operator:

ẋ = Lx + f (q, x), t > 0, q ∈ Q,

xν = 0 t > 0, q ∈ ∂ Q,

x(q, 0) = x0, q ∈ Q̄.

(9)

The key observation that we wish to make is that (under appropriate technical
assumptions) every solution of (9) converges to a unique homogeneous equilib-
rium: x(q, t) → c as t → ∞, provided that every solution of the associated ODE
ẋ = f (x) converges to c. Thus, the results proved earlier extend to the diffu-
sion case. (Monotonicity of f is essential – compare to diffusive instability phe-
nomena such as arise in activator–inhibitor mechanisms for pattern formation.)
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Let us first develop some background, blending results on monotone reaction–
diffusion systems from [27], chapter 7 with some technical facts from [1].

The set Q represents space, and is a bounded, open, connected subset of an
Euclidean space R

M with smooth (class C4) boundary ∂ Q. The vector field f is
of class C2. The notation xν indicates directional derivative with respect to the
outer unit normal ν = ν(q) to ∂ Q at the point q. We pick a nonempty closed
subset X of R

n to restrict the allowed values of concentrations, such as for exam-
ple, the nonnegative orthant or the compact and convex state space Ω used in
lemma 1, and assume that X is forward-invariant with respect to the ODE ẋ =
f (x) (two additional assumptions on X are made below). The initial condition
is a function

x0 : Q̄ → X,

which is twice continuously differentiable and satisfies the boundary requirement
(x0)ν = 0. By a “solution” of (9) we mean a function

x = (x1, . . . , xn)
′ : Q̄ × [0, T ] → X

(prime indicates transpose) such that (9) holds and:

∂xi

∂t
,

∂xi

∂q j
,

∂2xi

∂q j∂qk
are Hölder continuous on Q × (0, T ) for all i, j, k

and

∂xi

∂q j
, xi are continuous on Q̄ × (0, T ) for all i, j.

These assumptions are as in [1]; in [27] it is only required that
∂xi

∂q j
be continu-

ous on Q̄ × (0, T ] (also, Hölder continuity is relaxed to just continuity) but less
regularity is imposed on initial conditions.

The differential operator L has the following form:

Lx = (L1x1, . . . , Lnxn)
′,

where for every i ,

Li =
n∑

j,k=1

ai
jk(q)D j Dk +

n∑

k=1

ai
k(q)Dk

with each ai
k j = ai

jk ∈ C2(Q̄), and L is uniformly elliptic:

∃μ > 0 such that ξ ′ Ai (q)ξ � μ|ξ |2, ∀ξ ∈ R
n,



306 P. De Leenheer et al. / Monotone chemical reaction networks

where Ai (q) = (ai
jk(q)). The main example for us will be the case in which there

is independent diffusion of each species: ai
j j ≡ di > 0, and ak ≡ 0, a jk ≡ 0 for

all j 
= k, i.e. Lxi = di�xi , where � is the Laplacian.
Two additional conditions must be imposed on the set of allowed state vec-

tors X . We already asked that it be invariant under the dynamics ẋ = f (x).
A second requirement is that it should also be invariant under diffusion, in the
sense that solving the linear problem ẋ = Lx with an initial condition having
x0(q, 0) ∈ X for all q ∈ Q should result in a solution with x(q, t) ∈ X for all
t > 0 and all q ∈ Q. For this purpose we will assume from now on either that Q
is an arbitrary open convex set but all operators Li are the same (for example,
there is independent diffusion of each species and di = d j for all i, j), or that
the Li ’s are arbitrary but that Q equals a “rectangle” (a, b), with b − a ∈ R

n+
(possibly with a = −∞ or b = +∞).

Assume from now on that an order has been specified on R
n. A last

requirement is a lattice requirement on the set X (see also appendix B): for any
compact subset S ⊆ X , both inf(S) and sup(S) are defined and belong to X .
We say that a vector field is quasi-monotone (with respect to the given order on
X ⊆ R

n) if the flow of ẋ = f (x) is monotone. Given two functions x, y with
values in X , we write x � y if x(q, t) � y(q, t) for all (q, t) in their common
domain. The following is a version of theorem 3.4 in [27]. We have specialized
it to PDE’s (in the textbook, it is given in more generality, for partial differen-
tial inequalities), and we have stated it for arbitrary orders (the statement in the
book is given only for cooperative systems, but, cf. p. 142, the same proof is valid
for arbitrary orders).

Theorem 2. If f is quasi-monotone, and y, z are solutions defined on [0; T ) such
that y(·, 0) � x0 � z(·, 0) on Q̄, then there is a unique solution x of (9), defined
at least on the interval [0, T ), and y � x � z on Q̄ × [0, T ).

We are now ready to state our conclusions. The first remark is as follows.

Theorem 3. Suppose that f is quasi-monotone, and that there exists ξ ∈ X so
that every solution of ẋ = f (x), x0 ∈ X , converges to ξ as t → ∞. Then, for
each initial condition x0, there is a unique solution x(q, t) of (9), defined for all
t > 0, and x(q, t) → ξ as t → ∞, uniformly on q ∈ Q.

To prove this statement, we first pick y as a function Q̄ → X , which is con-
stantly equal to the minimum value of x0 and z as a function Q̄ → X , which is
constantly equal to the maximum of x0. Furthermore, we observe that the solu-
tion y(t) of ẋ = f (x), x(0) = y (which is defined for all t and converges to ξ

as t → ∞) can be also seen as a solution of (9), simply letting y(q, t) ≡ y(t).
Similarly with z, and we are in the situation of theorem 2. Applying this theo-
rem on increasing finite intervals [0, T ), we obtain existence and uniqueness of
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x(q, t) on [0, ∞). Furthermore, we have that y(q, t) � x(q, t) � z(q, t), and both
y(q, t) → ξ and z(q, t) → ξ (uniformly on q), which gives the conclusion.

Unfortunately, as elegant as theorem 3 is, it is not sufficient by itself when
treating the original system (3), because there are many equilibria for this sys-
tem. We need to make an additional assumption, namely that all diffusion rates
coincide.

Theorem 4. Suppose that f is as in theorem 1, and that, for some d > 0, Li xi =
d�xi for each coordinate of the state. Then all solutions of (9) converge to
(homogeneous) steady states.

To prove this, we use the same change of coordinates as earlier. Applied to
the PDE, this results in equations of the form

ż1 = −r1(a
1
1z1) + r−1(a

1
2(z2 − z1)) + d�z1,

...

żk = −rk(a
1
k (zk − zk−1)) + r−k(a

1
k+1(zk+1 − zk)), +d�zk, k = 1, . . . , n − 1,

...

żn = −rn(a
1
n(zn − zn−1)) + r−n(a

1
n+1(C − zn)) + d�zn.

Combining lemma 2 with theorem 3, we know that every solution of this system
converges to a (unique) homogeneous steady state. Thus, the variables yi = x1

i
also converge to such steady states. We now prove that the remaining variables
do, too.

Recall that there were, for the ODE (no diffusion) ni −1 independent linear
first integrals, as shown in (5):

Żik = 0, ∀i∀k = 2, . . . , ni ,

where Zik = xk
i /ak

i − x1
i /a1

i . From there we obtained expressions as in (6):

xk
i (t) = βk

i x1
i (t) + αk

i , ∀i∀k = 2, . . . , ni

for some αk
i ∈ R (which depend on initial conditions) and βk

i > 0. Thus, when
the x1

i converge, the same could be concluded for each other variable xk
i . When

adding diffusion, this argument does not work. Equation (5) becomes, instead:

Żik = L Zik, ∀i∀k = 2, . . . , ni

with L Z = d�Z , subject to the Neumann condition (Zik)ν = 0 at boundary
points. Every solution of this PDE converges to a constant, namely the average

1
|Q|

∫
Q Zik(q, 0)dq of its initial values, where |Q| is the measure of Q. (Sketch of

proof: there is a sequence of eigenvalues and respective eigenvectors λi , φi , i =
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1, 2, . . . , of the self-adjoint Neumann Laplacian: solutions of Lφ +λφ = 0, φν =
0. These satisfy λ1 = 0, φ1 = 1, and λi > 0 for all i > 1, and the φi form an
orthogonal basis of L2. Now take any continuous and bounded initial condition
x0, viewed as an element of L2, and expand it in terms of this basis: x(q, 0) =∑∞

i=1 biφi (q); then x(q, t) = ∑∞
i=1 bi e−λi tφi (q) is the solution of Ż = L Z with

this initial condition, and it converges, in L2, to the first Fourier term b1, which
is the required average.) In summary, both xk

i /ak
i − x1

i /a1
i and x1

i converge to a
constant, so every variable xk

i does, too.

Appendix A: diagonally dominant matrices are Hurwitz

This result is well-known (see for instance [25]). We provide a short proof
here, based on Gershgorin’s theorem.

We will first prove a special case and then show that the general case can
always be reduced to this special case.

If a matrix A is diagonally dominant with respect to di = 1 for all i =
1, . . . , n, i.e.:

aii +
∑

j 
=i

|ai j | < 0, ∀i = 1, . . . , n

then it follows from Gershgorin’s theorem that A is Hurwitz.
If a matrix A is diagonally dominant with respect to a set of positive num-

bers di which are not all equal to 1, then we claim that the matrix A is simi-
lar to a matrix A∗ which is diagonally dominant with respect to di = 1 for all
i = 1, . . . , n. The result then follows straightforwardly.

To prove the claim, define the matrix T as the diagonal matrix with diago-
nal entries:

ti i = 1/di, ∀i = 1, . . . , n.

Then a simple calculation shows that the matrix A∗ = T AT −1 is such that a∗
i j =

ai j d j/di for all i, j = 1, . . . , n. But this in turn implies that:

a∗
i i +

∑

j 
=i

|a∗
i j | =

⎛

⎝di aii +
∑

j 
=i

|ai j |d j

⎞

⎠
/

di , ∀i = 1, . . . , n.

These n quantities are of course all negative, concluding the proof of our claim.

Appendix B: a global attractivity result for monotone flows with unique equilibria

Consider a metric space X with metric d and suppose that a partial order
� has been defined on X . It will be assumed that the partial order and the met-
ric topology on X are compatible in the following sense: if xn → x and yn → y
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are converging sequences in X with xn � yn, then x � y. We occasionally abuse
notation by writing x � A for some x ∈ X and A ⊂ X , to denote that x � y for
all y ∈ A. We will use the familiar order-theoretic notions sup(A) and inf(A) to
denote the least upper-bound and greatest lower-bound of a set A ⊂ X – pro-
vided they exist in X . For two points p, q ∈ X with p � q, we define the order
interval [p, q] := {x ∈ X |p � x � q}. A set A ⊂ X is called order convex if
[p, q] ⊂ A for every pair p, q ∈ A with p � q.

We will discuss the dynamics generated by a continuous semiflow Φ on X .
Recall that this is a continuous map Φ : R+ × X → X with Φt (x) := Φ(t, x) such
that Φ0 = I d and Φt ◦ Φs = Φt+s for t, s ∈ R+.

The following conditions on X and Φ are introduced:

1. For every compact subset C of X , there holds that inf(C), sup(C) ∈ X .

2. Φ is monotone with respect to �, i.e. (1) holds.

3. Φ has a unique equilibrium point a in X .

4. For every x ∈ X , the orbit O(x) := {Φt (x)|t ∈ R+} has compact closure
in X .

The last condition 4, implies in particular that the ω limit set of x , denoted
by ω(x), is nonempty, compact, invariant (meaning that Φt (ω(x)) = ω(x) for all
t ∈ R+) and limt→∞ d(Φt (x), ω(x)) = 0 (where the usual distance from a point
x ∈ X to a set A ⊂ X is given by d(x, A) = inf y∈A d(x, y)). Under conditions
1–4 we have the following result:

Theorem 5. The equilibrium point a is globally attractive for Φ.

Proof. Pick x ∈ X and consider ω(x). Then we can define:

m = inf(ω(x)) and M = sup(ω(x)).

We claim that:

Φt (m) � m, ∀t ∈ R+. (10)

To see this, we will prove that for all t � 0, Φt (m) � ω(x), from which (10) will
follow since m is the greatest lower bound of ω(x).

Choose t � 0 and select an arbitrary p ∈ ω(x). We need to show that
Φt (m) � p. By invariance of ω(x) there is some q ∈ ω(x) such that Φt (q) = p.
Now m � q since q ∈ ω(x) and thus monotonicity implies that Φt (m) � Φt (q) =
p, thus proving (10).

Monotonicity implies that Φt (m) is nonincreasing, i.e. Φt2(m) � Φt1(m) if
0 � t1 � t2 (simply apply Φt1 to (10) where t = t2 − t1).
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We now claim that ω(m) = {a}.2 We will first show that p, q ∈ ω(m) implies
that p = q. Pick sequences Φtk (m) → p and Φtl (m) → q with tk, tl → ∞. Since
Φt (m) is nonincreasing, it is possible to find for every tk , some tl(k) � tk such that
{tl(k)} forms a subsequence of {tl} and Φtl(k)

(m) � Φtk (m). After taking limits, we
find that q � p. A similar argument shows that p � q and therefore, p = q.
So this shows that ω(m) is a singleton. Invariance of ω limit sets then implies
that ω(m) must consist of an equilibrium. Uniqueness of the equilibrium a then
implies that ω(m) = {a}, proving the claim.

A similar argument yields that Φt (M) is monotonically increasing and that
ω(M) = {a}. Finally, we have that for all t � 0:

Φt (m) � m � ω(x) � M � Φt (M),

and upon taking limits for t → ∞, we obtain that ω(x) = a, which concludes
the proof.

Remark 2. In this remark, we will give a test for verification of the first condi-
tion, in those cases where the state space X is a subset of some finite-dimensional
space.

Suppose that Y is a finite-dimensional normed vector space and that the
state space X is a subset of Y . The partial order � on Y – and hence on X –
is assumed to be generated by a cone K ⊂ Y . Recall that a cone K is called
normal if there is some k > 0 such that whenever x, y ∈ Y satisfy 0 � x � y,
then |x | � k|y|. It is easy to see that if K is normal, then every order interval in
Y is a bounded set.

The following lemma shows that a cone K in a finite-dimensional space Y ,
is always normal.

Lemma 3. Let Y be a finite-dimensional vector space with cone K , inducing a
partial order � on Y . Then K is normal.

Proof. We will show that

M := sup{|z||0 � z � x, |x | = 1}
is a finite real number. From this, we claim that the conclusion will follow when
we choose k in the definition of normality to be equal to M . Indeed, whenever

2This claim would immediately follow from the Convergence Criterion for monotone systems (the-
orem 1.2.1 in [27]), using uniqueness of the equilibrium a. However, here we prefer to give a
self-contained yet short proof, without having to resort to any of the results from the theory of
monotone systems.
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0 � x � y with y 
= 0 (which can be assumed without loss of generality), it fol-
lows that 0 � x/|y| � y/|y|. But, then |x/|y|| � M and so letting k = M the
claim follows.

Let us now prove that M is finite. Suppose it’s not, then there are sequences
{xn} and {zn} satisfying 0 � zn � xn such that |xn| = 1 for all n and |zn| → ∞.
Consider the sequence {yn} where yn = zn/|zn|. Obviously, |yn| = 1 for all n
and by compactness of the unit sphere in Y (since Y is finite-dimensional), we
may pick a converging subsequence ynk with limit y∗. Clearly, |y∗| = 1 and
xnk /|znk | → 0. So by compatibility of the partial order and the metric topology,
we find that:

0 � y∗ � 0.

But this is equivalent with the statement that y∗ ∈ K ∩(−K ) and thus that y∗ = 0
(since K is a cone). This contradicts |y∗| = 1 and concludes the proof. ��

Recall that a partially ordered set X is a lattice if sup(p, q), inf(p, q) ∈ X
for all p, q ∈ X . We say that a set S ⊂ X is order bounded in X if there are
a, b ∈ X such that S ⊂ [a, b].
Lemma 4. Let Y be a finite-dimensional normed vector space with cone K and
let X ⊂ Y be a lattice. Suppose that every bounded set in X is order bounded in
X . If C is a compact subset of X , then inf(C), sup(C) ∈ X .

Proof. We will only prove the result that sup(C) ∈ X . The proof that inf(C) ∈
X is similar.

Since C is bounded, it is also order bounded and thus there are a, b ∈ X
such that C ⊂ [a, b]. Compact sets in metric spaces are separable, so we may
pick a countable and dense subset {ck} of C . Since X is a lattice, we can con-
struct a sequence {xk} in X as follows:

x1 = c1,

xk = sup(ck, xk−1), k > 1.

This sequence has the following properties:

1. {xk} is increasing, i.e. xk � xk+1 for all k � 1.

2. {xk} ⊂ [a, b].
The order interval [a, b] is closed (by compatibility of the metric topology and
the partial order) and bounded (because K is normal), hence compact. Thus, we
have an increasing sequence {xk} which remains in a compact set [a, b] and thus
there is some some x ∈ [a, b] ⊂ X such that xk → x (we have proved this fact in
the proof of theorem 5). Now we claim that:

sup(C) = x .
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Let us prove this claim in two steps. First we will show that x is an upper bound
for C . Second we will show that it is the least upper bound.

Pick c ∈ C . Since {ck} is dense in C , we may extract from {ck} a converging
subsequence {cnk } with limit c. We already know that cnk � x for all nk , so com-
patibility implies that c � x . Finally, let y be an arbitrary upper bound for C .
Then in particular ck � y for all k and hence xk � y for all k. Taking limits and
using compatibility once more we get that x � y, so x is the least upper bound
of C .

For instance, suppose that Y = R
n and K = R

n+ and that X is either R
n+

or R
n. Then clearly, X is a lattice and every bounded set in X is order bounded.

Hence, lemma 4 implies that compact subsets of X have infimum and supremum
in X .

Remark 3. Theorem 5 may also be useful for flows on infinite dimensional
spaces. For instance, in delay equations one often considers spaces of contin-
uous functions defined on a compact interval such as X = C([−r, 0], R

n) or
X = C([−r, 0], R

n+) with the usual metric induced by the supremum norm and
with the usual partial order, defined by f1 � f2 iff f2(t) − f1(t) ∈ R

n+ for all
t ∈ [−r, 0]. In both cases, the inf and sup of compact sets exist in X (see [18]).

Remark 4. Condition 1, appeared in the work of [20] whose ideas we have
followed here. More recently, this condition also surfaced in the work of [18].
There, a stronger monotonicity property is imposed on the semiflow, but equi-
libria need not be unique. The result is that the set of quasi-convergent points
(a point is quasi-convergent if its omega limit set is contained in the set of equi-
libria) contains an open and dense set. The proof relies on a number of funda-
mental results from the theory of monotone systems.

Although Theorem 5 is sufficient for proving our main result on chemical
reaction networks (theorem 1), we can generally conclude stability of the equi-
librium a as well, provided the space X and the flow Φ satisfy extra conditions.

C every neighborhood of every point x ∈ X contains a compact, order con-
vex neighborhood C of x .

Then we obtain the following result:

Lemma 5. Assume that for every t ∈ R+, Φt is an open mapping. Then under
conditions 1–4 and C, the equilibrium point a is globally asymptotically stable
for Φ.
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Proof. By Theorem 5 it suffices to prove that a is a stable equilibrium. We will
repeatedly use the fact that for all p, q ∈ X with p � q, there holds that:

Φt ([p, q]) ⊂ [Φt (p), Φt (q)], ∀t ∈ R+,

which follows from monotonicity of Φ.
Choose an arbitrary neighborhood U of a. Then by condition C, there is

some compact and order convex neighborhood C of a with C ⊂ U . By condi-
tion 1, we can define:

i = inf(C) and s = sup(C),

and consider the order interval [i, s]. Then obviously, C ⊂ [i, s], so [i, s] is also a
neigborhood of a. Consequently, since for every t ∈ R+, Φt is an open mapping,
Φt ([i, s]) is also a neighborhood of a.

Now choose T > 0 such that:

Φt (i), Φt (s) ∈ C, ∀t � T . (11)

Such a T exists by Theorem 5.
Now consider the neigborhood V := ΦT ([i, s]) of a. Then for all t � 0,

there holds that:

Φt (V ) = Φt (ΦT ([i, s])) ⊂ Φt ([ΦT (i), ΦT (s)]) ⊂ [Φt+T (i), Φt+T (s)] ⊂ C ⊂ U,

where we used the fact from above in proving the first two inclusions, and (11)
and C (and in particular for the first time that C is order convex), for proving
the third inclusion. This concludes the proof.
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