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Abstract. We study a single species in a chemostat, limited by two nutrients, and separate
nutrient uptake from growth. For a broad class of uptake and growth functions it is proved
that a nontrivial equilibrium may exist. Moreover, if it exists it is unique and globally stable,
generalizing a result in [15].

1. Introduction

In 1950, Monod [21] proposed his now classic model of the nutrient-limited growth
of microorganisms. In this model, a single nutrient limits growth and growth is
directly coupled to nutrient uptake. Two separate modifications of this model have
been made. The first accounts for the observation that nutrient uptake and growth
are often decoupled. Nutrient uptake increases the internal stores of nutrients upon
which growth depends [2,4]. The second extends the model to include multiple
potentially limiting nutrients [16,32]. When both nutrients are essential for growth,
typically the nutrient in shortest supply limits growth [5], known as Liebig’s law
of the minimum [5,25]. The mathematical theory and biological implications of
both of these modifications of Monod’s model have been studied extensively, both
in terms of the growth of a single species and competition between two species
(decoupling of uptake and growth: [6,29]; multiple limiting nutrients: [16,18,19,
8,32]).

Only recently have these two modifications of the Monod model been jointly
examined. Legović and Cruzado [15] studied a chemostat model with Michaelis-
Menten uptake functions, Droop’s function relating growth rate to the internal store
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of the limiting nutrient, and Liebig’s law of the minimum. They solved for equilibria
and showed that if a nontrivial equilibrium exists, it is unique with a stable lineari-
zation. In [12] this model was further analyzed during the exponential growth phase
and at equilibrium, and extensively related the model results to chemostat studies.
This model has also been used as the basis of an evolutionary model determining
the optimal chemical stoichiometry of phytoplankton [13].

Here, we further analyze a more general class of models of the nutrient-lim-
ited growth of microorganisms that includes the models studied by [15,12]. Our
techniques borrow from the theory on monotone dynamical systems. In general,
solutions of systems in this class converge to equilibria and more complicated
behavior-such as oscillations- is rare and typically unobservable [27]. In fact, a
global mathematical analysis of many chemostat models in the literature, has been
very successful, largely due to the availability of the theory of monotone systems,
see [29] for a review. For the chemostat model studied here, we will prove unique-
ness and global stability of the nontrivial equilibrium for a broad class of uptake and
growth functions. From the mathematical point of view, the key idea is to transform
the system into a monotone system by means of a nonlinear state transformation.
A particular global stability result due to J.F. Jiang [10] is then used to prove the
main result.

Our results extend the previous results of [15] and [12,13] in the following
directions.

1. If a nontrivial equilibrium exists, it is not only locally, but also globally stable.
Assuming that it is not a co-limitation equilibrium, this implies that ultimately
only one nutrient will be growth limiting for the species. Switches in the nutri-
ent that determines growth will not occur after some transient time.

2. Our stability results are shown to be valid under less restrictive assumptions
on the uptake and growth rate functions and this suggests that they are robust
with respect to certain changes in these functions as long as the changes do not
violate a crucial monotonicity assumption. For example, the assumption that
growth rates saturate at the same value for different nutrients has been assumed
in previous models [12,13,15] but questioned in experiments [33].

2. Chemostat model

We will consider the following chemostat model which is operated at a constant
dilution rate a:

Ṙi = a(Rin,i − Ri) − fi(Ri)B, i = 1, 2

Q̇i = fi(Ri) − Qi min
j

(
µj (Qj )

)
, i = 1, 2

Ḃ = B[min
j

(
µj (Qj )

) − a] (1)

where Ri is the nutrient concentration of the i-th nutrient, Qi is the cell quota of
the i-th nutrient (this is the average amount of the i-th nutrient per cell) and B is the
concentration of the organism (number of cells per unit volume), feeding on both
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nutrients. Note that loss of organism is only due to washout from the chemostat.
Death of the organism inside the chemostat is neglected.

Nutrient uptake is governed by the nutrient uptake rate functions fi(Ri), both
of which are assumed to satisfy the following hypotheses:

1. (smoothness) The functions fi : R+ → R are continuously differentiable and
fi(0) = 0.

2. (strict monotonicity) f ′
i > 0 on R+.

A typical choice for fi would be a Monod (or Michaelis-Menten) function:

fi(Ri) = viRi

Ki + Ri

for certain positive constants vi and Ki .
Growth of the organism is assumed to follow ‘the law of the minimum’, a stan-

dard assumption in multiple nutrient models [5,25]. This is reflected in the model
by the presence of the minimum function, where the minimum is taken over both
growth rate functions µj (Qj ), which are assumed to satisfy the following:

1. (smoothness) µj (Qj ) : [Qmin,j , ∞) → R for some positive constant Qmin,j ,
is continuously differentiable and µj

(
Qmin,j

) = 0.
2. (strict monotonicity) µ′

j > 0 on [Qmin,j , ∞).

A typical choice for µj has been proposed by Droop:

µj (Qj ) = µj

(
1 − Qmin,j

Qj

)
for Q ∈ [Qmin,j , ∞) (2)

for certain positive constants µj and Qmin,j . The quota Qj is the total nutrient con-
centration of nutrient j per cell, which can be divided into two components: stored
nutrients awaiting assembly into cellular structure and nutrients in those cellular
structures. The minimum quota Qmin,j is the nutrient stored in cellular structures,
so that growth ceases when Qj = Qmin,j (i.e. there are no stored nutrients to
assemble).

The model studied in [15,12] assumes that the uptake functions are Monod
functions and that the growth functions take Droop’s form.

Notice that :

1. Assuming continuity for fi and µj seems natural, while continuity of their
derivatives is assumed to facilitate the mathematical analysis. For instance, a
simple linearization argument may become impossible if we do not make this
assumption. Of course, the same problem arises for linearizations at equilibria
where µ1 and µ2 are equal (so-called “co-limitation equilibria”), due to the
minimum in (1). But we will see later that such technical complications can be
avoided by our approach (no linearization arguments will be required at such
equilibria).

2. The assumption that fi and µj are increasing is far less trivial or technically
motivated. In fact, this assumption may well fail to hold for certain organisms.
For instance, it is possible that when the nutrient concentration reaches some
threshold value, they become toxic and inhibit further growth. For results on
models dealing with this case, see [1,34,29,9].
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Biologically meaningful initial conditions for system (1) are given by:

Ri(0) ≥ 0, Qi(0) ≥ Qmin,i , B(0) > 0, i = 1, 2

but we will analyze this system on the larger set

P = {(R1, R2, Q1, Q2, B) ∈ R
5
+ | Ri ≥ 0, Qi ≥ Qmin,i , B ≥ 0, i = 1, 2}

Note that P is a positively invariant set for (1). The constraints on Ri and B are obvi-
ous since these are concentrations. Notice also that the set where B = 0 is invariant
for the system (1) and that the resulting dynamics is less interesting from biological
point of view. Nevertheless it plays an important role in the global analysis of the
full model.

We start the analysis by rescaling the system:

t̄ = at, R̄i = Ri/Rin,i , Q̄i = Qi/Q
∗
i , B̄ = B/B∗, i = 1, 2

where Q∗
i and B∗ are positive constants satisfying B∗Q∗

i = Rin,i for i = 1, 2.
Defining new uptake functions and growth rate functions as follows:

f̄i (R̄i) = B∗

aRin,i

fi(Rin,i R̄i), µ̄i(Q̄i) = 1

a
µ(Q∗

i Qi)

noting that these functions satisfy the exact same hypotheses as their corresponding
unbarred relatives, and dropping bars, leads to the following scaled system:

Ṙi = 1 − Ri − fi(Ri)B, i = 1, 2

Q̇i = fi(Ri) − Qi min
j

(
µj (Qj )

)
, i = 1, 2 (3)

Ḃ = B[min
j

(
µj (Qj )

) − 1]

Notice that the state space P is unaffected by this rescaling operation (with Qmin,i

now equal to Qmin,i/Q
∗
i ).

3. Equilibria

We show that system (3) has at most 2 equilibria, one corresponding to extinction
of the organism which always exists, and possibly a second one corresponding to
the presence of the organism.

3.1. Unique extinction equilibrium point

Consider the following equations:

f1(1) − Q1 min
j

(
µj (Qj )

) = 0

f2(1) − Q2 min
j

(
µj (Qj )

) = 0
(4)

Solutions of (4) determine the Q1 and Q2 values of extinction equilibria of system
(3) for which R1 = R2 = 1 and B = 0.

There are two cases:
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Case 1. f2(1)/f1(1) ≥ Qmin,2/Qmin,1.

In this case we find that for every Q1 ≥ Qmin,1, there holds that [f2(1)/f1(1)]
Q1 ≥ Qmin,2 and therefore (4) is equivalent to:

Q1 min

(
µ1(Q1), µ2

(
f2(1)

f1(1)
Q1

))
= f1(1)

Q2 = f2(1)

f1(1)
Q1

(5)

Now notice that the left hand side of the first equation in (5) is strictly increasing
in Q1, takes the value 0 at Q1 = Qmin,1 and has limit +∞ as Q1 → ∞. Therefore
there is a unique solution Q̄1 ∈ (Qmin,1, ∞) for the first equation in (5). Inserting
Q̄1 in the second equation of (5) yields:

Q̄2 = f2(1)

f1(1)
Q̄1 > Qmin,2,

proving existence as well as uniqueness of the equilibrium point.

Case 2. f2(1)/f1(1) ≤ Qmin,2/Qmin,1.

In this case we find that for every Q2 ≥ Qmin,2, there holds that [f1(1)/f2(1)]
Q2 ≥ Qmin,1 and therefore (4) is equivalent to:

Q2 min

(
µ1(

f1(1)

f2(1)
Q2), µ2(Q2)

)
= f2(1)

Q1 = f1(1)

f2(1)
Q2

(6)

A similar argument shows that the first equation has a unique solution Q̄2 ∈
(Qmin,2, ∞) which can then be inserted into the second to find Q̄1 > Qmin,1,
again proving uniqueness and existence of the equilibrium point.

Summarizing,

Proposition 1. System (3) has a unique extinction equilibrium point:

E0 = (1, 1, Q̄1, Q̄2, 0) ∈ P.

For the remainder of this paper we assume that µ1(Q̄1) �= µ2(Q̄2). Then with-
out loss of generality (possibly after relabeling of indices), we assume that:

µ1(Q̄1) < µ2(Q̄2) (7)

and therefore there holds by (4) that:

f1(1) = Q̄1µ1(Q̄1)

f2(1) = Q̄2µ1(Q̄1),
(8)

a fact which will be used throughout the rest of this paper.
The local stability behavior of E0 is determined by a single parameter as we

show next.
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Lemma 1. The extinction equilibrium point E0 is locally asymptotically stable if
µ1(Q̄1) < 1 and unstable if µ1(Q̄1) > 1.

Proof. Since µ1(Q̄1) < µ2(Q̄1), we can linearize system (3) at E0 and get the
following Jacobian:







−1 0 0 0 −f1(1)

0 −1 0 0 −f2(1)

f ′
1(1) 0 −µ1(Q̄1) − Q̄1µ

′
1(Q̄1) 0 0

0 f ′
2(1) −Q̄2µ

′
1(Q̄1) −µ1(Q̄1) 0

0 0 0 0 µ1(Q̄1) − 1







Inspection of the Jacobian shows that four of its eigenvalues are real and negative
and that its fifth eigenvalue is µ1(Q̄1) − 1. This concludes the proof. 	


3.2. Nontrivial equilibrium point

Nontrivial equilibria of system (3), i.e. equilibria with B �= 0, correspond to solu-
tions of:

min
j

(
µj (Qj )

) = 1

Q1 = f1(R1), Q2 = f2(R2)

B = (1 − R1)/f1(R1) = (1 − R2)/f2(R2)

with Ri ∈ (0, 1).
It will prove useful for future reference to notice that the last two equations

and strict monotonicity of the fi imply that B is a strictly decreasing function of
R1 ∈ (0, 1) or of R2 ∈ (0, 1).

The solutions of the above equations are given by all solutions of:

µ1(Q1) = 1

f1(R1) = Q1

B = (1 − R1)/f1(R1)

1 − R2 − f2(R2)B = 0

Q2 = f2(R2)

(9)

with the constraints µ1(Q1) ≤ µ2(Q2), R1, R2 ∈ (0, 1) and all solutions of

µ2(Q2) = 1

f2(R2) = Q2

B = (1 − R2)/f2(R2)

1 − R1 − f1(R1)B = 0

Q1 = f1(R1)

(10)

with the constraints µ2(Q2) ≤ µ1(Q1), R1, R2 ∈ (0, 1).
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The following fact is useful:
Fact:
Each of the constrained equations (9), respectively (10) have at most one

solution.
This follows immediately by an inspection of the equations: the first three equa-

tions of (9), (respectively (10)) may be solved for Q1, R1 and B (Q2, R2, B) which
are unique by the strict monotonicity properties of f1 and µ1 (f2 and µ2). The fourth
equation of (9) (respectively (10)) may then be solved for R2 (R1). Existence of
this solution follows from the fact that the left hand side of this equation takes a
positive value at R2 = 0 (R1 = 0) and a negative value at R2 = 1 (R1=1), while
uniqueness is inferred from strict monotonicity of the left hand side of this equation.
Finally, the last equation may be solved to yield Q2 (Q1) which is unique by strict
monotonicity of f2 (f1).

This fact implies that system (3) has at most two nontrivial equilibria, which
are denoted by1- if they exist:

Ẽ1 = (R̃1
1, R̃1

2, Q̃1
1, Q̃

1
2, B̃

1), respectively Ẽ2 = (R̃2
1, R̃2

2, Q̃2
1, Q̃

2
2, B̃

2).

where Ẽ1 (Ẽ2) corresponds to the solution of (9) (respectively (10)).

Proposition 2. System (3) has at most one nontrivial equilibrium point.

Proof. Suppose there are two different nontrivial equilibria Ẽ1 and Ẽ2. Then B̃1 �=
B̃2 (for if this would not be true, both equilibria would coincide). Assume that

B̃1 < B̃2

Recalling that B is strictly decreasing on R1, this implies that:

R̃1
1 > R̃2

1 .

Strict monotonicity of f1 then implies that:

Q̃1
1 = f1(R̃

1
1) > f1(R̃

2
1) = Q̃2

1

Strict monotonicity of µ1 then implies that:

1 = µ1(Q̃
1
1) > µ1(Q̃

2
1)

But this contradicts that 1 = µ2(Q̃
2
2) ≤ µ1(Q̃

2
1).

If one assumes that B̃1 > B̃2, a similar proof also leads to a contradiction. 	

The next result relates the existence of a (unique) nontrivial equilibrium point

Ẽ to the stability properties of E0.

Lemma 2. If system (3) has a nontrivial equilibrium point Ẽ (which must be unique
by proposition 2), then

µ1(Q̄1) > 1.

It then follows (by lemma 1) that the extinction equilibrium point E0 is unstable.

1 Superscripts 1 refer to solutions of (9) while superscripts 2 refer to solutions of (10).
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Proof. First assume that Ẽ = Ẽ1. Then strict monotonicity of f1 implies that:

Q̃1
1µ1(Q̃

1
1) = Q̃1

1.1 = f1(R̃
1
1) < f1(1) = Q̄1µ1(Q̄1),

where we have used that Ẽ1 corresponds to a solution of (9) in the first two equali-
ties, and (8) in the last equality. Now the function Q1µ1(Q1) is strictly increasing
because µ1(Q1) is. This implies that:

Q̃1
1 < Q̄1

and hence, using monotonicity of µ1 once more, that:

1 = µ1(Q̃
1
1) < µ1(Q̄1)

which concludes the proof for this case.
If Ẽ = Ẽ2, we proceed by assuming that the lemma does not hold, i.e. that

µ1(Q̄1) ≤ 1. This implies that:

Q̄1 = f1(1)

µ1(Q̄1)
≥ f1(1).

On the other hand we have that:

Q̃2
1 = f1(R̃

2
1) < f1(1)

and thus upon combining inequalities that:

Q̃2
1 < f1(1) ≤ Q̄1

Strict monotonicity of µ1 and our initial assumption then imply that:

µ1(Q̃
2
1) < µ1(Q̄1) ≤ 1

But this contradicts that 1 = µ2(Q̃
2
2) ≤ µ1(Q̃

2
1). 	


It is possible that there is no nontrivial equilibrium point. For example, if the µj are
of the Droop form (2) with µj ≤ 1 for j = 1, 2, because then there is no solution
to the equation minj

(
µj (Qj )

) = 1. Thus, the interesting theoretical problem is
when one assumes existence, uniqueness having already been proved. This justifies
the following hypothesis, which we assume to hold throughout the remainder of
this paper:

System (3) has a unique nontrivial equilibrium point Ẽ ∈ P .

Then obviously, there holds that either Ẽ = Ẽ1 or Ẽ = Ẽ2.

Remark 1. Notice that we allow for the possibility that the values of µ1 and µ2
coincide at Ẽ, i.e. we allow that Ẽ is a co-limitation equilibrium point. Mathe-
matically speaking, this may create some technical problems. For instance, it is
not possible to linearize system (3) at a co-limitation equilibrium point. However,
as will become clear later, our approach to prove global stability does not require
linearization arguments and hence avoids such problems.
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4. Conservation principle

Consider the dynamics of the following quantities:

Mi = Ri + BQi, i = 1, 2

We interpret the Mi as the total concentration of nutrient i, both in free and stored
form. These quantities satisfy:

Ṁi = 1 − Mi

so Mi(t) → 1 exponentially as t → ∞. As a first step in the analysis of system
(3), it seems therefore reasonable to replace Ri by 1−BQi in the system equations
which gives the following reduced system:

Q̇1 = f1(1 − BQ1) − Q1 min
j

(
µj (Qj )

)
,

Q̇2 = f2(1 − BQ2) − Q2 min
j

(
µj (Qj )

)
, (11)

Ḃ = B[min
j

(
µj (Qj )

) − 1]

We will later justify this reduction.
The state space of this system is:

Pr = {(Q1, Q2, B) ∈ R
3
+|Q1 ≥ Qmin,1, Q2 ≥ Qmin,2, BQ1 ≤ 1, BQ2 ≤ 1}

which can be shown to be forward invariant. (A proof of this claim follows easily
from the transformed version (20) of this system which we study later)

As before, biologically relevant initial conditions belong to Pr but also satisfy
B > 0.

Next we show that all solutions of (11) eventually enter a compact set and
remain in it forever after.

Proposition 3. There is some constant M > 0 such that every solution (Q1(t),
Q2(t), B(t)) satisfies:

Q1(t), Q2(t), B(t) < M for all sufficiently large t.

Proof. First, we prove that solutions do not escape in finite time. To that end,
consider the dynamics of the variable:

V := Q2
1 + Q2

2,

which obeys:

V̇ ≤ 2 (f1(1)Q1 + f2(1)Q2) ≤ 2 (f1(1) + f2(1)) + 2 max (f1(1), f2(1)) V

where we used monotonicity offi in the first inequality and the fact thatQi ≤ 1+Q2
i

in the second. The resulting inequality implies that V - and hence Q1 and Q2 –
remains bounded in finite time intervals. Moreover, since BQi ≤ 1, we also get a
bound for B(t) on finite time intervals.
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Next, we introduce the following auxiliary variables:

zi = BQi, i = 1, 2,

with dynamics given by:

żi =−zi + Bfi(1−zi)=−zi + zi

Qi

fi(1 − zi) ≤
(
−1 + fi(1 − zi)

Qmin,i

)
zi, i =1, 2.

(12)

Then we may pick a sufficiently small δi ∈ (0, 1), i = 1, 2, for which there holds
that for all zi ∈ [1 − δi, 1]:

żi ≤ −cizi < 0, i = 1, 2

for some ci > 0, i = 1, 2, by continuity of the fi . Then with � = min{δ1, δ2}, we
obtain:

zi(t) ≤ 1 − � for sufficiently large t.

This bound and monotonicity of the fi will yield a uniform lower bound for the
Qi(t), i = 1, 2. Indeed, first notice that:

Q̇i ≥ fi(�) − Qi min
j

(
µj (Qj )

)
for sufficiently large t.

So for sufficiently small q > 0, we find that whenever Qi ∈ [Qmin,i , Qmin,i + q]:

Q̇i ≥ fi(�) − cQi > 0, i = 1, 2,

for some sufficiently small c > 0 by continuity of the µi , and thus that:

Qi(t) ≥ Qmin,i + q, i = 1, 2 for sufficiently large t. (13)

Finally, this lower bound leads to a uniform upper bound for the Qi(t):

Q̇i ≤ fi(1) − CQi, i = 1, 2 for sufficiently large t,

for some C > 0 (using that the fi are strictly increasing and continuity of the µi).
This implies that the statement of the proposition holds for the Qi(t), i = 1, 2. To
conclude this proof, notice that the statement is trivial for B(t) since B(t)Qi(t) ≤ 1
and Qi(t) ≥ Qmin,i for i = 1, 2, implying that B(t) ≤ 1/Qmin,i for all t ≥ 0. 	


The assumptions made before imply that system (11) has precisely two equi-
libria. First, there is an extinction equilibrium

Er
0 = (Q̄1, Q̄2, 0),

see proposition 1. Secondly, there is a nontrivial equilibrium point Ẽr given by:

Ẽr = (Q̃1
1, Q̃

1
2, B̃

1) or (Q̃2
1, Q̃

2
1, B̃

2).
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Notice that the set B0 = {(Q1, Q2, B) ∈ Pr |B = 0 } is forward invariant for
system (11) and that the dynamics on this set are given by the following planar
system:

Q̇1 = f1(1) − Q1 min
j

(
µj (Qj )

)
,

Q̇2 = f2(1) − Q2 min
j

(
µj (Qj )

)
,

(14)

defined on Q = {(Q1, Q2) ∈ R
2+ | Qi ≥ Qmin,i}. The asymptotic behavior of this

system (both in forward and backward time) will later prove to play an important
role and is investigated next.

Proposition 4. System (14) has a globally asymptotically stable equilibrium point
in E

r,0
0 = (Q̄1, Q̄1). Every backward solution, except for the equilibrium E

r,0
0 ,

leaves Q in finite time or is unbounded.

Proof. First notice that (forward) solutions are bounded by proposition 3. Next
consider:

V =
(

f2(1)

f1(1)
Q1 − Q2

)2

.

Taking the time derivative of V along solutions of (14) shows that:

V̇ = −2

[
f2(1)

f1(1)
Q1 − Q2

]2

min
j

(
µj (Qj )

) ≤ 0.

Lasalle’s invariance principle implies that solutions converge to the largest invari-
ant set in the set where V̇ = 0. The latter consists of three straight lines given by
the equations Q1 = Qmin,1, Q2 = Qmin,2 and Q2 = [f2(1)/f1(1)]Q1.

From the system equations (14), it follows that the vector field is transversal
to the first two lines, implying that solutions starting here leave the lines instan-
taneously. The third line is invariant for (14) and contains the unique equilibrium
point E

r,0
0 . Suppose that a point l on this line different from E

r,0
0 is an ω limit

point. Then by backward invariance of ω limit sets, the ω limit set is unbounded
or contains a point outside the state space. But this is impossible by Proposition 3
and hence E

r,0
0 is the only possible ω limit point.

To prove the statement regarding the backward solutions we consider the back-
ward time system:

Q̇1 = −f1(1) + Q1 min
j

(
µj (Qj )

)
,

Q̇2 = −f2(1) + Q2 min
j

(
µj (Qj )

)
,

(15)

defined on Q. Let us suppose that the statement does not hold. Then there is a
solution (Q1(t), Q2(t)) of system (15) which is in Q and bounded for all t ≥ 0.
Thus there is some M > 0 such that:

Qmin,i ≤ Qi(t) ≤ M, i = 1, 2, ∀t ≥ 0. (16)
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Pick ε > 0 small enough such that for i = 1, 2 there holds:

−fi(1) + Qi min
j

(µj (Qj )) ≤ −α < 0, ∀Qi ∈ [Qmin,i , Qmin,i + ε]. (17)

for some α > 0.
Then we claim that the lower bound in (16) can be strengthened to:

Qmin,i + ε < Qi(t), i = 1, 2, ∀t ≥ 0. (18)

If this were not the case, then there would exist a time t∗ ≥ 0 and some index i∗
such that Qi∗(t∗) ∈ [Qmin,i∗ , Qmin,i∗ + ε]. Then by (17) we obtain:

Q̇i∗ = −fi∗(1) + Qi∗ min
j

(
µj (Qj )

) ≤ −α

implying that there exists some time T > t∗ such that Qi∗(T ) < Qmin,i∗ , con-
tradicting (16).

Let us now introduce the following auxiliary variable:

q2 = Q2 − f2(1)

f1(1)
Q1

Along the solution (Q1(t), Q2(t)) this variable obeys the following equation:

q̇2 = q2 min
j

(
µj (Qj (t))

) ≥ cq2

for some c > 0, using (18). There are two cases to consider. If q2(0) �= 0, then
q2(t) will diverge, which contradicts boundedness of the solution (Q1(t), Q2(t)). If
q2(0) = 0, then q2(t) = 0 for all t ≥ 0. In other words, the solution (Q1(t), Q2(t))

evolves on the invariant line given by the equation Q2 = [f2(1)/f1(1)]Q1. But it is
easy to see from the system equations (15) that a solution on this line (and different
from the solution at the equilibrium E

r,0
0 ) either leaves Q in finite time or diverges.

This concludes the proof. 	


5. Transformation to a monotone system

This section contains the key step in the global analysis of the reduced system (11).
We will show that by means of a nonlinear state transformation, the reduced system
can be transformed in a monotone system. Consider new state variables for system
(11):

z1 = BQ1, z2 = BQ2, B = B (19)

The interpretation for zi is the concentration of nutrient i stored in the organism.
In terms of the variables (z1, z2, B) we get:

żi = −zi + Bfi(1 − zi), i = 1, 2,

Ḃ = B[minj

(
µj (zj /B)

) − 1].
(20)

Some caution should be taken in defining the state space for this system. First, notice
that the state transformation (19) is not one-to-one since every point (Q1, Q2, 0) ∈
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Pr is mapped to (0, 0, 0). So it makes sense only for the biologically relevant ini-
tial conditions corresponding to B �= 0 where it is one-to-one. But notice that the
function B minj µj (zj /B) is locally Lipschitz continuous in the region where 0 <

Qmin,j < zj /B < C (for arbitrarily large C), if we set it zero for z1 = z2 = B = 0.
Therefore, the state space for the transformed system is:

P t ={(z1, z2, B) ∈ R
3
+ | zi ∈ [0, 1], Qmin,iB ≤zi, i = 1, 2, B > 0} ∪ {(0, 0, 0)}.

Notice that system (20) has 2 equilibria, one at (0, 0, 0) and a second one at Ẽt ,
which is the image of Ẽr under the transformation (19).

We show next that this system is monotone [27]. First recall that a system
ẋ = f (x) with f locally Lipschitz in some open set U , having some forward
invariant subset X ⊂ U ⊂ R

n, is called monotone (with respect to the standard
order ≤ on R

n, generated by the nonnegative orthant R
n+) if for any two solutions

x(t) and y(t) with x(0) ≤ y(0), defined on some interval [0, T ] for some T > 0,
there holds that x(t) ≤ y(t) for all t ∈ [0, T ]. It is well-known that if the state
space X is p-convex (meaning that whenever x, y ∈ X with x ≤ y, then the line
segment connecting x and y is also contained in X), a sufficient condition for this
to happen is that the system is of type K, see e.g. chapter 3, proposition 1.1 in [27].
A system ẋ = f (x) is of type K if whenever x ≤ y, and xi = yi for some i, then
fi(x) ≤ fi(y).

Lemma 3. System (20) is of type K on the p-convex set P t and hence monotone.

Proof. It is easily checked that P t is p-convex. Denote the vector field of system
(20) by F(z1, z2, B) and pick two states (za

1, za
2, Ba) ≤ (zb

1, z
b
2, B

b) with Ba = Bb.
(The proof is trivial when za

1 = zb
1 or za

2 = zb
2) Then

F3(z
a
1, za

2, Ba) = Ba[min
j

(
µj (z

a
j /B

a)
)

− 1]

≤ Ba[min
j

(
µj (z

b
j /B

a)
)

− 1]

= Bb[min
j

(
µj (z

b
j /B

b)
)

− 1] = F3(z
b
1, z

b
2, B

b)

where the middle inequality holds because the functions µj are increasing. 	

We will need the following result from the theory of monotone systems. The

result is due to J.F. Jiang [10] and stated next.

Theorem 1. Suppose that a system ẋ = f (x) is monotone on the state space
X = �n

i=1Ii ⊂ R
n where Ii are intervals (i.e. Ii = (ai, bi), [ai, bi], [ai, bi) or

(ai, bi] for – possibly extended – real numbers ai < bi). Assume that

1. Every forward orbit has compact closure in X.
2. The system has a unique equilibrium point x̄ ∈ X.

Then, x̄ is globally asymptotically stable.

The main result of this section is the following.
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Theorem 2. The equilibrium point Ẽt of system (20) is globally asymptotically
state with respect to initial conditions in P t \ {(0, 0, 0)}. Equivalently, the equi-
librium point Ẽr of system (11) is globally asymptotically stable with respect to
initial conditions in Pr for which B �= 0.

Proof. The idea of the proof is to extend the state space of system (20) and delete
the equilibrium at the origin, in such a way that Theorem 1 is applicable. First, for
i = 1, 2 pick arbitrary continuously differentiable extensions µe

i of the µi functions
such that:

µe
i : R+ → R, µe

i (Qi) < 0 for Qi ∈ [0, Qmin,i ),

µe
i (Qi) = µi(Qi) for Qi ≥ Qmin,i , µ′

i > 0 on R+.

For example, we may pick µe
i (Qi) = µi(Qi) when Qi ≥ Qmin,i , and µe

i (Qi) =
(Qi − Qmin,i )µ

′
i (Qmin,i ) for Qi < Qmin,i .

Next define the following system:

żi = −zi + Bfi(1 − zi), i = 1, 2,

Ḃ = B[min
j

(
µe

j (zj /B)
)

− 1]
(21)

with state space

X = {(z1, z2, B) ∈ R
3
+ | zi ∈ [0, 1], i = 1, 2, B ∈ (0, ∞)}

Notice that system (21) is monotone since it is of type K on X (the same proof as
in Lemma 3 holds for system (21)), that it has a unique equilibrium point at Ẽt and
that the state space is of the form described in Theorem 1. Clearly, if we can prove
that forward orbits have compact closure in X, then it follows from Theorem 1 that
Ẽt is globally asymptotically stable for system (21) and hence also for system (20)

provided initial conditions are in in P t \ {(0, 0, 0)}, so we are done.
Before doing just that, we introduce one more system, namely an extended

version of system (11):

Q̇i = fi(1 − BQi) − Qi minj

(
µe

j (Qj )
)

, i = 1, 2,

Ḃ = B[minj

(
µe

j (Qj )
)

− 1]
(22)

with state space Pr,e = {(Q1, Q2, B) ∈ R
3+ | Qi ≥ 0, BQi ≤ 1, i = 1, 2}.

Notice that this system has two equilibria, one at Er
0 and a second one at Ẽr . A

careful inspection of the proofs of Proposition 3 and Proposition 4, reveals that both
propositions remain valid for this extended system. Let us start by re-examining
the proof of Proposition 3. First, we show that there are no finite escape times for
solutions of system (22). To that end we introduce – without loss of generality
– the following additional assumption for the µe

i : there exists some β > 0 such
that µe

i (Qi) ≥ −β for Qi ∈ R+. Now re-consider the dynamics of the variable
V = Q2

1 + Q2
2 along solutions of system (22):

V̇ ≤ 2 (f1(1)Q1 + f2(1)Q2) + 2βV ≤ 2 (f1(1) + f2(1)) + β∗V
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for some β∗ > 0. This shows that V (t) and hence Q1(t) and Q2(t) remain bounded
on bounded time intervals. Then the equation for B in (22) shows that on bounded
time intervals Ḃ ≤ B(c − 1) for some c > 0 and hence the same conclusion holds
for B(t) as well.

Next we prove that solutions of (22) are bounded. First notice that the system
equations imply that Qi(t) > 0 for all t > 0 and i = 1, 2. Now there exists ε > 0
small enough such that for all Qi ∈ (0, ε] holds that:

Q̇i ≥ αQi, i = 1, 2,

for some α > 0, implying that for all sufficiently large t , we have that:

Qi(t) ≥ ε, i = 1, 2.

This and the fact that BQi ≤ 1, imply in particular that for all sufficiently large
t , B(t) ≤ 1/ε, which establishes a lower bound for the B-component of solutions
of (22). The whole argument in the proof of Proposition 3 involving the variables
zi = BQi for i = 1, 2 can now be repeated if one replaces Qmin,i by ε in the
inequality (12). Then as before, there exists some � > 0 such that zi(t) ≤ 1 − �

for i = 1, 2 and all sufficiently large t . Moreover, one obtains a uniform lower
bound for the Qi(t) by noticing that for all sufficiently large t , there holds that:

Q̇i ≥ fi(�) − Qi min
j

µe
j (Qj ), i = 1, 2.

But then there is some sufficiently smallq > 0, such that wheneverQi ∈ [0, Qmin,i+
q], we have that:

Q̇i ≥ +α∗, i = 1, 2,

for some α∗ > 0 and hence that (13) holds for all sufficiently large t and i = 1, 2.
Then the same argument as in the proof of Proposition 3 leads to a uniform upper
bound for the Qi(t). The lower bound (13) also plays a significant role in showing
the validity of Proposition 4. Indeed, it implies that the ω limit set of every solution
of system (22) starting in the invariant set {(Q1, Q2, B) ∈ Pr,e | B = 0}, must
belong to the state space Q of system (14). But Proposition 4 shows that there is
only one possible ω limit set, namely the equilibrium point E

r,0
0 .

Finally, the assertion regarding backward solutions of system (22), restricted
to the invariant set {(Q1, Q2, B) ∈ Pr,e | B = 0} (except for the unique equilib-
rium point Ẽt ) is proved using a similar argument as in the proof of Proposition
4. Reconsider system (15), but replace µj by µe

j and the state space Q by the

(extended) state space R
2+. It is clear from the proof of Proposition 4 that a possibly

bounded solution of the extended version of system (15) enters the subset of R
2+

where for at least one i, Qi ∈ [0, Qmin,i ). But then Q̇i < −fi(1), so there exists
some time T such that Qi(T ) < 0, implying that the solution has left the state
space, a contradiction.

Let us return now to the issue of proving that forward orbits of system (21) have
compact closure in X. First of all, we have shown above that B(t) is bounded for
solutions of system (22), and hence also for solutions of system (21). This proves
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boundedness of solutions of system (21). So, what remains to be shown is that for all
x ∈ X, the omega limit set ω(x) does not meet the set {(z1, z2, B) ∈ R

3+ | B = 0}.
Now, from proposition 3 applied to system (22), it follows that solutions of system
(21) will reside in a wedge-shaped region:

Qi(t) = zi(t)/B(t) < M for all large t. (23)

This implies that the only possible ω limit point with B = 0 for solutions of system
(21) is (0, 0, 0) (for if (z̄1, z̄2, 0) would be another limit point with z̄i �= 0 for at least
one i, then there would be a sequence of times {tk} → ∞ such that B(tk) → 0 and
zi(tk) → z̄i ; but then for at least one i the inequality (23) would be violated) and
we are left with proving that it is not an ω limit point.2 In terms of system (22), this
means that we need to show that no ω limit point of a solution starting in the subset
of Pr,e where B �= 0, belongs to B0 = {(Q1, Q2, B) ∈ Pr,e | B = 0}. (recall
that the single point (0, 0, 0) is the image of the set B0 under transformation (19))
Suppose this is not true, then for some x ∈ Pr,e with nonzero B-value, we have
that p ∈ ω(x) for some p ∈ B0. If p �= Er

0, then the backward solution through p

also belongs to ω(x) (by backward invariance of ω limit sets). But this backward
solution leaves the state space in some finite time, or is unbounded by Proposition 4,
applied to system (22). So we should only consider the case that p = Er

0. But this
case can be reduced to the previous one by means of the Butler-McGehee lemma,
see e.g. [29] p. 12.

Indeed, a simple linearization argument shows that Er
0 is a hyperbolic equi-

librium point with 2-dimensional stable and 1-dimensional unstable manifold (see
lemmas 1 and 2). Then the Butler-McGehee lemma implies that ω(x) should con-
tain some point q ∈ Ws(Er

0), the stable manifold of Er
0, such that q �= Er

0. Since
Ws(Er

0) is 2-dimensional and in view of the stability result in Proposition 4, applied
to the 2-dimensional system (22), we conclude that q ∈ B0. So we have reduced
this case to the previous one and therefore the proof is finished. 	


6. Global stability for the original system

In this section we justify why the global stability result for the reduced system (11)

implies a global stability result for the original system. In turn, this leads to the
main result of this paper.

Theorem 3. The nontrivial equilibrium point Ẽ of system (3) is globally asymptot-
ically stable with respect to all initial conditions in P for which B �= 0.

Proof. The proof relies on a global stability result for cascaded systems. First,
notice that by introducing the new variables:

Mi = Ri + BQi, i = 1, 2,

2 Strictly speaking we should add the point (0, 0, 0) to the state space X of system (21),
if it were to be an ω limit point.
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system (3) can be rewritten as a cascaded system:

Ṁi = 1 − Mi

Q̇i = fi(Mi − BQi) − Qi min
j

(
µj (Qj )

)
(24)

Ḃ = B[min
j

(
µj (Qj )

) − 1]

with state space Pc = {(M1, M2, Q1, Q2, B) ∈ R
5+ | Mi ≥ 0, Qi ≥ Qmin,i ,

B ≥ 0, i = 1, 2}. Here we are only interested in solutions with initial conditions
satisfying B �= 0.

If solutions of (24) are bounded, then the global asymptotically stable equilib-
rium point of the first subsystem Ṁi = 1 − Mi, i = 1, 2 at (1, 1), and Theorem 2,
imply that system (24) has a global asymptotically stable equilibrium point, see e.g.
Appendix F in [29] or [30,31]. From this we conclude that the theorem is proved.

So we are left with proving that solutions of (24) are bounded. We will show
the equivalent statement that solutions of (3) are bounded instead. First, notice that
the definition and the dynamics of the auxiliary variables Mi imply in particular
that there is an arbitrarily small ε > 0 such that:

Ri(t), B(t)Qi(t) ≤ 1 + ε for all sufficiently large t and i = 1, 2.

which already establishes a bound for Ri(t). Now, since Qi(t) ≥ Qmin,i > 0 for
i = 1, 2 and all t ≥ 0, this implies that:

B(t) ≤ α for all sufficiently large t

for some α > 0. This establishes the bound on B. Then for all sufficiently large t

we have that:

Ṙi = 1 − Ri − B(t)fi(Ri) ≥ 1 − Ri − αfi(Ri), i = 1, 2

and then continuity of the fi implies that there exists some δ > 0 such that if
Ri ∈ [0, δ], then Ṙi ≥ ρ for some ρ > 0 and thus we infer that:

Ri(t) > δ for all sufficiently large t and i = 1, 2.

This, and strict monotonicity of the fi , imply that for sufficiently large t :

Q̇i ≥ fi(δ) − Qi min
j

(
µj (Qj )

)
, i = 1, 2

which by a similar argument as in the proof of Proposition 3 results in a uniform
lower bound for the Qi(t), see (13).

Finally we find a uniform upper bound for the Qi(t) as follows. First notice
that for all sufficiently large t :

Q̇i ≤ fi(1 + ε) − CQi, i = 1, 2

for some C > 0. This can be inferred using strict monotonicity of the fi , the bound
Ri(t) ≤ 1 + ε given above, the lower bound (13) and continuity of the µj . Then
there is some M > 0 such that for all sufficiently large t and i = 1, 2, there holds
that Qi(t) < M . 	
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7. Discussion

The introduction of the notion of cell quota in Droop’s model [4] to mimic decou-
pling of nutrient uptake and growth has lead to a number of theoretical investigations
of chemostat models under different assumptions, see [14,22] for a single-nutrient,
single-species model and then in [26] for a single-nutrient, two-species competition
model. The study of two-nutrients, single-species models has been initiated in [15]
and followed-up more recently by [12,13]. The local stability results in those papers
have been extended to global ones here. Moreover, the class of uptake and growth
rate functions has been enlarged reflecting robustness of the stability properties.

Global stability does not seem to be the rule in chemostat models. Under peri-
odic forcing for instance, oscillatory behavior has been shown to occur in [23,28,
29] and chaotic behavior has been observed in [3]. Oscillations are also possible
in autonomous chemostat models, for instance when there is a predator that feeds
on the primary consumer [11], or when there are three or more populations com-
peting for three or more limiting resources [7,17,20]. The closest situation to the
one we consider here was investigated by [24], who showed that limit cycles were
possible in an unforced variable internal stores model that explicitly followed the
size-structure of the population. This does not occur under the assumptions that
nutrient uptake is proportional to biomass and continuous with time.

Chemostat models with multiple, locally stable equilibria are also possible.
(Clearly, in this case, the chemostat cannot be globally stable.) This can happen for
instance when uptake functions are not always increasing, but are decreasing past
some threshold value for the nutrient concentration. This situation has been studied
by [1,34] where it was shown that bi-stability and even multi-stability may occur.
Those models involved competition between n species for a single nutrient, but did
not assume that uptake and growth are decoupled. The equilibria are always bound-
ary equilibria where at most one species has nonzero concentration. Depending on
the initial condition, a particular solution converges to one of them. Notice that
this case is not in conflict with the competitive exclusion principle since at must
one species survives in the long run, although the survivor may differ for distinct
solutions.

The main result of our paper is that these exotic phenomena (limit cycles, chaos,
and multi-stability) do not occur for a broad range of biologically realistic models
of growth on two essential resources in a chemostat without inhibitory effects of
resources.
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