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Nonlinear Norm-Observability Notions and
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Abstract—This paper proposes several definitions of “norm-ob-
servability” for nonlinear systems and explores relationships
among them. These observability properties involve the existence
of a bound on the norm of the state in terms of the norms of the
output and the input on some time interval. A Lyapunov-like
sufficient condition for norm-observability is also obtained. As
an application, we prove several variants of LaSalle’s stability
theorem for switched nonlinear systems. These results are demon-
strated to be useful for control design in the presence of switching
as well as for developing stability results of Popov type for switched
feedback systems.

Index Terms—LaSalle’s stability theorem, nonlinear system,
observability, switched system.

I. INTRODUCTION

FOR linear time-invariant systems with outputs, there are
several equivalent ways to define observability. A standard

approach is through distinguishability, which is the property
that different initial conditions produce different outputs. This is
equivalent to 0-distinguishability, which says that nonzero ini-
tial conditions produce nonzero outputs. The state of an observ-
able linear system can be reconstructed from the output mea-
surements on a time interval of arbitrary length by inverting the
observability Gramian.

In the nonlinear context, various definitions of observability
are no longer equivalent, and in general nonlinear observability
is not as completely understood. In particular, the distinguisha-
bility concept has a natural counterpart for nonlinear systems,
but does not lend itself to an explicit state reconstruction proce-
dure as readily as in the linear case. In fact, it is well known that
recovering the state of a nonlinear system from its output, even
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asymptotically by means of a dynamic observer, is a difficult
task. Also, the choice of inputs plays a nontrivial role in recon-
structing the state. These issues are discussed in books such as
[20], [22], and [34].

Instead of building an observer, however, it is sometimes suf-
ficient for control purposes (although still far from being trivial)
to construct a “norm estimator,” i.e., to obtain an upper bound
on the norm of the state using the output; see [36] for a discus-
sion and references. This motivates us to address the concept of
“norm-observability,” which concerns the ability to determine
such a bound rather than the precise value of the state.

Another notion related to observability is detectability, which
for linear systems means that all solutions producing zero out-
puts decay to zero. In [36], a variant of detectability for non-
linear systems (called “output-to-state stability”) is defined as
the property that the state is bounded in terms of the supremum
norm of the output, modulo a decaying term depending on ini-
tial conditions. This turns out to be a very useful and natural
property, which is dual to input-to-state stability (ISS). For sys-
tems with inputs, one combines the inputs with the outputs and
arrives at the concept of “input-output-to-state stability” which
has been studied in [23] and [36].

In Section II we present several possible definitions of norm-
observability for nonlinear systems with inputs, which involve
a bound on the norm of the state in terms of the norms of the
output and the input on some (arbitrarily small) time interval.
We establish implications and equivalences among these no-
tions in Section III. We demonstrate, in particular, that the length
of the time interval can affect the existence of a state bound. Our
formulation is related to the developments of [23] and [36], and
helps establish a link between observability and detectability in
the nonlinear context. In fact, one of our definitions is obtained
directly from the notion of input-output-to-state stability by im-
posing an additional requirement which says, loosely speaking,
that the term describing the effects of initial conditions can be
chosen to decay arbitrarily fast. In the spirit of [36], we derive
a Lyapunov-like sufficient condition for this property in Sec-
tion IV.

A problem of interest which serves as a motivation for
studying these concepts is to extend LaSalle’s invariance prin-
ciple to switched systems. As shown in [17], a switched linear
system is globally asymptotically stable if each subsystem
possesses a weak Lyapunov function nonincreasing along its
solutions and is observable with respect to the derivative of
this function, as long as one imposes a suitable nonchattering
assumption on the switching signal and a coupling assumption
on the multiple Lyapunov functions. This can be viewed as an
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invariance-like principle for switched linear systems. We gen-
eralize this result to switched nonlinear systems in Section V,
exploiting the norm-observability notions introduced here.
Stability theorems of LaSalle type for switched systems are
useful in situations where it is natural—or even necessary—to
work with weak Lyapunov functions. In Section VI, we discuss
several specific examples of such situations arising in the
context of stability analysis as well as control design in the
presence of switching.

Preliminary versions of our findings for systems without in-
puts were stated in [18]. The more general treatment presented
here relies on a novel result about boundedness of reachable sets
for systems with inputs, which is proved in Appendix.

II. OBSERVABILITY PROPERTIES

Consider the system

(1)

where is a measurable locally essentially bounded disturbance
or control input taking values in a set containing the
origin, is a locally Lipschitz function with

, and is a continuous function with
. We assume that this system has the unboundedness

observability property, which means that for each trajectory that
becomes unbounded in a finite time , the output becomes un-
bounded as (in the sense that ).
The unboundedness observability property is strictly weaker
than forward completeness, which is the property that each tra-
jectory is defined for all ; see, e.g., [3]. We also assume
unboundedness observability of the backward-in-time dynamics

, . We will denote by the (essen-
tial) supremum norm of a signal on an interval .
The standard Euclidean norm will be denoted by and the
corresponding induced matrix norm by .

Our first observability definition involves a bound on the
norm of the initial state in terms of the norms of the output and
the input on an arbitrarily small time interval. We will say that
(1) is small-time initial-state norm-observable if the following
property holds1:

such that

(2)

Rather than bounding the initial state in terms of the future
output and input on an interval, we can bound the state at the
end of an interval in terms of the past output and input on that

1Recall that a function � : [0;1) ! [0;1) is said to be of class K if it is
continuous, strictly increasing, and �(0) = 0. If � is also unbounded, then it is
said to be of classK . A function � : [0;1)� [0;1)! [0;1) is said to be
of classKL if �(�; t) is of classK for each fixed t � 0 and �(r; t) decreases to
0 as t!1 for each fixed r � 0. We will use the shorthand notation � 2 K ,
� 2 KL. We will exploit the simple fact that for every class K function �

and arbitrary positive numbers r ; r ; . . . ; r we have �(r + � � � + r ) <

�(kr ) + � � � + �(kr ).

interval. Let us say that (1) is small-time final-state norm-ob-
servable if

such that

(3)

We now define a different pair of observability properties,
similar to the previous one, as follows. Let us say that (1) is
large-time initial-state norm-observable if

such that

(4)

Note that the only difference between the conditions (2) and (4)
is that in the former the length of the time interval can be
arbitrary, while the latter requires the inequalities to hold for
at least one positive (of course, they will then also hold for
all larger values of ). For linear systems these two properties
are known to be equivalent, but for nonlinear systems this is in
general not true, as we will see later.

As before, we can bound the state in terms of past output and
input rather than future output and input. We will say that (1) is
large-time final-state norm-observable if

such that

(5)

The present terminology is prompted by the one used in the
controllability literature [15].

Continuing along the same lines, we can impose a bound on
the initial state in terms of the output and the input on the semi-
infinite time interval. Let us say that the system (1) is infinite-
time norm-observable if

such that

(6)

In [36], the authors define the property of input-output-to-
state stability, which is a variant of detectability and is charac-
terized by an inequality of the form

(7)

where and . Strengthening this notion, we
say that the system (1) is small-time- norm-observable if for
every and every function there exist functions

and such that the inequality (7) holds along
all solutions and, moreover, we have

(8)

Condition (8) can be interpreted as saying that can be chosen
to decay arbitrarily fast in the second argument, because can
be arbitrarily small and can grow arbitrarily slowly while

. (In general, this is achieved at the expense of
choosing and to be sufficiently large.)
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In the same spirit as before, we introduce a variant of the
above property by requiring that (8) hold for all and
at least one positive (it will then hold for all larger values of
). Namely, we will say that the system (1) is large-time-

norm-observable if there exists an such that for every
function there exist functions and
for which (7) and (8) are satisfied.

Remark 1: One could also define local variants of the afore-
mentioned observability properties, by allowing the functions

and to be undefined (or take the value ) outside some
bounded intervals. The corresponding definitions can also be
rewritten in more familiar , terms. For example, the local
variant of the small-time initial-state norm-observability prop-
erty (2) would be

such that

Such a weaker observability notion (for systems with no inputs)
was considered in [39].

State bounds provided by the previous definitions involve the
norms of the output and the input on some time interval of pos-
itive length. An alternative way to define observability, which
is known to work for linear systems, is to demand that the state
be bounded in terms of the instantaneous values of the output,
the input, and a suitable number of their derivatives. We do not
study such observability properties here. Notions of this kind are
frequently encountered in the nonlinear control literature (see,
e.g., [13], [27], [30], and [37]).

For the system with no inputs

(9)

one can define corresponding observability notions by simply
dropping the terms depending on from the right-hand sides;
see [18] for details. In this way, one also obtains stronger ver-
sions of the above observability notions for (1), which require
that the state be bounded in terms of the output only, uniformly
over all inputs. These settings fit into our more general frame-
work; we will return to this topic at the end of Section III.

III. IMPLICATIONS AND EQUIVALENCES

In this section, we study the relationships among the observ-
ability properties introduced in Section II.

A. Technical Lemmas

The following lemma is proved in Appendix.
Lemma 1: For every there exist functions

such that along all solutions of the system (1) we have

(10)

for each pair of times , satisfying and
.
We also need the backward-in-time counterpart.

Lemma 2: For every there exist functions
such that along all solutions of (1) we have

for each pair of times , satisfying and
.

B. Small-Time Norm-Observability

It is useful and simple to give several slight reformulations
of the small-time initial-state norm-observability property. By
time-invariance, (2) can be equivalently expressed as

such that

(11)

or, after taking the supremum over for arbitrary
, as

such that

(12)

This last condition includes (2) as a special case (just let
), and so it is easy to see that (2), (11), and (12) are

equivalent.
Similar remarks apply to small-time final-state norm-observ-

ability. By time-invariance, (3) is equivalent to

such that

(13)

Taking the supremum over for arbitrary ,
we arrive at

such that

(14)

and this includes (3) as a special case.
We show next that all the variants of small-time norm-observ-

ability introduced in Section II are in fact equivalent, and that
they are also equivalent to another property which involves a
bound on the norm of the state on an interval in terms of the
norms of the output and the input on the same interval.

Proposition 3: The following statements are equivalent.

1) System (1) is small-time initial-state norm-observable.
2) System (1) is small-time final-state norm-observable.
3) System (1) satisfies the condition

such that

(15)

4) System (1) is small-time- norm-observable.



HESPANHA et al.: NONLINEAR NORM-OBSERVABILITY NOTIONS 157

Proof: The equivalences follow rather easily
from Lemmas 1 and 2. Indeed, (2) implies (3) in view of Lemma
1, as can be seen from the inequalities

where and
. This proves that . The converse implication fol-

lows from Lemma 2 in the same manner. The fact that (12) im-
plies (15) is deduced similarly with the help of Lemma 1, while
the converse is straightforward. Since (12) is one of the equiva-
lent formulations of small-time initial-state norm-observability,
this proves that .

We now turn to proving the more interesting fact that the
first three properties are equivalent to the last one. Suppose that
the system is small-time- norm-observable. Pick an arbitrary

. By Lemma 2, there exist class functions , and
such that

(16)

for all and all . By small-time- observability, for
and

(17)

there exist functions and such that (7) and
(8) hold. In particular, (8) and (17) give

(18)

while (16) and (7) with yield

Using (18), we conclude that

where and
. Therefore, (2) holds, and so we have shown that .

Finally, we prove that , using the formulation of small-
time final-state norm-observability provided by the condition
(13). Pick arbitrary and . Let . Applying
(13), we conclude that there exist functions such
that all trajectories satisfy

(19)

Also, Lemma 1 gives

(20)

for some . Choose a function such
that for all we have

(21)

and

(22)

One possible definition is

Condition (8) automatically holds because of (22). Now, for
we can use (20) and (21) to write

Combining this with (19), we deduce that for all we have
the inequality

where and . Therefore, the condition
(7) holds.

In view of Proposition 3, we will drop the unnecessary quali-
fiers and refer to each of the properties appearing in its statement
as small-time norm-observability.

Remark 2: In the sequel, we will encounter a restricted ver-
sion of small-time- norm-observability, which is limited to
functions that are bounded from below by a linear func-
tion with a positive slope. A close examination of the proof of
Proposition 3 (the implication ) reveals that this weaker
form of small-time- norm-observability is equivalent to the
other small-time observability properties if we can take the func-
tion in Lemma 2 to be linear (or with a linear upper bound).
This condition on holds true for every linear system and also
for every nonlinear system with a uniform exponential bound
on the growth of solutions.

C. Large-Time Norm-Observability

Our treatment of large-time norm-observability parallels
that of small-time norm-observability. By time-invariance,
large-time initial-state norm-observability defined by (4) is
equivalent to

such that

(23)
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Taking the supremum over , we can further rewrite
this as

such that

(24)

Condition (4) is a special case of (24), and we easily see that
(4), (23), and (24) are equivalent.

Similarly, large-time final-state norm-observability defined
by (5) can be equivalently rewritten as

such that

(25)

or, taking the supremum over , as

such that

(26)

The following result is established by the same arguments (for
a given ) as Proposition 3.

Proposition 4: The following statements are equivalent.

1) System (1) is large-time initial-state norm-observable.
2) System (1) is large-time final-state norm-observable.
3) System (1) satisfies the condition

such that

(27)

4) System (1) is large-time- norm-observable.
We will henceforth refer to each of these properties as large-

time norm-observability.

D. Infinite-Time Norm-Observability

In the same way as before, we can rewrite the condition (6)
as

such that

(28)

or as

such that

(29)

In particular, taking and in the last formula, we
arrive at

such that

(30)

thus recovering precisely the strong observability property as
defined in [32]. However, this terminology is not suitable here
because, as we will see next, infinite-time norm-observability is
actually the weakest among all the observability notions studied
in this paper.

E. Relationships Among the Different Notions

The following theorem is the main result of this section.
Theorem 5: The only implications that hold among the ob-

servability properties defined above for (1) are shown in the
equation at the bottom of the page.

Proof: We have already established all the equivalences
for each property. The implications shown for the different prop-
erties are apparent from the definitions. It remains to prove that
the converse implications do not hold.

We first give a counterexample showing that large-time norm-
observability does not imply small-time norm-observability. It is
enough to do this for the case of no inputs. Consider the system
(9) with and and both odd functions satisfying

if

and

if

if

if

respectively [extended arbitrarily to those for which their
values are not specified; see Fig. 1 (left)]. Then it is straight-
forward to verify that the condition (4) is satisfied with

and the identity function (omitting ). Indeed, for
we have , whereas for we

have hence ; the arguments

small-time norm-observability
- -

large-time norm-observability

infinite-time norm-observability
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Fig. 1. Two counterexamples.

for are similar. On the other hand, (2) does not hold
for any , because for we have on .

As a counterexample showing that infinite-time norm-observ-
ability does not imply large-time norm-observability, consider
again (9) with and and both odd functions such that

if

(the behavior of for is unimportant) and

if

if

if

respectively [see Fig. 1 (right)]. Then the condition (4) cannot
hold for any , no matter how large, since for every
we can find a sufficiently small such that along the
corresponding solution we have . On the other hand,
(30) is satisfied because we have . (In fact,
by a proper choice of we can ensure that these norms are finite
for all initial conditions.)

Remark 3: It is easy to see that each of the observability
properties considered here implies 0-distinguishability under
the zero input: the only subset of which is invariant
under the zero input is . Note that the converse does not hold.
As an example, consider the scalar system , .
It is clearly 0-distinguishable (in fact, distinguishable: the output
map is invertible), but blows up while stays bounded.

Remark 4: For linear systems, all of the aforementioned
properties are equivalent to the usual observability. For the
properties expressed by (2)–(6) this can be easily shown
using the observability Gramian. For (small-time-) norm-
observability this fact is less obvious, and can be viewed as a
generalization of the squashing lemma from [29] which is a
refinement of the well-known result about arbitrary pole place-
ment by output injection. This lemma says that if is an
observable pair, then for every and every there exist
a and an output injection matrix such that we have

, which implies .
Therefore, in the linear case the function in (7) can be chosen
to satisfy with arbitrarily small. This means that
the condition (8) can be fulfilled if and only if the function is
restricted to be bounded from below by a linear function with a

positive slope. We know from Remark 2 that for linear systems,
this restricted form of small-time- norm-observability is
equivalent to the other small-time observability properties,
because we can take the function in Lemma 2 to be linear.

Remark 5: It is interesting to compare our findings with the
results reported in [31] for discrete-time systems. For example,
the counterparts of initial-state observability and final-state
observability in discrete time are not equivalent. To see why,
it is enough to consider a system whose output map is zero
and whose state becomes zero after one step, regardless of the
input. (The difference with the above continuous-time setting
is that backward-in-time dynamics in this example are not well
defined.)

F. Uniform Observability and Systems With no Inputs

Now, consider the observability notions obtained by omitting
the term of the form from the right-hand sides of the
inequalities (2)–(7) and demanding that the inequalities hold
for the system (1) uniformly over all inputs or, for the system
without inputs (9), simply over all trajectories (cf. the end of
Section II). Then the same implications among the resulting
properties as those in Theorem 5 remain valid, provided that
is a compact set and for all when inputs
are present. This is proved by the same arguments with suitable
minor modifications, using appropriate versions of Lemmas
1 and 2 which are mentioned in Remark 12 in the Appendix;
compactness of is required for these lemmas to hold. An
explicit treatment of (forward and backward complete) systems
with no inputs can be found in [18]. The terms small-time
norm-observability and large-time norm-observability will also
be used for the corresponding variants of the observability
notions for systems with no inputs. When the system with
inputs (1) satisfies these observability properties without the
input-dependent terms on the right-hand sides, we will call it
uniformly small-time norm-observable or uniformly large-time
norm-observable.

IV. LYAPUNOV FUNCTIONS

One advantage of defining observability via the formulas (7)
and (8) lies in the fact that this leads to characterizations of
small-time and large-time norm-observability in terms of Lya-
punov-like inequalities, as we now show.
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Proposition 6: Consider the system (1). Suppose that for
every and every there exist a function

, class functions , and , and a positive–
definite continuous function such that
we have

(31)

and

(32)

and, moreover

(33)

where is defined by2

Then, the system is small-time norm-observable. If the previous
conditions hold for some and every , then the
system is large-time norm-observable.

Proof: Let and be given and suppose that
all the conditions in the statement are satisfied. Following the
proofs of [28, Lemma 4.4] and [36, Lemma 11], we conclude
that all solutions of (1) satisfy the inequality (7) with

(34)

and

To derive (8), simply write (33) for in place of and
substitute it into (34) written for .

An informal interpretation of Proposition 6 is that the system
is small-time norm-observable if there exists a positive–definite
radially unbounded function which decays along solutions
whenever is sufficiently large compared to and and,
moreover, this decay rate—described by the function —can
be made arbitrarily fast by a proper choice of . (The “gain
margin” function , on the other hand, may have to be increased
in order to achieve this; note that the extra condition (33) does
not involve .) To better understand the role of , note that if
grows rapidly, then the graph of is “flat,” and, consequently,
the function is small. In fact, this function is ap-
proximated, up to the first-order term in , by . It is
straightforward to obtain a counterpart of Proposition 6 for the
case when the observability notions do not involve inputs, by
simply dropping from (32).

Example 1: Consider the system

2Decreasing � near zero if necessary, we can assume with no loss of gener-
ality that lim �(r) =1; see [28, proof of Lemma 4.4]. We thus use the
conventions �(0) =1 and � (1) = 0 which are consistent with continuity
of �.

where the function satisfies the sector condition

(35)

Systems of this form are frequently encountered as models of
mass-spring systems and electrical circuits. Let us rewrite this
system in the “output-injected” form

(36)

where

and is an arbitrary positive number. It is straightforward to
check that the derivative of the positive–definite quadratic func-
tion

along solutions of (36) is given by

(37)

Using this formula and (35), it can be easily shown that given
an arbitrary number , we can choose sufficiently large
numbers and to have

For each , the function satisfies (31) and (32) with
and , for some ,

and so that . By enforcing
a sufficiently large , we can satisfy the condition (33) if and
only if is bounded from below by a linear function with a
positive slope. In view of Remark 2, this implies that the system
is small-time norm-observable, because it is clear from (35) and
(37) that the state of (36) admits a uniform exponential growth
bound.

We remark also that (32) with leads naturally to
the design of a dynamic state-norm estimator for (1). This is a
system with inputs and and state such that for some

and , the inequality
holds along all solutions; see [36]. Rewriting (32) as

for suitable , we
are led to the norm estimator . If

can be made arbitrarily large, then converges
to 0 arbitrarily fast. On the other hand, one can loosely inter-
pret the small-time norm-observability property as providing an
arbitrarily fast norm estimator, obtained directly from the defi-
nitions rather than constructed using Lyapunov functions.
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V. STABILITY OF SWITCHED SYSTEMS: THEOREMS OF

LASALLE TYPE

A. Systems With no Inputs

Consider the system , . One version (in
fact, a special case) of the well-known LaSalle’s invariance prin-
ciple3 can be stated as follows. If there exists a positive–defi-
nite, radially unbounded, continuously differentiable func-
tion whose derivative along solutions satisfies

for all , and if moreover the
largest invariant set contained in the set is
equal to , then the system is globally asymptotically stable.
The second condition can be regarded as observability (0-distin-
guishability) with respect to the auxiliary output ;
see, e.g., [5] for a discussion of this relationship. Here and later,
the negative sign is used for convenience, so that .

In this section, we extend the previous result to switched sys-
tems. This generalizes the earlier work on switched linear sys-
tems reported in [17]. Some remarks on relationships to other
LaSalle-like theorems available in the literature are provided af-
terwards.

Consider the family of systems

(38)

where is a finite index set and is a lo-
cally Lipschitz function for each . We impose the fol-
lowing two assumptions on each of these systems, which par-
allel the assumptions for the traditional LaSalle’s theorem stated
above. The first assumption is the existence of a weak (i.e., non-
strictly decreasing) Lyapunov function, and the second one is
observability with respect to an auxiliary output defined exactly
as shown earlier for the case of a single system (however, in-
stead of 0-distinguishability we require the stronger small-time
norm-observability property; see Remark 3 in Section III).

• Assumption 1: For each there exist a positive–def-
inite radially unbounded function and a
nonnegative–definite continuous function
such that

• Assumption 2: For each the system

(39)

is small-time norm-observable. For our present purposes,
the most convenient way to state this property is via (11),
which in the absence of inputs reads

such that

(40)

Since is a finite set, there is no loss of generality in taking
to be independent of .

3See, e.g., [22 , Sec. 4.3]. Although we make reference to LaSalle [24], the
particular result stated here was proved earlier by Barbashin and Krasovskii [7].

Remark 6: In view of Remark 3 and the standard LaSalle’s
theorem cited earlier, Assumptions 1 and 2 imply that all sys-
tems in the family (38) are globally asymptotically stable.

We now consider the switched system

(41)

where is a piecewise constant switching signal,
continuous from the right. We denote by , the con-
secutive discontinuities of (the switching times). With regard
to this switched system, two more assumptions are needed. The
first one is a rather mild nonchattering requirement on , which
will be further examined later.

• Assumption 3: If there are infinitely many switching times,
there exists a such that for every we
can find a positive integer for which

. In other words, we persistently encounter intervals of
length at least between switching times. Our last as-
sumption imposes a condition on the evolution of the func-
tions , at switching times, of the type typically
encountered in results involving multiple Lyapunov func-
tions (see [12], [16], and [26]). It is trivially satisfied in the
case of a common weak Lyapunov function, i.e., when the
functions , are the same.

• Assumption 4: For each and every pair of switching
times such that , we have

(42)

In other words, the value of at the beginning of each interval
on which does not exceed the value of at the end of
the previous such interval (if one exists).

Remark 7: Note that when the switching is controlled by a
supervisor, Assumption 4 can be explicitly incorporated into the
switching logic so that it holds by construction. For example,
suppose that for some times and indexes we
have , , and . Then,
a switch to at time is disallowed because it would
violate (42). However, the system is globally asymp-
totically stable by Remark 6. Thus we know that if is held
fixed at , then will decay to 0 and there will be another
time at which (42) will hold. From that time onward,
a switch to can be enabled. Note that by ensuring that
the switching is not too fast, we also simultaneously enforce
Assumption 3 (see later for more details on this issue). Supervi-
sory control algorithms with switchings triggered by values of
Lyapunov functions, although with a different purpose, are con-
sidered in [2] and [14].

Theorem 7: Under Assumptions 1–4, the switched system
(41) is globally asymptotically stable.

Proof: Stability of the origin in the sense of Lyapunov fol-
lows from Assumptions 1 and 4 and the finiteness of by virtue
of [9, Th. 2.3]. Now, take an arbitrary solution of (41). Our goal
is to prove that it converges to 0. We are assuming that there are
infinitely many switching times, for otherwise the result imme-
diately follows from Remark 6. In light of Assumption 3 and
the fact that is finite, we can pick an infinite subsequence of
switching times such that the corresponding inter-
vals , have length no smaller than some
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fixed and the value of on all these intervals is the same,
say, . Let us denote the union of these intervals by and
consider the auxiliary function

if
otherwise.

In view of Assumptions 1 and 4, for every , we have

Since is nonnegative by Assumption 1, we see that .
We proceed to prove4 that as . Suppose

that this is not true. Then, there exist an and an infi-
nite sequence of times such that the values ,

are bounded away from zero by at least . It follows
from the definition of that the times necessarily
belong to . Assumption 1 guarantees that remains bounded,
hence, is also bounded and so is uniformly continuous on

. Therefore, we can find a such that each is contained
in some interval of length on which (recall that
the length of each interval in is bounded from below by ).
This contradicts the assertion proved earlier that , thus
indeed .

To show that converges to 0, we invoke Assumption 2.
Applying the condition (40) with , and
using the previous analysis, we conclude that as

. It then follows from stability of the origin in the sense
of Lyapunov that as needed.

Remark 8: If we strengthen Assumption 4 by assuming that
is nonincreasing in time, then the finiteness requirement

on can be dropped, provided that in (40) is still independent
of . This applies in particular to the case of a common weak
Lyapunov function. The proof proceeds along the above lines
but works with rather than (cf. the linear version
in [17 , Th. 4]).

Remark 9: The previous theorem asserts global asymptotic
stability (in the standard sense of this term as applied to time-
varying systems) for each fixed switching signal satisfying
Assumption 3. While stability is uniform over all such , asymp-
totic convergence is not. For linear systems, the convergence is
uniform over a smaller class of switching signals (obtained by
imposing an upper bound on the separation between consecu-
tive intervals of length at least in Assumption 3), provided
that Assumption 4 is also strengthened; see [17] for details.

Remark 10: It is clear from the previous proof that a local
version of the small-time norm-observability condition (40), de-
fined as explained in Remark 1 and in [39], is sufficient for The-
orem 7 to hold. In [39], a similar argument was used to establish
that a suitably defined passivity property implies closed-loop
stability under negative output feedback for switched control
systems.

One way to satisfy Assumption 3 is to demand that consec-
utive switching times be separated by some positive dwell time

4The argument that follows mimics the standard proof of the so-called Bar-
balat’s lemma, which cannot be directly applied in the present case because y

is not continuous.

. A less severe condition is provided by the following con-
cept, introduced in [19]. The switching signal is said to have
average dwell time if the number of its discontinuities
on an arbitrary interval , which we denote by ,
satisfies

(43)

for some . Under suitable conditions, a useful class
of hysteresis-based switching logics is known to guarantee the
average dwell time property [19], [26].

Lemma 8: If has average dwell time , then Assumption
3 holds with an arbitrary in the interval .

Proof: Suppose the contrary: there exist numbers
and such that for all inter-

vals between switching times have length smaller than . In this
case, for every positive integer the interval must
contain at least switching times. Formula (43) then implies

but this is clearly false for sufficiently large .
Note that the average dwell time in the previous result

can be arbitrarily small, as long as it exists. If is known,
then we can relax Assumption 2 by requiring only that (39)
be large-time norm-observable with . Accordingly, if
this system is known to be large-time norm-observable but not
small-time norm-observable, then a variant of Theorem 7 can
be established under a suitable slow switching condition. We
thus introduce the following modified versions of Assumptions
2 and 3.

• Assumption 2’: For each the system (39) is large-
time norm-observable, which can be stated as

such that

(44)

• Assumption 3’: If there are infinitely many switching
times, for every we can find a positive integer for
which . Here, is the number provided
by (44), which we take to be independent of (this is no
loss of generality since is a finite set).

The following result is proved by the same arguments as
Theorem 7.

Theorem 9: Under Assumptions 1, 2’, 3’, and 4 the switched
system (41) is globally asymptotically stable.

A different version of LaSalle’s invariance principle for sys-
tems with switching events has appeared in [38, Th. 1]. That re-
sult states that if for a given hybrid system with a finite number
of discrete states one can find a function of both the continuous
and the discrete state which is nonincreasing along solutions,
then all bounded solutions approach the largest invariant set in-
side the set of states where the instantaneous change of this func-
tion is zero. The proof proceeds along the same lines as the stan-
dard argument for continuous time-invariant systems, using the
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notion of invariance suitably adapted to deal with hybrid sys-
tems; see also [25] for a similar result.

Theorems 7 and 9 apply to a different class of systems than
the hybrid systems studied in [38], because in the present set-
ting the switching is not assumed to be state-dependent. Of
course, one way in which a switched system of the type con-
sidered here may arise is from a hybrid system by means of
an abstraction procedure (i.e., when details of the switching
mechanism are neglected). In this case, our observability as-
sumptions would serve as sufficient conditions for the largest
invariant set mentioned earlier to be the origin, since they guar-
antee that along a nonzero solution the output cannot remain
identically zero on any interval between switching times (cf.
Remark 3). Note, however, that we do not require the existence
of a single function nonincreasing along solutions, and instead
work with multiple weak Lyapunov functions satisfying As-
sumption 4. This aspect of the results presented above—namely,
that they rely to a large extent on separate conditions regarding
the individual systems being switched—also sets them apart
from LaSalle-like theorems available in the literature for cer-
tain classes of time-varying and other systems. (On the other
hand, the conclusions provided by results such as [38, Th. 1] are
stronger and closer in spirit to those of the classical LaSalle’s
theorem.)

B. Systems With Inputs

There are several ways to extend Theorem 7 to systems with
inputs. We collect them in the statement of the next theorem.
The proof follows along the same lines as the proof of Theorem
7 and is omitted. Theorem 9 can be generalized in a completely
analogous fashion.

Consider the family of systems

(45)

where is a finite index set, , and
is locally Lipschitz for each . We write the

corresponding switched system as

(46)

where is a switching signal with switching times ,
as before.

Theorem 10:

A) Let be a compact set. Suppose that for each
we have , there exist a positive–definite
radially unbounded function and a
nonnegative–definite continuous function

such that

and the system

(47)

is uniformly small-time norm-observable in the sense
of Section III [so that, e.g., the condition (40) holds
uniformly over inputs]. Let the switching signal be
such that Assumptions 3 and 4 are satisfied. Then, the
switched system (46) has the following properties.

• Uniform stability: For every there ex-
ists a such that for every initial condition
satisfying and every input, we have

for all .
• Global attractivity: For all initial conditions and

all uniformly continuous inputs, we have
as .

B) Suppose that for each there exist functions
and as in A) and (47) is small-time norm-observ-
able, e.g., in the sense of (11). Let the switching signal

be such that Assumptions 3 and 4 are satisfied. Then,
the switched system (46) has the same uniform sta-
bility property as in A) and the following property.

• Asymptotic gain: There exists a function
such that for all initial conditions and all

bounded uniformly continuous inputs, we have

(48)

C) Suppose that for each there exist a positive–def-
inite radially unbounded function , a
nonnegative–definite continuous function

, and a continuous function with
such that

and the system

is small-time norm-observable. Let the switching
signal be such that Assumptions 3 and 4 are satis-
fied. Then the switched system (46) has the following
properties.

• Stability under zero input: For every there
exists a such that for every initial condition
satisfying , the corresponding solution
of the system satisfies
for all .

• Asymptotic gain under bounded-energy inputs:
There exists a function such that for
all initial conditions and all bounded uniformly
continuous inputs satisfying

for all , condition (48) holds.
Remark 11: The uniform continuity assumption on the in-

puts can be dropped when does not depend on . For dif-
ferentiable , this assumption means that is bounded; such
assumptions on disturbance inputs have been explored in the
literature (see, e.g., [21]).
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VI. STABILITY OF SWITCHED SYSTEMS: EXAMPLES

Since each system in the family (38) is globally asymptot-
ically stable by Remark 6, it does admit a Lyapunov function
(strictly decreasing along nonzero solutions). There is a mul-
titude of results on stability of switched systems which em-
ploy such multiple Lyapunov functions [12], [16], [26]. The pre-
cise conditions on the evolution of these functions at switching
times are usually milder than Assumption 4. Under suitable slow
switching requirements such as the existence of a sufficiently
large (average) dwell time, it is sometimes possible to prove that
such conditions automatically hold, thereby deducing global
asymptotic stability of the switched system from global asymp-
totic stability of individual subsystems (see [19] and [26]). How-
ever, in the nonlinear context these results rely on additional,
often restrictive assumptions on the Lyapunov functions, and
the required bounds on the switching rate are much more con-
servative than Assumption 3’ and especially than Assumption 3.
Thus Theorems 7 and 9 provide a useful alternative approach to
stability analysis of switched systems. (It must be noted, though,
that unless the functions , are strictly decreasing along
nonzero solutions, Assumption 4 does not automatically follow
from any slow switching condition.)

The usefulness of Theorems 7 and 9 stems in part from the
fact that it is sometimes easier to find weak Lyapunov functions
nonincreasing along solutions and satisfying Assumption 4 (or
even a common weak Lyapunov function for a given family of
systems) than to find strictly decreasing Lyapunov functions sat-
isfying suitable conditions on their evolution at switching times
(or, in particular, a common Lyapunov function). The following
example illustrates this point.

Example 2: Consider the two systems

where satisfies (35). We know from Example 1 that the first
system is small-time norm-observable with respect to the output

. The same is true for the second system, since it is
obtained from the first one by the coordinate transformation

. It is not hard to check that these two systems do
not possess a common Lyapunov function; indeed, otherwise
the sum of the two right-hand sides would be an asymptotically
stable vector field (see, e.g., [26, Cor. 2.3]), which it is not. On
the other hand, the function

(49)

serves as a common weak Lyapunov function, with deriva-
tive along solutions of each system being . Thus
Assumption 4 is trivially satisfied. It is clear that small-time
norm-observability with respect to implies small-time
norm-observability with respect to (just modify the
function in the definitions of Section II by composing it with
the square root function). Therefore, Assumptions 1 and 2 are
fulfilled, and the switched system generated by these two sub-
systems is globally asymptotically stable for every switching
signal satisfying Assumption 3.

An important problem which leads one to consider weak
common Lyapunov functions, and thus provides further moti-
vation for the results of Section V, is the problem of feedback
stabilization for systems with switching dynamics. A positive–
definite function is said to be a common
control Lyapunov function for the family of control systems
(45) if

(in the case of a single system, this reduces to the standard con-
trol Lyapunov function concept [6], [33]). If the previous prop-
erty holds with the nonstrict inequality instead of the strict one,
then we say that is a common weak control Lyapunov function
for the family (45). We now demonstrate that for certain families
of control-affine systems, common control Lyapunov functions
do not exist—while there may exist common weak control Lya-
punov functions.

Proposition 11: Suppose that the right-hand sides of the sys-
tems from (45) take the form

(50)

where ( and are the input and state dimensions)
and rank . Then, there is no common control Lya-
punov function for the family (45) if

range (51)

(here “co” denotes convex hull).
Proof (sketch): Fix an arbitrary . Condition (51) im-

plies that we have for some vector
, indices , and nonnegative numbers

satisfying . Suppose that the
family (45), (50) admits a common control Lyapunov function

. Then, for each , there exists a control value such that
. Combining the previous for-

mulas, we obtain . Since
was arbitrary, this means that is a control Lyapunov

function for the system which is known to contra-
dict Brockett’s necessary condition for feedback stabilizability
[11] (see [35] for details).

Condition (51) clearly holds when con-
tains the origin for all , which would happen, e.g., if

for some and contains both positive
and negative values. Letting

(52)

and applying the feedback law , we recover the two
systems considered in Example 2. Proposition 11 confirms that
those two systems do not have a common Lyapunov function.
More generally, it implies that the same is true for two systems
obtained from the pair of control systems defined by (45), (50),
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and (52) using an arbitrary pair of feedback laws (it is not nec-
essary to use the same feedback law for both systems).5 On the
other hand, a common weak control Lyapunov function for this
pair of control systems does exist and is given by (49).

The next example is a variation on Example 2 and also builds
on Example 1.

Example 3: Consider the two systems

where and satisfy (35). Define the functions

Then Assumptions 1 and 2 can be checked as in Example 2,
and the switched system generated by these two subsystems is
globally asymptotically stable for every switching signal satis-
fying Assumptions 3 and 4. The latter assumption holds, for
example, if the switching is constrained to occur on the set

; this con-
dition still leaves considerable freedom in defining a specific
switching rule. If the switching is controlled by a supervisor,
then Assumptions 3 and 4 can be directly incorporated into the
switching logic (see Remark 7).

Functions : consisting of a quadratic form plus
an integral of a nonlinearity—such as the ones considered in
Examples 2 and 3 above—frequently arise as (weak) Lyapunov
functions in absolute stability theory, which studies nonlinear
feedback systems of the form

(53)

Consider the transfer function and as-
sume that it has no pole-zero cancellations. If has one pole
at 0 and the rest in the open left half-plane and the function

is positive real for some , then there ex-
ists a positive definite matrix (independent of ) such that

the derivative of the function
along solutions of (53) satisfies . Observ-
ability of the pair combined with LaSalle’s theorem can
now be used to conclude that the system (53) is globally asymp-
totically stable for every function that satisfies the sector con-
dition for all . (This is one version of Popov’s
stability criterion; see, e.g., [10] for details.)

With the help of Theorem 7, we can then study stability of the
switched system generated by a finite family of systems of the
form (53), with the same linear part but different nonlinearities:

(54)

Under the conditions of Popov’s criterion cited above, the cor-
responding weak Lyapunov functions take the form

. An argument similar to the one em-
ployed in Example 1 shows that

5This statement remains valid if the second component of the vector used to
define �f (x) in (52) is replaced by 0.

is small-time norm-observable for each provided that
the functions , satisfy the slightly strengthened sector
condition

such that

(55)

As in Example 3, we see that Assumption 4 is satisfied whenever
the switching is confined to the set of equal “potential energies”

(56)

We have established the following corollary of Theorem 7 (a
variant corresponding to Theorem 9 is also straightforward to
obtain).

Proposition 12: Consider the family of systems (54), where
is a finite index set and the functions , satisfy the

sector condition (55). Assume that the transfer function
has no pole-zero cancellations, one pole at 0, and

all other poles in the open left-half plane, and that the function
is positive real for some . Then, the switched

system is globally asymptotically stable if
the switching signal satisfies Assumption 3 and belongs to
the first set in (56) at every switching time.

VII. CONCLUSION AND REMARKS ON RELATED NOTIONS

We introduced and studied several norm-observability no-
tions for nonlinear systems with inputs and outputs, in a set-
up compatible with the ISS framework. Their application
to LaSalle-like stability analysis of switched systems was de-
scribed and illustrated through examples. Potential implications
for control design in the presence of switching were briefly
sketched and remain to be investigated. We end the paper
with some remarks about related observability notions. For
simplicity, we consider the system with no inputs (9), although
the extension to the general case of (1) is immediate.

A. Integral Versions

Motivated by the integral versions of ISS and OSS (see [4]),
we can modify the definitions by replacing supremum norms
on the outputs with integral norms. For example, in place of
small-time initial-state norm-observability for the system (9),
consider the following property:

such that

Other notions can be obtained similarly. Using the integral
versions of Lemmas 1 and 2 established in [3, Sec. 2.6], one
can show that the relationships proved in Section III remain
valid for these new notions. It is also not hard to see that the
integral versions of the small-time and large-time properties are
stronger than their supremum-norm counterparts (just apply the
mean value theorem), while this is not the case for the infinite-
time property (as can be shown by a counterexample). Unfor-
tunately, these integral observability notions do not seem to be
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as useful for establishing LaSalle-like stability theorems for
switched systems, unless the integral gain function happens
to be the identity.

B. Incremental Versions

In order to come up with definitions that more closely relate
to the traditional notions of observability (i.e., the possibility of
having a finite time estimate of the actual value of the state), one
needs to resort to incremental observability notions. By incre-
mental notions, we mean inequalities involving norms of differ-
ences of states, inputs and/or outputs rather than their absolute
values. In particular, the incremental notion of small-time ini-
tial-state observability for the system (9) would read as follows:

such that

where is the output corresponding to the trajectory with the
initial state , . In this more general context, norm-
observability as discussed elsewhere in this paper becomes a
special case, in which an arbitrary trajectory is compared with
the zero (equilibrium) trajectory. This line of thought has been
followed for instance in [36, Sec. 5], where a definition of in-
cremental detectability is provided, or in [1, Sec. 6.B], where a
notion of incremental stability after output injection is consid-
ered. Generally speaking, results which are based only on ma-
nipulation of estimates carry over to the incremental setup; re-
sults which involve some sort of compactness are usually much
harder to derive, unless a priori bounds on trajectories are ex-
plicitly assumed. Treatment of these notions in detail is outside
the scope of the present paper and we leave it open for future
investigations. A related observability concept for linear hybrid
systems was studied in [8].

APPENDIX

PROOF OF LEMMA 1

Fix an arbitrary . We first need to show boundedness
of reachable sets for the system (1) in time , starting from a
compact set, for bounded inputs, and bounded outputs. For

, let

where denotes a solution of (1) with initial condition
and input , and is the corresponding output.

Lemma 13: The set is bounded for every .
Proof: Let be given. Introduce the auxiliary system6

(57)

where is some smooth function such that
for and if and only if .

The set is contained in the reachable set

6Existence of solutions for this system is guaranteed if the output map h is
locally Lipschitz. Even if it is not, one can prove the validity of all that follows
by working with a suitable approximation of h; see [3, Rem. 2.15].

for (57). If we show that (57) is forward complete, then we will
be done, because [28, Prop. 5.1] says that reachable sets for for-
ward complete systems, in bounded time, starting from a com-
pact set, and for bounded inputs are bounded.

Take a solution of (57) corresponding to some initial con-
dition and some input , and suppose that as

approaches some time . We now construct a new input
by “collapsing” time intervals on which . Let

, where

.

This defines a continuous mapping from the interval
onto an interval , where . For , let

where . Let be the
solution of (57) corresponding to the same initial condition
and this new input . Since is obtained from by removing
time intervals on which is constant, the two trajectories are
the same up to this time reparameterization, and in particular,

as .
Now, consider

Since for almost all by con-
struction, is a strictly increasing function from to some
interval , where actually because every-
where. For , let . Then, is
absolutely continuous and satisfies , where

. Since as , we have
as . The system (1) has the unboundedness observability
property by assumption, and so the output must be-
come unbounded as . But we have

, and the norm of the
last expression does not exceed , which is a contradiction.

The above argument is an extension of the proof of [3, Lemma
2.1], which establishes the corresponding property of reachable
sets for systems whose output maps do not depend on the inputs.
We now proceed with the proof of Lemma 1. For , define

The aforementioned function is well defined since the
supremum is bounded for each by virtue of Lemma 13.
We have because and .
Therefore, we can choose some class function such that

for all . This gives

(58)

Since the system is time-invariant, the lemma holds with
.

Remark 12: A similar construction is used in the proof of
[3, Lemma 2.2]. In the case when the system is forward com-
plete, the condition involving can be omitted from the defini-
tion of the reachable set . The reachable set is still bounded
due to [28, Prop. 5.1]. Thus, for forward complete systems,
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disappears from (58) and Lemma 1 holds without the -depen-
dent term in (10). Alternatively, if inputs are not present or take
values in a compact set, then the condition involving can be
omitted from the definition of . In this case, assuming that

when there are no inputs or for all
when there are inputs, we see that Lemma 1 holds without

the -dependent term in (10). In particular, for forward com-
plete systems with no inputs, inequality (10) reduces to just

; this special case of the result is a straight-
forward consequence of the continuous dependence of solutions
on initial conditions and the presence of the equilibrium at the
origin. The same remarks apply to Lemma 2.
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