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ABSTRACT

A nonlinear controllable plant, under mild technical conditions, admits a precompensator with the
following property: along control trajectories joining pairs of states, the composite system
(precompensator plus plant) is, up to first order, isomorphic to a parallel connection of integrators.
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1. Introduction.

This note deals with "pseudolinearization" properties of nonlinear systems.  Recent research by and
Baumann and Rugh ([14], [3]), and by Champetier et al. ([6], [15]) has emphasized the idea of studying
families of linearizations of nonlinear systems around different operating points, and in particular the
problem of obtaining compensators with the property that all closed-loop linearizations have the same
dynamic behavior.  In a similar spirit, we study here linearizations along trajectories of nonlinear systems.

The present line of work should be contrasted to that of "feedback linearization" of nonlinear systems,
where one asks for a global (or almost global) reduction of the given system to linear time-invariant form
(see e.g. Brockett [4], Jackubczyk and Respondek [10], Hunt et.al. [9]). The conditions for feedback
linearizability are very stringent, and even when applicable, as in the "computed torque" method in
robotics, the method may result in control laws that are not implementable due to the existence of
actuator constraints that were ignored in the linearization process.  The pseudolinearization work, on the
other hand, is closely tied to the standard approach in engineering practice, where an open-loop
trajectory is preplanned and a servo is built in order to regulate along it.  The regulated system then
corrects for disturbances and measurement errors.  The price one pays for this kind of ’hierarchical’
design is that only small perturbations from preplanned trajectories can be tolerated by the control
system.

Since the main result is somewhat technical to state, we explain it first in intuitive and oversimplified
terms. A more precise discussion of what we mean by "plant", "system", and so forth, is given in the next
section. Assume that a plant is given, described by a vector differential equation

x
⋅
(t) = f(x(t),u(t)), (1.1)

where x(t) is the state, and u(t) is the control, at time t.  Assume given also a pair (
_
x,

_
u) consisting of an

open loop control
_
u(⋅) and a reference trajectory

_
x(⋅) which satisfy (1.1). Such a pair may arise from a

numerical optimal control procedure for command generation, or from a simulation of the plant response
to a test signal

_
u. We think of

_
x as a desired trajectory.  Let (x(⋅),u(⋅)) be any other such pair,

corresponding to an actual control being applied, and an actual trajectory of the plant.  This pair may
differ from the reference pair (

_
x,

_
u), for instance due to an initial state xo different from the desired

_
xo. The

goal is to drive the error x(t)-
_
x(t) to zero.  Consider the differences δ(t):= x(t)-

_
x(t) and v(t):= u(t)-

_
u(t).

Dropping higher order terms, these quantities satisfy an equation

δ
⋅
(t) = A(t)δ(t) + B(t)v(t), (1.2)

where A(t) = fx(
_
x(t),

_
u(t)) and B(t) = fu(

_
x(t),

_
u(t)) are Jacobian matrices evaluated along the reference

trajectory. To account for small disturbances and errors in
_
x(0), the usual procedure is to design a linear

time-varying servo

v(t) = K(t)δ(t)

such that δ(⋅) is forced to decrease.  The control applied on-line is then

u(t) =
_
u(t) +  K(t) (x(t) -

_
x(t)) .

One typically computes K(⋅) via linear quadratic optimization techniques. Note that the data for this
optimization problem depends on the linearized system (A,B), and hence on the desired (

_
x,

_
u).

An alternative to using linear quadratic optimization in order to obtain K is to study pole shifting
problems for the linear time varying systems (1.2).  In the process of developing his canonical form,
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Brunovsky [5] showed how to reduce (1.2) under feedback and coordinate transformations, into a
time-invariant system (see also the fundamental paper Morse and Silverman [13]), provided that a rank
controllability condition holds and that the Kronecker structure of (A(⋅),B(⋅)) remains constant in time.  In
terms of the original nonlinear system (1.1), this means that certain integers related to partial Jacobians of
f(⋅,⋅) must remain constant along the given trajectory.  In any case, once a time invariant system is
obtained, one can perform a pole-shifting design in the new coordinates.  However, the assumption of
constancy of Kronecker indices is fairly restrictive.  Moreover, even for such trajectories, there is the
question that two different trajectories will give rise to distinct invariants, and the time-invariant systems
obtained by feedback will be different.  One way to avoid the first problem, that of nonconstancy, is to add
a precompensator in such a manner as to force the indices into generic form.  This is precisely what is
done for fixed linear time-varying systems in Kamen et.al. [11], and in the analogous case of families of
systems in Sontag [16].  For pseudolinearization at equilibrium points, precompensation is also used in
Reboulet and Champetier [15], but the form of the precompensator needed in that case is considerably
simpler.

One of the main purposes of this paper is to describe a technique that allows such a K to be
computed in closed form independently of the given reference (

_
x,

_
u) and the corresponding linear time

varying system (A,B).  Roughly, the feedback K that we obtain will be expressed symbolically in terms of
variables (π,ω); during actual operation of the closed loop system, at time t one substitutes

_
x(t) for π and

_
u(t) for ω. More accurately, K will include integral terms, i.e. dynamic feedback, and for technical reasons
there needs to be a variable corresponding to the solution of a fundamental matrix differential equation.
The form of the precompensator, as well as all changes of coordinates, are computed symbolically.  One
way of formalizing all this is as follows:

Given: A plant Π and a class U of (open-loop) controls.

To design: A precompensator Ξp to be connected as in Figure 1.

Such that: For each fixed u(⋅)∈U, the time-varying system Ξ (Figure 1, large box) that results
when this u(⋅) is applied, as a system with external control v(⋅) and states (z,x), is to first order
and linear coordinate change equal to a predetermined linear system.

Once the above is achieved, time-invariant linear control theory may be applied to obtain a servo
which will provide satisfactory closed-loop operation in the presence of small errors in the state of Π, the
external control v(⋅), and the state of Ξp. Note that we are requiring that all linearizations be isomorphic to
a fixed linear system, independently of the particular u(⋅). Hence, the term equilinearization is probably
appropriate for our objective.  Moreover, we will even require that the coordinate change be in a sense
precomputable independently of the particular u(⋅), so that real-time calculations are minimized.

The next problem in formalizing our objective is that of deciding upon suitable classes U of controls.
In order for our method to work, we must assume some sort of finite dimensional parametrization of the
possible controls in U. For instance, one may deal with the set of all controls that are, as functions of
time, polynomials of degree at most three.  More generally, we shall postulate the existence of an
open-loop control generator system Ω, whose outputs are fed as controls to the plant.  The idea of using
autonomous systems as signal generators is of course not new: many approaches to the tracking
problem rely on precisely such time-domain models for the signals to be tracked (steps, ramps, etc.).  For
instance, if we desire to study the response to ramps, i.e. polynomials of degree 1, it is only necessary to
consider a control generator with dynamics ω

⋅

1 = 0, ω
⋅

2 = ω1, and output u(t) = ω2(t). Different initial
conditions ω1(0), ω2(0) will give rise to all possible linear u(t).

Our Main Theorem assumes that such a control generator is given, and provides a solution to a
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slightly modified version of the problem stated above, which we now describe.  Let Q = Q(ω) be the output
map of the control generator, and take Γ to be the autonomous system that has state variables partitioned
as γ = (φ,ω,π), where ω satisfies the equations for the control generator, π is the plant state trajectory with
corresponding control Q(ω), and φ is a fundamental solution along the corresponding state and input
trajectories --see section 2 for details. We view Q as a function of all of γ, and ask for a precompensator
Ξp and a memory-free map R, to be connected as in figure 2.  The system that should be easy to control
is again denoted by Ξ, with external control v, and states (x,z).  The result says, roughly, that there exist
Ξp, R, and matrices A,B, such that, for each γ(⋅) = (φ,ω,π) there is a linear change of variables

Λ(t) y = ( )z
x−

_

x

(det(Λ(t))≠0 for all t,) with the following property:  if x(0) and z(0) are arbitrary initial conditions and v is an
external control, then

y
⋅
= Ay + Bv + o(y,v,t) .

More precisely, this happens for those initial conditions γ(0) which correspond to controls which are
"nonsingular" with respect to ξ(0), in a sense to be clarified later and, except for special cases like that in
which the system dynamics are described by polynomials or rational functions, one must restrict to
compacts subsets of the state space.  The matrices A,B can be chosen such that the resulting system is a
simple series/parallel connection of integrators.  Further, the matrix Λ(t) can also be precomputed
independently of γ(0), in the sense that there is a matrix L(⋅) such that Λ(t) = L(γ(t)) for all t.

A companion paper to this one, [19], deals with the issue of designing the open-loop control
generators themselves.  The main theorem in that reference shows, roughly, that if the plant (1.1) is
controllable and if certain relatively weak assumptions are satisfied --f must be analytic, and the state-
space is for instance ℜn, or a contractible open subset,-- then there exists a finite dimensional system Ω
with outputs u(⋅) such that, for any two states x1 and x2 in a compact subset of the plant, there is some
initial condition of the control generator system Ω that results in an open loop control which transfers x1 to
x2. Moreover, this open loop control is "nonsingular" as required in the previous paragraph.  The results
in the present paper are totally independent of those in [19].  However, we include below precise
statements of the latter, since the existence result for control generators provides a strong mathematical
motivation for the use of such generators.  In fact, only length constraints precluded the integration of the
material in [19] into the present paper.

In summary, combining the Main Theorem with the main result in [19], one has that, provided the
plant satisfies certain reasonable assumptions, it is possible to affect any desired state transfer using a
suitable open loop signal generator, and to regulate for small deviations from the corresponding
trajectories using linear control design techniques.  The system Γ that results can be described as an
interconnection of a linear system, an internal model of the plant, and a system linear in the state; Q is a
polynomial map, and Ξp is linear.  If the original system is defined by rational equations, all functions
appearing are again rational.

The systems considered are described by analytic differential equations. In the case of systems
defined by rational functions, the constructions can be performed explicitely via resultant theory.  We have
carried them out for various examples using the Macsyma symbolic manipulation system.  On the other
hand, the theorem in [19] about the existence of signal generators is more of an abstract existential result,
and should be probably seen as providing more of a "principle" for nonlinear control than as a practical
design method in itself.  This principle would be used in practice in order to motivate the search for signal
generators, much as inverse Lyapunov theorems are used in the context of stability.  Note however that
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the Main Theorem can be typically applied directly, with the precompensator design based on the
assumption that all controls to be applied are in a certain class (e.g., steps, ramps); these open-loop
controls may be calculated for specific state transfers via numerical methods.  The example worked out
later illustrates this.

The plan for the paper is as follows.  The next section introduces definitions and the statement of the
Main Theorem.  After that, we deal with various issues related to the controllability of variational systems,
in particular a study of those trajectories of a given system along which the linearization (as a time-varying
linear system) is controllable.  Such nonsingular trajectories play a central role in the construction of
precompensators. We then construct the precompensator needed for the Main Theorem.  In the final two
sections we present a worked example and some conclusions and suggestions for further work.



5

2. Definitions and Statement of the Main Theorem.

2.1. Systems.
An (analytic) system Ξ, with state space SΞ = open subset of ℜn and control-value space UΞ = open

subset of ℜm, is described by an equation

x
⋅
(t) = f(x(t),u(t)) , (2.1)

where the dynamics map f: SΞ×UΞ → ℜn is real-analytic.  A polynomial system is one for which each
component of f is a polynomial, and a rational system is one for which each component of f is a rational
function. A rational function is one that can be written as a quotient of two polynomials in n+m variables,
with the denominator having no zeroes in SΞ×UΞ. The system is autonomous if f is independent of u; in
that case the set UΞ is irrelevant.  Autonomous systems will appear in the modeling of signal generators.
In describing systems by their evolution equations (2.1), we shall often omit the argument t.

An admissible control (or input) u of length T = Tu is a measurable essentially bounded map u:
[0,T]→UΞ. Essentially bounded means that there is a compact subset K = Ku of UΞ such that u(t)∈K for
almost all t.  For any admissible u and initial condition x(0)=ξ, the unique absolutely continuous solution
x(⋅) of (2.1) at time t≤T, if defined, is denoted by x(t) = ψ(t,ξ,u). A pair (x,u) of functions on an interval
[0,T], with u an admissible control and x satisfying (2.1), i.e., x(t) = ψ(t,x(0),u) for all t∈[0,T], is an
admissible trajectory on [0,T].  If u has length T and ξ is such that there exists an admissible trajectory
(x,u) on [0,T] with x(0)=ξ, we say that u can be applied to ξ. If there is an admissible trajectory on [0,T]
with initial x(0)=ξ1 and final x(T)=ξ2, we say that ξ1 can be controlled to ξ2 in time T, or that ξ2 can be
reached from ξ1, and that u steers ξ1 to ξ2. If there is some T>0 such that that ξ1 can be controlled to ξ2
in time T, we just say ξ1 can be controlled to ξ2.

The system Ξ is complete if for every ξ∈SΞ, every T>0, and every admissible control u, the solution
ψ(t,ξ,u) is well-defined for all t≤T, i.e. every control can be applied to every state.  Completeness will not
be essential, and will not be assumed in most of the material to follow, but it will allow an elegant
statement of part of the theorem from [19] quoted below.

If (x,u) is an admissible trajectory on [0,T], then z(t):= ψ(t,z(0),v) is defined for all t∈[0,T] if z(0) is
sufficiently close to x(0) and if v is sufficiently close to u in the essential supremum norm.  More precisely,
let L∞

m be the Banach space (with sup norm) consisting of all essentially bounded measurable u:

[0,T]→ℜm, for the given T>0.  Then the set of triples (t,ξ,u) for which the solution ψ(τ,ξ,u) is defined for all
τ≤t is an open subset of ℜ×SΞ×L∞

m. Further, for each fixed t, ψ(t,ξ,u) is infinitely differentiable as a

function of (ξ,u)∈SΞ×L∞
m, and the mapping (ξ,u)→ψ(⋅,ξ,u), with values in Co([0,T],ℜm) (with sup norm) is

continuous. These are well-known classical results; see for instance Lee and Marcus [12] and references
there, as well as [19], where we also establish continuity and differentiability with respect to other norms
on controls.

2.2. Variational Systems.
Let (x,u) on [0,T] provide an admissible trajectory for the system Ξ. The (total) variational system

associated to Ξ along (x,u) is the linearization of Ξ along this trajectory, that is, the linear time varying
system Dx,uΞ defined by the evolution equations

λ
⋅
(t) = fx(x(t),u(t))λ(t) + fu(x(t),u(t))υ(t) ,

t∈[0,T] , (2.2)
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where fx, fu denote Jacobians of f with respect to the first n variables and the last m variables

respectively, and where λ(t)∈ℜn and υ(t)∈ℜm for all t.  (Strictly speaking, time-varying systems are not
"systems" with our definition.)

We shall say that Ξ is linearly controllable along (x,u) if (2.2) is (completely) controllable in [0,T], i.e.
for each λ1 and λ2 in ℜn there is a measurable essentially bounded υ such that, solving (2.2) with this υ
and with initial condition λ(0)=λ1 results in λ(T)=λ2.

An interpretation of this property can be given via the map (ξ,u)→ψ(T,ξ,u) defined on an open subset
of SΞ×L∞

m. The Fr¬echet differential of this map at a given (ξ,u), evaluated at a tangent element

(λo,υ)∈ℜn×L∞
m is precisely the solution λ(T) at time T of (2.2) with λ(0)=λo. In particular, consider a fixed

pair (T,ξ), and the partial map α(u):= ψ(T,ξ,u). Then its differential at u, evaluated at υ, is obtained by
solving (2.2) with this υ and with λ(0)=0. Thus α is nonsingular at u precisely if (2.2) is reachable from
zero, i.e. if for each λ2 there is a υ such that λ(0)=0 results in λ(T)=λ2. Since reachability from zero is
equivalent to complete controllability for time-varying (continuous-time) systems, we conclude that Ξ is
linearly controllable along (x,u) if and only if α has full rank at u.

We shall need also a more general notion of variational system.  This notion will apply to systems
which have inputs of two kinds: a "reference signal" γ(t) and a "control" v(t).  For such systems, we shall
be interested in linearizations with respect to perturbations in the states and control v, along trajectories
corresponding to each possible reference signal γ. Formally, consider a system for which the control
value set UΞ has the form U1×U2, where U1 and U2 are open subsets of ℜk and ℜl respectively. Partition
admissible controls in the form (γ,v) to reflect the structure of UΞ. (We shall often write (x,γ,v) instead of
(x,(γ,v)) for admissible trajectories.)  Write the system equations as

x
⋅
= f(x,γ,v) . (2.3)

The partial variational system with respect to x and v along the admissible trajectory (
_
x,

_
γ,

_
v) is the time

varying linear system

λ
⋅
(t) =

fx(
_
x(t),

_
γ(t),

_
v(t))λ(t) +

fv(
_
x(t),

_
γ(t),

_
v(t))ν(t) ,

t∈[0,T] (2.4)

(note that ν(t)∈ℜl for each t). Fix such an admissible trajectory (
_
x,

_
γ,

_
v) on the interval [0,T].  Expanding the

differentiable map f, we conclude the existence of a function φ(t,a,b), which is defined for 0≤t≤T, for a in a
neighborhood of 0∈ℜn, and for b in a neighborhood of 0∈ℜl, such that φ(t,a,b) = o(a,b) for each t, φ is
analytic in (a,b) for each t, and the following property holds:  For each admissible trajectory (x,

_
γ,v) on [0,T]

with (x,v) sufficiently close to (
_
x,

_
v), if δ(t):= x(t)-

_
x(t) and ν(t):= v(t)-

_
v(t) then

δ
⋅
(t) =

fx(
_
x(t),

_
γ(t),

_
v(t))δ(t) +

fv(
_
x(t),

_
γ(t),

_
v(t))ν(t) +

φ(t,δ(t),ν(t)), t∈[0,T]. (2.5)

Further, if
_
γ is continuous as a function of t -in our application,

_
γ will be even analytic in t,- then φ is

uniformly o(a,b), i.e. φ(t,a,b)/||(a,b)|| → 0 as (a,b)→0 uniformly on t∈[0,T]. Thus the time-varying system
(2.4) provides a good approximation to the perturbed system (2.5), and a feedback design based on the
former can be expected to perform well for the latter, as long as δ and ν are kept small.
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2.3. Pseudointegrators.
Let the system Ξ be as in (2.3), and assume that the dimension of the state space SΞ is a multiple of l,

say lb.  Fix an admissible trajectory (
_
x,

_
γ,

_
v) of Ξ. We shall say that Ξ is a pseudointegrator along (

_
x,

_
γ,

_
v) iff

there exists a differentiable matrix function Λ(t) defined on [0,T], with det(Λ(t))≠0 for all t, such that, with
the notations A(t):= fx(

_
x(t),

_
γ(t),

_
v(t)) and B(t):= fv(

_
x(t),

_
γ(t),

_
v(t)), the following equations hold:

Λ(t)A = A(t)Λ(t) - Λ
⋅
(t) , Λ(t)B = B(t) ,

where A and B are the following (constant) matrices:

0 0 0 0 . . 0 Ι
Ι 0 0 . . 0 0 0
0 Ι 0 . . 0 0 0
. . . . . . . .

A = . . . . . . . B = .
. . . . . . . .
0 0 0 . . Ι 0 0

(each block is of size l by l, and there are b block rows). (2.6)

This property can be interpreted as follows.  Assume that, as above, δ(t) and ν(t) denote small
perturbations of

_
x,

_
v respectively.  Define ε(t) by the coordinate change δ(t):= Λ(t)ε(t); then ε satisfies an

equation like

ε
⋅
(t) = Aε(t) + Bν(t) + η(t,ε(t),ν(t)) , (2.7)

where η(t,a,b) is again o(a,b) for each t (uniformly if
_
γ is continuous). In the ε coordinates, the partial

variational system is up to first order a constant linear system.

Note that a pseudointegrator must be an "index invariant" system in the sense of Morse and
Silverman [13].  (Index invariant systems are more general, since they cannot be brought to constant form
under coordinate changes alone, but feedback must also be used.)  A particular consequence of our
results will be that one can build a precompensator that makes all linearizations along suitably
nondegenerate trajectories index invariant, and with the same indexes appearing along all such
trajectories.

Systems (2.7) have very nice local controllability properties, and any feedback control designed in
terms of ε(t) gives a corresponding feedback law for the original system via the similarity Λ(t) (which gives
rise to a Lyapunov transformation, since its determinant is bounded away from 0 on [0,T]).

We introduce one last definition.  The system Ξ is a pseudointegrator uniformly with respect to a class
C of signals γ iff there exists an lb by lb matrix L of analytic functions defined on an open subset of ℜk

such that, for all γ in C, the definition of pseudointegrator is satisfied with Λ(t) = L(γ(t)). Thus the
coordinate change can be "precomputed" independently of γ. We shall sometimes abuse notation and
use the notation "Λ" also for L, where no confusion arises.

2.4. Reference Signals and Plant.
From now on we fix an arbitrary system as in (2.1). We shall denote this system by Π, and refer to it

as the plant. The notations n, m, SΠ, UΠ, f will be reserved for the data associated to this particular
system. Also fixed will be an autonomous system Ω, with state space SΩ ⊆ ℜr and dynamics denoted by
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P, as well as an ("output") analytic map Q: SΩ→UΠ. The notation Ω↓Π will stand for the system obtained
by feeding the output of Ω as a control to Π, i.e. the autonomous system

ω
⋅
= P(ω) (2.8)

π
⋅
= f(π,Q(ω))

on the state space SΩ×SΠ. Our main objective is to study the regulation of the plant Π along trajectories
that result from the application of controls produced by the "open-loop control generator" Ω. (The result
from Sontag [19] quoted below establishes that a natural property of abstract controllability of Π is enough
to guarantee the existence of suitable "open-loop control generators" Ω; that fact provides a motivation for
the present model.)  Among such trajectories we shall be interested in particular in those along which the
plant is linearly controllable.  Since trajectories are parametrized by the initial states of Ω and Π, we
express the desired controllability property in terms of SΩ×SΠ, as follows.

Consider a pair (wo,po)∈SΩ×SΠ. At least for small enough times T>0, the solution (ω(t),π(t)) of (2.8)
with ω(0)=wo and π(0)=po is defined on the interval [0,T].  We shall say that (wo,po) is nondegenerate iff

for some such T, Π is linearly controllable along the ensuing admissible trajectory (π,Q(ω)) of Π.* The set
of such pairs will be denoted by ND(Ω↓Π). The trajectory (ω,π) will be called nondegenerate if (wo,po) is.
(It will be remarked later that (ω(t),π(t)) is again in ND(Ω↓Π), for each t≤T.)

It is easy to see that ND(Ω↓Π) is an open set; in fact, we prove later the following stronger result,
which implies in particular that -if nonempty- ND(Ω↓Π) is an open dense subset:

Lemma 2.1: There is an analytic function ∆: SΩ×SΠ→ℜ with the following property:  (wo,po) is
nondegenerate if and only if ∆(wo,po)≠0. When Ω↓Π is a polynomial (resp., rational) system, ∆ can be
chosen to be a polynomial (resp., rational) function.

For polynomial or rational systems, the function ∆ could in principle be obtained algorithmically using
symbolic manipulation systems, but in practice only low dimensional systems can be dealt with, because
of computational complexity considerations.

To the given combination (2.8) of control generator and plant, we associate one last system, the
reference generator Γ. This is an autonomous system, whose state space is the set SΓ:= GL(n)×SΩ×SΠ,

where GL(n) is the set of n×n invertible matrices viewed as an open subset of ℜn2
. It is described by the

set of equations

Φ
⋅
= a(π,ω)Φ

ω
⋅
= P(ω) (2.9)

π
⋅
= f(π,Q(ω)) ,

where a(p,w) is the Jacobian matrix fx(p,Q(w)) for each p∈SΠ and w∈SΩ. The state (Φ(t),ω(t),π(t)) of Γ at
time t will be denoted by γ(t).

Note that, if (π,ω) is any given admissible trajectory for (2.8) on [0,T], and if Φ(0) is an arbitrary
element of GL(n), then there is also a well defined state trajectory γ for Γ on [0,T], having the given
second and third coordinates (ω,π) and with the given Φ(0). In other words, the first equation in (2.9) can
be solved on all of [0,T]; this is because for fixed (ω,π) it is linear in Φ. In fact, Φ is a fundamental solution
for the variational system of Π along (π,Q(ω)). We shall say that γ(0), and the corresponding trajectory γ

*Here Q(ω) denotes the function defined by Q(ω)(t):= Q(ω(t)).
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on [0,T], are nondegenerate if (ω(0),π(0)) is.  A nondegenerate reference signal will mean, from now on, a
nondegenerate trajectory γ of Γ. We may see Q(ω) as a function of γ which depends only of the
ω-coordinate of γ.

Note that the system Γ consists of the equation for ω (which in the proof of the result in [19] happens
to be linear), which feeds into the last equation (an internal model of the plant) and both of these feed into
the first equation, which is itself a system linear in the state with input (π,ω).

2.5. Statement of the Main Theorem.
Consider the following situation.  Let Ω↓Π and Γ be as above, and assume given in addition an

integer k, an m by nk matrix R of analytic functions defined on an open subset W of SΓ, and constant
matrices C∈ℜnk×nk and D∈ℜnk×n. These data give rise to a "regulated system" Ξ defined as follows. The
system Ξ is of the type described in equation (2.3), having two kinds of controls, γ(⋅) and v(⋅), where U1=W

and U2=ℜn. Its state (z(t),x(t))∈ℜnk×SΠ satisfies the simultaneous equations:

z
⋅
= Cz + Dv , (2.10)

x
⋅
= f(x,u)  , (2.11)

u = Q(ω) + R(γ)z . (2.12)

Here ω(t) is the SΩ-coordinate of γ(t)∈W⊆GL(n)×SΩ×SΠ.)

The system Ξ consists of a cascade of two systems: a linear time-invariant precompensator Ξp
(equation (2.10)) with input v(t), and the original plant Π. The control u(t) to Π which is applied at any
given time t is an analytic function of the reference signal γ(t) and of the state of the precompensator (in
fact, affine in the latter).  Alternatively, we may think of the control law (2.12) as the output of Ξp. Figure 2
illustrates the resulting system diagram; the larger box corresponds to the regulated system Ξ. The input
v is an external control, and γ, generated by Γ, acts as a reference signal.

The objective is to build precompensators in such a way that, for any nondegenerate reference signal
γ, the system Ξ behaves as a (fixed) constant linear system for small z, x(0) = small perturbation of π(0),
and small external controls v.  More precisely, let (ω,π) be an admissible trajectory of (2.8) on [0,T], and
pick any Φo. There results an admissible trajectory γ = (Φ,ω,π) of the reference generator system (2.9) on

the interval [0,T].  We consider this signal γ as a reference input
_
γ for (2.10-2.12). Together with the

choice
_
v(t)≡0,

_
z(t)≡0,

_
x=π, we have an admissible trajectory for (2.10-2.12) on the time interval [0,T].  We

may then consider the variational system of Ξ along this admissible trajectory ((0,π),(γ,0)). The main
result of this paper is as follows.

Main Theorem. Let Ω↓Π be as above, and assume that O is any given compact subset of ND(Ω↓Π).
Denote G := GL(n)×O. Then there exist:

• an integer k,

• an m by nk matrix R of analytic functions defined on an open subset W of SΓ which contains
G, and

• constant matrices C∈ℜnk×nk and D∈ℜnk×n,

with the following property:  uniformly on reference signals γ which satisfy that γ(t)∈G for all t, the
system (2.10-2.12) is a pseudointegrator along ((0,π),(γ,0)). Furthermore, if Ω↓Π is a rational system then
the conclusions are true even if O is all of ND(Ω↓Π) and the entries of R can be chosen to be rational
functions.n
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In applying the definition of pseudointegrator to the above system, note that the integers ’b’ and ’l’ in
section 2.3 become, respectively, k+1 and n.

Although mathematically independent of the material in this paper, it is worth quoting precisely the
result in [19], which lends justification to the use of signals generators.  For technical reasons, we need
there the following property of linear growth in controls for the plant Π:

(*) UΠ = ℜm and there is a continuous function β: SΠ→ℜ such that
||fu(ξ,µ)|| ≤ β(ξ) for all ξ∈SΠ and all µ∈UΠ.

(By ||fu|| we denote the norm of the Jacobian of f with respect to u, for any fixed operator norm.)  As
discussed in [19], this assumption can be relaxed in various ways.  The system Π is controllable iff for
each π1 and π2 in SΠ, π1 can be controlled to π2. An equilibrium point for Π is a pair (π,µ), π∈SΠ, µ∈UΠ,
such that f(π,µ)=0. Then we have:

Theorem([19]). Assume that the controllable plant Π satisfies (*) and either that Π has some
equilibrium point or that Π is complete and SΠ is simply connected.  Let C be any compact subset of SΠ.
There exists then an autonomous polynomial system Ω, a polynomial map Q, and a compact subset O of
ND(Ω↓Π) such that the following property holds:

for each π1 and π2 in C there are a T>0 and an admissible trajectory (ω,π) of the system (2.8)
with π(0)=π1 and π(T)=π2 and such that (ω(t),π(t))∈O for all t∈[0,T].n

From the two theorems together it follows then that for a controllable plant, -provided the weak extra
requirements are satisfied,- for each compact subset C of SΠ there are a signal generator and a
precompensator such that the following holds: for any given pair of states in C, there is an initial condition
of the signal generator which gives rise to an open-loop input that controls one of these states to the
other, and along the ensuing trajectory the composite system (precompensator + plant) is up to first order
and coordinate change a simple parallel/series connection of integrators.

Important notational convention. Most vectors appearing in this paper are column vectors.  In order to
save space when displaying them, we shall often use the alternative notation

(a1 : ⋅⋅⋅ : ar) (2.13)

(note the ":") instead of

| a1 |
| ⋅ |
| ⋅ | .
| ar |

If the ai are scalars, this is the same as the transpose of the row vector (a1,⋅⋅⋅,ar), but we will mostly deal
with cases in which the ai are themselves column vectors, in which case (2.13) would correspond to, in
more usual but cumbersome notation, (a1’,⋅⋅⋅,ar’)’ (primes indicate transpose).
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3. Linearized Controllability.

In this section we include some general facts about linearized controllability, which are needed for the
proofs of the main results.

3.1. Controllability of time-varying linear systems.
First we shall develop some elementary linear system theory.  A good general reference for the latter

is Chen [7], where proofs of the results in this subsection can be found.  We state the needed facts for
further reference, in a language more suitable for our applications.  Given the time-varying linear system

x
⋅
(t) = C(t)x(t) + D(t)u(t) , (3.1)

with t∈[0,T], (C is an l by l matrix, and D is l by m,) this is (completely) controllable on [0,T] iff there exits
no po≠0 such that

<po,Φ(0,t)D(t)> = 0 for almost all t∈[0,T] ,

where the fundamental matrix Φ satisfies

∂Φ(t,τ)/∂t = C(t)Φ(t,τ) for all t,τ,
Φ(0,0) = Ι .

Equivalently, with p(t):= Φ’(0,t)po, controllability is equivalent to the impossibility of simultaneous
vanishing almost everywhere of all the switching functions

φµ(t) := <p(t),Dµ(t)> , µ=1,⋅⋅⋅,m,

(Dµ:= µ-th column of D), for a nonzero solution of the adjoint equation

p
⋅
(t) = -C’(t)p(t) , p(0) = po .

When all the entries of C and D are smooth functions of time on an open interval containing [0,T], a
sufficient condition for controllability is that

dim span {dκµ, κ≥0, µ=1,⋅⋅⋅,m} = l , (3.2)

where

dκµ := dκ/dtκ|t=0 [Φ(0,t)Dµ(t)] . (3.3)

When (3.1) is analytic, meaning that all entries of C and D are analytic functions of time, condition (3.2) is
necessary as well as sufficient.

3.2. Vector Fields.
Let W be an open subset of an Euclidean space ℜs. Using the natural global coordinate chart for W

given by the embedding in ℜs, we may (and will) identify functions f: W→Rs with vector fields on
W. These will be represented as s-dimensional column vectors of functions on W. An analytic vector field
is one that is real analytic when seen as a function W→Rs. A polynomial, (resp., rational,) vector field is
one which corresponds to a polynomial (resp., rational) map f.  Let f,g be vector fields on W. Their Lie
bracket [f,g] is then the vector field on W defined by the formula

[f,g](x) := gx(x)f(x) - fx(x)g(x) , (3.4)

where (⋅)x indicates Jacobian.  If f and g are polynomial or rational then [f,g] is also polynomial or rational
respectively. For each vector field F, we use the notation adF for the following induced linear operator on
vector fields:
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adF(g) := [F,g]  .

Consider now the following situation.  Given are analytic vector fields

A, b1, ⋅⋅⋅, bm

defined on an open subset L of ℜl. We let esA denote the flow of A, i.e., esAξo is the solution ξ(s) at time s
(if it exists) of

ξ
⋅
(t) = A(ξ(t)), ξ(0) = ξo (3.5)

(and is undefined if the solution does not exist on [0,s]).  We use the notation (⋅)* for differentials.  Then,
the Baker-Campbell-Hausdorff formula gives that, for each µ=1,⋅⋅⋅,m and κ≥0,

dκ/dtκ|t=0 [(e-tA)*bµ(etA(ξ))] = adκ
A(bµ)(ξ) .

We consider (3.5) as an autonomous system on ℜl. Given an admissible ξ(t) on [0,T], the variational
system along ξ(⋅) (there are no explicit controls here) has equations

λ
⋅
(t) = C(t)λ(t) ,

where we are denoting

C(t) := Ax(ξ(t)) .

Let Φ be the fundamental matrix associated to this C. It is easy to see that in this situation,

Φ(t,τ) = (e(t-τ)A)* .

Still for the given vector fields, and the given admissible trajectory ξ on [0,T] as in (3.5), consider now
the time-varying linear system (3.1) with the above C (n×n) and where D is the matrix whose µ-th column,
µ=1,⋅⋅⋅,m, is

Dµ(t) := bµ(ξ(t)) = bµ(eta(ξo)) ,

where ξo is ξ(0). Formula (3.3) becomes then

dκµ = adκ
A(bµ)(ξo) . (3.6)

Since A and the bµ’s are analytic, the obtained system (3.1) also is, and hence the latter is controllable if
and only if these vectors dκµ span a space of dimension n.  This will be used in the next subsection.

3.3. Nondegenerate pairs.
Fix now a system Ω↓Π as in (2.8) consisting of the plant Π and open-loop control generator Ω.

Nondegenerate pairs (ω,π) allow the parametrization of state trajectories and controls along which the
variational system is controllable.  The above results provide an easy characterization of these pairs, as
follows. Let l be n+r, take the open set L to be SΩ×SΠ, and introduce

A(ω,π) := ( ) ,P(ω)
f(π,Q(ω)) (3.7)

bµ(ω,π) :=

( ) ,0
gµ(ω,π) (3.8)

where for µ = 1,⋅⋅⋅,m, gµ is the µ-th column of the Jacobian of f with respect to u∈Rm evaluated at
(π,Q(ω)):

fu(π,Q(ω)) .
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Assume now given an admissible trajectory (ω,π) on [0,T].  The matrix functions C(t), D(t), Φ(t,τ) are
defined from this data as in the previous section.  We may also consider the variational system of the
plant Π along the admissible trajectory (π,Q(ω)) (where Q(ω) appears now as an external control).  This is
a time-varying system

δ
⋅
(t) = C2(t)δ(t) + D2(t)v(t) ,

where

C2(t) := fx(π(t),Q(ω(t))) ,

D2(t) := fu(π(t),Q(ω(t))) ,

(C2 is an n by n matrix, and D2 is n by m.)  Let Φ2(t,τ) be the fundamental matrix for C2. Then, Π is
linearly controllable along (π,Q(ω)) if and only if the vectors

d2
κµ := dκ/dtκ|t=0 [Φ2(0,t)D2

µ(t)] , κ≥0, µ=1,⋅⋅⋅,m ,

span a space of dimension n.  (D2
µ denotes the µ-th column of D2.) Note that C(t) and D(t) have the

following partitioned structure:

C(t) = ( )* 0
* C2(t)

(the (1,1)-block is of size r by r), and

D(t) = ( )0
D2(t)

(the 0 block is size r by m).  From the form of C it then follows that there is also a partitioned structure

Φ(t,τ) = ( ) .* 0
* Φ2(t,τ)

Thus, it follows that for each t in [0,T],

Φ(0,t)Dµ(t) = ( ) ,0
Φ2(0,t)D2

µ(t)

and so taking derivatives that

dκµ = ( )0
d2

κµ

for all κ≥0 and µ=1,⋅⋅⋅,m. We have proved the following result:

Proposition 3.1: (ωo,πo)∈ND(Ω↓Π) iff  dim span {adκ
Abµ(ωo,πo), κ≥0, µ=1,⋅⋅⋅,m} = n.n

We may restate this as follows.  For each integer k, let

∆k(ω,π) := ∑ ρj(ω,π)2 ,

(sum over j∈J) where {ρj, j∈J} are all the possible n×n minors of the k-th reachability matrix

Rk := {b1,⋅⋅⋅,bm,adAb1,⋅⋅⋅,adA
k-1bm} .

Note that ∆k is analytic [resp., polynomial, rational] if P, Q, and f all are, and it is in the k-th reachability
ideal Ik generated over analytic functions by the n×n minors of Rk. From the block forms in the definitions
of A and the bµ’s, it follows that Rk has the structure

( ) ,0
Sk

(3.9)
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where the 0 block has size r×km. Thus the minors ρj are the maximal possible nonzero minors, and the
span in proposition 3.1 has dimension exactly n iff one of these is nonzero, for some k.  Thus:

Corollary 3.2: (ωo,πo)∈ND(Ω↓Π) iff ∆k(ωo,πo)≠0 for some k.n

Let O be any compact subset of ND(Ω↓Π). For each (ωo,πo)∈O, there is then an integer ko such that
∆ko

(ωo,πo)≠0. Since ∆ko
is continuous, there is a neighborhood Vo of (ωo,πo) in ND(Ω↓Π) such that

∆ko
(ω,π)≠0 (and hence also ∆κ(ω,π)≠0 for all κ≥ko) for all (ω,π) in Vo. Taking a finite subcover of O by

such neighborhoods Vo, and choosing the largest ko, we conclude:

Corollary 3.3: For each compact subset O of ND(Ω↓Π) there is an integer k such that ∆k(ω,π)≠0 for all
(ω,π) in O.n

We now wish to show that a suitable infinite combination of the squares of the functions ∆k will be
analytic, so as to establish lemma 2.1.  This construction must be done over C, since in general a
uniformly convergent series of real-analytic functions will not be necessarily again analytic.

By definition of real-analyticity, there exists for the above vector field A an open subset V of Cl, l = r+n,
such that

V∩ℜl = SΩ×SΠ ,

and an extension of A to a vector function analytic on V, which we shall denote with the same letter
A. Similarly with b1, ⋅⋅⋅, bm. Intersecting if necessary, we assume that a common V as above has been
chosen. The elements in the Lie algebra generated by A and the bµ’s all admit analytic continuations to
the same open subset V, since they are defined by differentiations and algebraic operations on the entries
of the original vector fields.  (More generally, all vectors whose entries are in the differential algebra
generated by the entries of A and the bµ’s admit analytic continuations to the same V.) It follows finally
that there is an extension of each ∆k to an analytic function on V, which we denote by Γk. (Note that,
contrary to ∆k, the vanishing of Γk does not imply the vanishing of Γκ for κ<k.)

Consider the set V as a (separable) Hausdorff manifold.  By an elementary topological reasoning,
(see for instance Brickell and Clark [2], lemma 3.4.3,) there exists a countable covering {Vκ, κ≥0} of V by
compact subsets of V such that, for each κ, Vκ is contained in the interior intVκ+1 of Vκ+1. We let

Oκ := Vκ∩ℜl

for each κ≥0. Since Vκ is compact and ℜl is closed in Cl, this is a compact subset of V∩ℜl = SΩ×SΠ. For
each k, the continuous function |Γk| is thus bounded above on Vκ by some positive constant Ck.
Replacing Γk by the quotient Γk/Ck, we may assume that |Γk|≤1 on Vk, for each k.  (And Γk is still analytic
on V.) Note that, since the Vk form an ascending chain, for all k it holds that

|Γκ(v)|≤1 for all v∈Vk and all κ≥k .

Consider finally the function defined by the series

Γ(v):= ∑ 2-κΓκ(v)

(sum from κ=0 to ∞). Given any v∈V, there is a k such that v∈Vk. Thus, the terms in the above series

are majorized in norm by 2-κ for all κ≥k. It follows that the series is absolutely convergent and that Γ is
well-defined. To prove that Γ is analytic, it is sufficient to remark that the series converges uniformly on
compacts (see for instance Dieudonn¬e [8], chapter 9, section 12).  So let K be any compact subset of V.
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Since the open sets intVκ also cover V, there is a finite subcover of K by such sets; since these form a
chain, there is in fact an integer k such that

K ⊆ Vk .

For any v∈K, then,

|Γ(v) - ∑
2-kΓκ(v)| ≤

∑ [from="κ=k",to="∞"] 2-k|Γκ(v)| ≤ 2k-1 .

(first sum from κ=0 to k-1 and second from κ=k to ∞). Uniform convergence follows.  Finally, let ∆ be the
restriction of Γ to SΩ×SΠ. Thus ∆ is real-analytic, and it can be expressed as

∆ = ∑ [from="",to=""] aκ∆κ ,

(sum from κ≥0) for positive aκ’s. So ∆(ω,π) is nonzero if and only if some ∆κ(ω,π) is, and the first part of
lemma 2.1 is established.

Assume now that Ω↓Π is rational. Then, the functions ∆κ are all elements of the ring Rat(SΩ×SΠ)
consisting of all rational functions on ℜr+n which have no poles on SΩ×SΠ. This ring is a fraction ring of
the polynomial ring on r+n variables, and hence is Noetherian since the polynomial ring is.  (See e.g. [B],
II.2.4, corollary 2, for Noetherian fraction rings.) Thus there exists an integer k such that, for every κ, ∆κ is
in the ideal generated by

{∆1,⋅⋅⋅,∆k} . (3.10)

If (ωo,πo) is in ND(Ω↓Π), then by corollary 3.2 there is some κ such that ∆κ(ωo,πo) is nonzero, and hence,
by choice of k, one of the generators in (3.10) is nonzero there. This means that ∆k(ωo,πo)≠0, given the
construction of the ∆κ’s. If Ω↓Π is a polynomial, -rather than rational,- system the argument is the same.
In the first case ∆k is rational, in the second polynomial.  Choosing ∆:= ∆k satisfies the last statement in
lemma 2.1. Furthermore, this argument shows also that corollary 3.3 remains true even if O = ND(Ω↓Π),
provided that ND(Ω↓Π) be rational.

Finally, we remark that if (ωo,πo) is in ND(Ω↓Π), and if (ω,π) is an admissible trajectory on [0,T] with
(ω(0),π(0)) = (ωo,πo), then for each τ∈[0,T] it holds that again (ω(τ),π(τ))∈ND(Ω↓Π). This is because
otherwise, for the corresponding variational system the vectors

{Φ(τ,t)D(t), t∈[τ,T]} ,

and hence also the vectors

{Φ(0,t)D(t), t∈[τ,T]} ,

would span a space of dimension less than r+n.  By analyticity, this would imply that also the vectors

{Φ(0,t)D(t), t∈[0,T]}

span a lower dimensional space, contradicting the fact that (ωo,πo) is in ND(Ω↓Π).
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4. Proof of the Main Theorem.

The proof of the main theorem involves a number of intermediate constructions.  We shall assume
first that k has been chosen, and will then determine a value such that the theorem holds.  Similarly, we
shall assume given a set of analytic functions on (an open subset of SΓ which contains) G,

{ρκµν, µ=1,⋅⋅⋅,m, ν=1,⋅⋅⋅,n, κ=1,⋅⋅⋅,k} ,

also to be determined later.  With this data, R is the block matrix

R := (R1,⋅⋅⋅,Rk) ,

and each Rκ is the m by n matrix with the following elements in position (µ,ν), µ=1,⋅⋅⋅,m, ν=1,⋅⋅⋅,n:

(Rκ)µν := ρκµν .

The desired matrices C and D have the same block forms as A and B respectively have in equation (2.6),
except that each block now has size n by n, and there are k block rows.  We partition the coordinates of
the precompensator as z = (Z1:⋅⋅⋅:Zk), with each Zκ = (z1κ,⋅⋅⋅,znκ).

Note that, with the above choice of R, the µ-th coordinate of u in (2.12) satisfies

uµ = Qµ(ω) + ∑ [from="",to=""] ∑ [from="",to=""] ρκµν(γ)zνκ .

(first sum from κ=1 to k and second sum ν=1 to n).  Thus,

∂f(x,Q(w)+R(γ)z)/∂zνκ =

∑ [from="",to=""]
fuµ

(x,Q(w)+R(γ)z)ρκµν . (4.1)

(sum µ=1 to m) (Equality of n-vectors.)

Assume now that, as in the statement of the Main Theorem, γ = (Φ,ω,π) is a nondegenerate reference
signal on [0,T].

Let Ξ be the system given by (2.10-2.12).  We wish to apply the definition of pseudointegrator, as
given in section 2.3, to this system, except that we denote the dynamics map "f" in (2.3) instead by f̂, so
as to avoid confusion with the "f" map that describes the plant Π. Note that

f̂((z,x),γ,v) = ( ) .Cz+Dv
f(x,Q(ω)+R(γ)z)

We now consider the definition of pseudointegrator along (with the notations in section 2.3) the admissible
trajectory (

_
x,

_
γ,

_
v), where

_
x denotes the pair ( ),

_
γ is the given reference signal, and

_
v is identically zero.0

π

The Jacobian matrix A becomes in this case:

A(t) = ( ) ,C 0
J(t) a(t)

where C is, recall, an nk×nk constant matrix, the ’0’ block is nk×n, a(t) is n×n, and J(t) is n×nk. Explicitely,
these are as follows:

a(t) = fx(π(t),Q(ω(t))+R(γ(t))0) = fx(π(t),Q(ω(t))) ,

consistently with the previous definition of a, in (2.9),

J(t) = [S1(t),⋅⋅⋅,Sk(t)] ,

and for all κ=1,⋅⋅⋅,k
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Sκ(t) = ∑ [from="",to=""]
fuµ

(π(t),Q(ω(t))).[ρκµ1(γ(t)),⋅⋅⋅,ρκµn(γ(t))]

. (4.2)

(sum µ=1 to m) Each term in this sum is the product of an n×1 by a 1×n matrix, the latter being the µ-th
row of Rκ. For simplicity, we shall introduce the following notation:

gµ(w,p) := fuµ
(p,w) , p∈SΠ, w∈SΩ .

(To be thought of as a vector field on SΩ×SΠ.) Also, note that

B(t) = ( ) ,D
0

where the 0 block is size n×n. We search for an n(k+1)×n(k+1) matrix function Λ(t) defined on [0,T],
nonsingular for all t, such that

Λ(t)A = A(t)Λ(t) - Λ
⋅
(t) , Λ(t)B = B(t) , (4.3)

where A,B are as in equation (2.6) (and b,l there are h+1,n here.)  This is the matrix that will give the
change of coordinates that makes the system time-invariant.  We shall construct the matrix Λ in the
following special form:

|0
|.

Λ = Ι |. ,
|.
|0

_______________
Λk. . . Λ1 |Λo

where each Λκ, κ = 0,⋅⋅⋅,k, is an n×n matrix of analytic functions of t, with Λo invertible for each t, and with(4.4)
Λk≡0. (The "0" blocks are each n by n, and the identity Ι is nk×nk.) Since detΛ = detΛo, Λ will be indeed
invertible for all t.  Furthermore, since Λk≡0, the second equation Λ(t)B = B(t) in (4.3) is satisfied for all t.
Now we see what conditions are needed on the entries of R in order that the first equation in (4.3) be
satisfied for suitable Λ. Calculating,

Λ(t)A = ( ) ,C 0
J3 0

A(t)Λ(t) - Λ
⋅
(t) = ( )C 0

J1 J2

(using the same partitioned structure as Λ above), where, omitting t arguments for simplicity:

J2 = aΛo - Λ
⋅

o ,

J3 = [Λk-1,Λk-2,⋅⋅⋅,Λo] ,

and

J1 = J + a[Λk,⋅⋅⋅,Λ1] - [Λ
⋅

k,⋅⋅⋅,Λ
⋅

1] .

Thus, the following equations must hold for the sought Λκ:

Λ
⋅

o = aΛo

Λ
⋅

κ = aΛκ + Sk-κ+1 - Λκ-1 ,
κ=1,⋅⋅⋅,k, (4.5)
Λk ≡ 0 .
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The first equation is equivalent to saying that Λo must be a solution of the fundamental equation for the
plant. So we shall choose Λo to be Φ, the first coordinate of the given reference signal γ. We also let Λk
be identically 0, and by induction on descending κ = k-1, ⋅⋅⋅, 1, let

Λκ := aΛκ+1 - Λ
⋅

κ+1 + Sk-κ , (4.6)

or equivalently, with (Df)(t):= f
⋅
(t) (componentwise differentiation for vector functions),

Λκ = (a-D)k-κ-1S1 + (a-D)k-κ-2S2 +
⋅⋅⋅ + Sk-κ . (4.7)

Thus the ρ’s must be choosen so that precisely equation (4.5) holds when κ=1, the equations for the
other κ’s being satisfied by construction.  That is, we need that

(a-D)Λ1 + Sk = Φ ,

or equivalently, substituting Λ1 from (4.7) into this equation:

Φ = ∑ [from="",to=""] (a-D)k-κSκ .

(sum κ=1 to k).  Recalling the definition of the Sκ, equation (4.2), and letting Φν be the ν-th column of Φ,
for each ν=1,⋅⋅⋅,n, we need that the following equation hold for each such ν:

Φν = ∑ [from="",to=""]

∑ [from="µ=1",to="m"]
(a-D)k-κ[ρκµν(γ)gµ(π)] . (4.8)

(sum κ=1 to k). These equations are decoupled for the different ν, so we fix any ν=1,⋅⋅⋅,n and show how
to obtain the ρκµν for this ν. Let

φ: SΓ → ℜn (4.9)

be the projection

φ(Φ,ω,π) := ν-th column of Φ. (4.10)

Still for the particular ν choosen, denote

σκµ:= (-1)κρk-κ,µ,ν , κ = 0,⋅⋅⋅,k-1 .

It will be sufficient to establish the following property:

(P) There are analytic functions {σκµ, κ=1,⋅⋅⋅,k-1, µ=1,⋅⋅⋅,m} defined on G
such that, for each reference signal γ(t) for which γ(t)∈G for all t,

φ(γ(t)) = ∑ [from="",to=""] ∑ [from="",to=""] (D-a(t))κ[σκµ(γ(t))gµ(π(t))].

(sum κ=0 to k-1 and then µ=1 to m).  (And, if the system is rational, the functions σκµ also are.)  The fact
that φ is the particular function in (4.10) is not needed in order to establish property (*).  We shall see that
this holds for any analytic φ (rational, in the rational case).

Introduce the vector field F on SΓ that defines the dynamics of Γ, i.e.

F(γ) = F(Φ,ω,π):= (a(π,ω)Φ : P(ω) :
f(π,ω)) . (4.11)

(Recall the convened notation for block column vectors, and that that we represent the element a(π,ω)Φ
of GL(n) as a vector in ℜn2

. Thus F(γ) is a vector of size n2+r+n.) Let H be any vector field on SΓ of the
block form (with respect to the partition (Φ,ω,π) of coordinates in SΓ):



19

H(γ) = H(Φ,ω,π) = (* : 0 : h) . (4.12)

Then, the Lie bracket [F,H] again has the form in the right hand side of (4.12), and if
_
γ is any reference

signal, the following equality holds (use definition of Lie bracket and chain rule):

adF(H)(
_
γ(t)) = [F,H](

_
γ(t)) = (* : 0 : (D-a(t))h(t)) ,

where again D = d/dt and a(t) = fx(
_
π(t),

_
ω(t)). In particular, assume that, for each κ= 0,⋅⋅⋅,k-1 and each

µ=1,⋅⋅⋅,m, we denote

Gµ := (0 : 0 : gµ) (4.13)

(blocks of sizes n2,r, and n respectively), and

Hκµ(γ) := σκµ(γ)Gµ(π,ω)

with the σ’s still to be determined.  Thus we have the following situation.  For any choice of σκµ’s,

∑ [from="",to=""] ∑ [from="µ=1",to="m"]
adF

κ(Hκµ) = (* : 0 : θ) , (4.14)

(sum κ=0 to k-1), for some θ, seen as an equation for vector fields on SΓ. And, property (P) is satisfied iff
there exist σκµ’s for which θ equals the given φ. Let now A be as in (3.7) and each bµ as in (3.8). We then
have the partitioned structure

adF
κ(Gµ) = ( ) ,*

adκ
Abµ

(4.15)

where the ’*’ block has size n2.

Choose an integer k as in corollary 3.3, for the given compact O in the statement of the Main Theorem
(or globally, in the rational case).  With the notations in subsection 3.3, the desired integer "k" in the
above constructions will be taken to be equal to this k.  Let aj:= ρj/∆k for each j∈J. These are all analytic
functions defined on an open set containing O (rational if Ω↓Π is a rational system), and they satisfy

∑ [from="",to=""] ajρj = 1 .

(sum over j∈J). Consider the extended reachability matrix

R* := (G1,⋅⋅⋅,adF
k-1Gm).

From equations (4.15) and (3.9) we conclude that

R* = (* : 0 : S) ,

where S is an n×km matrix.

We may think of the ρj, j∈J, as all the n×n minors of S, since all other minors of R are necessarily
zero. If ρj is the determinant of the matrix Sj of S obtained when picking columns in the ordered set j =
{ι1,⋅⋅⋅,ιn}, where ι1 < ⋅⋅⋅ < ιn, we let Ej be the km by n matrix obtained as follows.  Let Dj be the cofactor
matrix of Sj; then the ιl-th row of Ej is by definition the l -th row of Dj, and all other rows i, i not in the set j,
are set to zero.  Then,

SEj = ρjΙ ,

where Ι is an n×n identity matrix.  Finally, introduce the matrix E := ∑ [from="j∈J",to=" "] ajEj, again a
km×n matrix.  We conclude that

R*E = (* : 0 : Ι) .
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(Sizes of blocks are n2×n, r×n, and n×n respectively).  Now, given any function φ as in (4.9), we let B be
the vector Eφ. It follows that R*B has the form in the right-hand side of (4.14), with θ= the desired φ. Thus
we have an equation

∑ [from="κ=0",to="k-1"] ∑ [from="µ=1",to="m"]
βκµadF

κ(Gµ) = (* : 0 : φ) , (4.16)

where the βκµ’s are the entries of the vector B. Note that the bκµ’s are analytic in O, and are rational if
Ω↓Π is rational.

We are left then with the problem of finding the functions σκµ, assuming that the βκµ as above have
been constructed.  But this follows from the following lemma:

Lemma 4.1: Assume that F, G1, ⋅⋅⋅, Gm, H are vector fields on an open set in ℜn, and that there are an
integer k and functions {βκµ, κ=0,⋅⋅⋅,k-1,µ=1,⋅⋅⋅,m} such that

H = ∑ [from="κ=0",to="k-1"] ∑ [from="µ=1",to="m"]
βκµadF

κ(Gµ) . (4.17)

Then, there exist functions {σκµ, κ=0,⋅⋅⋅,k-1, µ=1,⋅⋅⋅,m} such that

H = ∑ [from="κ=0",to="k-1"] ∑ [from="µ=1",to="m"] adF
κ(σκµGµ) .

Further, the functions {σκµ} can be choosen in the differential algebra generated by the βκµ and the
entries of F.

Proof: We prove this by induction on k.  For k=1, the result is trivial.  So assume it is proved for k.
Take now an expression

H = ∑ [from="κ=0",to="k"] ∑ [from="µ=1",to="m"]
βκµadF

κ(Gµ) . (4.18)

Repeated use of the derivation formula

[F,αG] = LF(α)G + α[F,G]

(where LF(α) is the Lie derivative grad(α).F) results for each µ=1,⋅⋅⋅,m in

adF
k(βκµGµ) = ∑ [from="κ=0",to="k-1"] ακµadF

κ(Gµ) + βκµadF
k(Gµ)

for suitable functions ακµ. Solving for the last term, and substituting in the right hand side of (4.18) there
results the equation

H = H1 + ∑ [from="µ=1",to="m"] adF
κ(βκµGµ) ,

where

H1 = ∑ [from="κ=0",to="k-1"]

∑ [from="µ=1",to="m"] (βκµ-ακµ)adF
κ(Gµ) .

By induction, H1, and hence also H, can be reduced to the desired form.n

It only remains to establish the ’uniform’ character of Λ. That is, we wish to find a matrix L of
functions of γ such that Λ(t) = L(γ(t)) for all signals γ(⋅) as in the theorem.  The block structure of L is as
that of Λ displayed in equation (4.4), and we denote by Lo, ⋅⋅⋅, Lk the corresponding submatrices of L. We
again define Lo := Φ (first block of coordinates of γ), seen now as a symbolic coordinate, and Lk≡0. By
induction on descending κ = k-1,⋅⋅⋅,1, we define the n×n matrix Lκ so that (4.6) holds along references, i.e.
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Lκ := fx(π,Q(ω))Lκ+1 - L’κ+1F
+ Sk-κ , (4.19)

where the Sκ are defined essentially as before: same equation as (4.2), but symbolically on coordinates,
and where L’κF is the n×n matrix whose (i,j)-th entry is

LF((Lκ)ij) ,

the Lie derivative by F of the (i,j)-th entry of Lκ. This completes the proof of the theorem.n

Finally, note that Λ-1 (needed in the computation of closed-loop control laws, see example later,) can
be also precomputed, since L-1 admits a simple expression W.T, T =

|0
|.

Ι |. ,
|.
|0

_______________
Nk. . . N1 |No

W = a block matrix with Φ-1 in the diagonal, and No = Ι, Nk = 0, and Nκ = -Lκ for other κ.
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5. A worked example.
Here we work out an example illustrating the Main Theorem.  For simplicity, and because of the length

of the paper, we shall only consider an (academic) example in dimension 1.  We shall reports on more
experimental results, for more realistic problems, in the future; see for instance [20].  The example to
consider has state space ℜ and control set also ℜ. The equations are

x
⋅
= 1 + u.sin 2x . (5.1)

We picked this example because it is almost as pathological as possible in dimension 1; note that the only
way to cancel the nonlinearity at (or near) x = 0, π, etc., is by using an infinite gain.  We shall design a
closed-loop controller that will regulate along all possible reference trajectories corresponding to step
inputs.

Since we are interested in constant inputs, we take r=1 and SΩ := ℜ with equations

ω
⋅
= 0

for the autonomous system Ω. Use coordinates (w,p) for pairs of states in SΩ×SΠ. The relevant vector
fields are then

g = g1 = ( ) , f = ( ) .0
sin 2p

0
1+wsin 2p

We then compute [f,g] and [f,[f,g]], and obtain the equation

(w+2)g + (1/2)[f,[f,g]] = ( ) .0
1

Note, incidentally, that the existence of such an equation shows that ND(Ω↓Π) is the whole state space
SΩ×SΠ of the input-generator + plant. (These, as well as all the computations to follow, were performed
using the Macsyma symbolic manipulation system.)  We now introduce the vector fields F and G = G1
from equations (4.11-4.13); these are, explicitely,

F(γ) = (w.sin 2p.Φ : 0 : 1+wsin 2p) , G := (0 : 0 : sin 2p) .

Note that the fundamental solution Φ satisfies the equation

Φ
⋅
= Φ.w.sin 2p . (5.2)

We now apply lemma 4.1, with (from above) k = 3 and

β01 = Φ(w+2), β11 = 0, β21 = Φ/2 .

We obtain the σ’s, and from these the ρ’s, which dropping the indexes that are always equal to 1 (n=1,
m=1,) are then:

ρ1 = Φ/2, ρ2 = Φ.w.sin 2p, (5.3)

ρ3 = Φ.(-4w2sin 4p + (3w2-2w)sin 2p + 2w + 2).

These were obtained from the formulas

ρ1 = β2, ρ2 = 2LFβ2 - β1,

ρ3 = β0 - LFβ1 + LF
2β2,

as in lemma (5.2).  Finally, the coordinate change matrix L has

L1 = Φ.cos psin p.(w.sin 2p - 1) ,
L2 = (Φ/2)sin 2p . (5.4)

The inverse of L is computed trivially from this.
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The composite system Ξ in Figure 2 is now described by the equations

z
⋅

1 = v , z
⋅

2 = z1, z
⋅

3 = z1 ,

x
⋅
= 1 + (ρ1z1+ρ2z2+ρ3z3)sin 2x ,

where the ρi are as in equation (5.3).  With the change of coordinates

L(γ(t)) ( ) = ( ) ,z
y

z
x−p

that is, with

y = (x - p - L2(γ)z2 - L1(γ)z3)/φ , (5.5)

one gets the equations

z
⋅

1 = v , z
⋅

2 = z1, z
⋅

3 = z1 ,

and

y
⋅

= −((((8Φsin 4p − 6Φsin 2p)w2 + (4Φsin 2p − 4Φ)w − 4Φ)z3
−2Φwz2sin 2p−Φz1−2w) sin (((2Φwcos psin 3p−2Φcos psin p)z3+Φsin 2pz2+2Φy+2p)/2)2

+((10Φsin 4p − 12Φsin 6p)w2 + 4Φsin 2p − 2Φ)z3
+6Φwz2cos psin 3p + Φz1sin 2p + 4Φwycos psin p + 2wsin 2p)/(2Φ).

A Taylor expansion of this last term with respect to (z1,z2,z3,y) gives indeed that

y
⋅
= z3 + α(γ,z1,z2,z3,y) ,

where α(γ(t),z1,z2,z3,y) is o(z1,z2,z3,y) for each t.

Now close the loop by assigning all poles at, for instance, -2.  This results in a feedback law in terms
of the (z,x) coordinates of the precompensator, v = KL-1(z:x-p), where K is the gain matrix

K = [k1,k2,k3,k4] = -[8,24,32,16]

that assigns poles at -2 for a system in control canonical form.  The resulting closed-loop controller is as
follows:

z
⋅

1 = a1(t)z1 + a2(t)z2 + a3(t)z3 + a4(t)e(t) ,

z
⋅

2 = z1 , z
⋅

3 = z2 ,

p
⋅
= 1 + w.sin 2p ,

Φ
⋅
= Φ.w.sin 2p ,

u = w + b1(t)z1 + b2(t)z2 + b3(t)z3 ,

where

a1 = k1, a2 = k2-(k4/2)sin 2p ,
a3 = k3 - k4(1 - w.sin 2p)sin pcos p, a4 = k4/Φ ,

and

b1 = Φ(t)/2, b2 = Φ(t).w(t).sin 2p(t),

b3 = Φ(t).(-4w2(t)sin 4p(t) + (3w2(t)-2w(t))sin 2p(t) + 2w(t) + 2).

Note that e(t) = x(t) - p(t), where x(t) is the measured state.  (With the alternative coordinates as in (5.5),
the state (z:y) is seen to indeed satisfy up to first order a linear constant differential equation with all
eigenvalues at -2.)
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The controller can be somewhat simplified by changing to coordinates z’ := Φz, so that Φ dissappears
completely. But the actual computational complexity is not decreased, since the equations for the
precompensator variables have now an extra term.

Now we simulate the behavior of the system for a typical constant input, say w ≡ 10 on the interval
[0,10]. The ensuing trajectory for the model plant, with p(0) = 0, results in p(10) = 33.53.  Thus there are
22 points in this trajectory where the term sin 2x multiplying the control vanishes.  Intuitively, the system
should be hard to control especially about these points.  Assume now that there is an error in the initial
state (or a disturbance occurs at time t=0+), and that the true initial state x(0) of the plant happens to be
x(0) = 0.1.  Then, after t = 10 seconds, the plant without our servo would be at state x = 34.05.  (Of
course, for this simple example, in dimension 1 and with a constant control, the ’wrong’ trajectory is just a
phase shift from the reference trajectory.)  If instead our regulator is used, the closed loop system is such
that the state x(10) is 33.54.  The enclosed graph (Figure 3) shows a comparison between the
unregulated error (solid line) and the error x(t)-p(t) for our closed-loop system (dotted line).
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6. Final remarks.
There is a need for much more theoretical analysis as well as experimentation before it will be clear

whether our precompensator design is useful in real problems.  We expect the method to be applied in
conjunction with open-loop command generators acting at a higher level of design.  These other methods
could involve, for instance, optimal control techniques.  If it is known, for example, that all controls are
relay ("bang-bang"), then one may design compensators for constant reference controls.  Otherwise one
may design on the basis of an assumption of piecewise polynomials of a certain degree, say 3.  The
relative performance when the control happens not to be in one such class is probably very hard to study
theoretically, and a large amount of simulation may be needed in each particular situation.

A note on the complexity of the compensator.  The dimension of the obtained compensators is clearly
huge: nk, where k is obtained from the Lie algebraic manipulations, and n is the dimension of the original
system. This number is at least n2, so it would seem that the method presented is impractical.  However,
it is important to realize that dimension of a system is most emphatically not a measure of complexity of
implementation. In the necessary numerical solutions of the corresponding systems of ode’s, the limiting
factor is more the amount of computation needed for updating each coordinate.  In the design given, all
coordinates zij of the precompensator evolve according to a simple integration, except only for the first
block of n coordinates. Thus the complexity is more like that of a system of dimension n.  Of course, the
design may be impractical for other reasons, but dimensionality per se doesn’t seem to be as serious an
issue as it would first appear.
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