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A LYAPUNOV-LIKE CHARACTERIZATION OF ASYMPTOTIC
CONTROLLABILITY*

EDUARDO D. SONTAGt

Abstract. It is shown that a control system in R" is asymptotically controllable to the origin if and
only if there exists a positive definite continuous functional of the states whose derivative can be made
negative by appropriate choices of controls.
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1. Introduction. Lyapunov techniques have long been used in studying control
problems for a system k(t)=f(x(t), u(t)): Controlling so as to diminish the value of
a suitable positive definite function is an obvious way of achieving stabilization, and
feedback laws can be analyzed through the use of such a function--see for instance
the books Barbashin [1970], Lefschetz [1965] and Letov [1961]. Sometimes one
considers Lyapunov functions in conjunction with other techniques, like the analysis
of sliding modes--see for instance Utkin [1977]; in these and other applications, the
natural Lyapunov functions are often nondifferentiable.

In this paper we deal with the relation between the property of asymptotic
controllability (every state can be driven, asymptotically, to a desired state "0", plus
a local condition) and the existence of a positive definite continuous function V whose
derivative can be made negative by appropriate choices of controls. If not only is the
system asymptotically controllable but in fact there is a (suitable smooth) feedback
law K(.) such that the closed loop system (t)=f(x(t),K(x(t))) is asymptotically
stable, then an inverse Lyapunov theorem can be applied to this closed loop system
in order to obtain a V as above. Inverse Lyapunov results for classical (no control)
systems have a long history themselves, with important contributions by Persidski,
Malkin, Massera and others; a good reference is Hahn [1978]. In general, however,
a continuous K fails to exist, even for very simple systems--see for instance the
discussion in Sontag and Sussmann [1980]mso such an argument cannot be applied
to conclude the existence of V.

The main result of this paper is that, for asymptotically controllable systems, a
V as above always exists. We allow relaxed ("chattering") controls when testing the
derivative of V. (Since relaxed directions belong to the convex hull of ordinary ones,
the latter suffice in the C case.) The proof will be based on a combination of some
basic optimal control concepts and classical Lyapunov techniques (in particular, those
of Zubov [1964]). For results somewhat related to this note, the reader may wish to
consult the references Tokumaru et al. [1969] (gives a sufficient Lyapunov-like
condition), Jacobson [1977] (gives a local necessary and sufficient criterion for a
special class of systems), and Vinter [1980] (gives a time-varying functional charac-
terizing nonreachability from a given point). Both the results and the techniques used
here, however, are different from those in these references.

2. Definitions and statement of results. The systems to be studied are given by
differential equations

(2.1) (t) f(x(t), u(t))
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ASYMPTOTIC CONTROLLABILITY 463

with states x(t) in X := R, and input values u(t) in a locally compact metric space
U for which the balls {uld(tx, u)<-r} are compact for each u in U (d =distance in U).
A special element "0" is distinguished in U, and the state x 0 of X is an equilibrium
point, i.e., f(0, 0)= 0. The map f is locally Lipschitz in (x, u). The set of (ordinary)
controls U is the set of measurable and locally essentially bounded functions u" R/ - U.
Here R/ denotes the set of nonnegative reals; sometimes (depending on the context)
R/ denotes positive reals. By abuse of notation, we shall use the same terminologies
for controls defined only on a finite interval; these may be extended arbitrarily outside
the interval of interest. Solutions of (2.1) are assumed to be unique and to exist locally
(in t) for all controls; suitable Carath6odory-type conditions insure this. (Note that
we do not wish to impose the (somewhat unrealistic) assumption that the solutions
are always defined for all _-> 0, i.e., that there are no finite escape times.)

Given the distinguished "zero" input value 0, let I/x[ := d(/x, 0) for /x in U.
The set Ur consists of all those /x with ]/x[-<r, and Ur is the set of all measurable
u:R+ Ur, seen as a subset of U. The set of generalized control values is the set
W W(U) of probability measures on U; the subset of those measures supported
n U is Wr. The set W may be topologized using the weak topology, and one introduces
then the space of relaxed controls W as the set of measurable functions w:R+ W.
For the topology on W see th,e references below; we shall only need to know the
continuous dependence factsmentioned later. The subspaces Wr correspond to the
relaxed controls w(t) which are in W a.e.; each of these subspaces is sequentially
compact andmidentifying in U with the Dirac measure concentrated at
contains (densely) the corresponding Ur. A bounded relaxed control w is one belonging
to some W; the infimum of the r for which w is in Wr is denoted by [[wl[. Note that,
for ordinary controls, [[u[[ becomes the essential supremum of the values [u(t)[, in R.
(The notation Ilx will be used also for the Euclidean norm on X, but this should cause
no confusion.) For details on relaxed controls, see Warga [1972], or the (very clear)
presentation in Gamkrelidze [1978]; the paper Arstein [1978] summarizes most of
the needed facts.

There is a natural definition of solution of (2.1) when relaxed (rather than ordinary)
controls are used; see the above references for details. The solution at time for the
initial condition x(0)= : and control w will be denoted by x(t; , w) or just by x(t)
if both : and w are clear from the context. For any given : and w there is an open
set Y :-I xN xM containing (0, , w) such that x(t; q, v) is well-defined for any
(t, r, v) in Y. Further, if this solution is known to be defined for 0 <-t <_-T, then the
map (t, rl, v)x(t; q, v) is continuous on [0, T]xN xM, for some open N,M.

We are now ready to introduce our definitions and state the main result.
DEFINITION 2.2. The system (2.1) is asymptotically (null-) controllable (a.c., for

short) if and only if the following properties hold:
(i) (global part) for each : in X there exists an (ordinary) control u such that

x(t)=x(t;, u) is defined for all t=>O and x(t) 0 as tco;
(ii) (local part) for each e > 0 there exists a 8 > 0 such that for any state with

I1’11< there is a u as in (i) such that also IIx(t)ll<_- for all t>=O;
(iii) (bounded controls) there exist positive r and k such that, if the in (ii)

satisfies also I1 11 < then the control u can be chosen with Ilu II--< k,
The above seems to be the obvious definition of a.c. if one is to model the usual

uniform asymptotic stability notion in the controlled case. (Or intuitively, if the given
system is to be seen as the open-loop part of some abstract closed-loop stable system.)
The requirement (iii) of a bound on magnitudes of inputs required for controlling
small states seems physically (and mathematically) reasonable. In fact, in order to
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464 EDUARDO D. $ONTAG

model "regulation with internal stability" one adds the requirement that u(t) 0 as
oe; see Sontag [1982]. Analogous results would hold in that case. Observe that

both of the (local) parts (ii) and (iii) would hold, for instance, if U= R’n, f is
differentiable at (0, 0) and the linearization of (2.1) at the origin is stabilizable in the
usual sense.

Given a function V:XR, a state , and a relaxed control w defined on an
interval containing 0, let

(2.3) I)w(C) := lim 1-[V(x(t. ,, w))- V()].
t-O

Consider the following four properties of such a function V"

(2.4a) V is continuous;

(2.4b) V(:)>0 for :>0, and V(0)=0 (V is positive definite);

(2.4c) the set {]V()<r} is bounded, for each r (V is proper);

(2.4d) f,or each in X there is a relaxed w with l)’w()< 0, and there are positive
numbers k and r/ such that w can be chosen with Ilwll < k whenever

The following is an easy consequence of the above"

(2.4e) for each e >0 there is a 0>0 such that V()<0 implies

In the next section we prove"

TI-IFORZM 2.5. The system (2.1) is asymptotically controllable i[ and only i[ there
exists a V satisfying properties (2.4a)-(2.4e).

The definition (2.3) of the (Dini) derivative along a trajectory is one immediate
generalization of that used in the standard (no control) case; see for example Rouche
et al. [1977]. (We could have used in in this definition a lim sup instead of a lim inf;
in that case Theorem 2.5 still holds: The sufficiency statement becomes weaker, while
the necessary part can be proved in exactly the same way.)

(3.1a)

(3.1b)

(3.c)

Let

(3.2)

3. Proof of Theorem 2.$. We first establish the easy part:

A. Sufficiency. Let V, k, r/ be as in (2.4), and let e >0. Take a 0 as in (2.4e)
such that V()< 0 implies that I111 < min {r/, e}. A state x will be called nicely reachable
from a given state " if and only if there exists an (ordinary) control u and a time
T >- 0 such that:

x =x(T;,u);

V(x(t; , u)) < 2V() for 0-<t =< T;
if V(’) < 0 then also Ilu < k,

a() := inf {V(x)lx nicely reachable from c}.
Either c (c)= 0 for all c or a (:): 0 for some .

Case I. a()= 0 for all . Pick any , and choose a 1 nicely reachable and with
V(1) < V(sC)/2. Iterate the construction starting with ’1. One obtains in this way a
sequence {’i} with V(i)0 as ioe (hence also i- 0) and such that i =x(ti; , w)
for an increasing sequence {t} and a fixed w (obtained by concatenation). Let
T := sup {ti}; then V(x(t))O (for x(t):= x(t;, w)) as t T. If T<oe, extend w by
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ASYMPTOTIC CONTROLLABILITY 465

w(t) := 0 for => T; in any case one concludes that x(t)O as oo, with all x(t) nicely
reachable from :. This gives the first part of the a.c. definition. Pick now a 3 > 0 such
that Ilxll < implies V(x)< 0/2. If I111 < eor the above 5, then all x (t)in the obtained
trajectory satisfy V(x(t)) < 2 V() < 0. It follows that IIx(t)[[ < e, as required in (ii) of
the a.c. definition. Finally, part (iii) is satisfied by construction, using the same k and
any rt’> 0 for which I111 < n’ implies V() < 0.

Case II. a(:)>0 for some :. We shall derive a contradiction. Let {x,} be a
sequence of nicely reachable states with V(x,)a := a(). All these x, belong to the
compact set

(3.3) {xlV(x) <= V(:)};
replacing {x,} by an appropriate subsequence we may assume that

(3.4) x, - ’, V(’) c <= V(sC).

By property (2.4d), there is then a sequence ti 0+ and a relaxed w with V(x (ti; G w)) <
V(r) c for each ti. Further, if V(sc) < O then also V()< O so one may pick such a
w with Ilwll<k. It follows from the continuity of V(x(t; , w)) on that there is an
such that (with := ti) also

(3.5) V(x(s;Gw))<V(C) for0-s-<t.

Thus for (w’, ") sufficiently close to (w, sr) it holds that

(3.6) V(x(s;(’, w’))<2V(:) for0<-s-<t.

Pick an ordinary control w’= u such that this holds and such that also

(3.7) V(x(t;Gu))<a.

If V(sc) < 0, require also that Ilull< k, (Recall that ordinary controls are dense in Wk.)
Let now z, :- x (s; x,, u). For large enough n, (3.4)- (3.6) give a z. nicely reachable

from sc and with V(zn)< a. This contradicts the minimality of a.

B. Some bounding functions. We now start proving that a.c. implies the existence
of a V as above. We shall need a sequence of basic lemmas. In order to simplify
notations, g(:i:) will mean limp_,+/- g(p), and g(0):= limp_,o/ g(p) for a function
defined on positive reals only. A fixed asymptotically controllable system is assumed
given; the numbers k and r/are as in the a.c. definition.

LEMMA 3.8. There exist a positive numberpo < 1 and maps r,
R+ andK X - U, where qb, tx and m are continuous, m is strictly decreasing, & is strictly
increasing and tx is nondecreasing, such that the following properties hold:

a) rn (-co) +oe, m (+oo) 0, m (0) 1;
b) p <- (p for all p, (0)=0;
c) r(p)=0 for O<=p_-<po;
d) Ix(p)= k for O<-p <-po, /x(+o)
e) for each j O, with x(t) := x(t; , K()):

(i) IlK ()11--< (1111),
(ii) IIx (t)ll--< (llll) for >-- O,
(iii) x(t)O as ,
(iv) for >-- r(llll),

Proof. Part 1. We shall first construct sequences of nonnegative numbers {ei},
{T} and {b}, in Z, such that: {e} is strictly increasing, e0 (resp. +oe) as i+-oo
(resp. +oo), and so that for each c for which I111< , there is an (ordinary) control u
satisfying Ilull < b, and IIx (t; , u)ll <+ for all =>0 and also I[x (t; , u)ll<e-i for _-> Tg.
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466 EDUARDO D. SONTAG

Let e0 := 1/2. By induction on Definition 2.2 one concludes the existence of a sequence
of numbers ei, i<-_-1, such that: for each : with Illjll<-_ei_ there is a control u with
Ilull--< k, IIx(t; , u)ll<ei and x(t)O as c; one may take the {eg} strictly decreasing
and approaching 0 as -c. Further, one may assume that e_ <-ft. Consider now
a fixed < 0 and take a : with I1:11--< eg. There is then an u as above and some T T()
such that IIx(T)ll<e-2 for the corresponding solution. By continuity of x(. ;., u) there
is an open neighborhood H() of such that, for each z in H(lj),llz(t)ll<ei+x for
0-_<t_-< T and IIz(T)ll<ei_2, where z(t) := x(t; z, u). By construction of e-2, there is
for each such z (T) a control v with Ilvll < k (not necessarily the same u) such that

(3.9) [Ix(t; z(T),  )11 < _->0.

Concatenating the restriction of u to [0, T] with this v, one concludes that for each
z in H(c) there is some (ordinary) control with the resulting trajectory having
Ilz(t)ll<,-1 for all t>= T() while keeping [Iz(t)ll<,/a for all t. (Note that the input
to be applied in order to achieve this depends on the particular z; for the original u
there may be no neighborhood on which this controllability is achieved.) The H()
cover the ball of radius e; pick a finite subcover. Let T := largest of the T() for this
subcover. With all b := k the sequences {eg}, {be}, {Ti} satisfy the requirements for < 0.

We now define the sequences for -> 0, by induction on increasing i. Assume that
eg, b_ and Tg_l have been already defined (recall for the first step that e0=1/2). By
property (i) in the definition of a.c., it follows that for each : with I1 :11--< , there exists
some u and some T= T(:) with Ilx(T)ll<e,-=. By induction, it is possible to control
x(T) in such a way as to stay in the ball of radius e-l. These further controls can be
chosen with Ilvll<b,-1. An argument like the one in the previous paragraph gives a
fixed T such that each state as above is controlled to by appropriate
choice of controls. Further, all these controls are obtained by concatenating one of a
finite number of controls u. (finite subcover argument) with controls with
Let be be larger than b_ and all llu;ll, To complete the induction step we need to
define e+. Consider the set

(3.10) {x(t; :, u)l]l:ll_-< /, Ilull<-bi, O<-t<-_ Ti}.

Since this set is compact, it is contained in the interior of some ball of radius ei/a.

For simplicity of future arguments, we shall assume that the sum of the Ti, < 0, is
infinite; larger Ti’s can always be chosen in the above constructions. This completes
Part 1.

Part 2. Let b:R+-> R be any continuous strictly increasing function such that
(0)= 0 and, for all

(3.11) da(p) :> ei+l for p in [ei-1, eli.
Let po := e_. Take Ix’R+--> R to be any continuous nondecreasing function having
(p) bo for 0 _-< p _-< po, tx (+c) +, and such that, for all i,

(3.12) tz(p)>=b forp in (e_,e].

Denote to := 0 and t := T_ +.. + T_ for > 0. Let m be as in a) and satisfying, for
i=>0,

(3.13) m(t) > e_ for in Its, t+x].

Let " be the step function with value 0 for p _-< Po and for _-> 0,

(3.14) ’(p) To +" + T for p in (ei-a, ei].
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ASYMPTOTIC CONTROLLABILITY 467

The open-loop "choice" function K is introduced merely for notational convenience;
no smoothness of any kind is required. Given a state , say with ei-1 < I111 <- ,, find a
control ul sending to =x(Ti; sc, u) with Ilull<b, I111< e-, and all intermediate
states with IIx(t)[l<,+. Repeat with , finding a u2, so2. Iterating this construction,
let K (sc) be the concatenation of all the uj thus obtained. The corresponding trajectory
satisfies x(t)O as t. By construction, Ilg(sc)ll<bi, which is less than (llscll) by
(3.12). Also, IIx(t)ll < +1 for all t_->0, and by (3.11) also

We now need only establish property (iv). Assume first that I111 < , with i=-1.
Then r(llll) 0, and the above construction insures that IIx (t)ll < e_; when is in [tj, ti+].
By (3.13), property (iv) holds. If i<-1, the trajectory has Ilx(t)ll<e- when is in
[ti-Li, ti+x-Li], where

(3.15) Li := T_I +’ + T/I,

for any f>--i-l, and Ilx(t)ll</l for all t->0. If is in [tj, ti+l], f<-i-1, then
IIx (t)ll < e- by the latter fact; if i => -i 1 then => tj > t. L, gives again that [Ix (t)ll < e-.
Again by (3.13), property (iv) of (3.8c) holds. There remains the case i->0. In that
case, after time

(3.16) T T / T_x /... / To (1111)

a state x (t) with [[x (t)ll < e_ is reached, and after that the trajectory has states bounded
by m (t- T) (by the case -1).

LEMMA 3.17. (The notations of the previous lemma still hoM). There exist con-
tinuous strictly increasing functions N, , u: R+ R+, with N(O) O, N(+) +o, such,

that the following properties hold. For any state and for any relaxed cantrol w, let

(3.18) R(, w):= [ N([[x(t; , w)ll) dt +max {[[wl[-k, 0}
J0

if the solution is defined for all >- 0, and R (, w) :=
(a) R (, K()) <
(b) if [[[l_-<po then R (,
(c) if R(, w)<R(,K()) for some w, then [Ix(t; , w)[[_-<O([[[[) for all t>-O and

Ilwll_-< (1111);
(d) for each a > 0 there is a 0 > 0 such that ifR (, w) <
(e) for each > 0 there is a > 0 such that I111> implies that R (, w)> t3 for

Proof. Let n := m-l" R/ R be the inverse function of m. Define the function

(3.19) NI(p) := p exp [-n (p)].

Both N1 and exp[-n(.)] are strictly increasing continuous functions, NI(0)=0,
NI(+(x3)-

For each triple of positive numbers (a, b, c), choose the quantity "y(a, b, c)> 0 in
such a way that the following property holds" if w is any control with I[w[I--< a, and if
:1, 2 are any states with

(3.20) 2 x(T; 1, w)

for some T > 0 and the trajectory having

(3.21) b IIx (t; 1, W)II c for 0 -< T,
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468 EDUARDO D. SONTAG

then

(3.22)
T

fo N(llx(t)ll) dt >= y(a, b,  =11.

Such a quantity always exists, because the integrand is bounded below by Nl(b) (so
that the left side is at least T. Nl(b)), while is bounded by TB, where B is
a bound on the values f(x, t) for Ilxll-< c and Itzl=< a.

We shall define inductively a nondecreasing sequence of maps Nj, ]-> 1, starting
with (3.19), and will then let (pointwise)

(3.23) N := lim Nj.

This limit will be finite because the following property will hold by construction for
each j"

(3.24) p -<(f) implies N.(p) =N./l(p) (=N(p)).

(Note that (j) +m as/" c.) Further, all the functions N. (hence N itself) will be
continuous (or even C if desired). Assume then that Ni has been defined for all -</’,
in such a way that (3.24) holds for 1, ., f- 1. Introduce the quantities

(3.25) r. := N.( (f))r(j) + & (j),

(3.26) L.(, w):= J0 N/(l[x(t; :’ w)l[)dt

with L.(:, w) := + if there is a finite escape time.
Take now any with I1:11 <- J. When >- r(j), it follows from Lemma 3.8e(iv) that

(3.27) Ilx(t; ,g())ll<m(t-z(llll))<-_m(t--(i))
and hence also ]lx(t)ll<m(O)-- 1 <(1) for these t. Thus,

(3.28) / N,.(l[x(t)ll)dt I Na(llx(t)l[) dt
(i) J,r (j)

(by (3.24)), and by (3.27) this is less than

(3.29) (1) | exp [-n(m(t-’(])))] dr,
(i)

which equals (1). Since IIx(t; :, g(:))ll <&(]) for all _->0 (again from Lemma 3.8e),
one has the bound

(3.30) L(, g()) <= r.
Define also

(3.31) 3’; := v(r+t(j)+k, (])+ l, (])+2).

Let g. be any continuous nonnegative function from R/ to R which vanishes outside
the interval [ (]), (]) + 3] and such that

r. + tz.(3.32) g(p) :=

for p in the interval [ (/’) + 1, (/’) + 2]. The induction step is provided by the definition

(3.33) Ni+(p) := (1 +gi(p))N.(p).
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ASYMPTOTIC CONTROLLABILITY 469

Note that (3.24) indeed holds. This completes the construction of N.
Finally, pick any 0 and u continuous, increasing, and such that

(3.34) u(p) > r. + (f) + k,

and

(3.35) O(p) >(/’) +2,

whenever p is in [/"- 1, f].
We now prove that (a) to (e) hold. Define L as in (3.26) but using N in the

integrand. Pick a 5 with I1:11 < ]. The trajectory corresponding to the control K (:) has
IIx(t)ll<(f) for t_>0, so, by (3.24), L(,K())=Li((,K())<ri. Thus

(3.36) R (, K()) <- r. +/x (f),

and in particular (a) holds. Assume that f was chosen so that [lll >f- 1. Suppose now
that w is a control for which R (, w) <R (:, K ()). By (3.36),

(3.37) Ilwll r; + (f)+ k < (llll),

as wanted in (c). Now assume that for the corresponding trajectory there would be
some with IIx(t)ll > (1111)> (f)/ 2. There are then times tl < t2 such that IIx(t)ll

(]) + 1, Ilx (t2)[I (]) + 2 and

(3.38) (i) / 1 II/(t)[[ (f) + 2

for t t2. Hence

R (, w) e N([[x(t)[I) dt e N+e(llx (t)ll) dt
(3.39)

(1 +g((f)+ 1)) Nl([[x(t)ll)dtr+(f)R(,g()).

This contradicts the choice of and w. So (c) holds. To prove (b), let I111 No. Then
(ll[I) 0 and IlK ()ll k, so, for w K(),

(3.40) R(,g(e))=o Nl(llx(t)ll)dt([ll[) o e-’dt=(llell).

We now establish (d) and (e). Given a > 0 choose any integer ] > 0 so that a + k < (]).
If R(, w)<a then Ilwll<.(f). We claim that I111<0 := ()+2. Otherwise, IlVlle
(])+ 2 implies that there exist t <t2 with IIx(tl)ll ()+ 2. IIx(tz)ll ()+ 1. and all

II2 (t)ll bounded by these values for tl N N t2. By an argument similar to the one used
above, R (, w) can be proved to be larger than ri + (]) > a, a contradiction. Thus (d)
holds. Assume now that I111>. and let y’ := y(k + 1, a/2, a). Let w be given. If
Ilwll > k + 1 then R (, w) > 1; otherwise R ($, w) > 87’/2. With

(3.41) := min k + 1
’2/’

(e) is also established.

C. The function V.

(3.42) V(:) := inf {R (:, w)lw relaxed control}.
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470 EDUARDO D. SONTAG

Note that V(0)= 0, so by (3.18b) the function V is continuous at zero; V is always
finite by (3.18a). By (3.18d), the sets {lV(:)<c} are always bounded. By (3.18e),
V() > 0 for # 0.

LEMMA 3.43. Let (n, wn)(, w) as n oo, and assume that all R(n, wn) and
R (, w are finite. Then R (, w) <- lim R (n, wn).

Proof. Let xn(t):= x(t; n, wn) and x(t):= x(t; , w). ThenN(llxn(t)ll) converges to
N(llx (t)ll) for each t. By Fatou’s lemma,

(3.44) J0 N(llx(t)ll)dt-<lim Jo N(llx(t)ll)dt.

If the measures w(t) are all supported in some Ur, for some subsequence {w.}, then
aso Ilwll--< r. It follows that

(3.45) Ilwll =< lirn IIw.ll.
Thus also

(3.46) max (llwll-k, 0)=<lim (max (llw.ll-k, 0),

and the conclusion follows from (3.44) and (3.46) and the elementary fact that always
lim an + li___m_m b, _-< lim (an + b,).

LEMMA 3.47. For each there is a w* with R (, w*)= V().
Proof. Let {R (, w,)} be a minimizing sequence. By (3.18d) we may assume that

all [[wnll <-- (1111) =: r and

(3.48) lix, (t)ll-<- 0 (l[ll) for -> o.
By sequential compactness of Wr, (a subsequence of) {wn} converges to a control w*
in W. The solution x(t):= x(t; , w*) is defined for all t, because (3.48) implies that
IIx(t)ll is bounded independently of t. By (3.43),

(3.49) R(sc, w*)-<lim R(, wn) V(),

so V(:)= R(:, w*), as wanted.
LEMMA 3.50. V is lower semicontinuous.

Proof. Let {n} be a sequence converging to :, and write V(’,)=R(:n, wn). For
a suitable subsequence one may assume that wn w, for an appropriate w. (All
are bounded by (1111)/ , some 8.) Thus

(3.51) V()<-R(, w)<=lim R(n, wn) =lim V(:).

LEMMA 3.52. V is continuous.

Proof. We only need to establish upper semicontinuity. Pick e >0. Choose a
positive 8 <p0 so that

(3.53) p <8 implies &(p) <.
Pick any state , and let R (, w)= V(:). Since x(t) := x(t; , w) necessarily converges
to zero, there is some T with IIx (T)il < . There is also a neighborhood H of such
that, for each z in H, and for the above w, T,

T T

(3.54) N(llz(t)ll) dt < N(llx(t)ll) dt +-
for the corresponding solution with z(0)= z, and such that also IIz(T)ll, By (3,53)
and (3.18b) (continuity at 0), V(z)< V()+e. This proves upper semicontinuity.

D
ow

nl
oa

de
d 

10
/0

5/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ASYMPTOTIC CONTROLLABILITY 471

We are only left with establishing (2.4d). Let sc be any state, V()=R(sc, w).
Take any z x(t) in the trajectory, and let w’ be the translation of w by (-t), so in
particular IIw’ll--< Ilwll. It follows that

(3.55)

So

(3.56)

V(z) -< R (z, w ’) -< It N([Ix (s)ll) as + max (llw

lim I[V(z)-V()]< lim I( Io’ ),-,o+ ? ,-,o+ ? N(llx (s)ll) ds -N(IIII) < 0,

Further, Ilwll is bounded by (1111), This completes the proof of the theorem.
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