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Experimental data show that biological synapses behave quite differently
from the symbolic synapses in all common artificial neural network mod-
els. Biological synapses are dynamic; their “weight” changes on a short
timescale by several hundred percent in dependence of the past input
to the synapse. In this article we address the question how this inherent
synaptic dynamics (which should not be confused with long term learn-
ing) affects the computational power of a neural network. In particular,
we analyze computations on temporal and spatiotemporal patterns, and
we give a complete mathematical characterization of all filters that can be
approximated by feedforward neural networks with dynamic synapses.
It turns out that even with just a single hidden layer, such networks can
approximate a very rich class of nonlinear filters: all filters that can be
characterized by Volterra series. This result is robust with regard to var-
ious changes in the model for synaptic dynamics. Our characterization
result provides for all nonlinear filters that are approximable by Volterra
series a new complexity hierarchy related to the cost of implementing
such filters in neural systems.

1 Introduction

Synapses in common artificial neural network models are static: the value
wi of a synaptic weight is assumed to change only during “learning.” In
contrast to that, the “weight” wi(t) of a biological synapse at time t is known
to be strongly dependent on the inputs xi(t−τ) that this synapse has received
from the presynaptic neuron i at previous time steps t−τ . Varela et al. (1997)
have shown that a model of the form

wi(t) = wi ·D(t) · (1+ F(t)) (1.1)

with a constant wi, a depression term D(t) with values in (0, 1], and a facil-
itation term F(t) ≥ 0 can be fitted remarkably well to experimental data for
synaptic dynamics. The facilitation term F(t) is usually modeled as a linear
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filter with exponential decay: If xi(t − τ) is the output of the presynaptic
neuron (typically modeled by a sum of δ-functions), then the current value
of this facilitation term is of the form

F(t) = ρ

∫ ∞
0

xi(t− τ) · e−τ/γ dτ (1.2)

for certain parameters ρ, γ > 0 that vary from synapse to synapse. A few
other models have been proposed for synaptic dynamics (see e.g. Dobrunz
& Stevens, 1997; Murthy, Sejnowski, & Stevens, 1997; Tsodyks, Pawelzik, &
Markram, 1998; Koch, 1999; Maass & Zador, 1998, 1999) that are all quite
similar. Closely related models had already been proposed and investigated
in Grossberg (1969, 1972, 1984); Francis, Grossberg, & Mingolla, 1994). Our
analysis in this article is primarily based on the model of Varela et al. (1997).
However we will prove that our results also hold for the somewhat more
complex model for synaptic dynamics in a mean-field context of Tsodyks et
al. (1998).

We show that such inherent synaptic dynamics empower neural net-
works with a remarkable capability for carrying out computations on tem-
poral patterns (i.e., time series) and spatiotemporal patterns. This compu-
tational mode, where inputs and outputs consist of temporal patterns or
spatiotemporal patterns—rather than static vectors of numbers—appears
to provide a more adequate framework for analyzing computations in bio-
logical neural systems. Furthermore their capability for processing tempo-
ral and spatiotemporal patterns in a very efficient manner may be linked to
their superior capabilities for real-time processing of sensory input; hence,
our analysis may provide new ideas for designing artificial neural systems
with similar capabilities.

We consider not just computations of neural systems with a single tempo-
ral pattern as input, but also characterize their computational power for the
case where several different temporal patterns u1(t), . . . ,un(t) are presented
in parallel as input to the neural system. Hence we also provide a complete
characterization of the computational power of feedforward neural systems
for the case where salient information is encoded in temporal correlations
of firing activity in different pools of neurons (represented by correlations
among the corresponding continuous functions u1(t), . . . ,un(t)). Therefore,
various informal suggestions for computational uses of such code can be
placed on a rigorous mathematical foundation. It is easy to see that a large
variety of computational operations that respond in a particular manner
to correlations in temporal input patterns define time-invariant filters with
fading memory; hence they can in principle be implemented on each of the
various kinds of dynamic networks considered in this article.

Previous standard models for computations on temporal patterns in ar-
tificial neural networks are time-delay neural networks (where temporal
structure is transformed into spatial structure) and recurrent neural net-
works, both being based on standard “static” synapses (Hertz, Krogh, &
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Palmer, 1991). Such transformation makes it impossible to let “time repre-
sent itself” (Mead, 1989) in subsequent computations, which tends to result
in a loss of computational efficiency. The results of this article suggest that
feedforward neural networks with simple dynamic synapses provide an
attractive alternative.

Various questions regarding artificial neural networks with more general
recurrent structure, in which the time-series character of the data plays a
central role, were answered, within the framework of computational learn-
ing theory, in the papers (Dasgupta & Sontag, 1996—studied hard-threshold
filters with a discrete timescale; Koiran & Sontag, 1998) (discrete-time recur-
rent networks), and (Sontag, 1998—continuous-time recurrent networks).
Sontag (1997) summarizes some of the approximation capabilities and other
properties of these classes of recurrent networks.

In section 2, we introduce the formal notion of a dynamic network,
which combines biologically realistic synaptic dynamics according to Varela
et al. (1997) with standard sigmoidal neurons (modeling firing activity
in a population of neurons), and we review some basic concepts regard-
ing filters. In section 3 we characterize the computational power of feed-
forward dynamic networks for computations on temporal patterns (i.e.,
functions of time), and we show that our result can be extended to the
model of Tsodyks et al. (1998) for synaptic dynamics. The formal proofs
of the characterization results in this article rely on standard techniques
from mathematical analysis. In section 4 we extend our investigation to
computations on spatiotemporal patterns. Section 5 discusses some conclu-
sions.

2 Basic Concepts

In contrast to the static output of gates in feedforward artificial neural
networks the output of biological neurons consists of action potentials
(“spikes”)—stereotyped events that mark certain points in time. These spikes
are transmitted by synapses to other neurons, where they cause changes in
the membrane potential that affect the times when these other neurons fire
and thereby emit a spike. We will focus in this article on the implications of
one type of temporal dynamics provided by the components of such neural
computations: the inherent temporal dynamics of synapses.

The empirical data of Varela et al. (1997) describe the amplitudes of exci-
tatory postsynaptic currents (EPSCs) in a neuron in response to a spike train
from a presynaptic neuron. These two neurons are likely to be connected
by multiple synapses, and the resulting EPSC amplitude can be understood
as a population response of these multiple synapses. Therefore it is justi-
fied to employ a deterministic model for synaptic dynamics in spite of the
stochastic nature of synaptic transmission at a single release sit (Dobrunz
& Stevens, 1997). The EPSC amplitude in response to a spike is modeled in
Varela et al. (1997) by terms of the form w·(1+F) and w·D ·(1+F), whereF
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is a linear filter with impulse response ρ · e−τ/γ modeling facilitation andD
is some nonlinear filter modeling depression at synapses. In some versions
of the model considered in Varela et al. (1997) this filterD consists of several
depression terms. However, it only assumes values > 0 and is always time
invariant and has fading memory.

We analyze the impact of this synaptic dynamics in the context of com-
mon models for computations in populations of neurons where one can
ignore the stochastic aspects of computation in individual neurons in favor
of the deterministic response of pools of neurons that receive similar input
(“population coding” or “space rate coding”; see Georgopoulos, Schwartz,
& Ketner, 1986; Abbott, 1994; Gerstner, 1999). More precisely, our subsequent
neural network model is based on a mean-field analysis of networks of bi-
ological neurons, where pools P of neurons serve as computational units,
whose time-varying firing activity (measured as the number of neurons in
P that fire during a short time interval [t, t + 1]) is represented by a con-
tinuous bounded function y(t). In case pool P receives inputs from m other
pools of neurons P1, . . . ,Pm, we assume that y(t) = σ(∑m

i=1 wi(t)xi(t)+w0),
where xi(t) represents the time-varying firing activity in pool Pi and wi(t)
represents the time-varying average “weight” of the synapses from neurons
in pool Pi to neurons in pool P.1 In the context of neural computation with
population coding considered in this article, we have to expand the model
of Varela et al. (1997) to populations of synapses that connect two pools
of neurons, where presynaptic activity is described not by spike trains but
by continuous functions xi(t) ranging over some bounded interval [B0,B1]
with 0 < B0 < B1. Therefore, we generalize their model for the dynamics of
synapses from a nonlinear filter applied to a sequence of δ-functions (i.e., to
a spike train) to a corresponding nonlinear filter applied to a continuous in-
put function xi(t).2 Thus if xi(t) is a continuous function describing the firing

1 The function σ : R→ R is some activation function, for example, σ(x) = 1/(1+ e−x).
For the following, it suffices to assume that σ is continuous and not a polynomial. In
sections 3.2 and 3.3 we have to assume in addition that σ assumes nonnegative values
only. We refer to Maass and Natschläger (in press) for theoretical arguments and computer
simulations that support the use of a sigmoidal activation function in this context.

2 So far no empirical data are available for the temporal dynamics of a population of
synapses (that connects two pools of neurons in a feedforward direction) in dependence
of the pool activity of the presynaptic pool of neurons. It is not completely unproblematic
to assume that synaptic dynamics can be modeled on the level of pool activity in the same
way as for spiking neurons, although this is commonly done. The exact formula for the
firing activity y(t) in the postsynaptic pool P of neurons requires multiplying for each
presynaptic pool Pi of neurons the product of the vector of spike activity of individual
neurons νi,k in pool Pi with the matrix of current synaptic coupling strengths wi,k,j(t) for
neurons νj in pool P. The resulting firing activity y(t) of pool P is the average of the current
firing activities of neurons νj in pool P. In our mean-field model, we assume that this
average over j can be expressed in terms of products of the average wi(t) of the synaptic
weights wi,k,j(t) over j and k with the average firing activity xi(t) in the presynaptic pool
Pi. In particular this mean-field model ignores that the value of wi,k,j(t) will in general



Neural Systems as Nonlinear Filters 1747

activity in the ith presynaptic pool Pi of neurons, we model the size of the
resulting synaptic input to a subsequent pool P of neurons by terms of the
form wi(t)·xi(t)with wi(t) := wi·(1+Fxi(t))or wi(t) := wi·Dxi(t)·(1+Fxi(t)),
where the filtersF andD are defined as in Varela et al. (1997). The first equa-
tion that models facilitation gives rise to the definition of the class DN of
dynamic networks in definition 1, and the second equation, which models
the more common co-occurrence of facilitation and depression, gives rise to
the definition of the class DN∗.

Definition 1. We define the class DN of dynamic networks (see Figure 1) as
the class of arbitrary feedforward networks consisting of sigmoidal gates
that map input functions x1(t), . . . , xm(t) to a function

y(t) = σ
(

m∑
i=1

wi(t)xi(t)+ w0

)
,

with

wi(t) = wi ·
(

1+ ρ
∫ ∞

0
xi(t− τ)e−τ/γ dτ

)
for parameters wi ∈ R and ρ, γ > 0 . σ is some “activation function” from
R into R , for example, the logistic sigmoid function defined by σ(x) =
1/(1+ e−x). We will assume in the following only that σ is continuous and
not a polynomial.3

The slightly different class DN∗ is defined in the same way, except that
wi(t) is of the form

wi(t) = wi ·Dxi(t) · (1+ ρ
∫ ∞

0
xi(t− τ)e−τ/γ dτ),

where D is some arbitrary given time invariant fading memory filter4 with
values Dxi(t) ∈ (0, 1].5

depend on the specific firing history of the specific presynaptic neuron νi,k.
We refer to Tsodyks et al. (1998) for a detailed mathematical analysis of this problem.

It is shown in that article through computer simulations and theoretical arguments that
for the slightly different model for synaptic dynamics considered there, the error resulting
from generalizing the model from presynaptic individual neurons to presynaptic pools is
benign. We will discuss the model from Tsodyks et al. (1998) in sections 3.2 and 3.3, and
we will show in theorems 2 and 3 that our results can be extended to their model.

3 According to Leshno, Lin, Pinkus, & Schocken (1993) the subsequent theorems would
hold under even weaker conditions on σ .

4 See the remainder of this section for a review of these notions.
5 This filter D models synaptic depression, and can, for example, be defined as in
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Figure 1: A dynamic network with one hidden layer consisting of two hidden
neurons G1 and G2. The synapse from the ith input to G1 computes the filter
ui(·) 7→ wi(·)·ui(·), the synapse from the ith input to G2 computes the filter xi(·) 7→
w̃i(·) · ui(·). The output of the network is of the form z(t) = α1 · σ(

∑n
i=1 wi(t) ·

ui(t) + w0) + α2 · σ(
∑n

i=1 w̃i(t) · ui(t) + w̃0) + α0 with α0, α1, α2 ∈ R . Thus the
network computes a filter that maps the input functions u1(·), . . . ,un(·) onto the
output function z(·).

Thus dynamic networks in DN or DN∗ are simply feedforward neu-
ral networks consisting of sigmoidal neurons, where static weights wi are
replaced by biologically realistic history-dependent functions wi(t). The
input to a dynamic network consists of an arbitrary vector of functions
u1(·), . . . ,un(·). The output of a dynamic network is defined as a weighted
sum

z(t) =
k∑

i=1

αiyi(t)+ α0

of the time-varying outputs y1(t), . . . , yk(t) of certain sigmoidal neurons in
the network, where the “weights” α0, . . . , αk can be assumed to be static.
Thus a dynamic network with n inputs maps n input functions u1(·), . . . ,
un(·) onto some output function z(·). 6

Varela et al. (1997). Our subsequent results are independent of the specific definition ofD.
6 In principle one is also interested in a more general type of operators that map vectors

u of real-valued functions on vectors y of m real-valued functions, where m is larger than
1. However, in order to answer the questions that are addressed in this article for the
case m > 1, it suffices to focus on the case m = 1. The reason is that operators that output
vectors of m real-valued functions can be viewed as vectors of m operators that output one
real-valued function each. In this way, our results for the case m = 1 will imply a complete
characterization of all operators that can be approximated by a more generalized type of

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976600300015123&iName=master.img-000.png&w=272&h=142
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A somewhat related network model has been investigated in Back and
Tsoi (1991). They exhibited a learning algorithm for this model, but no
characterization of the computational power of such networks was given
there.

Temporal patterns are modeled in mathematics as functions of time.
Hence networks that operate on temporal patterns map functions of time
onto functions of time. We will refer to such maps from functions to func-
tions (or from vectors of functions to functions) as filters (in mathematics,
they are usually referred to as operators). We will reserve the letters F ,H,S
for filters, and we write Fu for the function resulting from an application
of the filter F to a vector u of functions. Notice that when we write Fu(t),
we mean (Fu)(t) (that is, the function Fu evaluated at time t). We write
C(A,B) for the class of all continuous functions f : A → B. We will con-
sider suitable subclasses U ⊆ C(A,B) for A ⊆ Rk and B ⊆ R, and study
filters that map Un into RR (where RR is the class of all functions from R
intoR), that is, filters that map n functions u(·), . . . ,un(·) onto another func-
tion z(·). In this section and in section 3, we will focus on the case k = 1,
where the input functions u1(·), . . . ,un(·) are functions of a single variable,
which we will interpret as time. The case k > 1 will be considered in sec-
tion 4.

A trivial special case of a filter is the shifting filter St0 with St0 u(t) =
u(t− t0). An arbitrary filter F : Un → RR is called time invariant if a shift of
the input functions by a constant t0 causes a shift of the output function by
the same constant t0, that is, if for any t0 ∈ R and any u = 〈u1, . . . ,un〉 ∈ Un,
one has that Fut0

(t) = Fu(t − t0) where ut0
= 〈St0 u1, . . . ,St0 un〉. All filters

considered in this article will be time invariant. Note that if U is closed
under St0 for all t0 ∈ R, then a time-invariant filter F : Un → RR is fully
characterized by the values Fu(0) for u ∈ Un.

Another essential property of filters considered in this article is fading
memory. If a filter F has fading memory, then the value of Fv(0) can be
approximated arbitrarily closely by the value of Fu(0) for functions u that
approximate the functions v for sufficiently long bounded intervals [−T, 0].
The formal definition is as follows:

Definition 2. We say that a filter F : Un → RR has fading memory if for
every v = 〈v1, . . . , vn〉 ∈ Un and every ε > 0 there exist δ > 0 and T > 0
so that |Fv(0)− Fu(0)| < ε for all u = 〈u1, . . . ,un〉 ∈ Un with the property
that ‖v(t)− u(t)‖ < δ for all t ∈ [−T, 0].7

dynamic networks that output m real-valued functions instead of just one.
7 We will reserve ‖ · ‖ for the max-norm on Rn; that is, for x = 〈x1, . . . , xn〉 ∈ Rn we

write ‖x‖ for max{|xi|: i = 1, . . . ,n}.
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Remark 1. Interesting examples of linear and nonlinear filtersF : U→ RR
can be generated with the help of representations of the form

Fu(t) =
∫ ∞

0
. . .

∫ ∞
0

u(t− τ1) · . . . · u(t− τk)h(τ1, . . . , τk) dτ1 . . . dτk

for measurable and essentially bounded functions u: R → R. We will al-
ways assume in this article that h ∈ L1. One refers to such an integral as a
Volterra term of order k. Note that for k = 1, it yields the usual representation
for a linear time-invariant filter. The class of filters that can be represented
by Volterra series—by finite or infinite sums of Volterra terms of arbitrary
order—has been investigated for quite some time in neurobiology and en-
gineering (see Palm & Poggio, 1977; Palm, 1978; Marmarelis & Marmarelis,
1978; Schetzen, 1980; Poggio & Reichardt, 1980; Rugh, 1981; Rieke, Warland,
Bialek, & deRuyter van Steveninck, 1997).

It is obvious that any filterF that can be represented by a sum of finitely
many Volterra terms of any order (i.e., by a Volterra polynomial or finite
Volterra series) is time invariant and has fading memory. This holds for any
class U of uniformly bounded input functions u. According to the subse-
quent lemma 1, both of these properties are inherited by filters F that can
be approximated by some arbitrary infinite sequence of such filters. This
implies that any filter that can be approximated by finite or infinite Volterra
series (which converge in the sense used here) is time invariant and has fad-
ing memory (over any class U of uniformly bounded functions u). Boyd and
Chua (1985) have shown that under some additional assumptions about U
(for example, the assumptions in theorem 1 below), the converse also holds:
any time-invariant filter F : U→ RR with fading memory can be approxi-
mated arbitrarily closely by Volterra polynomials.

Remark 2.

1. It is easy to see that for classes U of functions that are uniformly
bounded (i.e., U ⊆ C(A,B) for some bounded set B ⊆ R) our definition
of fading memory agrees with that considered in Boyd and Chua
(1985). All classes U considered in this article are uniformly bounded.

2. It is obvious that any time-invariant filter F that has fading memory
is causal; u(t) = v(t) for all t ≤ t0 implies that Fu(t0) = Fv(t0) for all
t0 ∈ R.

3. All dynamic synapses considered in this article are modeled as filters
that map an input function xi(·) onto an output function wi(·) · xi(·).
Furthermore, all of these filters turn out to be time invariant with
fading memory. This has the consequence that all models for dynamic
networks considered in this article compute time-invariant filters with
fading memory.



Neural Systems as Nonlinear Filters 1751

4. If one considers recurrent versions of such networks, then in the ab-
sence of noise, such networks can theoretically also compute filters
without fading memory. Consider, for example, some filter F with
Fu(0) = 0 if u(t) = 0 for all t ≤ 0 and Fu(0) = 1 if there exists some
t0 ≤ 0 so that u(t0) ≥ 1. It is obvious that such a filter does not have
fading memory. But a network where some “self-exciting” recurrent
subcircuit is turned on (and stays on permanently) whenever the in-
put u reaches a value ≥ 1 for some t0 ∈ R can compute such a filter.
Alternatively, a feedforward network can also compute a non-fading-
memory filter if any of its components (synapses or neurons) have
some permanent memory feature.

5. A special case of time-invariant filters F with fading memory are
those defined by Fu(0) = f (u(0)) for arbitrary continuous functions
f : Rn → R. Therefore the universal approximation theorem for fil-
ters that follows from our subsequent theorem 1 contains as a special
case the familiar universal approximation theorem for functions from
Hornik, Stinchcombe, and White (1989).

6. It is obvious that a filter F on Un has fading memory if and only if
the functional F̃ : Un → R defined by F̃u := Fu(0) is continuous on
Un with regard to the topology T generated by the neighborhoods
{u ∈ Un: ‖v(t)− u(t)‖ < δ for all t ∈ [−T, 0]} for arbitrary v ∈ Un and
δ,T > 0.

Lemma 1. Assume that U is closed under St0 for all t0 ∈ R and a sequence
(Fn)n∈N of filters converges to a filter F in the sense that for every ε > 0 there
exists an n0 ∈ N so that |Fnu(t)−Fu(t)| < ε for all n ≥ n0,u ∈ Un, and t ∈ R.
Then the following holds:

1. If all the filters Fn are time invariant, then F is time invariant.

2. If all the filters Fn have fading memory, then F has fading memory.

Proof. The first claim follows immediately from the fact that Fu(t) =
limn→∞Fnu(t) for all u ∈ Un and t ∈ R. In order to prove the second claim,
we can assume that some ε > 0 and some v ∈ Un have been given. We
fix some n0 ∈ N so that |Fn0 u(t) − Fu(t)| < ε/3 for all u ∈ Un, t ∈ R.
Since Fn0 has fading memory there exists some T > 0 and some δ > 0
so that |Fn0 u(0) − Fn0 v(0)| < ε/3 for all u ∈ Un with the property that
‖u(t) − v(t)‖ < δ for all t ∈ [−T, 0]. By our choice of n0 this implies that
|Fu(0)− Fv(0)| < ε for all u ∈ Un with ‖u(t)− v(t)‖ < δ for all t ∈ [−T, 0].
Hence F has fading memory.
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3 Computations on Temporal Patterns

3.1 Characterizing the Computational Power of Neural Networks with
Dynamic Synapses. Our subsequent theorem 1 shows that simple filters
that model only synaptic facilitation (as considered in the definition of DN)
provide the networks with sufficient dynamics to approximate arbitrary
given time-invariant filters with fading memory. We show that the simul-
taneous occurrence of depression (as in DN∗) is not needed for that, but it
also does not hurt. This appears to be of some interest for the analysis of
computations in biological neural systems, since a fairly large variety of dif-
ferent functional roles have already been proposed for synaptic depression:
explaining psychological data on conditioning and reinforcement (Gross-
berg, 1972), boundary formation in vision and visual persistence (Francis et
al., 1994), switching between different neural codes (Tsodyks & Markram,
1997), and automatic gain control (Abbott, Varela, Sen, & Nelson, 1997). As
a complement of these conjectured roles for synaptic depression our subse-
quent theorem 1 points to a possible functional role for synaptic facilitation:
it empowers even very shallow feedforward neural systems with the capa-
bility to approximate basically any linear or nonlinear filter that appears to
be of interest in a biological context. Furthermore we show that this possible
functional role for facilitation can coexist with independent other functional
roles for synaptic depression. Our result shows that one can first choose the
parameters that control synaptic depression to serve some other purpose
and can then still choose the parameters that control synaptic facilitation, so
that the resulting neural system can approximate any given time-invariant
filter with fading memory.8

Theorem 1. Assume that U is the class of functions from R into [B0,B1]) that
satisfy |u(t) − u(s)| ≤ B2 · |t − s| for all t, s ∈ R, where B0,B1,B2 are arbitrary
real-valued constants with 0 < B0 < B1 and 0 < B2. Let F be an arbitrary filter
that maps vectors u = 〈u1, . . . ,un〉 ∈ Un into functions from R into R .

Then the following are equivalent:9

(a) F can be approximated by dynamic networks S ∈ DN (i.e., for any ε > 0
there exists some S ∈DN such that |Fu(t)−Su(t)| < ε for all u ∈ Un and
all t ∈ R).

(b) F can be approximated by dynamic networks S ∈ DN with just a single
layer of sigmoidal neurons.

8 We show in section 3.3 that alternatively one can employ just depressing synapses
for approximating any such filter by a neural system.

9 The implication “(c)⇒ (d)” was already shown in Boyd and Chua (1985).
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(c) F is time invariant and has fading memory.

(d) F can be approximated by a sequence of (finite or infinite) Volterra series.

These equivalences remain valid if DN is replaced by DN∗.

The following result stems from the proof of theorem 1. It shows that the
class of filters that can be approximated by dynamic networks is very stable
with regard to changes in the definition of a dynamic network.

Corollary 1. Dynamic networks with just one layer of dynamic synapses and
one subsequent layer of sigmoidal gates can approximate the same class of filters as
dynamic networks with an arbitrary finite number of layers of dynamic synapses
and sigmoidal gates. Even with a sequence of dynamic networks that have an
unboundedly growing number of layers, one cannot approximate more filters.

Furthermore, if one restricts the synaptic dynamics in the definition of dynamic
networks to the simplest form wi(t) = wi · (1+ρ

∫∞
0 xi(t− τ)e−τ/γ dτ)with some

arbitrarily fixed ρ > 0 and time constants γ from some arbitrarily fixed interval
[a, b] with 0 < a < b, the resulting class of dynamic networks can still approximate
(with just one layer of sigmoidal neurons) any filter that can be approximated by
a sequence of arbitrary dynamic networks considered in definition 1. In the case of
DN∗ one can choose to fix ρ > 0 or arbitrarily fix the interval [a, b] for the value
of γ .

In addition we will show in section 3.2 that the claim of theorem 1 remains
valid if we replace the model from Varela et al. (1997) for synaptic dynamics
(employed in the definition of the classes DN and DN∗ of dynamic networks)
by the model from Tsodyks et al. (1998). Furthermore we show in section 3.3
that the claim of theorem 1 also holds for networks where synapses exhibit
just depression, not facilitation.

Remark 3. The proof of theorem 1 shows that its claim as well as the claims
of corollary 1 hold under much weaker conditions on the class U. Apart from
the requirement that U is closed under translation, it suffices to assume that
U is some arbitrary class of uniformly bounded and equicontinuous10 func-
tions that is closed with regard to the topology defined in part 6 of remarks 2,
since this assumption is sufficient for the application of the Arzela-Ascoli
theorem (see Dieudonne, 1969, or Boyd & Chua, 1985) in the proof.

Proof of Theorem 1. According to lemma 1, any filter that can be approx-
imated by finite or infinite Volterra series is time invariant and has fading
memory. This implies (d)⇒ (c). Furthermore it is shown in Boyd and Chua

10 U is equicontinuous if for any ε > 0 there exists a δ > 0 so that |t − s| ≤ δ implies
|u(t)− u(s)| ≤ ε for all t, s ∈ R and all u ∈ U.
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(1985) that for the classes U considered in this article, any time-invariant
filter F : U→ RR with fading memory can be approximated by a sequence
of finite Volterra series (i.e., by Volterra polynomials). This argument can be
trivially extended to filtersF : Un → RR with n ≥ 1. This implies (c)⇒ (d).
Hence we have shown that (c)⇔ (d).

The implication (b) ⇒ (a) is obvious. In order to prove (a) ⇒ (c) we
observe that all filters occurring at synapses of a dynamic network (see
definition 1) are time invariant and have fading memory. This implies that
all filters S defined by dynamic networks (i.e., all S ∈ DN ∪DN∗) are time
invariant and have fading memory. According to lemma 1, this implies that
any filter F that can be approximated by such networks is time invariant
and has fading memory.

For the proof of (c) ⇒ (b) we first consider the case n = 1. We assume
that F is some arbitrary given filter that is time invariant and has fading
memory. We will first show that F can be approximated by filters S ∈ DN.
The proof is based on an application of the Stone-Weierstrass theorem (see,
e.g., Dieudonne, 1969, or Folland, 1984) similarly as in Boyd and Chua
(1985). That article extends earlier arguments by Sussmann (1975), Fliess
(1975), and Gallman and Narendra (1976) from a bounded to an unbounded
time interval. Furthermore, our proof exploits the fact that any continuous
function can be uniformly approximated on any compact set by weighted
sums of sigmoidal gates (Hornik et al., 1989; Sandberg, 1991; Leshno et
al., 1993). We will apply the Stone-Weierstrass theorem to functionals from
U− := {u|(−∞,0]: u ∈ U} into R. For that purpose we have to show that the
filtersH of the form

Hu(t) = u(t) ·
(

1+ ρ
∫ ∞

0
u(t− τ)e−τ/γ dτ

)
separate points in U−; that is, for any u, v ∈ U− with u 6= v there exists
a filter H of this form such that Hu(0) 6= Hv(0). Thus, we consider some
arbitrary given u, v ∈ U with u(t) 6= v(t) for some t ≤ 0. Then the function
u(0) · u(−τ)− v(0) · v(−τ) assumes a value 6= 0 for some τ ≥ 0. This implies

that

q(l) =
∫ ∞

0
(u(0) · u(−τ)− v(0) · v(−τ))e−τ/ l dτ

does not assume a constant value for all arguments l in [a, b]. This follows
because if q(l) = c for all such l, then q, being an analytic function of l ∈ C
with real part > 0, would equal c for all real l > 0. Since the limit of q(l)
as l → ∞ is zero, this means c = 0. However, the Laplace transform is
one-to-one. (This is a standard fact; one way to prove it is using that the
Laplace transform of a bounded measurable function w, evaluated at any
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point of the form s = 1+ iω, coincides, as a function of ω, with the Fourier
transform of w(t)e−t, and the Fourier transform is one to one on integrable
functions; cf. Hewitt & Stromberg, 1965, corollary 21.47.) Hence, q(l) does
not assume a constant value for all arguments l in [a, b]. Since q is analytic,
it therefore assumes, in any interval [a, b] with 0 < a < b, infinitely many
different values. This implies that for any fixed ρ > 0,

u(0)+ρ ·
∫ ∞

0
u(0) · u(−τ)e−τ/γ dτ 6= v(0)+ρ ·

∫ ∞
0

v(0) · v(−τ)e−τ/γ dτ

for some γ ∈ [a, b]. Therefore we have Hγ u(0) 6= Hγ v(0) for the filter Hγ
defined by

Hγ u(t) = u(t) ·
(

1+ ρ ·
∫ ∞

0
u(t− τ)e−τ/γ dτ

)
.

In order to apply the Stone-Weierstrass theorem, we also need to show
that U− is a compact metric space with regard to the topology T defined in
part 6 of remarks 2. Obviously this topology T coincides with the topology
generated on U− by the metric

d(u, v) := sup
t≤0

|u(t)− v(t)|
1+ |t|

(since all functions in U are assumed to be uniformly bounded). The com-
pactness of U− with regard to this metric follows by a routine argument,
applying the Arzela-Ascoli theorem successively to the sequence of restric-
tions U|[−T,0] := {u|[−T,0]: u ∈ U} for T ∈ N and by diagonalizing over
converging subsequences for these restrictions (see, for instance, lemma 1
in Boyd & Chua, 1985).

The Stone-Weierstrass theorem implies that there exists for every given
ε > 0 some m ∈ N, filtersHγ1 , . . . ,Hγm as specified above, and a polynomial
p such that

|Fu(0)− p(Hγ1 u(0), . . . ,Hγm u(0))| < ε

2

for all u ∈ U−. Since the functionals H̃γi : U− → R defined by H̃γi u :=
Hγi u(0) are continuous over the compact space U−, the values Hγi u(0) for
i ∈ {1, . . . ,n} and u ∈ U− are contained in some bounded interval [−b, b].
Furthermore according to Hornik et al. (1989) and Leshno et al. (1993), there
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exist sigmoidal gates G1, . . . ,Gk and parameters α0, . . . , αk ∈ R such that∣∣∣∣∣∣p(x)−
 k∑

j=1

αjGj(x)+ α0

∣∣∣∣∣∣ < ε

2

for all x ∈ [−b, b]m.11 Note that Gj(Hγ1 u(0), . . . ,Hγm u(0)) is of the form
σ(
∑m

i=1 wi(0)u(0) + w0) with w0 ∈ R and wi(t) as in definition 1 (with xi(·)
replaced by u(·)). Hence the previously constructed Hγ1 , . . . ,Hγm together
with this layer of k sigmoidal gates G1, . . . ,Gk define a dynamic network
S ∈ DN. We then have |Fu(0) − Su(0)| < ε for all u ∈ U−. Because of the
time invariance ofF andHγ1 , . . . ,Hγm , this implies that |Fu(t)−Su(t)| < ε

for all u ∈ U and all t ∈ R. This completes the proof of (c)⇒ (b) for the case
of dynamic networks that define filters S ∈ DN and n = 1.

In order to show that for u, v ∈ U− with u 6= v we have Hu(0) 6=
Hv(0) also for some filter H that reflects synaptic dynamics with some ar-
bitrary given depression filter D as in the definition of DN∗ we consider
two cases for the filter Hγ with Hγ u(0) 6= Hγ v(0) that we have already
constructed.

Case 1: u(0) ·Du(0) = v(0) ·Dv(0). Then the function u(0) ·Du(0) ·u(−τ)−
v(0) ·Dv(0) ·v(−τ) assumes a value 6= 0 for some τ ≥ 0. Hence we can apply
the same argument as before to the function

q̃(l) =
∫ ∞

0
(u(0) ·Du(0) · u(−τ)− u(0) ·Dv(0) · v(−τ))e−τ/ l dτ

to show that this function assumes infinitely many different values for l ∈
[a, b], for any given interval [a, b] with 0 < a < b. This implies that there
exists for every given ρ > 0 some γ ∈ [a, b] so that u(0) · Du(0) · (1 + ρ ·∫∞

0 u(−τ)e−τ/γ dτ) 6= v(0) ·Dv(0) · (1+ ρ · ∫∞0 v(−τ)e−τ/γ dτ).
Case 2: u(0) · Du(0) 6= v(0) · Dv(0). Then the claim follows since ρ ·∫∞

0 u(−τ)e−τ/γ dτ − ρ · ∫∞0 v(−τ)e−τ/γ dτ converges to 0 if ρ → 0 or γ → 0.
The rest of the argument is exactly as in the preceding argument for filters

S ∈ DN. This completes the proof of (c)⇒ (b) also for the case of dynamic
networks that define filters S ∈ DN∗ and n = 1.

In the claim of the theorem, we had considered a slightly more general
class of filters F that are defined over Un for some given n ≥ 1. In order to
extend the preceding proof of (c)⇒ (b) to the more general input space for
n ≥ 1, one just has to note that Un is a compact metric space with regard
to the product topology generated by the topology T over U as in part 6 of
remarks 2, and that our preceding arguments imply that filters over Un of

11 These approximation results were previously applied in this context by Sandberg
(1991).
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the form 〈u1, . . . ,un〉 → Hui with i ∈ {1, . . . ,n} (and H modeling synaptic
dynamics according to definition 1) separate points in Un−.

3.2 Extension of the Result to the Model for Synaptic Dynamics by
Tsodyks, Pawelzik, and Markram. Tsodyks et al. (1998) propose a slightly
different temporal dynamics for depression and facilitation in populations
of synapses. In contrast to the model from Varela et al. (1997) that underlies
our definition 1, this model has been explicitly formulated for a mean-field
analysis, where the input to a population of synapses consists of a con-
tinuous function xi(t) that models firing activity in a presynaptic pool Pi
of neurons rather than a spike train from a single presynaptic neuron. We
show in this section that our characterization result from the preceding sec-
tion also holds for this model for synaptic dynamics.

The first difference to the synapse model from Varela et al. (1997) is a

use-dependent discount factor e−ρ
∫ 0

−τ xi(τ
′) dτ ′ · e−τ/γ instead of just e−τ/γ in

the model for facilitation, which reduces the facilitating impact of preceding
large input xi(−τ) on the value of the synaptic weight at time 0. In other
words, facilitation is no longer modeled by a linear filter; instead, one as-
sumes that facilitation has less impact on a synapse that has already been
facilitated by preceding inputs.

For a precise definition of the resulting variation DN+ of our definition of
dynamic networks from definition 1, we replace wi(t) = wi ·(1+ρ

∫∞
0 xi(t−τ)

e−τ/γ dτ) by wi(t) = wi · ŵi(t), where

ŵi(t) = ρ ·
∫ ∞

0
xi(t− τ) · e−ρ

∫ t

t−τ xi(τ
′) dτ ′ · e−τ/γ dτ. (3.1)

This is the model for facilitation proposed in equation 3.5 of Tsodyks et
al. (1998) for a mean-field setting, where xi(t − τ) models firing activity at
time t− τ in a presynaptic pool Pi of neurons (ŵi(t) is denoted by U1

SE , ρ is
denoted by USE, γ is denoted by τf acil, and wi is denoted by ASE.

We show in the subsequent result that for any given value of the param-
eter ρ (which models the normal use of synaptic resources caused by input
to a “rested” synapse) and for any given interval [a, b] one can choose the
values wi ∈ R and time constants γ from [a, b] so that a network consisting
of facilitating synapses in combination with one layer of sigmoidal neurons
can approximate any time-invariant filter with fading memory.

Tsodyks et al. (1998) also propose a model for populations of synapses
that exhibit both depression and facilitation (one substitutes equation 3.5
for USE in equation 3.3 of Tsodyks et al., 1998). A new feature of this model is
that one can no longer express the current synaptic weight wi(t) as a product
of the outputs of two separate filters: one for depression and one for facili-
tation. Rather, the output of the filter for facilitation (see our equation 3.1)
enters the computation of the current output of the filter for depression.



1758 Wolfgang Maass and Eduardo D. Sontag

This is biologically plausible, since a facilitated synapse spends its resources
more quickly—and hence is subject to stronger depression. In our notation,
the model from Tsodyks et al. (1998) for depression and facilitation in a
mean-field setting (equations 3.3 and 3.5 in Tsodyks et al., 1998) yields the
following formula for the value wi(t) of the current weight of a population
of synapses (with ŵi(t) defined according to equation 3.1):

wi(t) := wi · ŵi(t) ·
∫ ∞

0
e−τ/τrec · e−

∫ t

t−τ ŵi(τ
′)xi(τ

′) dτ ′dτ. (3.2)

This formula involves another parameter τrec: the time constant for the re-
covery from using synaptic resources. We will write DN++ for the class
of feedforward networks consisting of sigmoidal neurons with dynamic
weights wi(t) according to equation 3.2. In order to make sure that the in-
tegrals in equations 3.1 and 3.2 assume a finite value for bounded synaptic
inputs xi(·), one has to make sure that not only the network inputs but also
the outputs of sigmoidal units in networks from the classes DN+ and DN++
are always nonnegative. For that purpose, we assume in this section and the
next that the sigmoidal activation function σ assumes nonnegative values
only. This is no real restriction since the output of a sigmoidal unit models
the current firing activity in a pool of neurons.

Any filter that maps xi(·) onto wi(·) · xi(·)with wi(·) defined according to
equation 3.1 and 3.2 is time invariant and has fading memory. Hence every
network in DN+ and DN++ computes a time-invariant filter with fading
memory.

Theorem 2. Assume that U is the class of functions from R into [B0,B1]) that
satisfy |u(t) − u(s)| ≤ B2 · |t − s| for all t, s ∈ R, where B0,B1,B2 are arbitrary
real-valued constants with 0 < B0 < B1 and 0 < B2. Let F be an arbitrary filter
that maps vectors u = 〈u1, . . . ,un〉 ∈ Un into functions from R into R.

Then the following are equivalent:

(a) F can be approximated by dynamic networks S ∈ DN+ (i.e., for any ε > 0
there exists some S ∈ DN+ such that |Fu(t) − Su(t)| < ε for all u ∈ Un

and all t ∈ R).

(b) F can be approximated by dynamic networks S ∈ DN+ with just a single
layer of sigmoidal neurons.

(c) F is time invariant and has fading memory.

(d) F can be approximated by a sequence of (finite or infinite) Volterra series.

These equivalences remain valid if DN+ is replaced by DN++.

It will be obvious from the proof of theorem 2 that in principle quite small
ranges suffice for the “free” parameters γ and τrec that control the synaptic
dynamics according to equations 3.1 and 3.2.
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Corollary 2. In order to approximate an arbitrary given time-invariant fading
memory filter F by dynamic networks S from DN+, one can choose for any given
ρ > 0 the parameters γ of the synapses in S (defined according to equation 3.1)
from some arbitrarily given interval [a, b]. In order to approximate F by networks
S from DN++ one can choose for any given ρ > 0 the parameters γ from some
arbitrarily given interval [a, b] and the parameters τrec according to equation 3.2
from some arbitrarily given interval [a′, b′].

Proof of Theorem 2. It suffices to describe how the proof of (c)⇒ (b) from
theorem 1 has to be changed. For the case of networks from the class DN+,
we have to show that the filtersH+γ of the form

H+γ u(t) = u(t) · ρ
∫ ∞

0
u(t− τ) · e−ρ

∫ t

t−τ u(τ ′) dτ ′ · e−τ/γ dτ

separate points in U−. We show that for any given ρ > 0, a, b ∈ R with
0 < a < b, and any u, v ∈ U− with u 6= v there exists some γ ∈ [a, b] such
that H+γ u(0) 6= H+γ v(0). Thus we consider some arbitrary given u, v ∈ U
with u(t) 6= v(t) for some t ≤ 0. According to our argument in the proof of
theorem 1, it suffices for that to show that

u(0) · u(−τ) · e−ρ
∫ 0

−τ u(τ ′) dτ ′ 6= v(0) · v(−τ) · e−ρ
∫ 0

−τ v(τ ′) dτ ′

for some τ ≥ 0, (3.3)

because this implies that the function q+ defined by

q+(`) :=
∫ ∞

0
(u(0) · u(−τ) · e−ρ

∫ 0

−τ u(τ ′) dτ ′

− v(0) · v(−τ) · e−ρ
∫ 0

−τ v(τ ′) dτ ′
)e−τ/` dτ

assumes infinitely many different values for ` ∈ [a, b].
Assume for a contradiction that equation 3.3 does not hold. This implies

that u(0) = v(0). Consider some t0 < 0 with u(t0) 6= v(t0). We assume
without loss of generality that u(t0) > v(t0). Set

t+0 := inf{t > t0: u(t) ≤ v(t)}

t−0 := sup{t < t0: u(t) ≤ v(t)}.

We have t+0 ≤ 0 since u(0) = v(0).
Case 1: t−0 > −∞ ( i.e., ∃ t < t0: u(t) ≤ v(t)). Then t−0 < t0 < t+0 ,u(t−0 ) =

v(t−0 ),u(t+0 ) = v(t+0 ) and u(t) > v(t) for all t ∈ (t−0 , t+0 ). According to our as-
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sumption this implies that
∫ 0

t+0
u(t) dt = ∫ 0

t+0
v(t) dt and

∫ 0
t−0

u(t) dt = ∫ 0
t−0

v(t) dt,

although
∫ t+0

t−0
u(t) dt >

∫ t+0
t−0

v(t) dt. This yields a contradiction.

Case 2: u(t) > v(t) for all t < t0. Our assumptions imply then that∫ 0
t+0

u(t) dt = ∫ 0
t+0

v(t) dt and u(t) > v(t) for all t < t+0 . Therefore there ex-

ists some ε > 0 such that eρ
∫ 0

t
(u(τ ′)−v(τ ′)) dτ ′ ≥ 1 + ε for all t ≤ t0. Hence we

can conclude from our assumption that u(t)
v(t) ≥ 1 + ε for all t ≤ t0. This im-

plies that eρ
∫ 0

t
(u(τ ′)−v(τ ′)) dτ ′ → ∞ for t→−∞, hence u(t)

v(t) →∞ for t→−∞.
This provides a contradiction to our definition of the class U of functions
to which u and v belong, since all functions in U have values in [B0,B1] for
0 < B0 < B1.

This completes our proof of the direction (c)⇒ (b). The remainder of the
proof for the case of dynamic networks from the class DN+ is the same as
for theorem 1.

In order to prove (c) ⇒ (b) for networks from the class DN++, we have
to show that the filters that map an input function xi(·) onto the output
function wi(·) · xi(·) with wi(t) defined according to equation 3.2 separate
points in U−. Thus we fix some u, v ∈ U with u(t) 6= v(t) for some t ≤ 0.
According to the preceding proof for DN+, there exists some γ ∈ [a, b] such
that H+γ u(0) 6= H+γ v(0). We want to show for this γ that there exists for
any given a′, b′ with 0 < a′ < b′ some τrec ∈ [a′, b′] so that the resulting filter
defined by the synapse according to equation 3.2 can separate u and v. More
precisely, we show for the filter Gγ that is defined in analogy to equation 3.1
by

Gγ u(t) := ρ ·
∫ ∞

0
u(t− τ) · e−ρ

∫ τ

t−τ u(τ ′) dτ ′ · e−τ/γ dτ

(thusH+γ u(t) = u(t) · Gγ u(t)) that

u(0) · Gγ u(0) ·
∫ ∞

0
e−τ/τrec · e−

∫ 0

−τ Gγ u(τ ′)·u(τ ′) dτ ′ dτ

6= v(0) · Gγ v(0) ·
∫ ∞

0
e−τ/τrec · e−

∫ 0

−τ Gγ v(τ ′)·v(τ ′) dτ ′ dτ. (3.4)

It is obvious that the function h: R→ R defined by

h(τ ) := u(0) · Gγ u(0) · e
∫ 0

−τ Gγ u(τ ′)·u(τ ′) dτ ′

− v(0) · Gγ v(0) · e−
∫ 0

−τ Gγ v(τ ′)·v(τ ′) dτ ′

assumes a value 6= 0 for some τ ≥ 0, since h(0) 6= 0 by our choice of γ . Hence
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by the argument via the Laplace transform from the proof of theorem 1, there
exists some τrec ∈ [a′, b′] (for any given a′, b′ ∈ R with 0 < a′ < b′) so that

∫ ∞
0

e−τ/τrec · h(τ ) dτ 6= 0,

which is equivalent to the desired inequality (see equation 3.4).
Thus we have shown that the filters defined by the temporal dynamics

of synapses in dynamic networks from the class DN++ separate points in
U−. The rest of the proof is the same as for theorem 1.

3.3 Universal Approximation of Filters with Depressing Synapses Only.
We show in this section that the computational power of feedforward neural
networks with dynamic synapses remains the same if the synapses exhibit
just depression, not facilitation. This holds provided that the time constants
τrec for their recovery from depression can be chosen individually from some
interval [a, b] (this holds for any values of a, b with 0 < a < b). This result
is of interest since according to Tsodyks et al. (1998), all synapses between
pyramidal neurons exhibit depression, not facilitation. We will employ the
model from Tsodyks et al. (1998) for synaptic depression in a mean-field
setting, which is specified in equation 3.3 of Tsodyks et al. (1998).

We write DN− for the class of feedforward neural networks consisting
of sigmoidal neurons (whose activation function σ assumes nonnegative
values only) with weights wi(t) evolving according to

wi(t) = wi ·USE ·
∫ ∞

0
e−τ/τrec · e−

∫ t

t−τ USE·xi(τ
′) dτ ′ dτ (3.5)

in dependence of the presynaptic pool activity xi(τ ), where USE > 0 is some
given constant. Note that wi(t) · xi(t) agrees with the term ASE · 〈y(t)〉 with
〈y(t)〉 defined by equation 3.3 in Tsodyks et al. (1998), which models the
average value of the postsynaptic current caused in pool P by the firing
activity xi(t) in the pool Pi in the case of depressing synapses between pools
Pi and P (the parameter ASE is denoted by wi in our notation).

Theorem 3. Assume that U is the class of functions from R into [B0,B1]) that
satisfy |u(t) − u(s)| ≤ B2 · |t − s| for all t, s ∈ R, where B0,B1,B2 are arbitrary
real-valued constants with 0 < B0 < B1 and 0 < B2. Let F be an arbitrary filter
that maps vectors u = 〈u1, . . . ,un〉 ∈ Un into functions from R into R.

Then the following are equivalent:

(a) F can be approximated by dynamic networks S ∈ DN− (i.e., for any ε > 0
there exists some S ∈ DN− such that |Fu(t) − Su(t)| < ε for all u ∈ Un

and all t ∈ R).
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(b) F can be approximated by dynamic networks S ∈ DN− with just a single
layer of sigmoidal neurons.

(c) F is time invariant and has fading memory.

(d) F can be approximated by a sequence of (finite or infinite) Volterra series.

Proof. It is obvious that all filters defined by dynamic networks from the
class DN− are time invariant and have fading memory. Hence it suffices to
show how the proof of (c)⇒ (b) has to be changed in comparison with the
proof of theorem 1. Assume that parameters a, b,USE ∈ R with 0 < a < b
and 0 < USE have been fixed in some arbitrary manner. We have to show
that for any two functions u, v ∈ U with u(t0) > v(t0) for some t0 ≤ 0, there
exists some τrec ∈ [a, b] so that the filter that models synaptic dynamics
according to equation 3.5 differs at time 0 for the two input functions u, v
(instead of xi); we have to show that

u(0) ·
∫ ∞

0
e−τ/τrec ·e−

∫ 0

−τ USE·u(τ ′) dτ ′ dτ 6=v(0)·
∫ ∞

0
e−τ/τrec ·e−

∫ 0

−τ USE·v(τ ′) dτ ′ dτ.

According to our argument with the Laplace transform in the proof of the-
orem 1, it suffices to show that h(τ ) 6= 0 for some τ ≥ 0 , where h: R→ R is
the function defined by

h(τ ) := u(0) · e−
∫ 0

−τ USE·u(τ ′) dτ ′ − v(0) · e−
∫ 0

−τ USE·v(τ ′) dτ ′
.

If u(0) 6= v(0), this is obvious, since then h(0) 6= 0 . Hence we assume that
u(0) = v(0) . Furthermore, we assume for a contradiction that h(τ ) = 0 for
all τ ≥ 0 . Set

t+0 := inf {t > t0: u(t) ≤ v(t)}.

Then we have t0 < t+0 ≤ 0 ,
∫ 0

t+0
u(τ ′) dτ ′ = ∫ 0

t+0
v(τ ′) dτ ′, and

∫ 0
t0

u(τ ′) dτ ′ =∫ 0
t0

v(τ ′) dτ ′. This yields a contradiction to the fact that u(τ ′) > v(τ ′) for all

τ ′ ∈ [t0, t+0 ], and hence
∫ t+0

t0
u(τ ′) dτ ′ >

∫ t+0
t0

v(τ ′) dτ ′.

3.4 Focusing on Excitatory Synapses. In the preceding dynamic net-
work models, we had assumed that the constant factors wi could be chosen
to be positive or negative, thus yielding excitatory or inhibitory synapses in
a biological interpretation. This formal symmetry between excitatory and
inhibitory synapses is not adequate for most biological neural systems—
for example, the cortex of primates, where just 15% of the synapses are
inhibitory. We would like to point out that according to Maass (in press)
one can replace the dynamic networks considered in the preceding sections
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by an alternative type of network where just the dynamics of excitatory
synapses matters—which can be just depressing, just facilitating, or de-
pressing and facilitating, as in the preceding sections.

The key observation is that instead of approximating the given polyno-
mial p by a weighted sum of sigmoidal neurons in the proof of theorem 1
(and analogously in the subsequent theorems), one can approximate p by a
single soft winner-take-all module applied to several weighted sums of the
filtersHγ1 , . . . ,Hγm with nonnegative weights wi only.12 The resulting net-
work structure corresponds to a biological neural system where the filters
Hγ1 , . . . ,Hγm are realized exclusively by excitatory dynamic synapses, and
the role of inhibitory synapses is restricted to the realization of the subse-
quent soft winner-take-all module. We refer to Maass (in press) for details
of this alternative style of network construction.

3.5 Allowing the Input Functions to Vanish. We had assumed in theo-
rem 1 that all input functions ui satisfy ui(t) ≥ B0 for all t ∈ R, where B0 > 0
is some arbitrary constant. This assumption is usually met in the sketched
application to biological neural systems, because the minimum firing rate
of neurons is larger than 0 (typically in the range of 5 Hz). Alternatively one
can assume that all input functions ui are superimposed with some positive
constant input (which could be interpreted as background firing activity).

The following result shows that from a mathematical point of view, the
assumption B0 > 0 is necessary at least in the case of single-layer networks,
since in the case B0 = 0 a strictly smaller class of filters is approximated
by dynamic networks with a single layer of sigmoidal neurons. Theorem 4
gives a precise characterization of this smaller class of filters.

Theorem 4. Assume that U is the class of functions u in C(R, [0,B1]) that
satisfy |u(t) − u(s)| ≤ B2 · |t − s| for all t, s ∈ R, where B1 and B2 are arbitrary
real-valued constants with 0 < B1 and 0 < B2. Let F be an arbitrary filter that
maps functions from U into RR. We consider here only the version of dynamic
networks giving rise to filters in DN.

Then F can be approximated by dynamic networks with a single layer of sig-
moidal gates if and only ifF is time invariant, has fading memory, and there exists
a constant cF such that Fu(t) = cF for all u ∈ U and t ∈ R with u(t) = 0.

Proof of Theorem 4. The form of the filters defining the class DN implies
that when u(t) = 0, all filters output the value 0 at the given time t, and
hence the sigmoidal gate outputs the value G(t) = σ(w0), irrespective of the
values of u at other times. It is easy to see that all filters approximated by

12 If one prefers, one can replace the nonnegative weighted sums of the filters
Hγ1 , . . . ,Hγm in this alternative approximation result by sigmoidal neurons applied to
nonnegative weighted sums of the filtersHγ1 , . . . ,Hγm .
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such networks must also have the same property. The converse implication
is established in almost exactly the same manner as in the proof of theorem 1.
The only difference is as follows.

It could be that u(0) = v(0) = 0, in which case our argument fails to
provide a separating filter. However, this separation is not needed if we
only need to approximate filters that are constant on the set of inputs with
zero value at t = 0. This follows from the following lemma, which is a
small variation of the Stone-Weierstrass theorem. Given a compact Haus-
dorff topological space U and a closed subset S of U, we say that a function
f : U → R is S-constant if the restriction of f to S is a constant function.
We say that a class of real-valued functions on U is S-separating if, for each
u, v ∈ U, u 6= v, such that not both of u and v are in S, there is some f ∈ F
such that f (u) 6= f (v).

Lemma 2. Suppose that F is a class consisting of continuous and S-constant
functions that S-separates. Then, polynomials in elements of F approximate every
S-constant continuous function U→ R.

This lemma is proved as follows. We consider the quotient space US :=
U/S, where we collapse all points of S to one point, endowed with the
quotient topology (its open sets are those open sets V in U for which S ∩
V 6= ∅ implies S ⊆ V). The topological space US is compact, because the
canonical projection onto the quotient is continuous, and U was assumed
to be compact. In addition, US is a Hausdorff space, as follows from the fact
that for each x 6∈ S, there are disjoint neighborhoods of x and S (since S is
compact). The lemma is established by noticing that continuous S-constant
functions induce continuous functions on US, so that we may apply the
standard Stone-Weierstrass theorem to this quotient space.

Now the theorem follows, using as S the set consisting of all inputs so
that u(0) = 0. The S-separation property is established just as in the proof
of theorem 1; we omit the routine details.

3.6 Combining Synaptic Dynamics with Membrane Dynamics. One
other source of temporal dynamics in biological neural systems is the dy-
namics of the membrane potential of neurons. Hence it is of interest to
consider a variation of our notion of a dynamic network where a function
x(t) is processed at a connection of the network first by a filterH that maps
xi(·) onto wi(·)·xi(·) (modeling synapse dynamics) and then by another filter
Gmodeling membrane dynamics of the receiving neurons. Since each single
excitatory postsynaptic potential and inhibitory postsynaptic potential can
be fitted very well by a function of the form β1e−τ/γ1 − β2e−τ/γ2 , it appears
to be justified to model membrane dynamics in the context of our model
for population coding with pools of neurons by first-order linear filters G
with an impulse response g(τ ) consisting of a weighted sum of functions
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of the form e−τ/γ . In the resulting variation of our notion of a dynamic net-
work, one replaces the filtersH that model synaptic dynamics according to
definition 1 at the connections of the network by compositions G ◦H with
such linear filters G. All preceding results remain valid for this variation of
the network model. In order to approximate arbitrary given time-invariant
filters with fading memory by such networks, one just has to show that for
any two functions u, v ∈ U with u(t) 6= v(t) for some t ≤ 0 there exist filters
H,G of the desired type such that (G ◦ H)u(0) 6= (G ◦ H)v(0). This holds
even for u, v ∈ C(R, [B0,B1]) with B0 = 0, since we have to find a filter H
modeling synaptic dynamics according to definition 1 so thatHu(t) 6= Hv(t)
for some t ≤ 0 (hence we can allow that u(0) = v(0) = 0). We then can apply
to the functions Hu(t) and Hv(t) for t ≤ 0 the argument from the proof
of theorem 1 to find a linear filter G with impulse response e−τ/γ so that
(G ◦H)u(0) 6= (G ◦H)v(0). The same argument shows that theoretically the
same class of filters can be approximated by dynamic networks if one relies
on only linear filters G modeling membrane dynamics.

4 Computations on Spatiotemporal Patterns

A closer look shows that many temporal patterns that are relevant for bio-
logical neural systems are not just temporal but spatiotemporal patterns. For
example, in auditory systems, the additional spatial dimension parameter-
izes different frequency bands. These are represented by spatial locations of
the inner hair cells on the cochlea and corresponding spatial maps in higher
parts of the auditory system. In visual systems, it is obvious that the analysis
of moving objects (and/or the stabilization of visual input in spite of body
movements of the receiving organism) requires the processing of complex
spatiotemporal patterns. In this context two spatial dimensions correspond
directly to retina locations. But one should note that other “spatial” dimen-
sions in the subsequent definition 3 need not correspond to spatial locations
in the outer world (or on the retina), but can also correspond to scales in
a more abstract feature space, for example, to spatial frequency or phase.
Therefore, we will consider spatiotemporal patterns with an arbitrary finite
number d ∈ N of spatial dimensions.

The transformation and classification of complex spatiotemporal pat-
terns appear to be relevant also for higher cortical areas, since recordings
from larger populations of neurons via voltage-sensitive dyes or MEG, EEG,
and so forth suggest that sensory input is encoded in spatiotemporal acti-
vation patterns of associated cortical neural systems. These spatiotemporal
activation patterns provide the input to higher cortical areas. Also the out-
put of various systems in the motor cortex can be viewed as spatiotemporal
patterns (Georgopoulos, 1995). Hence, one may argue that also higher cor-
tical areas carry out computations on spatiotemporal patterns.

We will show that one can extend our analysis of computations on tem-
poral patterns to an analysis of computations on spatiotemporal patterns.
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For that purpose, we introduce a suitable extension of our definition of a
dynamic network that allows for d spatial dimensions in the input func-
tions u.

Definition 3. We define a spatial dynamic network and the corresponding
classes SDN and SDN∗ of filters as a variation of definition 2 of a dynamic
network. Fix some arbitrary d ∈ N. A spatial dynamic network with d spatial
input dimensions (in addition to the time dimension) assigns to vectors u
of n input functions u: Rd × R → R an output function z: R → R. The
only difference to the preceding definition of a dynamic network is that
now there exists for each network a finite set X of vectors x ∈ Rd so that
the actual input to the network consists of functions of the form u(x, ·) for
x ∈ X.

According to this definition, any spatial dynamic network samples the
input functions u: Rd × R→ R just at a fixed finite set X of points x. Nev-
ertheless we will show in theorem 5 that these networks can approximate a
very large class of filters on functions u: Rd ×R→ R.

The notion of a Volterra series (see remark 1) can be readily extended to
input functions u: Rd ×R→ R (again we assume that u is measurable and
essentially bounded). In this case a kth order Volterra term is of the form

∞∫
−∞

. . .

∞∫
−∞

∞∫
0

. . .

∞∫
0

u(x1, . . . , xd, t− τ1) · . . . · u(x1, . . . , xd, t− τk) (4.1)

· h(x1, . . . , xd, τ1, . . . , τk) dx1 . . . dxd dτ1 . . . dτk

for some function h ∈ L1. Analogously as before we refer to a series consist-
ing of finitely many such terms as a Volterra polynomial or finite Volterra
series.

Theorem 5. Let U be the class of functions in C(Rd × R, [B0,B1]) that satisfy
|u(x, t)− u(x̃, t̃)| ≤ B2‖〈x, t〉 − 〈x̃, t̃〉‖ for all 〈x, t〉, 〈x̃, t̃〉 ∈ Rd ×R, where d ∈ N
and B0,B1,B2 are arbitrary real-valued constants with 0 < B0 < B1 and 0 < B2.
Then the following holds for any filter F : Un → RR :
F can be approximated by spatial dynamic networks (i.e., for any ε > 0 there

exists some S ∈ SDN such that |Fu(t) − Su(t)| < ε for all u ∈ Un and t ∈ R)
if and only if F can be approximated by a sequence of (finite or infinite) Volterra
series.

The claim remains valid if SDN is replaced by SDN∗.

Proof. We show that the two alternative conditions on F in the claim of
the theorem are equivalent by proving that both conditions are equivalent
to a third condition: the condition that F is time invariant and has fading
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memory—for the straightforward extension of this notion to filtersF : Un →
RR, where U is now a class of functions from Rd × R into R. We say that
such filter F has fading memory if for every 〈v1, . . . , vn〉 ∈ Un and every
ε > 0 there exist δ > 0,T > 0, and K > 0 so that |Fv(0) − Fu(0)| < ε for
all u = 〈u1, . . . ,un〉 ∈ Un with the property that ‖v(x, t)− u(x, t)‖ < δ for all
t ∈ [−T, 0] and all x ∈ [−K,K]d. This condition implies “fading influence”
of u(x, t) for arguments 〈x, t〉where |t| or ‖x‖ are very large.

It is obvious that any kth-order Volterra term of the form 4.1 is time
invariant and has fading memory. Furthermore this property is preserved
by taking sums and limits (analogously as in lemma 2). Hence also for filters
with inputs u: Rd×R→ Rwe have that any filter that can be approximated
by a sequence of finite or infinite Volterra series is time invariant and has
fading memory. On the other hand one can extend the proof of theorem 1
in Boyd and Chua (1985) in a straightforward manner to show that any
time-invariant filter that has fading memory and receives inputs from Un

(for a class U with the properties as in the claim of the theorem) can be
approximated arbitrarily closely by Volterra polynomials. For this extension
of the argument of Boyd and Chua (1985), one just has to verify that this class
U is compact with regard to the topology generated by the neighborhoods
{u ∈ Un: ‖v(x, t) − u(x, t)‖ < ε for all t ∈ [−T, 0] and all x ∈ [−K,K]n} for
arbitrary v ∈ Un and ε,T,K > 0.

It is clear that any spatial dynamic network according to definition 3 is
time invariant and has fading memory. Thus it remains only to show that any
time-invariant filterF : Un → RRwith fading memory can be approximated
arbitrarily closely by spatial dynamic networks. In order to extend the proof
of theorem 1 in Boyd and Chua (1985) to this case, one just has to observe
that the proof of theorem 1 implies that for any two functions u, v,∈ U with
u(x, t) 6= v(x, t) for some t ≤ 0 and x ∈ Rd there exists some x ∈ Rd and
some filterHmodeling synaptic dynamics as in definition 2 which satisfies
Hu(x, ·)(0) 6= Hv(x, ·)(0). Thus we have shown that a filter F : Un → RR
can be approximated by spatial dynamic networks if and only if F is time
invariant and has fading memory. This completes the proof of theorem 5.

Remark 4.

1. Analogous versions of corollary 1, remark 3, and theorems 2 through
4 also hold for the framework of computations on spatiotemporal
patterns considered in theorem 5.

2. If one considers a system consisting of many spatial dynamic net-
works that provide separate outputs for different spatial output lo-
cations, one also can produce spatiotemporal patterns in the output
of such systems. Theorem 5 implies that exactly those maps A from
spatiotemporal patterns to spatiotemporal patterns can be realized
by such systems where the restriction of the output of A to any fixed
output location is a time-invariant filter F with fading memory.
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5 Conclusion

We have analyzed the power of feedforward models for biological neural
systems for computations on temporal patterns and spatiotemporal pat-
terns. We have identified the class of filters that can be approximated by
such models and shown that this result is quite stable with regard to changes
in the model. In particular, we have shown that all filters that can be ap-
proximated by Volterra series can be approximated by models consisting
of a single layer of dynamic synapses and neurons. Furthermore, the class
of filters that can be approximated does not change if one considers feed-
forward networks with arbitrarily many layers. In addition, the filters in
this class are characterized by a very simple property (time invariance and
fading memory) that is in general easy to check for a concrete filter. This
class of filters is very rich. In fact, one might argue that any filter that is
possibly useful for a function of a biological organism belongs to this class.

Since we have included in our analysis the case where several tempo-
ral patterns are presented simultaneously as input to a neural system, our
approach also provides a new foundation for analyzing computations that
respond in a particular manner to temporal correlations in the firing activ-
ity of different pools of neurons. We show that any such computation that
can be described by time-invariant filters with fading memory (which is,
for example, the case for most conjectured computations involving binding
of features belonging to the same object via temporal correlations) can in
principle be carried out by a feedforward neural system.

So far the analysis of the possible functional role of short-term synaptic
dynamics has found the most convincing computational role for synaptic
depression. Our results here point to a possible computational role for the
other important dynamical mechanism in biological synapses: facilitation.
We show that via facilitation, models for neural systems gain the power to
approximate any filter in the very large class of linear and nonlinear filters
described above. Furthermore, we have shown that this possible function of
facilitation does not interfere with any other computational role of synaptic
depression, since we have shown that for any fixed depression mechanisms,
one can find parameters for the synaptic facilitation mechanisms that allow
the approximation of arbitrary filters from this class. Apart from this, we
have also shown that the same very rich class of linear and nonlinear filters
can be approximated by models for neural systems whose synapses just
exhibit depression, not facilitation.

The view of neural systems as computational models for computations on
temporal patterns or spatiotemporal patterns—rather than on static vectors
of numbers—is likely to have significant consequences for the analysis of
learning in neural systems. It suggests that learning should be analyzed in
the context of adaptive filters. Whereas we do not contribute directly to any
learning result in this article, our results identify exactly the class of filters
within which such filter adaptation would take place, and thereby prepare
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the ground for a closer analysis of learning in neural systems from the point
of view of adaptive filtering.

Finally we point out that our “universal approximation results” for com-
putations on temporal and spatiotemporal patterns suggest a new complex-
ity measure and a new parameterization for nonlinear filters in this domain,
which may be more appropriate in the context of biological neural systems.
We show that instead of measuring the complexity of a nonlinear filterF by
the degree of the Volterra polynomial or Wiener polynomial that is needed
to approximateF within a given ε, one can also measure the complexity ofF
by the number of sigmoidal gates and dynamic synapses that are needed to
approximateF within ε. Our results show that both complexity hierarchies
characterize the same class of linear and nonlinear filters. However, the lat-
ter measure is more adequate in the context of neural computation, because
the approximation of a single sigmoidal gate requires a high-order Volterra
polynomial for a good approximation. Hence, the order of the Volterra poly-
nomial required to approximate a given nonlinear filter F is in general a
poor measure for the cost of implementing F in neural hardware. On the
other hand, the alternative complexity measure for filters F that is sug-
gested by our results is closely related to the cost of implementing F in
neural hardware.

In addition, our approach via formal models for dynamic networks pro-
vides a new parameterization for all filters that are approximable by Volterra
series—in terms of parameters that control the architecture as well as the
temporal dynamics and scale of synaptic dynamics. Such parameteriza-
tion is particularly of interest for the analysis of learning (if the goal is to
learn a map from spatiotemporal to spatiotemporal patterns), especially
since the parameters that occur in our new parameterization appear to
be related to those parameters that are “plastic” in biological neural sys-
tems.

This article also prepares the ground for an investigation of the required
complexity of models for neural systems for approximating specific filters
that are of particular interest in this context. Preliminary computer simula-
tion results (Natschläger, Maass, & Zador, 1999) suggest that in fact quite
small instantiations of the dynamic network models considered in this arti-
cle suffice to approximate specific quadratic filters. Other topics of current
research are the role of noise in this context and the possible role of lateral
and recurrent connections in the network (see Maass, 1999).
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