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Abstract

Complex molecular biological processes such as transcription and translation, signal trans-
duction, post-translational modification cascades, and metabolic pathways can be
described in principle by biochemical reactions that explicitly take into account the sophisti-
cated network of chemical interactions regulating cell life. The ability to deduce the possible
qualitative behaviors of such networks from a set of reactions is a central objective and an
ongoing challenge in the field of systems biology. Unfortunately, the construction of com-
plete mathematical models is often hindered by a pervasive problem: despite the wealth of
qualitative graphical knowledge about network interactions, the form of the governing non-
linearities and/or the values of kinetic constants are hard to uncover experimentally. The
kinetics can also change with environmental variations. This work addresses the following
question: given a set of reactions and without assuming a particular form for the kinetics,
what can we say about the asymptotic behavior of the network? Specifically, it introduces a
class of networks that are “structurally (mono) attractive” meaning that they are incapable of
exhibiting multiple steady states, oscillation, or chaos by virtue of their reaction graphs.
These networks are characterized by the existence of a universal energy-like function called
a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear sys-
tems is introduced, which form the extremals of a linear convex cone. The problem is then
reduced to that of finding a common Lyapunov function for this set of extremals. Based on
this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction
Networks (LEARN), is provided that constructs such functions or rules out their existence.
An extensive study of biochemical networks demonstrates that LEARN offers a new unified
framework. Basic motifs, three-body binding, and genetic networks are studied first. The
work then focuses on cellular signalling networks including various post-translational modifi-
cation cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading,
and ERK signalling. The Ribosome Flow Model is also studied.
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Author summary

A theoretical and computational framework is developed for the identification of bio-
chemical networks that are “structurally attractive”. This means that they only allow global
point attractors and they cannot exhibit any other asymptotic behavior such as multi-sta-
bility, oscillations, or chaos for any choice of the kinetics. They are characterized by the
existence of energy-like functions. A computational package is made available for usage
by a wider community. Many relevant networks in molecular biology satisfy the assump-
tions, and some are analyzed for the first time.

This is a PLOS Computational Biology Methods paper.

Introduction

Many biological systems are known for the ability to operate precisely and consistently subject
to potentially large disruptions and uncertainties [1-5]. Examples are homeostasis, understood
as the maintenance of a desired steady state (perhaps associated to an observable phenotype)
against the variability of in-vivo concentrations of biochemical species, or a consistent dynam-
ical behavior in the face of environmental variations which change the speed of reactions.

The vaguely defined term “robustness” is often used to refer to this consistency of behavior
under perturbations. The present work deals with such notions of “biological robustness”, as
well with a “robustness of analysis” notion in which conclusions can be drawn despite inaccu-
rate mathematical models.

Models of core processes in cells are typically biochemical reaction networks. This includes
binding and unbinding, production and decay of proteins, regulation of transcription and
translation, metabolic pathways, and signal transduction [6]. However, in contrast to engi-
neered chemical systems, biology poses particular challenges. On the one hand, the reactants
and the products in such interactions are frequently known, and hence the species-reaction
graph is available. On the other hand, the exact form and parameters (i.e., kinetics) that deter-
mine the speed of transformation of reactants into products are often unknown. This lack of
information is a barrier to the construction of complete mathematical models of biochemical
dynamics. Even if the kinetics are exactly known at a specific point in time, they are influenced
by environmental factors and hence they can change. Hence, the ability to draw conclusions
regarding the qualitative behavior of such networks without knowledge of their kinetics is
highly relevant, and has been advocated under the banner of “complex biology without param-
eters” [4]. But is such a goal realistic? It is known that the long-term qualitative behavior of a
nonlinear system can be critically dependent on parameters, a phenomenon known as bifurca-
tion. This fundamental difficulty led to statements such as Glass and Kauffman’s 1973 asser-
tion that “it has proved impossible to develop general techniques which may be applied to find
the asymptotic behavior of complex chemical systems” [7].

Notwithstanding such difficulties, many classes of reaction networks are observed to have a
“well-behaved” qualitative long-term dynamical behavior for wide ranges of parameters and
various types of nonlinearities. This means specifically in our context that such networks do
not have the potential for exhibiting complex steady-state phenotypes such as multiple-steady
states (e.g., toggle switches), oscillations (e.g., repressilator), or chaos. Their typical behavior is
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Fig 1. Distinct qualitative behaviors for two models of a double PTM. This is illustrated by the time series plots for the double phosphorylated
substrate with randomized initial conditions for fixed total substrate and enzyme concentrations. (a) the processive mechanism exhibits a unique global
attractor, (b) a distributive mechanism exhibits multistability for some parameters. See networks (11), (12) and the accompanying discussion. The
parameters are given in S1 Text-§6.

https://doi.org/10.1371/journal.pcbi.1007681.9001

that the concentrations eventually settle into a unique steady state (called an attractor) for any
initial condition (with fixed total substrate, gene and enzyme concentrations). Hence, we call
them structurally attractive. The relevant biological phenotype for such networks is the unique
attractor, which is mathematically represented by the concentrations of the biochemical spe-
cies at steady state. Discerning such networks is not generally trivial. For instance, within the
class of post-translational modification (PTM) cycles, some cascades are “structurally attrac-
tive” but others can exhibit oscillations and multistability [8]. Fig 1 illustrates the typical behav-
ior of an attractive network vs a multistable network for two PTM cycles that have been
proposed as models for double phosphorylation. We will study PTM cycles in detail later in
the paper.

In the terminology of dynamical and control system theories, the defining feature of an
attractive network is that it can only exhibit global point attractors (i.e., unique globally asymp-
totically stable steady states). The classical way to certify stability is by exhibiting an appropri-
ate energy-like function, commonly referred to as a Lyapunov function [9, 10]. Existence of
such a function provides many guarantees on qualitative behavior, including notably the fact
that its sub-level sets act as trapping sets for trajectories [11]. Furthermore, they allow the
development of a systematic study of model uncertainties and response to disturbances [9, 10].
However, it is notoriously difficult to find such functions for nonlinear systems due to the lack
of general constructive techniques.

The search of Lyapunov functions for nonlinear reaction networks can be traced back to
Boltzmann’s H-Theorem [12], which applies only to the restrictive subclass of detailed-bal-
anced networks. Wei [13] in 1962 postulated that all chemical systems should satisfy an
“axiom of convergence” and there shall exist a suitable Lyapunov function. Perhaps the most
striking success in this line of thought was the development of the Horn-Jackson-Feinberg
(HJF) theory of complex-balanced networks [14-17] in the early 1970s, which relies on using
the sum of all the chemical pseudo-energies stored in species as a Lyapunov function. When
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specific graphical conditions are satisfied, complex-balancing is guaranteed for all kinetic con-
stants. Global stability can be proven in certain cases [18, 19]. Despite the elegance and theo-
retical appeal of the method, the assumptions needed for its applicability are restrictive, and
are not widely satisfied in biological models. For example, many basic motifs (e.g., transcrip-
tion/translation and enzymatic reactions) are not complex balanced. Furthermore, HJF theory
assumes, although with some exceptions, that the reaction kinetics are Mass-Action. It has
been argued that this assumption “is not based on fundamental laws” and is merely “good phe-
nomenology” [20]. These laws are usually justified by the intuitive image of colliding mole-
cules. However, this is often not the right level of analysis for biological modeling, where
alternative kinetics such as Michaelis-Menten and Hill kinetics are used in situations involving
multiple time scales [21].

Beside complex-balanced networks, a few additional classes of attractive networks have
been identified. These include mono-molecular networks, which can be handled within the
framework of compartmental systems using a Lyapunov function [22, 23]. More recently,
global convergence has been shown for another class of networks via the concept of monoto-
nicity without supplying a Lyapunov function [24] where sufficient graphical conditions have
been given.

In previous work [25-27], two of the authors proposed a direct approach to the problem,
introducing the class of piecewise linear-in-rates functions, which act as Lyapunov functions
regardless of the specific form of the reaction nonlinearities or kinetic constants. They guaran-
tee the uniqueness of steady states and global stability under mild additional conditions.

In this work, the results from [25-27] are generalized in several directions, theoretically,
computationally, and in terms of biological applications. First, we propose a general character-
ization of “structurally attractive” networks. We require the existence of a universal rate-
dependent function, which we call a Robust Lyapunov Function (RLF), that is a Lyapunov
function for any choice of the kinetics. We proceed to propose a computational framework for
finding such functions. To this end, the dynamics of the network are embedded in a linear
convex cone. The extremals of this cone are a set of rank-one matrices that derive from the
stoichiometry of the network. If a common Lyapunov function exists for the extremals, then it
can be used to construct an RLF and the network is certified to be attractive. In the special case
that kinetics are mono- or bimolecular, the RLF is piecewise linear or piecewise quadratic on
species, respectively.

Computationally, we complement previous reaction network toolboxes [28, 29] and we
provide a Lyapunov-Enabled Analysis of Reaction Networks (LEARN) toolbox to implement
the results on any given network by searching for an RLF and checking the appropriate condi-
tions via four main methods: a graphical algorithm, a linear program, an iterative procedure,
and a semi-definite program. Additionally, LEARN checks for conditions that rule out the exis-
tence of an RLF.

We then proceed to carry out an extensive discussion of biochemical networks to show the
applicability of our results. Foundational studies in systems biology [6] have revealed that bio-
chemical networks have many common “motifs”. We show that our results form a basis for
the understanding of the behavior of a large class of networks of various degrees of complexity.
They may be applied to study basic motifs such as binding/unbinding, three-body binding,
transcription and translation networks, and enzymatic reactions. Most cellular signalling
involves PTMs as building blocks, and their malfunction is frequent in diseases such as cancer
and Alzheimer [30, 31]. Hence, we study in detail PTMs cascades, ERK signalling, and phos-
photransfer and phosphorelay networks. In addition, we study important biological networks
such as T-cell kinetic proofreading, and the Ribosome Flow Model. We show that our Lyapu-
nov functions can be used to construct safety sets and perform dynamic flux analysis. Many of
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Table 1. Comparison with other methods in the literature. The row that corresponds to “admissible kinetics” asks about the functional form of the reaction rates for
which the method is applicable. “Global attractor” asks whether the method is able to provide guarantees for the global convergence to an attractor. “Uniqueness with i/o
perturbations” asks whether the method can guarantee uniqueness of steady states with respect to arbitrary addition of inflows and outflows to the network (i.e., “homoge-
neous CFSTR” in the terminology of [45]). Rows that correspond to “PTM cycle” and “Kinetic proofreading” ask whether the method can tackle the networks (9) and (15),
respectively. We have picked these two networks as non-trivial examples that are pertinent to systems biology. The question of a global attractor for HJF-type networks is
marked by an asterisk (*) since a proof has been proposed in a preprint [46] but is not formally published yet. (See [47] also).

Compartmental [22, 23] HJF [14], [16] Injectivity [37], [38] Monotone [24] LEARN

Admissible Kinetics General Mass-Action General General General
Lyapunov Function yes yes no no yes

Global Attractor checkable (manually) some cases” no checkable (manually) checkable (software)
Uniqueness w. i/o perturbations yes no [45] yes unknown yes
Software Package no yes [28] yes [29] no yes
PTM cycle no (not monomolecular) no yes yes yes (+cascades)

Kinetic Proofreading no (not monomolecular) yes yes no yes

https://doi.org/10.1371/journal.pcbi.1007681.t001

the networks studied are not amenable to the previously-mentioned analysis techniques, HJF
theory in particular. A comparison with other methods in included in the Discussion (see
Table 1). In particular, our results include the class of monomolecular networks treated in [22,
23], and it applies all the biochemical networks studied in [32], [24], [33]. A preliminary ver-
sion of a subset of these results were presented in conferences [34], [35].

Theoretically, our results connect with a corpus of previous literature. We show that the
RLFs can be formulated in different coordinates, and how this relates to the ones proposed in
[34], [36]. Also, the approach makes contact with the notions of structural injectivity [37-40],
structural persistence [41], and uncertain linear systems [42-44].

Overview and comparison

The paper has been written for a diverse readership, and has been structured accordingly.
Readers who are interested in the general concepts, the biological applications, and the soft-
ware package only need to consult the Introduction, the Results, and LEARN’s accompanying
manual (SI §7). Users can apply the results by supplying the list of reactions encoded as a stoi-
chiometry matrix as an input to LEARN’s main subroutine for a report of results. Readers who
are also interested in the technical mathematical details can consult the Methods section.

Since LEARN guarantees that a certain mechanism cannot admit multistability, oscillation,
or chaos, it can be used to distinguish competing biochemical reaction networks at the model-
ing step. We give an example of this when discussing processive vs distributive post-transla-
tional cycles.

LEARN can be compared to other results in the literature as shown in Table 1.

Terminology and motivational example

A list of reactions can be abstracted mathematically into the framework of Chemical Reaction
Networks (CRNs). A CRN consists of a set of species . = {X, .., X, } and a set of reactions
Z = {R,, ..., R, }. (see Methods for an elaborate discussion) Fig 2a) gives an example of a reac-
tion network for a core signaling motif which is the standard post-translational modification
(PTM) cycle [48, 49]. The relative gain or loss of molecules of each species in a reaction is
encoded in a matrix I' € R"" called the stoichiometry matrix. It is given in Fig 2b for the PTM
cycle. CRNs admit graphical representations naturally. A CRN can be modeled as a graph with
two sets of nodes: reactions and species. Mathematically, it is a bipartite weighted directed
graph, called the species-reaction graph (or a Petri-net [50]). The graph corresponding to the
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Fig 2. Illustration of a post-translational modification reaction network. (a) The list of reactions with six species. A
kinase E interacts with a substrate S to form a complex C; which transforms into a phosphorylated substrate Y.
Similarly, a phosphatase F dephosphorylates Y back to S via an intermediate complex C,. (b) The ODE equation
description of the time-evolution of the concentration of the species. (c) The graphical representation of the network as
a Petri-net. A circle represents a species and a rectangle represents a reaction, (d) The Jacobian matrix of the reaction
rate vector. This is the only information we assume to be known about R(x).

https://doi.org/10.1371/journal.pcbi.1007681.g002

PTM cycle is given in Fig 2c). The stoichiometry matrix I" becomes the incidence matrix of the
graph [51].

As we are interested in studying the long-term dynamical behavior, a concentration
x; > 0,i=1,.,nis assigned to each species. Hence, the concentration vector at time ¢ is
x(t) = [x,(1), . . ., x,()]T. A reaction rate (or flux) Rj(x),j =1, .., vis assigned to each reaction.
The reaction rate vector is R(x) = [Ry(x), . . ., R,(x)]". The time-evolution of the concentra-
tion vector is given by the standard ordinary differential equation (ODE) given as [52]:

x =TR(x), x(0)=x.. (1)

Biochemical networks usually contain conserved quantities (i.e., moieties) such as the total
amount of enzymes, substrates, ribosomes, RNA polymerase, etc. For each conserved quantity,
there exists a nonnegative vector d such that d'T" = 0, and d is called a conservation law. If
every species is supported in at least one conservation law the network is said to be conserva-
tive. For example, the PTM cycle in Fig 2 is conservative with three conservation laws c; + ¢, +
X+ ¥ = [Xliotap € + €1 = [Elsorap and f + ¢ = [Fl;prq Which are the total amounts of the substrate
and the two enzymes, respectively, and they stay constant throughout the reaction. Hence,
claims of global stability and uniqueness of steady states are relative to the conserved quanti-
ties. A set of concentrations that shares the same conserved quantities is called a stoichiometric
class.

For the PTM cycle, the ODE is given in Fig 2b). We do not assume that the reaction rates
have a specific functional form such as Mass-Action. We only assume that the rates are
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monotone, meaning that as the concentration of reactants increases, the rate of the reaction
increases (see Methods). This can be interpreted as enforcing a specific sign pattern on the par-
tial derivatives of R. This means that all the entries of the Jacobian matrix of R (i.e., OR/0x), are
either zero or non-negative. For the PTM cycle, Fig 2d) illustrates our assumptions on the
reaction rates encoded in terms of the Jacobian matrix. Such reactions include all common
reaction rates such as Mass-Action, Michaelis-Menten, Hill, etc.

Despite its application relevance, establishing the long-term behavior of the PTM cycle in
Fig 2 was an open problem till the 2000s. HJF’s theory cannot be used for deciding stability
since the PTM cycle is a non-zero deficiency network. In 2008, this problem was tackled via
monotonicity techniques [24, 32], but no Lyapunov function has been provided. As a motiva-
tion, we study the same cycle using our proposed method. An intuitive way to approach its
analysis is to consider the central loop in Fig 2, and then study the sum of absolute rate differ-
ences along it. This can be loosely motivated by considering the reactions rates as potentials
and the concentration of species as charges, and noting that the difference of “potentials”
causes the concentration of species to change via the flow of a “current”. Hence, we define the
ith current as the rate of change of the concentration of the ith species. Thus, we consider the
weighted sum of currents ), w;|x,| as a candidate Lyapunov function. It can also be written as
follows:

V(%) = [Ry(x) = Ry(x)| + [Ry(x) — Ry(x)[ + [Ry(x) — R,(x)| + [R,(x) — Ry (x)], (2)

which is a piecewise linear-in-rates function. In order to verify whether this is indeed a Lyapu-
nov function, we can analyze it region-wise to check that it decreases along trajectories. Con-
sider for instance the region W = {R, (x) > R,(x) > R;(x) > R,(x)}. The candidate V
simplifies to the difference of “potentials” across the substrate S:

%V(x) = R1 (x) - R4(x) (3)

To evaluate V, we need the signs of the “currents” 3, ¢, ¢,. In our example, we can use the
inequalities defining )V so that the signs can be read from the graph as follows: §,é < 0 and
¢, > 0. By noting that these signs are matched to the coefficients of R(x) in (3), and since R/
Ox is nonnegative, we can write the following inequality in WV:

_OR, . | OR T OR,

N
- Ty T <
V(x) 2. ¢ T a5 ac, 6,<0,

N I=

where the sign of the rate of change of each concentration is indicated above it.

Therefore, sgnV can be determined conclusively without knowing the kinetics. In fact, this
can be repeated for all regions to conclude that V is non-increasing along all possible trajecto-
ries of (1). (See the Results section for further analysis).

The lesson that can be drawn from this example is that a robust analysis of reaction net-
works can be carried out by considering candidate Lyapunov functions of the form V (R(x))
that vanish exactly on the steady state set, i.e. the set {x|TR(x) = 0}. This approach does not
require the computation of the actual steady state.

Robust Lyapunov functions

The motivating example has shown that we can have a Lyapunov function V (R(x)) that
decreases along trajectories for any monotone kinetics R. Hence for a given network (., %)

we will be looking for a function V : R" — R_ that vanishes only on the set of steady
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states, i.e

V(r) =0 if and only if T = 0.

Furthermore, V(x) = V(R(x)) needs to be nonincreasing along the trajectories of (1), i.e it
must satisfy:

V(R(x)) = (QV /OR)(OR/dx)TR(x) < 0, for all x and for all R admissible. (4)

If such a function exists then we call it a Robust Lyapunov Function (RLF), and the network
is called structurally attractive. Mathematically, the RLF needs only to be locally Lipschitz and
the derivative is defined in the sense of Dini’s (see Methods).

Example (cont’d). For the PTM cycle (Fig 2) the function V is
V(r) =r, =1l +|r, — r3| + |r3 —rl+ =l

Results
Characterization of RLFs

The above definition of an RLF does not offer a constructive way for finding one or for check-
ing a candidate. Our first result is to give a characterization of RLF in terms of a set of rank-
one linear systems, each of which corresponds to a reaction-reactant pair. The set of all such
pairs is P := {(j, )| X, participates in the reactionR;}. Let s be total number of such pairs.
Then, Q, = ej[yif € R, (j,,i,) € P, €=1, .., s where {yy, .., 7} are the rows of " and {ey, .., €,}
are columns of the v x v identity matrix.

The matrices Qy, .., Q, will serve as system matrices for s linear systems and also as extre-
mals of a linear convex cone. We show (see Methods) that (OR/0x)I" € cone(Qy, .., Qy) = {Z, pe
Qe|pe > 0}. We will be looking for a function V that acts as a common Lyapunov function for
these linear systems and satisfies {r|V (r) = 0} = n;_, ker Q, (see Methods).

Example (cont’d). For the PTM cycle (Fig 2), the extremals are

0 0 0 0 00 00 0 O 00 0 O
-1 0 0 00 0 O
0 -1 0’10 0 -1 1
0 0 0 00 0 O

)

o O O
o o O
o o oo
o o OO
_ o o o
o O O

0
|0
0

O = O

0 1
01710
0 0

o O O
o O O

We are ready to state the main result of this section. (See Methods).

Theorem 1. Given (., %). Let (1) be the associated ODE. A function V : R*, — R, isa
common Lyapunov function for the set of linear systems {# = Q,r, ..., = Q.r} ifand only if V
is an RLF for the reaction network (., Z).

The search for RLFs

The characterization provided in Theorem 1 can be used for devising computational algo-
rithms that search for an RLF. In Methods, we present several algorithms for constructing
piecewise linear (PWL) or piecewise quadratic RLFs. In order to simplify the presentation, we
will be only looking for convex piecewise linear RLFs in our study of biochemical networks.
This means looking for vectors ¢, ..., ¢, € R" (for some positive integer m) such that V is an
RLF where:

V(x) = V(R(x)) = maxc,R(x). (5)

k=0,..,m
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and ¢, = [0, .., 0]~. If the network has a positive steady state flux (i.e., there exists positive r
such that I'r = 0) then it can be shown that V can be written as V(x) = || CR(x)]| 5, where

|| (15 - %] ]| oo = max;|x;| is the co-norm and C = [T .., !

5 Cm

]". Two special cases are of interest
to us:
Sum-of-currents (SoC) RLFs. These are functions of the form:

T(R() = 3 & i = | diag(&)TRE) |, (6)

i=1

where & = [£, .., ¢,] € R”, is a positive vector and ||[zy, .., z,] "||; == |z is the 1-norm. The
function considered in [22] is a special case with & = 1. The vector £ can be found by linear pro-
gramming using a special case of Theorem 2 (see Methods). Note that the function (2) dis-
cussed in the motivating example has the form (6) above.

Max-Min RLFs. These are functions of the form:

V(R(x)) = maxR(x) — minR(x), (7)

where R consists of reaction rates or the difference between forward and backward rates of a
reaction. Unlike SoC RLFs which keep track of the reaction rate differences across each spe-
cies, the Max-Min RLF keeps track of the maximal reaction rate difference across the whole
network at each time. We provide a full graphical characterization of the class of networks that
admit Max-Min RLFs (which we call M-networks). (see Methods, Theorem 4).

Alternative forms. In Methods, we give conditions on a function V such that V(x — x,)
(where x, is a steady state) is a Lyapunov function for any admissible R. We call V a concentra-

tion-dependent RLF. We show that V(r) = || BI'r ||_ isan RLFiff V(z) = || Bz ||_ is a con-
centration-dependent RLF (see Methods, Theorem 11). These PWL functions relate to the
ones proposed in [34, 36]. Note, however, that V (x — x,) is a Lyapunov function only in the
stoichiometric class that contains x,.

Properties of RLFs. In [27], some properties of networks admitting PWL RLFs have been
established and they can serve as necessary condition tests. In Methods, we provide two addi-
tional properties, namely testing robust non-degeneracy and the absence of critical siphons.
These conditions are implemented in LEARN.

The class of structurally attractive biochemical networks

The existence of an RLF implies that the qualitative long-term behavior of a network is highly
constrained. Hence, an important issue is whether this theory is sufficiently relevant to biomo-
lecular applications. We will show in the remainder of the Results section that this class of net-
works constitutes a rich and relevant class. It includes basic motifs, modules, and larger
networks and cascades in molecular biology. For most of these networks, the HJF Lyapunov
function [14] does not apply. And if it applies, it is only valid with Mass-Action kinetics (or a
generalization [18]) and it does not confer the same powerful conclusions offered by our the-
ory. Many of the networks discussed in the remainder of this paper are qualitatively analyzed
for the first time and most of them had no Lyapunov functions known for them. For all the
subsequent networks the following statement holds: if a positive steady state exists, then it is
unique and globally asymptotically stable relative to its stoichiometric class.

Binding/Unbinding reactions

In this subsection, several biochemical networks are presented. They are fairly simple and all
of them can be analyzed using HJF theory in the case of Mass-Action kinetics. However, they
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X
(a) (d)

Fig 3. Basic biochemical examples. (a) Simple binding. (b) Simple binding with enzyme inflow-outflow. (c)
Cooperative binding. (d) Competitive binding.

https://doi.org/10.1371/journal.pchi.1007681.9003
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are presented here to show that the properties that our theory requires are obeyed by the basic
biochemical motifs, which establishes its applicability and generality. Furthermore, we offer an
intuitive window to the meaning of RLFs and how our graphical conditions apply.

Simple binding reaction. Fig 3a represents a simple reversible binding reaction:

S
X + E = XE,
Ry

which can represent an enzyme binding to a substrate. The corresponding RLF can be found

easily using Theorem 4 and is given by:

Both the Max-Min and the SoC RLFs coincide in this case.
Simple binding with enzyme inflow-outflow. Fig 3b represents the following binding
reaction with enzyme inflow-outflow:

Ry
=E,
R_y

R
X+ E=2XE,0
Ry
By considering the irreversible subnetwork 0 — E, 0 — X, X + E — XE, XE — 0, a Max-
Min RLF can be found using Theorem 4 and is given by (7) where

R = {Rl —R_,;R, —R_,, 0}~ (8)

Cooperative binding reaction. The following reactions (depicted in Fig 3c) represent the
situation where n enzyme molecules E need to bind to each other to react to X:

Ry Ry
nE=E, E, + X =XE,
Ry

R_y

The case n = 2 is called dimerization. The corresponding RLF can be found using Theorem
4 and R is given by (8). The irreversible subnetwork for which Theorem 4 was applied is
0—EO0—X,nE—E,E,+X— XE,, XE, — 0.
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Competitive binding reaction. The following reactions (depicted in Fig 3d) describe the
situation when two molecules E;, E, compete to bind with X:

Ry Ry
E,+ X=XE,, X+E,—=XE,
Ry R,

The corresponding RLF can be found using Theorem 4 and & is given by (8). The irrevers-
ible subnetwork for which Theorem 4 was applied is 0 — Ej, E; + X — XE; — XE; — 0,
0—>XE2—)X+E2,E2—70.

Three-body binding

We have applied our techniques to the dynamics of simple binding which can be analyzed eas-
ily using various known ways. However, it is often the case that two compounds X, Y cannot
bind unless a bridging molecule E allows them to bind, forming a ternary complex. This is
known as three-body binding [53] and it is ubiquitous in biology. Examples include T-cell
receptors interaction with bacterial toxins [54], coagulation [55], and multi-enzyme supramo-
lecular assembly [56]. The same reaction network also models the binding of two different
transcription factors into a promoter with a double binding site. Despite its simplicity, the
steady-state analysis of the equilibria has been subject of great interest [53]. Stability cannot be
decided via HJF theory, and it has not been studied before to our knowledge.
The network can be depicted in Fig 4, and is given by eight reactions as follows:
Ry Ry
X+E=XE, Y+E=EY

Ry
R3 Ry

EY + X = XEY, Y + XE= XEY,
R_; R

3 —4

The network is an M-network and the corresponding irreversible subnetwork has the reac-
tions {Ry, R_,, R_3, R4}. Hence we apply Theorem 4 to have an RLF of the form (7) where

X

Bridge Ternary

Complex

Y

Fig 4. Three-body binding. Gray-colored species are intermediates.

https://doi.org/10.1371/journal.pcbi.1007681.9004
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mRN
Protein
RNA Ribosome,
Polymerase mRNA
]
DNA
(a) (b)

Fig 5. Transcription and translation. Gray-colored species are intermediates. (a) Transcription. (b) Translation with
aleak.

https://doi.org/10.1371/journal.pchi.1007681.9g005

R={R,—R_,R,—R,,R ,—R,,R, — R ,}. It can be concluded that there exists a unique
steady state in each stoichiometric class and it is globally asymptotically stable.

Transcription and translation networks

Transcription and translation are the first two essential steps in the central dogma of molecular
biology, and hence they are of utmost importance in the analysis of gene regulatory networks.

Transcription network. Fig 5a) shows the transcription network which describes the pro-
duction of mMRNA from DNA using the RNA polymerase [57]:

R 3 :
RNAP + DNA = RD — RNAP + DNA + mRNA, mRNA —5 0.
R

-1

This model explicitly accounts for the concentration of RNA polymerase and hence it
extends to situations in which RNA polymerase is not abundant.

Applying Theorem 4, the RLF (7) can be used with R = {R, — R_,, R,, R, }. Alternatively,
Theorem 2 can be used, and the Lyapunov function found can be written as:

V(x) =|| diag([1, 1,1, 3]")x||,, where the species are ordered as RNAP, DNA, RD, mRNA.

Note this network has deficiency one, hence no information regarding stability can be
inferred from HJF theory. Furthermore, the procedure proposed in [36] has been reported not
to work for the network above.

Translation network with a leak. Fig 5b) shows the translation network which describes
the production of a protein from mRNA via ribosomes [57]. The leaking of the Ribosome-
mRNA complex into the pool of ribosomes is also modeled. In order to make the model more
general, we also explicitly account for the concentrations of ribosomes. This is relevant to situ-
ations in which ribosomes are not highly abundant which can occur naturally [58, 59] or in
synthetic circuits [60]. The network can be written as

R s
Rib + mRNA = mRNA : Ribo—-mRNA + P + Ribo

Ry

mRNA : Ribo—5Rib, P—50.

Note that the flux corresponding to reaction R, vanishes at steady state which implies
that the species mRNA:Ribo vanishes at any steady state. Note also that the dynamics of other
species are independent of the dynamics of P. Hence, the network can be considered as a
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cascade of

Rib + mRNA = mRNA : Ribo — mRNA + Ribo, mRNA : Ribo — Rib

and 0 — P — 0. Applying Theorem 3 to the first network we get the following Lyapunov func-
tion:

V(R(x)) = max{R,(x), R,(x) = Ry(x) = Ry(x) = R,(x), =R, (x) + Ry(x) + Ry(x)}.

Note that V is neither SoC nor Max-Min. The second network can be analyzed using this
Lyapunov function: V,(x) = |R3(x) — Ry(x)|. Overall stability is established for the cascade
using standard techniques [61].

Basic enzymatic networks

Basic activation motif. Fig 6a) represents the basic enzymatic reaction where an enzyme
E binds to a substrate S to produce S" as follows [48]:

Ry Ry
S+E=ES—E+S".
R

Theorem 3 can be used. The resulting Lyapunov function is: V(x) = max{|R; — R_y|, R,}.
Although this network has deficiency zero, it is not weakly reversible. This implies that the steady
states belong to the boundary, and HJF theory does not offer any information regarding stability.

Enzymatic activation cycle. In order to close the cycle of the activation motif, Fig 6¢)
depicts the activation of a protein P by an enzyme E, and then the activated protein decays
back to its inactive state. The list of reactions is given as [62]:

R :
S+E=SE L E+S§, 525
R

Theorem 2 gives the following SoC RLEF:
V(x) = [Ry = R, (x) = Ry(x)| + [Ry(x) = Ry(x)[ + |R, (%) = R, (%) = Ry(x)];

and both Theorems 3 and 4 give RLFs also.
This network has deficiency one; the deficiency one algorithm [17] excludes the existence
of multiple steady states with Mass-Action kinetics. No information regarding stability can be

Kinase
Enzyme
S St
Enzyme
5 8%
Phosphatase
(a) (b) (©)

Fig 6. Basic enzymatic reactions. Gray colored species are intermediates. (a) Basic enzymatic motif. (b) Enzymatic
cycle. (¢) Full PTM cycle.

https://doi.org/10.1371/journal.pcbi.1007681.9006
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inferred in that context from HJF theory. Furthermore, the decay reaction R; usually models
fast dephosphorylation which has a Michaelis-Menten kinetics, which is not allowed in [17].
The full PTM cycle. A simplified version of the enzymatic futile cycle has already been
used as a motivating example in Fig 2. It differs from the preceding network by explicitly
modeling the dephosphorylation step. The following describes the complete model [48, 49]:

Ry Ry . Ry v R
S+E=SE—58" +E S +F=SF-5S+F (9)
R, R_y

For instance, S represents the base substrate, E is called a kinase which adds a phosphate
group to S to produce S*. This process is called phosphorylation. The dephosphorylation reac-
tion is achieved by a phosphatase F that removes the phosphate group from S* to produce S.

Theorem 4 can be used to find the RLF (7) where R = {R, —R_,,R, —R_,,R,,R,}.

Alternatively, Theorems 3 yields the SoC RLF:

V(x) = [Ry(x) = R, (x) = Ry(x)[ + [Ry(x) — R, ()]

10
+ |R3(x) - R73(x) - R4(x)| + |R1 (x) - R—l(x) - R4|' ( )

Both SoC and Max-Min RLFs have an intuitive meaning in terms of the reaction graphs of
the networks. The first is the difference between the fastest and the slowest reactions, and the
second is the sum of currents (rates of change of concentrations). Since the deficiency of the
network is one, stability cannot be inferred from HJF theory.

Energy-constrained PTM cycle. Basic Motif. Madhani [63] presents this biochemical
example of adding a phosphate group to a protein using a kinase. ATP is not assumed to be
abundant and its dynamics are explicitly modeled. The reaction network is depicted in black
in Fig 7a), which can be written as:

R Ry
K+ATP =AK, P+ AK = PAK
R

Ry —2

Ry Ry R _
A"K =K+ ADP,PAK—5P"A"K—5P" + A K,
R_;

-5

where K is the kinase, ATP is the adenosine triphosphate, ADP is the Adenosine diphosphate,
and P is the phosphorylated protein. Reactions R, R, are not supported in the kernel of the

B Phosphotase

(2) (b)

Fig 7. Energy-constrained PTM cycles. (a) Phosphorylation is modeled only. The black-colored component is the
basic motif proposed in [63] (b) A full phosphorylation-dephosphorylation cycle with energy expenditures modeled.
The gray species are intermediates.

https://doi.org/10.1371/journal.pcbi.1007681.g007
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stoichiometry matrix, which implies that the species PAK, P* A~ K vanish at any steady state
point.
Applying Theorem 3, one can get the following RLF function:

V(x) = max{|R, (x) = R;(x)], |R,(x) = R,(x)], Ry(x), R, (x), [R5 (x) — R ;(x)[}-

Energy constrained PTM cycle. In order to have a full cycle, the model can include the

following two reactions: A"—%A,  P*—L. P, where ADP is converted to ATP by other cellu-
lar processes and is modeled as a single step, and P" decays to its original state P spontaneously
or chemically [64]. The reaction network is depicted in Fig 7a).

The full network is an M network, and it has the RLF (7) with
R ={R, —R_,R,— R, ,Ry;R;,R; — R ;,R;,R. }.

The network is not complex-balanced and HJF theory is not applicable. The dynamics of
this network have not been analyzed before per our knowledge.

Full energy-constrained PTM cycle. The dephosphorylation step can be modeled fully
and is depicted in Fig 7b). This is the energy-constrained analog of Fig 6¢). The network is also
an M-network and it admits an RLF of the form (7). The list of reactions have not been
included for the sake of brevity.

Post-translational modification cycle cascades

The post-translation modification (PTM) cycle (e.g, phosphorylation-dephosphorylation cycle
[48, 49]) has been analyzed in the previous section. This kind of cycle appears frequently in
biochemical networks, and can be interconnected in several ways; we discuss some here. For
recent reviews see [65, 66].

A multisite PTM with distinct enzymes. It is known that a single protein can have up to
different 100 different PTM sites [65] and it can undergo different PTM cycles such as phos-
phorylation, acetylation and methylation [67, 68]. Each of these cycles has its own enzymes.

Hence, we consider a cascade of n PTM cycles as shown in Fig 8a) where 7 is any integer
greater than zero. For instance, the associated reaction network for the case n = 2 is given as:

k k. ks 3
X() + Eo ki:l’l E0X0_2>X1 + Em X1 + Fu IiF()X1_4’X0 + Fm

ks ke kz ki
X1+E11::’E1X1_0>X2 +Ey, X2+F1,::’F1X2_8’X1+F1~

The network is not an M-network and hence Theorem 4 is not applicable. However, using
Theorem 2 it can be shown that a SoC RLF for the n cascade exists and can be represented as
V(x) =| diag(&)x]|, with&=1(2,2,....,2,1,1, ..., 117 with the ordering given as Xy, . . ., X,
Eo Eypy .. Foy X,

HJF theory will not apply since this network has deficiency #. Also, monotonicity-based
results [24] do not apply, since the network is not cooperative in reaction coordinates. In fact,
the long-term behavior of this cascade has not been studied before to our knowledge. It follows
that for any » the network has a unique globally asymptotic stable steady state in any stoichio-
metric class (i.e., with respect to fixed total amounts for the enzymes and the substrate).

Multiple PTM cycle with a processive mechanism. Proteins can undergo different
PTMs, but they also can undergo a multisite PTM. For instance, a phosphate group can be
added to multiple sites on the protein [69]. Multisite phosphorylation can be processive [70]
or distributive [71]. Fig 8b) depicts a multiple-site futile cycle with a processive mechanism.
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@
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(d)
Fig 8. Cascades of PTM cycles. (a) A multisite PTM with distinct enzymes. (b) A multiple PTM with a processive
mechanism. (c) The “all-encompassing” processive PTM mechanism. (d) Double PTM Cycle with a distributive

mechanism.

https://doi.org/10.1371/journal.pcbi.1007681.9g008
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The reaction network can be written as [33]
X,+E=EX, =EX,=...=EX, > X, +E,
X +F=FX = . . =FX,=FX, > X, +F,

(11)

It can be noticed that for every n, the network satisfies the graphical conditions of Theorem
4. Therefore, an RLF is (7) where R = {R, — R_,,k =1,..,v},and R ;(x) := 0 if Ry is
irreversible.

Energy-constrained processive cycle. The ATP and ADP expenditure can be accounted
for in the processive cycle similar to the model presented in Fig 7b). The new network will
remain an M-network and Theorem 4 can be applied. Details are omitted for brevity.

A generalized processive cycle. An “all-encompassing” processive cycle has been studied
in [8] which allows multiple enzymes and is depicted in Fig 8c. It takes the following form:

X, +E = (XE), = XE),=...= (X1El)m1 — X, + E,
X, +E, = (XE), = (XE), = ... = (XE),, > X;+E,,

2

Xn + En = (XnEn)l = (XnEn>2 =...= (XnEn)m - Xl + En7

This network is also an M network and it satisfies the results of Theorem 4. Hence, the Lya-
punov function (7) can be used.

Both networks above have been studied in [8, 33] by establishing monotonicity in reaction
coordinates. Such techniques require checking persistence a priori and do not provide Lyapu-
nov functions. Furthermore, our results have the advantage of providing an “all-encompass-
ing” general framework that includes many of these individually studied networks in addition
to new ones.

Distinguishing between processive and distributive mechanisms. Fig 8d) depicts a dou-
ble futile cycle with a distributive mechanism [71, 72], which is described by the following set
of reactions:

k : k: )
X,+E 5EX,~5X,+E, X +F%FX,~5X, +F,
k_ k_3

(12)

ks . k7
X, +E SEX,~5X,+E, X,+F%FX,—~5X, +F,
k_s k_7

It can be verified that the network violates the Py necessary condition (for the minor corre-
sponding to Xy, X1, X, E, FX;, EX;). Hence, a PWL RLF does not exist [27]. Indeed, the above
network is known to admit multi-stability for some parameter choices as shown in Fig 1.

Hence, our results can be used to compare between distributive and processive mechanisms
as viable models for the first stage in the MAPK cascade. Since the latter has been observed
experimentally to accommodate multiple non-degenerate steady states, the processive mecha-
nism cannot be a model. (Similar observations have been made in [72-74].) Fig 1 depicts sam-
ple trajectories for the processive and distributive cycle with Mass-Action kinetics.

Phosphotransfer and phosphorelay networks

Phosphotransfer is a covalent modification in which a histidine kinase gives the phosphate
group to a response regulator and it is the core motif in a two-component signaling systems
[75]. Phosphotransfer cascades are called phosphorelays [76, 77].
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Phosphotransfer motif. An example is the envZ/ompR signaling system for regulating
osmolarity in bacteria such as E. Coli [78]. The core motif can be described by the following
set of reactions [79]:

Ry Ry
Z"+X =C=X"+2,
R, R,
where the “+” superscript refers to a phosphorylated substrate. For instance, Z* is the phos-
phorylated EnvZ protein, while X is the ompR protein.

The proteins Z, X" can also be phosphorylated and dephosphorylated by other reactions.
Fig 9a) presents a network where those other reactions are modeled as a single step:

7270 X2, (13)

where R; (which phosphorylates Z) can be monotonically dependent on external signals such
as osmolarity in the envZ/OmpR network.

It can be noticed that Theorem 4 is applicable and (7) is an RLF with
Ry ={R, —R_;,Ry(x) = R_,,Ry,R,}.

Phosphotransfer with enzymes. A more elaborate model can take into account the phos-
phorylation/dephosphorylation of proteins Z, X* in terms of other enzymes. Hence, reactions
(13) can be replaced by the following:

Ry Ry R Rg
Z+F iFZ—>Z++F, X++ER¢~EX+—>X+E, (14)
as depicted in Fig 9b. Similarly, (7) is an RLF with

R={R —R_,R,— R, R;— R ;,R,R; —R_;,R}.

A phosphorelay. A phosphorelay is a cascade of several phosphotransfers. It appears ubiq-
uitously in many organisms. For example, the KinA-SpoOF-Spo0B-Spo0A cascade in Bacillus
subtilis [80] and the SInlp-Ypd1p-Ssklp cascade in yeast [81].

Fig 9¢ depicts the cascade which is given by:

X, =X X=X,
Xi+X, =C =X +X,

X:t:l +Xn = Cn = X: +Xn—l3

where the first kinase is phosphorylated by some constant external signal, and X' is the
response regulator.

The network is still an M-network and conditions of Theorem 4 apply by mere inspection
of the graph. Hence a function of the form (7) is a Lyapunov function. Enzymatic activation/
deactivation of X;, X!, respectively, can also be added (analogously to Fig 9b) and the result
will continue to hold. Note that the same applies to the more general model presented in [82]
also. We omitted the details for brevity.

Note that none of the phosphotransfer networks is complex-balanced and hence HJF theory
is not applicable.

T-cell kinetic proofreading network

In 1974, Hopfield [83] proposed the kinetic proofreading model in protein synthesis and DNA
replication. Subsequently, McKeithan [84] proposed a network containing a ligand, which is a
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Xn

Fig 9. Phosphotransfer and phosphorelay networks. (a) Phosphotransfer network. (b) Phosphotransfer with
phosphorylation/dephosphorylation. (c) A phosphorelay network.

https://doi.org/10.1371/journal.pchi.1007681.9009
peptide-major histocompatibility complex M, binding to a T-cell receptor; the receptor-ligand
complex undergoes several reactions to reach the final complex Cy. The chain of reactions
enhances the recognition and hence it is called a kinetic proofreading process. Fig 10a) depicts
the reaction network, which is given by the following set of reactions:
M+L=C —C —..—Cy
C, = M+LC,—M+L,...Cu > M+1L

(15)

Applying Theorem 2, it can be shown that for any N > 1, the network admits a SoC RLF
of the form V(x) = || diag([1,1,2,2, ..,2]")x |, where the species are ordered as T, L, Co,
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(b)

Fig 10. Other signalling networks. (a) McKeithan’s T-Cell kinetic proofreading network. (b) ERK signaling Pathway
With RKIP Regulation.

https://doi.org/10.1371/journal.pcbi.1007681.g010

Cy, - . ., Cn. Note that this network does not meet the graphical requirements of Theorem 4
since it is not an M network. The monotone-systems approach proposed in [24] is not applica-
ble here since the system is not cooperative in reaction coordinates.

Nevertheless, this is one of the few networks, considered so far, which is complex-balanced.
The work [18] showed that this network is weakly reversible and that it has zero-deficiency;
therefore any positive steady state is unique relative to the interior and is locally asymptotically
stable. In order to infer global stability, it was necessary to compute the steady states explicitly
to preclude a boundary steady state stoichiometrically compatible with a positive steady state.
In comparison, our approach is more powerful, since the former approach is limited to gener-
alized Mass-Action kinetics, and cannot infer global stability directly.

ERK signaling pathway with RKIP regulation

Fig 10b depicts the network describing the effect of the so called Raf Kinase Inhibitor Protein
(RKIP) on the Extracellular Regulated Kinase (ERK) signaling pathway as per the model given
in [85]. It can be described using the network:

R 3
K'+M —=K"M—5K+M
Ry
Ry Ry .
E4+P =EP—SE* 4+ P

R_3

R;
K+R =KR
R_j;

-5

KR+ E* :é KRE* YR+ E+ K",
—6
where K is the RKIP, E is the ERK Kinase, P is the RKIP phosphatase, and M is the phos-
phorylated MAPK/ERK Kinase, and the plus superscript means that the molecule is
phosphorylated.

The network is an M-network and the requirements of Theorem 4 are satisfied. Hence, (7)
isan RLFwith R = {R, — R_,,k =1,..,v}, and R_;(x) := 0 if Ry is irreversible. Note that this
network is of deficiency one, hence stability cannot be inferred by HJF theory. Nevertheless,
monotonicity-based analysis can be applied [24] which utilizes cooperativity in reaction coor-
dinates. Refer to the Discussion for a detailed comparison to monotonicity techniques.
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Fig 11. The ribosome flow model. (a) Schematic representation. A, is the initiation rate, A, is the elongation rate from
site i to site i + 1, and A,, is the production rate. The state variable x; € [0, 1] is the occupancy level of the site i. (b)
Reaction network representation. X; corresponds to the occupancy level, while Y; corresponds to the vacancy level.

https://doi.org/10.1371/journal.pcbi.1007681.9011

The ribosome flow model

Finally, we show that our techniques’ applications in molecular biology are not limited to clas-
sical biochemical networks. A translation elongation process involves ribosomes travelling
down an mRNA, readings codons and translating amino-acid chains via recruited tRNAs. A
conventional stochastic model is the Totally Asymmetric Simple Exclusion Process [86]. A
coarse-grained mean-field approximation that resulted in a deterministic continuous-time
flow model was introduced by [87], and its dynamics have been studied further [87, 88].

Fig 11 illustrates the model. An mRNA consists of codons that are grouped into # sites,
each site i has an associated occupancy level x,(f) € [0, 1] which can be interpreted as the prob-
ability that the site is occupied at time . The ribosomes’ inflow to the first site is Ao, which is
known as the initiation rate, A; is the elongation rate from site i to site i + 1, and A, is the pro-
duction rate. All rates are assumed to be positive. The ODE is written as follows:

X = k(1 —x) = Ax (1 —x,)
562 = 7\'1361(1 - x?) - 7\.2)62(1 - XS)

3.(: = xnflxnfl(l - xn) - >\‘ X

n nn’

The dynamics of the system above have been analyzed and shown to be monotone in [88].
In what follows, we provide an alternative approach that provides a Lyapunov function and
establishes more powerful properties. Let y; :== 1 — x;, i = 1, .., n. Then, we can define a reaction
network with species X;, Y;, i = 1, .., n as follows:
n+1

R, R
Y, —X,, X, —Y

n n’

X 4Y, “5Y, 4 X, X, + Y, S5Y, X,

The network has 27 species, n + 1 reactions, and n conservation laws. It is depicted in Fig
11(b). The ODE system above describes the time-evolution of the reaction network with Mass-
Action kinetics.

The graphical conditions of Theorem 4 are satisfied. Hence, (7) is an RLF for any n with
R ={R,,R,,...,R,,, }. Since the network is conservative it follows that there exists a unique
globally asymptotically stable steady state. Note that this results holds with general monotone
kinetics.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 21/37


https://doi.org/10.1371/journal.pcbi.1007681.g011
https://doi.org/10.1371/journal.pcbi.1007681

O PLOS

COMPUTATIONAL

BIOLOGY

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks

Quantitative analysis via RLFs

In this subsection we show that our RLFs can provide valuable quantitative information
regarding the behavior of the network beyond mere qualitative long-term behavior
information.

Safety sets. Since our techniques are based on the construction of RLFs, we can compute
safety sets which are the level sets of a Lyapunov function. If a system starts in a safety set it
cannot leave it at any future time. Substituting Mass-Action kinetics, the safety set for a Lyapu-
nov function V (R(x)) consists of piecewise polynomial surfaces and it is not necessarily con-
vex. The safety set provided by an RLF surrounds all the steady states, i.e is not restricted to
stoichiometric classes. In comparison, a concentration-dependent RLF provides a convex
polyhedral safety set in a specific stoichiometric class. In order to illustrate this, consider the
full PTM cycle with Mass-Action kinetics and let all the kinetic constants be 1. There are three
conserved quantities, which we assume are set to [E]r = [F]7 = [S]7 = 10AU. Hence, the
dynamics of the ODE evolve in a subset of three dimensional cube [0, 10]°. A level set of the
RLF in (10) can be calculated restricted to the stoichiometric compatibility class and is
depicted in the Fig 12a. The concentration-dependent RLF can be constructed via Theorem
11. Plotting the level set requires computing the steady state which can be calculated by solving
the algebraic equations to be: (x,, e, f.) = (1.216990, 6.216990, 6.216990). The level set is

sm)

Fig 12. Safety sets computed via RLFs. (a),(b), Safety sets for the PTM cycle (Fig 6¢). (a) The safety set corresponding
to the rate-dependent RLF for the PTM cycle. It is the a-level set of V where o has been chosen such that the
concentration of § does not exceed 2.5. (b) The safety set corresponding to the concentration-dependent RLF. The
safety set has been chosen similarly to satisfy the same condition. (c),(d), Sub-levels sets for the safety sets
corresponding to the rate-dependent RLF (7) for the double processive PTM cycle (Fig 8b). (c) The sublevel set (with
[X,] = 0) of the a-level set of V where a has been chosen such that the concentration of E does not exceed 2.5 on the
sublevel set. (d) Another sublevel set of the same set in (c) with [X;] = 0.5AU.

https://doi.org/10.1371/journal.pcbi.1007681.g012
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plotted in Fig 12b. Both safety sets corresponding to the two Lyapunov functions are chosen so
that S = 2.5 lies on the boundary of the set. In other words, the substrate concentration is
guaranteed not to exceed 2.5 if the system is initialized in the set. It can be clearly seen that the
two sets are distinct, and they give different guarantees. Their intersection gives a tighter safety
set.

Another example is a double processive PTM (Fig 8b) which has four dimensional stoichio-
metric classes. Hence, the 4D safety sets cannot be plotted, but their sublevel sets can still be
visualized. Fig 12¢c and 12d shows sublevel sets for different concentrations for the double
phosphorylated species X, with total kinase, phosphatase and substrate concentrations fixed to
10AU each. Fig 12c) shows the safety set with the concentration of the free kinase E not
exceeding 2.5 and with [X,] = 0. However, the sublevel set changes drastically if the concentra-
tion of X, is 0.5AU as shown in Fig 12d.

Flux analysis for the McKeithan network. Since the RLF are written in terms of rates
(also called fluxes), our functions can be used in the context of flux analysis. Such techniques
usually operate at steady state and do not take dynamics into consideration [89]. We provide
an illustrative example to show how our RLF can be used. Let N = 2 for the network above.
Usually, the network is initialized with zero concentration of the intermediate complexes.
Hence, the initial concentrations of M, L are [M], [L]r. Therefore, the Lyapunov function
provides the following safety set V (r) < V (r,,0, ..,0), where r, is the flux which is a function
of [M]r, [L]t. For each [M] 1, [L]1, we want to find an upper bound that ¢, cannot exceed for
all time. Let R¢ be the last reaction (i.e., C, — M + L), and let R, be the first reaction, i.e M + L
— Co. Hence, we look for solving the following convex optimization problem for a given
r; > 0:

Maximize T

subject to r>0
| Crlle < V(r},0,..,0),
r, <ri.

The last inequality is included since the network is conservative and Rg(m, £) < Rg([M]r,
[L]7) holds due to the monotonicity of R.

The optimization problem above does not require knowledge of the kinetics as it is defined
for fluxes. For the T-cell network, the solution of the problem is r; = 3r;. This means that the
flux ¢ is guaranteed to be less than 3r; for all time. Converting these bounds to concentrations
requires usage of the kinetics. Let R, (m, £) = kym¢, and let R;(c,) = —2 (Michaelis-Menten

T 1tbey

kinetics). Solving for ¢,, we can plot an upper bound on total amount of k;[M]7[L] 7 versus the
maximum allowed concentration c,. If Rs is Mass-Action then the relationship will be linear.
Both curves are plotted in Fig 13.

Discussion

We have presented a comprehensive theoretical framework and provided computational tools
for the identification of a class of “structurally attractive” networks. It has been demonstrated
that this class is ubiquitous in systems biology. Networks in this class have universal energy-
like functions called Robust Lyapunov Functions and, under additional mild conditions, can
only admit unique globally stable steady states. Their Jacobians are well behaved and they can-
not exhibit chaos, oscillations or multistability. The latter cannot be admitted even under
inflow/outflow perturbations. Hence, LEARN can be used to rule out these networks as viable
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Fig 13. Flux analysis for McKeithan’s T-cell kinetic proofreading network. The plot depicts an upper bound on the
input flux versus the maximum allowed concentration of the end product with Michaelis-Menten kinetics R4(c,) = 5/
(0.1¢, + 1) and Mass-Action kinetics Rg(c,) = ¢.

https://doi.org/10.1371/journal.pcbi.1007681.9013

models for mechanisms that display such behaviors experimentally. Thus, our work supple-
ments other mathematical methods used to invalidate models, as for example those in [90] and
[91].

Our class of networks is distinct from the one identified by the HJF theory [14, 17] and it
has wider applications to biology as we have shown. Furthermore, our results include all net-
works that have been studied via compartmental system techniques [22, 23] and via monoto-
nicity techniques [8, 24, 33]. In fact, showing that the latter class of network always admits an
RLF is a subject of a forthcoming paper. Refer to Table 1 for a comparison with techniques in
the literature. In addition to wider applicability, our analysis has the advantage of showing per-
sistence automatically, rather than needing to check it a priori as in [24]. Also, it has the advan-
tage of having an explicit expression for the Lyapunov function which can be used for a deeper
study of the dynamics such as the construction of safety sets and flux analysis as discussed
before. In addition, Lyapunov functions have been extensively used to study the effect of inter-
connections, uncertainties, disturbances, and delays [9, 10].

Our study of biochemical networks is not meant to be exhaustive, since we only focused on
common motifs and cascades. We provide a computational package to help the wider commu-
nity apply our techniques to study new networks.

We have presented the RLFs with two representations: rate- and concentration-dependent,
and we have provided a toy example for dynamic flux analysis via a rate-dependent RLF. We
look forward to these results being developed further to complement standard flux analysis
techniques.
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For a given network, we have presented sufficient conditions for the existence of an RLF,
and several necessary conditions. However, there are important networks that lie in the gap
between the necessary and sufficient conditions. A relevant example is a ligand (L) binding a
receptor (R), and initiating a PTM cycle for a substrate (S). The reaction network is:

R+L=RL S+RL=C— S +RL, S — 8,

It satisfies all necessary conditions but its global stability is still open.

Future work includes the development of more general techniques to identify classes of net-
works that can be multi-stable but cannot admit oscillations or chaos. Furthermore, networks
that admit RLFs have other strong properties in terms of contraction and stabilization [92],
which will be studied in forthcoming papers.

Methods
Reaction networks

We follow the standard notation and terminology on reaction networks [17, 18, 52, 93].

A Chemical Reaction Network (CRN) consists of species and reactions. A species is what
participates or is produced in a chemical interaction. In the context of biochemical networks a
species can be a gene’s promoter configuration, a substrate, an intermediate complex, an
enzyme, etc. We denote the set of species by . = {X,, .., X, }. A reaction is the transformation
of reactants into products. Examples include binding/unbinding, decay, complex formation,
etc. We denote the set of reactions by Z = {R,, ..., R, }. Reactions have two distinct elements:
the stoichiometry and the kinetics.

Stoichiometry. The relative number of molecules of reactants and products between the
sides of each reaction is the stoichiometry. Hence, each reaction is customarily written as fol-
lows:

Rio D oXi— D BiXo j=1,.v, (16)
i=1 i=1

where a;;, B are nonnegative integers called stoichiometry coefficients. The expression on the
left-hand side is called the reactant complex, while the one on the right-hand side is called the
product complex. If a transformation is allowed to occur also in the opposite direction, the
reaction is said to be reversible and its reverse is listed as a separate reaction. For convenience,
the reverse reaction of R; is denoted as R_;. The reactant or the product complex can be empty,
though not simultaneously. An empty complex is denoted by 0. This is used to model external
inflows and outflows.

An autocatalytic reaction is one which has a species appearing on both sides of the reaction
simultaneously (e.g., D — D + M). A network is called non-autocatalytic if it has no autocata-
lytic reactions.

The stoichiometry of a network can be summarized by arranging the coefficients in an aug-

mented matrix n x 2vas: [ = [A|B], where [A];; = a;;, [B];; = B;;- The two submatrices A, B can

T
n

be subtracted to yield an 7 x v matrix ' = [T ..y"]" called the stoichiometry matrix, which is
defined as I" = B — A, or element-wise as: [I'];; = B; — a;;.

Kinetics. The relations that determine the velocity of transformation of reactants into
products are known as kinetics. We assume an isothermal well-stirred reaction medium. In
order to study kinetics, a nonnegative number x; is associated to each species X; to denote its
concentration. Assume that the chemical reaction R; takes place continuously in time. A reac-

tion rate or velocity function R, : R" — R, is assigned to each reaction. The widely-used
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Mass-Action kinetics have the following expression: R;(x) = k; [}, x,", where kij=1,.,vare
positive numbers known as the kinetic constants. Many other kinetic forms are used in biology
such as Michaelis-Menten, Hill kinetics, etc.

We do not assume particular kinetics. We only assume that the reaction rate functions
Rj(x), j = 1, ..v satisfy the following minimal assumptions:

AK1. each reaction varies smoothly with respects to its reactants, i.e R;(x) is continuously
differentiable;

AK2. each reaction needs all its reactants to occur, i.e., if &;; > 0, then x; = 0 implies
Rj(x) = 0;

AK3. each reaction rate is monotone with respect to its reactants, i.e 8Rj/ Oxi(x) > 0 if ;>0
and OR;/0x;(x) = 0 if a;; = 0;

AK4. The inequality in AK3 holds strictly for all positive concentrations, i.e when x € R’.

Reaction rate functions satisfying AK1-AK4 are called admissible. For given stoichiometric
matrices A, B, the set of admissible reactions is denoted by % ,.

Dynamics. The dynamics have been already given in (1). The set %, == ({x.} + Im(I")) N
Ri is forward invariant for any initial condition x., and it is called the stoichiometric compatibil-
ity class associated with x,. For a conservative network all stoichiometric classes are compact
convex polyhedral sets.

We sometimes will use the following assumption which is necessary for the existence of pos-
itive steady states.

AS1. There exists v € ker I such that v >> 0.

RLFs and the decomposition of the dynamics

We have provided an informal definition of the notion of RLF in the introduction. The
inequality in Eq (4) must hold for all R € K. As observed before, AK1-AK4 imply a zero-sign
pattern on OR/Ox (see Fig 2d for an illustration). This motivates defining the class of matrices
with the specific sign pattern as follows:

Ki={p e RY|p; =0 for all (j,i)¢ P},

where P is the set of reaction-reactant pairs defined before.
Definition 1. Given a network (., #). A locally Lipschitz function V : R" — R_ is said to
be an RLF if it satisfies the following:

1. V(r) = 0iffr € kerT.
2. DV := (0V /0r)pTr < 0 forall p € K, and all r for which OV /r(r) exists.

At points of non-differentiability, the time-derivative of V(x) = V(R(x)) is defined in
the sense of Dini (see S1 Text §1.1 for a review of Lyapunov theory and generalized
derivatives).

We will show how the rank-one matrices Qy, .., Qg (defined in the Results section) can be
used to embed the dynamics of the nonlinear network in a cone of linear systems. Although
the Lyapunov function V (R(x)) is a function in the concentration x, it is defined as a composi-
tion V = V o R. Therefore, we study the ODE in reaction coordinates. Let x(£) be a trajectory
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that satisfies (1) and let (¢):= R(x(#)). Hence,

_OR

== (&(O)Tr() = p(OTr(1), (17)

(1)
where p(t) == £ (x(t)) € K,.
The basic idea is to consider p(f) as an unknown time-varying matrix. Since its zero-sign
pattern is known, we can decompose p(t) in the following way:

p(t) = iji(t)Eji’ (18)
(j.i)eP

where [p(t)];; = pji(t) > 0, and [Ej;];7 = 1 if (f, ') = (j, i) and zero otherwise. The matrices
{Eﬁ|(i, j) such that a;; = 0} form the canonical basis of the matrix space C,.

Substituting (18) in (17) we can embed the dynamics of the network (17) in the conic com-
binations of a finite set of extremal linear systems as follows:

F= Z pji(t)Ejirr = ipz(t)er- (19)

iju0>0

where Qp, £ =1, .., s have been defined before Theorem 1. This also implies that the Jacobian of
(17) can be written at any interior point as: (OR/9x)[" = Y, | p,Q,. Hence, the Jacobian
belongs to cone generated by the extremals Qy, .., Q,. Note that (19) can be interpreted as rep-
resenting a linear parameter-varying system which has s nonnegative time-varying parameters
{p1(2), .., ps(t)}. The linear systems are given by rank-one extremals Qy, .., Q,. The proof of The-
orem 1 is completed in S1 Text §1.2.

Computational construction of RLFs

The results presented in [26, 27] have been derived via a direct analysis of the associated reac-
tion networks. The framework introduced above enables interpreting these results in a more
general framework and allows generalizing them. Hence we revisit the algorithms introduced
for the existence and construction of PWL RLFs, and implement them in the LEARN
MATLAB package. Furthermore, we also introduce piecewise quadratic RLFs based on the
new framework introduced in this paper.

Piecewise linear RLFs. Consider a CRN (1) witha I" € R™" and a given partitioning
matrix H € R?*" such that ker H = ker I'. A PWL RLF is piecewise linear-in-rates, i.e., it has
the form: V(x) = V(R(x)), where V : R" — R is a continuous PWL function. Assuming ASI,
the piecewise linear function is given as

V(r)=|cr|, re +W, k=1,..,m/2, (20)
where the regions W, = {r € R" : £, Hr > 0},k = 1, .., m form a proper conic partition of
R’, while {Z,},", are signature matrices (diagonal matrices with +1 on the diagonal) with the
property Xy = —X,,., 1k k = 1, .., m/2. The coefficient vectors of each linear component can be
collected in a matrix C = [c,, .., c%]T € R%*". If the function V is convex, then we have the fol-

lowing simplified representation of V:

V(x) = max |cR(x)| =I| CR(x)
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Verifying a candidate RLF. Checking if a given PWL function is an RLF can be posed as
a linear program. It is discussed in S1 Text §2.1 and is coded into LEARN.
Construction via linear programming. Based on Theorem 1, we present a simpler linear
program than the one presented in [27]. The proof is presented in S1 Text §2.2.
Theorem 2. Given a network (&, %) that satisfies AS1 and a partitioning matrix H € RP*".
Let {v;} be a basis for ker I'. Consider the linear program:
Find ol ERVA = AL T e R

m/2

k=1,.,2:4=1,.,s,j=k+1,...,m
subject to ¢ = ¢ %, H,

CQ, = —A'H, 1%, >0,

(¢, — cj)Tvi =0,i=1,.., dim(kerI')

& >0,1"¢, > 0,A" >0,

Then there exists a PWL RLF with partitioning matrix H if and only if there exists a feasible
solution to the above linear program that satisfies ker C = ker I'.

Remark 1. The linear program above does not enforce convexity on V. Nevertheless, LEARN
allows the user to search amongst convex V’s only. See S1 Text §2.3.

In LEARN there is a default choice for the matrix H, and it also allows for a manual input by
the user. The default choice is H = I" which gives the following Lyapunov function (where the
SoC RLF introduced in (6) is a special case):

V(x) =|| diag(¢,)x[l;, R(x) € Wy,

The user can add rows to H. Usually rows of the form {y; + y;|i, j = 1, .., n}, where y1, .., 7,
are the rows of I', are good candidates.

Networks without positive steady states. If AS1 is not satisfied, then a linear program
can be designed for constructing RLFs over a given partition. This is discussed in SI Text §2.4.

An iteration for the construction of convex PWL RLFs. Assuming both AS1 and allow-
ing non-autocatalytic networks only, a computationally-light iterative algorithm for construct-
ing a convex Lyapunov function was presented in [26, 27]. Here we generalize the algorithm

by dropping these two assumptions. The objective is to find a matrix C = [¢, ...., ¢"]" such

that V(r) = max,_, , c/risa Lyapunov function, where ¢, := 0.

We state the algofithm below. We use the notation supp(ci) = {Rj|ci; 7# 0}, which is the set
of all those reactions that appear in ¢;r, and let Z(R;) = {X;|o; > 0} which is the set of reac-
tants for reaction R;. We have the following result, which is proved in S1 Text §2.5.

Theorem 3. Given a network (7, ). Let U = [T, ...,yT]" € R™" be its stoichiometry

matrix. If the following algorithm terminates successfully, then V is an RLF.
Parameters: N as the upper maximum number of iterations.
Initialization: Set flag =0, C=T1, ¢ =0, k=1, m:= n.
while k < N and flag = 0 do
for R; € supp(ck) do
for X, € I(R)) do
¢ = ¢+ sgn(cy)y; 7
if ¢* # ¢, for ¢ = 0, .., k then
set ¢ = [T, «T17;
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end
end
end
k=k+ 1;
m = number of rows of C;
if m < k then
set flag = 1;
end
end
if flag = 1 then
Success. V(r) =max,, ,c/r is the desired function
else
The algorithm did not converge within the prescribed upper maximum
number of iterations.
end

The algorithm above is computationally very light compared to the linear program with a large
H. Furthermore, if the network satisfies AS1 then the RLF can be written as V (r) = || Cr ||...

Graphical criteria for the construction of Max-Min RLFs. Compared to computational
conditions, it is highly desirable to have graphical conditions and some have been provided in
[26, 27]. We reformulate those conditions to be more friendly for computational implementa-
tion in LEARN. Those conditions enable the identification of attractive networks by mere
inspection of the reaction graph for a particular class of networks.

We introduce some notations. Let (.7, %) be a given non-autocatalytic network that satis-
fies AS1. Consider the decomposition Z = Z, U &%, into the subsets of reactions that are
reversible and irreversible, respectively. Furthermore, we can decompose Z, = Z; U %Z_ into
the forward and backward reactions, respectively. Let (., Z, U %) be the corresponding
irreversible subnetwork and let be its stoichiometry matrix. Since the designation of a forward
and reverse reaction is arbitrary, we need a decomposition such that I" has a one-dimensional
nullspace. If such a decomposition exists, then we call the original network (., #) an M-net-
work. Our graphical condition applies to this class of networks, and it can be stated as follows.

Theorem 4. Let (7, %) be an M-network, and let (%, %, U R,) be the subnetwork defined
R} Ifthe

above, where the reactions are enumerated as #, = {R,,...,R, }, Z, = {R, ,,, ..

irreversible subnetwork satisfies the following properties:
1. each species participates in exactly one reaction, and

2. each reaction R; € R satisfies the following statement: If a species X; is a product of R;, then

X; is not a product of another reaction,

then

V(R(x)) = maxR(x) — minR(x), (21)

where R = {£ (R, = R_,), .02 (R, = R_,)JU{R Ly, 2R s @ convex PWL

wy wy)
RLF, wherew = [wy, . .., w|vl|]T belongs to the null space off.
Piecewise quadratic-in-rates RLFs. The framework developed in this paper allows us to
go beyond PWL RLFs, and consider other classes of functions such piecewise quadratic-in-
rate functions of the form:

V(r)=1"Pir+ 2¢[r,r € W,, (22)

for some matrices P, € R™" ¢, e R", k=1, ., m.
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Instead of linear programming, construction of PWQR RLFs is a copositive programming
problem. Although copositive programs are convex, solving them generally is shown to be NP-
hard [94]. Therefore, we use a common relaxation scheme based on the observation that the
class of copositive matrices encompasses the classes of positive semi-definite matrices, and
nonnegative matrices. The following theorem states the result and it is proven in S1 Text §3.1.

Theorem 5. Given a network (&, #) that satisfies AS1 and a partitioning matrix H € RP*".
Let {v;} be the basis for the kernel of I Consider the following semi-definite program:

Find

P eS¢ eRA,LALB,, B, €S ¢, eR,
M eER i eRk=1,.,2.0=1,.5jeN,

subject to
P, ¢ > (ZkH)T(AI]c_‘_Ai)(ZkH) fZZkH (23)
6 0] (E[zH)' 0 |
[ QP+ PQ + (ZH) (B, +BY)(ZH) ¢Q+(IH ] 0 ”
(c;Q, + CkEkH)T 0 a
P,—P = xk].hj;j + hsij[j, G = G = Nh, (25)
P vy, = 0,¢f[vy,..yvy] =0, (26)

Ay By, = 0,A7, B}, > 0,8 >0,(,>0,

where d = dim(ker T') and N is the set of neighbor of region W, (see S1 Text §3.2). If the SDP is
feasible, then V as defined in (22) is an RLF for (., #) if ker V. = kerT.

This class of networks for which PWQ RLFs exist is potentially larger than that of PWL
RLFs even when we set ¢, =0, k= 1, .., m in (22) as the following proposition establishes. The
proof is given in S1 Text §X.

Proposition 6. Let a network (.7, &) that satisfies AS1 be given. If there exists an RLF
V(r) = clr,r € W, with a partition matrix H, then the SDP problem in Theorem 5 with {c,}7.,
constrained to be zeros is feasible. In particular, P, = ¢,¢., k = 1, .., m is a feasible solution.

Properties of attractive networks

Robust non-degeneracy. It has been shown in [27] that the negative Jacobian of any net-
work admitting a PWL RLF is Py, which means that all principal minors are nonnegative. We
show that the reduced Jacobian (i.e., Jacobian with respect to a stoichiometric class) is non-
degenerate for all admissible kinetics if it is so at one interior point only. The proof is stated in
S1 Text §4.1.

Theorem 7. Assume that there exists a PWL RLF. If for some kinetics R € J& , there exists a
point in the interior of a proper stoichiometric class such that the reduced Jacobian is non-singu-
lar at it, then the reduced Jacobian is non-singular in the interior of R, for all admissible
kinetics.

In LEARN, robust non-degeneracy is checked with p,=1,€=1, .., s. Itamounts to check-
ing the non-singularity of one matrix.
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Remark 2. Robust non-degeneracy, coupled with the existence of a PWL RLF, automatically
guarantees the uniqueness of positive steady states and their exponential stability (see S1 Text
§4.1.2,§4.1.3). Globally stability has been checked via a LaSalle algorithm in [27], which is auto-
matically satisfied for conservative M-networks. Alternatively, global stability follows automati-
cally for any positive steady state if the network is robustly nondegenerate [95]. Hence, Theorem
7 can be used to verify global stability when a PWL RLF exists. Note, however, that the test above
is with respect to the stoichiometric class only. In the case of degenerate reduced Jacobians, a stoi-
chiometric class can be partitioned further into kinetic compatibility classes [16]. The graphical
LaSalle’s algorithm applies to such cases also.

Absence of critical siphons. A siphon is any (minimal) set of species which has the fol-
lowing property: if those species start at zero concentration, then they stay so during the course
of the reaction [41]. Siphons are of two types: trivial and critical. A trivial siphon is a siphon
that contains the support of a conservation law. A critical siphon is a siphon which is not triv-
ial. Critical siphons can be found easily from the network graph. The absence of critical
siphons in a network has been shown to imply that it is structurally persistent (for conservative
networks or systems with bounded flows) [41]. Informally, a system is persistent if the follow-
ing holds: if all species are initialized at nonzero concentrations, none of them will become
asymptotically extinct. We show that the existence of critical siphons precludes the existence
of RLF under mild conditions which serves as an easy-to-check condition to preclude the exis-
tence of an RLF. Review of the concept of siphons and the proof the result is included in S1
Text §4.2.

Theorem 8. Given a network (7, %) that satisfies AS1. Assume it has a critical siphon
P C 7. Let A(P) C Z be the set of reactions for which the species in P are reactants. Then there
cannot exist a PWL RLF if any of the following holds:

1. M(P) = %, i.e Pis a critical deadlock.
2. (&, ) is a conservative M network.

3. (&, R) is conservative and has a positive non-degenerate steady state for some admissible
kinetics.

Remark 3. The tests established in Theorem 8 have been implemented in LEARN.

RLFs in other coordinates

In this subsection we study an alternative RLF and we link the results with the ones proposed
in [34, 36]. We will show that any RLF has an alternative form if it satisfies a mild condition.
In particular, all PWL RLFs have alternative forms. Assume that (1) has a steady state x,. Then,
we ask whether there exists a Lyapunov function of the form V(x) = V(x — x,). However,
note that this Lyapunov function decreases only in the stoichiometric class containing x, and
that computing its level sets requires knowing x,. We call V a concentration-dependent RLF.
Similar to before, we will characterize the existence of an RLF of the form V (x — x,) for a net-
work (&, Z) by the existence of a common Lyapunov function for a set of extremals of an
appropriate cone. In this subsection, we assume that there exists a positive r € R’ such that
I'r=0.

We will adopt an alternative representation of the system dynamics. Consider a CRN as in

(1), and let x, be a steady state. Then, there exists x"(§) € RY such that (1) can written
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equivalently as:

x=T—x")(x—x,),x0) ¥

0x x @7)

The existence of X" := x, + £,(x — x,) for some &, € [0, 1] follows by applying the Mean-
Value Theorem to R(x) along the segment joining x, and x.

Similar to the analysis for a rate-dependent RLFs, the Jacobian of (1) can be shown to
belong to the conic span of a set of rank-one matrices {I'; ¢/ , ..., I'; e/ } where {I';, .., T',} are
the columns of I'. The pairs (ip, jo), £ = 1, .., s are the same pairs used before.

Let D" be a matrix with columns that are the basis vectors of ker I'". The following theorem
is proven in S1 Text §5.1.

Theorem 9. Given a network (7, #). There exists a common Lyapunov function
V :R" — R, for the set of linear systems {z = (I, e )z, ...z = (I, ¢/ )z}, on the invariant
subspace {z: D" z = 0} if and only if V (x — x,) is a concentration-dependent RLF for any x..

Relationship between the RLFs in concentration and rates. We show next that if V is a
rate-dependent RLF that satisfies a relatively mild additional assumption, then then V (x — x,)
is a concentration-dependent RLF, where x, is a steady state point for (1). The following theo-
rem can be stated and is proved in S1 Text §5.2.

Theorem 10. Let V be an RLF for the network (., #). If there exists V : R* — R, such
that for allr € R":

V(r) = V(Fr), (28)

then V is a concentration-dependent RLF for the same network.

PWL functions in concentrations. All PWL RLFs constructed before have the property
that there exists V such that V (r) = V(I'r). Hence, there exists a concentration-dependent
PWL RLF for the same network. In particular, consider a PWL RLF defined with a partitioning
matrix H as in (20). By AS1 and the assumption that ker H = ker T, there exists G € R”*" and
B € R¥*" such that H = GI"and C = BT. Similar to {W}|" |, we can define the regions:

V, ={2|£,Gz >0}, k=1,..,m,

where it can be seen that V, has nonempty interior iff WV, has nonempty interior.
Therefore, as the pair (C, H) specifies a PWL RLF, the pair (B, G) also specifies the function:

V(z) = blz, whenX,Gz > 0,

T ~
where B = [bl, vy b%} . If V is convex, then it can be written in the form: Vi (x) = || CR(x)|| .

Similarly, the convexity of V implies that V,(x) = || B(x — x.)|| s, where the latter is the Lyapu-
nov function used in [36].

Theorem 10 shows how to go from a rate-dependent to a concentration-dependent RLF.
The following theorem shows that one can start with either PWL RLF to get the other. It is
proved in S1 Text §5.3.

Theorem 11. Given (., %). Then, if

1. (BT, GI') specifies a rate-dependent PWL RLF, then (B, G) specifies a concentration-depen-
dent PWL RLF.

2. (B, G) specifies a concentration-dependent PWL RLF, then (BI', GI') specifies a rate-depen-
dent PWL RLF.
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Remark 4. Since D™(x — x,) = 0 for x € €. then if || B(x — x,)|| is an RLF, then ||(B + YD)
(x = x,)||oo is also an RLF for an arbitrary matrix Y. Furthermore, since Theorem 11 has shown
that the concentration-based and the rate-based representations are equivalent, it is easier to
check and construct RLFs in the rate-based formulation and they hold the advantage of being
decreasing for all trajectories over all stoichiometry classes.

Computational package. Calculations were performed using MATLAB 10 via our soft-
ware package LEARN available at https://github.com/malirdwi/LEARN. Available subroutines
and example runs are included in S1 Text §7. The package cvx [96] has been used for solving
linear and semi-definite programs, and the package PetriBaR for enumerating siphons [97].

Supporting information

S1 Text. Supporting information file with mathematical proofs, generalization of the
results and additional information.
(PDF)

Author Contributions

Conceptualization: M. Ali Al-Radhawi, David Angeli, Eduardo D. Sontag.
Data curation: M. Ali Al-Radhawi.

Formal analysis: M. Ali Al-Radhawi.

Funding acquisition: Eduardo D. Sontag.

Investigation: M. Ali Al-Radhawi.

Methodology: M. Ali Al-Radhawi, David Angeli.

Project administration: David Angeli, Eduardo D. Sontag.

Resources: Eduardo D. Sontag.

Software: M. Ali Al-Radhawi.

Supervision: David Angeli, Eduardo D. Sontag.

Validation: M. Ali Al-Radhawi.

Visualization: M. Ali Al-Radhawi.

Writing - original draft: M. Ali Al-Radhawi.

Writing - review & editing: M. Ali Al-Radhawi, David Angeli, Eduardo D. Sontag.

References

1. BarkaiN, Leibler S. Robustness in simple biochemical networks. Nature. 1997; 387(6636):913. https://
doi.org/10.1038/43199 PMID: 9202124

2. Alon U, Surette MG, Barkai N, Leibler S. Robustness in bacterial chemotaxis. Nature. 1999; 397
(6715):168. https://doi.org/10.1038/16483 PMID: 9923680

3. VonDassow G, Meir E, Munro EM, Odell GM. The segment polarity network is a robust developmental
module. Nature. 2000; 406(6792):188. https://doi.org/10.1038/35018085 PMID: 10910359

4. Bailey JE. Complex biology with no parameters. Nature Biotechnology. 2001; 19(6):503-504. https://
doi.org/10.1038/89204 PMID: 11385433

5. Stelling J, Sauer U, Szallasi Z, Doyle FJ I, Doyle J. Robustness of cellular functions. Cell. 2004;
118(6):675—-685. https://doi.org/10.1016/j.cell.2004.09.008 PMID: 15369668

6. Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman and
Hall/CRC; 2006.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 33/37


https://github.com/malirdwi/LEARN
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007681.s001
https://doi.org/10.1038/43199
https://doi.org/10.1038/43199
http://www.ncbi.nlm.nih.gov/pubmed/9202124
https://doi.org/10.1038/16483
http://www.ncbi.nlm.nih.gov/pubmed/9923680
https://doi.org/10.1038/35018085
http://www.ncbi.nlm.nih.gov/pubmed/10910359
https://doi.org/10.1038/89204
https://doi.org/10.1038/89204
http://www.ncbi.nlm.nih.gov/pubmed/11385433
https://doi.org/10.1016/j.cell.2004.09.008
http://www.ncbi.nlm.nih.gov/pubmed/15369668
https://doi.org/10.1371/journal.pcbi.1007681

GPLOS |saisermom

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks

10.
11.
12
13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

Glass L, Kauffman SA. The logical analysis of continuous, non-linear biochemical control networks.
Journal of Theoretical Biology. 1973; 39(1):103—129. https://doi.org/10.1016/0022-5193(73)90208-7
PMID: 4741704

Eithun M, Shiu A. An all-encompassing global convergence result for processive multisite phosphoryla-
tion systems. Mathematical biosciences. 2017; 291:1-9. https://doi.org/10.1016/j.mbs.2017.05.006
PMID: 28600136

Khalil HK. Nonlinear Systems. 3rd ed. Prentice Hall; 2002.

Sontag ED. Mathematical Control Theory. 2nd ed. Springer; 1998.

Hahn W. Stability of Motion. New York: Springer-Verlag; 1967.

Tolman RC. The principles of statistical mechanics. London: Oxford University Press; 1938.

Wei J. Axiomatic treatment of chemical reaction systems. The Journal of Chemical Physics. 1962; 36
(6):1578—1584. https://doi.org/10.1063/1.1732783

Horn F, Jackson R. General mass action kinetics. Archive for Rational Mechanics and Analysis. 1972;
47(2):81-116. https://doi.org/10.1007/BF00251225

Feinberg M. Complex balancing in general kinetic systems. Archive for Rational Mechanics and Analy-
sis. 1972; 49(3):187-194. https://doi.org/10.1007/BF00255665

Feinberg M. Chemical reaction network structure and the stability of complex isothermal reactors—I.
The deficiency zero and deficiency one theorems. Chemical Engineering Science. 1987; 42(10):2229-
2268. https://doi.org/10.1016/0009-2509(87)80099-4

Feinberg M. The existence and uniqueness of steady states for a class of chemical reaction networks.
Archive for Rational Mechanics and Analysis. 1995; 132(4):311-370. https://doi.org/10.1007/
BF00375615

Sontag ED. Structure and stability of certain chemical networks and applications to the kinetic proof-
reading model of T-cell receptor signal transduction. IEEE Transactions on Automatic Control. 2001;
46(7):1028—1047. https://doi.org/10.1109/9.935056

Anderson DF. A proof of the global attractor conjecture in the single linkage class case. SIAM Journal
on Applied Mathematics. 2011; 71(4):1487—1508. https://doi.org/10.1137/11082631X

Gunawardena J. Models in biology: ‘accurate descriptions of our pathetic thinking’. BMC biology. 2014;
12(1):29. https://doi.org/10.1186/1741-7007-12-29 PMID: 24886484

Gunawardena J. Time-scale separation—Michaelis and Menten’s old idea, still bearing fruit. The FEBS
journal. 2014; 281(2):473-488. https://doi.org/10.1111/febs.12532 PMID: 24103070

Maeda H, Kodama S, Ohta Y. Asymptotic behavior of nonlinear compartmental systems: nonoscillation
and stability. IEEE Transactions on Circuits and Systems. 1978; 25(6):372—-378. https://doi.org/10.
1109/TCS.1978.1084490

Jacquez JA, Simon CP. Qualitative theory of compartmental systems. SIAM Review. 1993; 35(1):43—
79. https://doi.org/10.1137/1035003

Angeli D, De Leenheer P, Sontag E. Graph-theoretic characterizations of monotonicity of chemical net-
works in reaction coordinates. Journal of Mathematical Biology. 2010; 61(4):581-616. https://doi.org/
10.1007/s00285-009-0309-0 PMID: 19949950

Ali Al-Radhawi M, Angeli D. Lyapunov Functions for the stability of a class of chemical reaction net-
works. In: the 20th International Symposium on Mathematical Theory of Networks and Systems. Mel-
bourne, Australia; 2012.

Ali Al-Radhawi M, Angeli D. Piecewise linear in rates Lyapunov functions for Complex Reaction Net-
works. In: Proceedings of the 52nd IEEE Control and Decision Conference (CDC); 2013. p. 4595-4600.

Ali Al-Radhawi M, Angeli D. New approach to the stability of chemical reaction networks: Piecewise lin-
ear in rates Lyapunov functions. IEEE Transactions on Automatic Control. 2016; 61(1):76—89. https://
doi.org/10.1109/TAC.2015.2427691

Ellison P, Feinberg M, Ji H, Knight D. Chemical reaction network toolbox; 2011. http://www.crnt.osu.
edu/CRNTWin.

Donnell P, Banaji M, Marginean A, Pantea C. CoNtRol: an open source framework for the analysis of
chemical reaction networks. Bioinformatics. 2014; 30(11):1633—-1634. https://doi.org/10.1093/
bioinformatics/btu063 PMID: 24489373

MaL, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactiva-
tion of TSC2 by Erk: implications for tuberous sclerosisand cancer pathogenesis. Cell. 2005; 121
(2):179-193. https://doi.org/10.1016/j.cell.2005.02.031 PMID: 15851026

Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. Specific tau phosphorylation sites correlate
with severity of neuronal cytopathology in Alzheimer’s disease. Acta neuropathologica. 2002; 103
(1):26-35. https://doi.org/10.1007/s004010100423 PMID: 11837744

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 34/37


https://doi.org/10.1016/0022-5193(73)90208-7
http://www.ncbi.nlm.nih.gov/pubmed/4741704
https://doi.org/10.1016/j.mbs.2017.05.006
http://www.ncbi.nlm.nih.gov/pubmed/28600136
https://doi.org/10.1063/1.1732783
https://doi.org/10.1007/BF00251225
https://doi.org/10.1007/BF00255665
https://doi.org/10.1016/0009-2509(87)80099-4
https://doi.org/10.1007/BF00375615
https://doi.org/10.1007/BF00375615
https://doi.org/10.1109/9.935056
https://doi.org/10.1137/11082631X
https://doi.org/10.1186/1741-7007-12-29
http://www.ncbi.nlm.nih.gov/pubmed/24886484
https://doi.org/10.1111/febs.12532
http://www.ncbi.nlm.nih.gov/pubmed/24103070
https://doi.org/10.1109/TCS.1978.1084490
https://doi.org/10.1109/TCS.1978.1084490
https://doi.org/10.1137/1035003
https://doi.org/10.1007/s00285-009-0309-0
https://doi.org/10.1007/s00285-009-0309-0
http://www.ncbi.nlm.nih.gov/pubmed/19949950
https://doi.org/10.1109/TAC.2015.2427691
https://doi.org/10.1109/TAC.2015.2427691
http://www.crnt.osu.edu/CRNTWin
http://www.crnt.osu.edu/CRNTWin
https://doi.org/10.1093/bioinformatics/btu063
https://doi.org/10.1093/bioinformatics/btu063
http://www.ncbi.nlm.nih.gov/pubmed/24489373
https://doi.org/10.1016/j.cell.2005.02.031
http://www.ncbi.nlm.nih.gov/pubmed/15851026
https://doi.org/10.1007/s004010100423
http://www.ncbi.nlm.nih.gov/pubmed/11837744
https://doi.org/10.1371/journal.pcbi.1007681

GPLOS |saisermom

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

Angeli D, Sontag ED. Translation-invariant monotone systems, and a global convergence result for
enzymatic futile cycles. Nonlinear Analysis: Real World Applications. 2008; 9(1):128—140. https://doi.
org/10.1016/j.nonrwa.2006.09.006

Conradi C, Shiu A. A global convergence result for processive multisite phosphorylation systems. Bulle-
tin of Mathematical Biology. 2015; 77(1):126—155. https://doi.org/10.1007/s11538-014-0054-4 PMID:
25549624

Ali Al-Radhawi M, Angeli D. Robust Lyapunov functions for Complex Reaction Networks: An uncertain
system framework. In: Proceedings of the IEEE 53rd Conference on Decision and Control (CDC); 2014.
p. 3101-3106.

Al-Radhawi MA, Angeli D. Construction of robust Lyapunov functions for reaction networks (Invited
Paper). In: 2016 European Control Conference (ECC). IEEE; 2016. p. 928—-935.

Blanchini F, Giordano G. Piecewise-linear Lyapunov functions for structural stability of biochemical net-
works. Automatica. 2014; 50(10):2482-2493. https://doi.org/10.1016/j.automatica.2014.08.012

Craciun G, Feinberg M. Multiple equilibria in complex chemical reaction networks: |. The injectivity prop-
erty. SIAM Journal on Applied Mathematics. 2005; p. 1526—1546. https://doi.org/10.1137/
S0036139904440278

Banaji M, Donnell P, Baigent S. P matrix properties, injectivity, and stability in chemical reaction systems.
SIAM Journal on Applied Mathematics. 2007; 67(6):1523—1547. https://doi.org/10.1137/060673412

Banaji M, Craciun G. Graph-theoretic approaches to injectivity and multiple equilibria in systems of inter-
acting elements. Communications in Mathematical Sciences. 2009; 7(4):867-900. https://doi.org/10.
4310/CMS.2009.v7.n4.a4

Shinar G, Feinberg M. Concordant chemical reaction networks. Mathematical biosciences. 2012; 240
(2):92—-113. https://doi.org/10.1016/j.mbs.2012.05.004 PMID: 22659063

Angeli D, De Leenheer P, Sontag E. A Petri net approach to persistence analysis in chemical reaction
networks. In: Queinnec |, Tarbouriech S, Garcia G, Niculescu S, editors. Biology and Control Theory:
Current Challenges. Springer; 2007. p. 181-216.

Molchanov AP, Pyatnitskii ES. Lyapunov Functions that specify necessary and sufficient conditions of
absolute stability of nonlinear nonstationary control systems. |,1ll. Automation and Remote Control.
1986; 47:344-354, 620—-630.

Blanchini F. Nonquadratic Lyapunov functions for robust control. Automatica. 1995; 31(3):451—461.
https://doi.org/10.1016/0005-1098(94)00133-4

Polanski A. On infinity norms as Lyapunov functions for linear systems. IEEE Transactions on Auto-
matic Control. 1995; 40(7):1270-1274. https://doi.org/10.1109/9.400479

Rumschitzki D, Feinberg M. Multiple steady states in complex isothermal CFSTRs—II. Homogeneous
reactors. Chemical engineering science. 1988; 43(2):329-337. https://doi.org/10.1016/0009-2509(88)
85045-0

Craciun G. Toric differential inclusions and a proof of the global attractor conjecture. arXiv preprint
arXiv:150102860. 2015;.

Craciun G. Polynomial Dynamical Systems, Reaction Networks, and Toric Differential Inclusions. SIAM
Journal on Applied Algebra and Geometry. 2019; 3(1):87-106. https://doi.org/10.1137/17M1129076

Goldbeter A, Koshland DE. An amplified sensitivity arising from covalent modification in biological sys-
tems. Proceedings of the National Academy of Sciences. 1981; 78(11):6840-6844. https://doi.org/10.
1073/pnas.78.11.6840

Samoilov M, Plyasunov S, Arkin AP. Stochastic amplification and signaling in enzymatic futile cycles
through noise-induced bistability with oscillations. Proceedings of the National Academy of Sciences of
the United States of America. 2005; 102(7):2310-2315. https://doi.org/10.1073/pnas.0406841102
PMID: 157017083

Petri CA, Reisig W. Petri net. Scholarpedia. 2008; 3(4):6477. https://doi.org/10.4249/scholarpedia.6477
Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989; 77(4):541—
580. https://doi.org/10.1109/5.24143

Erdi P, Téth J. Mathematical models of chemical reactions: theory and applications of deterministic and
stochastic models. Manchester University Press; 1989.

Douglass EF Jr, Miller CJ, Sparer G, Shapiro H, Spiegel DA. A comprehensive mathematical model for
three-body binding equilibria. Journal of the American Chemical Society. 2013; 135(16):6092—6099.
https://doi.org/10.1021/ja311795d

Saline M, Rodstrom KE, Fischer G, Orekhov VY, Karlsson BG, Lindkvist-Petersson K. The structure of
superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation.
Nature communications. 2010; 1:119. https://doi.org/10.1038/ncomms1117 PMID: 21081917

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 35/37


https://doi.org/10.1016/j.nonrwa.2006.09.006
https://doi.org/10.1016/j.nonrwa.2006.09.006
https://doi.org/10.1007/s11538-014-0054-4
http://www.ncbi.nlm.nih.gov/pubmed/25549624
https://doi.org/10.1016/j.automatica.2014.08.012
https://doi.org/10.1137/S0036139904440278
https://doi.org/10.1137/S0036139904440278
https://doi.org/10.1137/060673412
https://doi.org/10.4310/CMS.2009.v7.n4.a4
https://doi.org/10.4310/CMS.2009.v7.n4.a4
https://doi.org/10.1016/j.mbs.2012.05.004
http://www.ncbi.nlm.nih.gov/pubmed/22659063
https://doi.org/10.1016/0005-1098(94)00133-4
https://doi.org/10.1109/9.400479
https://doi.org/10.1016/0009-2509(88)85045-0
https://doi.org/10.1016/0009-2509(88)85045-0
https://doi.org/10.1137/17M1129076
https://doi.org/10.1073/pnas.78.11.6840
https://doi.org/10.1073/pnas.78.11.6840
https://doi.org/10.1073/pnas.0406841102
http://www.ncbi.nlm.nih.gov/pubmed/15701703
https://doi.org/10.4249/scholarpedia.6477
https://doi.org/10.1109/5.24143
https://doi.org/10.1021/ja311795d
https://doi.org/10.1038/ncomms1117
http://www.ncbi.nlm.nih.gov/pubmed/21081917
https://doi.org/10.1371/journal.pcbi.1007681

GPLOS |saisermom

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks

55.

56.

57.
58.

59.

60.

61.

62.
63.
64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Streusand VJ, Bjork |, Gettins PG, Petitou M, Olson ST. Mechanism of acceleration of antithrombin-pro-
teinase reactions by low affinity heparin role of the antithrombin binding pentasaccharide in heparin rate
enhancement. Journal of Biological Chemistry. 1995; 270(16):9043—9051. https://doi.org/10.1074/jbc.
270.16.9043 PMID: 7721817

Yang L, Dolan EM, Tan SK, Lin T, Sontag ED, Khare SD. Computation-guided design of a stimulus-
responsive multienzyme supramolecular assembly. ChemBioChem. 2017; 18(20):2000—2006. https:/
doi.org/10.1002/cbic.201700425 PMID: 28799209

Del Vecchio D, Murray RM. Biomolecular Feedback Systems. Princeton University Press; 2014.

Vind J, Sgrensen MA, Rasmussen MD, Pedersen S. Synthesis of proteins in Escherichia coli is limited
by the concentration of free ribosomes: expression from reporter genes does not always reflect func-
tional mRNA levels. Journal of Molecular Biology. 1993; 231(3):678—688. https://doi.org/10.1006/jmbi.
1993.1319 PMID: 7685825

Bosdriesz E, Molenaar D, Teusink B, Bruggeman FJ. How fast-growing bacteria robustly tune their ribo-
some concentration to approximate growth-rate maximization. The FEBS journal. 2015; 282(10):2029—
2044. hitps://doi.org/10.1111/febs.13258 PMID: 25754869

Gyorgy A, Jiménez JI, Yazbek J, Huang HH, Chung H, Weiss R, et al. Isocost lines describe the cellular
economy of genetic circuits. Biophysical Journal. 2015; 109(3):639-646. https://doi.org/10.1016/j.bpj.
2015.06.034 PMID: 26244745

Sontag ED. A remark on the converging-input converging-state property. IEEE Transactions on Auto-
matic Control. 2003; 48(2):313-314. https://doi.org/10.1109/TAC.2002.808490

Ingalls BP. Mathematical Modeling in Systems Biology. MIT Press; 2013.
Madhani HD. From a to a: Yeast as a Model for Cellular Differentiation. CSHL Press; 2007.

Sgrensen DM, Mgller AB, Jakobsen MK, Jensen MK, Vangheluwe P, Buch-Pedersen MJ, et al. Ca2+
induces spontaneous dephosphorylation of a novel P5A-type ATPase. Journal of Biological Chemistry.
2012; 287(34):28336-28348. https://doi.org/10.1074/jbc.M112.387191 PMID: 22730321

Prabakaran S, Lippens G, Steen H, Gunawardena J. Post-translational modification: nature’s escape
from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdisciplinary
Reviews: Systems Biology and Medicine. 2012; 4(6):565-583. https://doi.org/10.1002/wsbm.1185
PMID: 22899623

Conradi C, Shiu A. Dynamics of posttranslational modification systems: Recent progress and future
directions. Biophysical journal. 2018; 114(3):507-515. https://doi.org/10.1016/j.bp}.2017.11.3787
PMID: 29414696

Buuh ZY, Lyu Z, Wang RE. Interrogating the roles of post-translational modifications of non-histone pro-
teins: miniperspective. Journal of medicinal chemistry. 2017; 61(8):3239-3252. https://doi.org/10.1021/
acs.jmedchem.6b01817 PMID: 28505447

Grimes M, Hall B, Foltz L, Levy T, Rikova K, Gaiser J, et al. Integration of protein phosphorylation, acet-
ylation, and methylation data sets to outline lung cancer signaling networks. Science Signaling. 2018;
11(531). https://doi.org/10.1126/scisignal.aaq1087 PMID: 29789295

Gunawardena J. Multisite protein phosphorylation makes a good threshold but can be a poor switch.
Proceedings of the National Academy of Sciences. 2005; 102(41):14617—14622. https://doi.org/10.
1073/pnas.0507322102

Patwardhan P, Miller WT. Processive phosphorylation: mechanism and biological importance. Cellular
signalling. 2007; 19(11):2218-2226. https://doi.org/10.1016/j.cellsig.2007.06.006 PMID: 17644338

Ferrell JE, Bhatt RR. Mechanistic studies of the dual phosphorylation of mitogen-activated protein
kinase. Journal of Biological Chemistry. 1997; 272(30):19008-19016. https://doi.org/10.1074/jbc.272.
30.19008 PMID: 9228083

Conradi C, Saez-Rodriguez J, Gilles ED, Raisch J. Using chemical reaction network theory to discard a
kinetic mechanism hypothesis. IEE Proceedings-Systems Biology. 2005; 152(4):243-248. https://doi.
org/10.1049/ip-syb:20050045 PMID: 16986266

Gunawardena J. Distributivity and processivity in multisite phosphorylation can be distinguished
through steady-state invariants. Biophysical journal. 2007; 93(11):3828-3834. https://doi.org/10.1529/
biophysj.107.110866 PMID: 17704153

Wang L, Sontag ED. On the number of steady states in a multiple futile cycle. Journal of Mathematical
Biology. 2008; 57(1):29-52. https://doi.org/10.1007/s00285-007-0145-z PMID: 18008071

Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annual review of bio-
chemistry. 2000; 69(1):183-215. https://doi.org/10.1146/annurev.biochem.69.1.183 PMID: 10966457

Appleby JL, Parkinson JS, Bourret RB. Signal transduction via the multi-step phosphorelay: not neces-
sarily a road less traveled. Cell. 1996; 86(6):845-848. https://doi.org/10.1016/s0092-8674(00)80158-0
PMID: 8808618

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 36/37


https://doi.org/10.1074/jbc.270.16.9043
https://doi.org/10.1074/jbc.270.16.9043
http://www.ncbi.nlm.nih.gov/pubmed/7721817
https://doi.org/10.1002/cbic.201700425
https://doi.org/10.1002/cbic.201700425
http://www.ncbi.nlm.nih.gov/pubmed/28799209
https://doi.org/10.1006/jmbi.1993.1319
https://doi.org/10.1006/jmbi.1993.1319
http://www.ncbi.nlm.nih.gov/pubmed/7685825
https://doi.org/10.1111/febs.13258
http://www.ncbi.nlm.nih.gov/pubmed/25754869
https://doi.org/10.1016/j.bpj.2015.06.034
https://doi.org/10.1016/j.bpj.2015.06.034
http://www.ncbi.nlm.nih.gov/pubmed/26244745
https://doi.org/10.1109/TAC.2002.808490
https://doi.org/10.1074/jbc.M112.387191
http://www.ncbi.nlm.nih.gov/pubmed/22730321
https://doi.org/10.1002/wsbm.1185
http://www.ncbi.nlm.nih.gov/pubmed/22899623
https://doi.org/10.1016/j.bpj.2017.11.3787
http://www.ncbi.nlm.nih.gov/pubmed/29414696
https://doi.org/10.1021/acs.jmedchem.6b01817
https://doi.org/10.1021/acs.jmedchem.6b01817
http://www.ncbi.nlm.nih.gov/pubmed/28505447
https://doi.org/10.1126/scisignal.aaq1087
http://www.ncbi.nlm.nih.gov/pubmed/29789295
https://doi.org/10.1073/pnas.0507322102
https://doi.org/10.1073/pnas.0507322102
https://doi.org/10.1016/j.cellsig.2007.06.006
http://www.ncbi.nlm.nih.gov/pubmed/17644338
https://doi.org/10.1074/jbc.272.30.19008
https://doi.org/10.1074/jbc.272.30.19008
http://www.ncbi.nlm.nih.gov/pubmed/9228083
https://doi.org/10.1049/ip-syb:20050045
https://doi.org/10.1049/ip-syb:20050045
http://www.ncbi.nlm.nih.gov/pubmed/16986266
https://doi.org/10.1529/biophysj.107.110866
https://doi.org/10.1529/biophysj.107.110866
http://www.ncbi.nlm.nih.gov/pubmed/17704153
https://doi.org/10.1007/s00285-007-0145-z
http://www.ncbi.nlm.nih.gov/pubmed/18008071
https://doi.org/10.1146/annurev.biochem.69.1.183
http://www.ncbi.nlm.nih.gov/pubmed/10966457
https://doi.org/10.1016/s0092-8674(00)80158-0
http://www.ncbi.nlm.nih.gov/pubmed/8808618
https://doi.org/10.1371/journal.pcbi.1007681

GPLOS |saisermom

A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92,

93.

94.

95.

96.
97.

Laub MT, Biondi EG, Skerker JM. Phosphotransfer profiling: systematic mapping of two-component sig-
nal transduction pathways and phosphorelays. Methods in enzymology. 2007; 423:531-548. https://
doi.org/10.1016/S0076-6879(07)23026-5 PMID: 17609150

Russo FD, Silhavy TJ. EnvZ controls the concentration of phosphorylated OmpR to mediate osmoregu-
lation of the porin genes. Journal of molecular biology. 1991; 222(3):567-580. https://doi.org/10.1016/
0022-2836(91)90497-t PMID: 1660927

Batchelor E, Goulian M. Robustness and the cycle of phosphorylation and dephosphorylation in a two-
component regulatory system. Proceedings of the National Academy of Sciences. 2003; 100(2):691—
696. https://doi.org/10.1073/pnas.0234782100

Hoch JA. Two-component and phosphorelay signal transduction. Current opinion in microbiology.
2000; 3(2):165—170. https://doi.org/10.1016/s1369-5274(00)00070-9 PMID: 10745001

Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1 MAP kinase cas-
cade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component”
osmosensor. Cell. 1996; 86(6):865—875. https://doi.org/10.1016/s0092-8674(00)80162-2 PMID:
8808622

Knudsen M, Feliu E, Wiuf C. Exact analysis of intrinsic qualitative features of phosphorelays using
mathematical models. Journal of theoretical biology. 2012; 300:7—18. https://doi.org/10.1016/j.jtbi.
2012.01.007 PMID: 22266661

Hopfield JJ. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes
requiring high specificity. Proceedings of the National Academy of Sciences. 1974; 71(10):4135-4139.
https://doi.org/10.1073/pnas.71.10.4135

McKeithan TW. Kinetic proofreading in T-cell receptor signal transduction. Proceedings of the National
Academy of Sciences. 1995; 92(11):5042-5046. https://doi.org/10.1073/pnas.92.11.5042

Kwang-Hyun C, Sung-Young S, Hyun-Woo K, Wolkenhauer O, McFerran B, Kolch W. Mathematical
modeling of the influence of RKIP on the ERK signaling pathway. In: Priami C, editor. Computational
methods in systems biology. Springer; 2003. p. 127—-141.

Heinrich R, Rapoport TA. Mathematical modelling of translation of mRNA in eucaryotes; steady states,
time-dependent processes and application to reticulocytest. Journal of theoretical biology. 1980; 86
(2):279-313. https://doi.org/10.1016/0022-5193(80)90008-9 PMID: 7442295

Reuveni S, Meilijson |, Kupiec M, Ruppin E, Tuller T. Genome-scale analysis of translation elongation
with a ribosome flow model. PLoS computational biology. 2011; 7(9):e1002127. https://doi.org/10.1371/
journal.pcbi.1002127 PMID: 21909250

Margaliot M, Tuller T. Stability analysis of the ribosome flow model. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics. 2012; 9(5):1545—1552. https://doi.org/10.1109/TCBB.2012.88
PMID: 22732691

Orth JD, Thiele |, Palsson Bd. What is flux balance analysis? Nature biotechnology. 2010; 28(3):245.
https://doi.org/10.1038/nbt.1614 PMID: 20212490

Ascensao JA, Datta P, Hancioglu B, Sontag ED, Gennaro ML, Igoshin OA. Non-monotonic response
dynamics of glyoxylate shunt genes in Mycobacterium tuberculosis. PLoS Computational Biology.
2016; 12:e1004741.

Rahi SJ, Larsch J, Pecani K, Mansouri N, Katsov AY, Tsaneva-Atanasova K, et al. Oscillatory stimuli
differentiate adapting circuit topologies. Nature Methods. 2017; 14:1010-1016. https://doi.org/10.1038/
nmeth.4408 PMID: 28846089

Ali Al-Radhawi M. New Approach to the Stability and Control of Reaction Networks. PhD Dissertation,
Imperial College London; Dec 2015.

Angeli D. A tutorial on chemical reaction network dynamics. European Journal of Control. 2009; 15(3-
4):398-406. https://doi.org/10.3166/ejc.15.398-406

Dur M. Copositive programming—A survey. In: Diehl M, Glineur F, Jarelbring E, Michiels W, editors.
Recent advances in optimization and its applications in engineering. Springer; 2010. p. 3—20.
Blanchini F, Giordano G. Polyhedral Lyapunov functions structurally ensure global asymptotic stability
of dynamical networks iff the Jacobian is non-singular. Automatica. 2017; 86:183—191. https://doi.org/
10.1016/j.automatica.2017.08.022

Grant M, Boyd S. CVX: Matlab software for disciplined convex programming, version 2.1; 2014.

LiuS, Tong Y, Seatzu C, Giua A. PetriBaR: A MATLAB Toolbox for Petri Nets Implementing Basis
Reachability Approaches. IFAC-PapersOnLine. 2018; 51(7):316-322. https://doi.org/10.1016/j.ifacol.
2018.06.319

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007681 February 24, 2020 37/37


https://doi.org/10.1016/S0076-6879(07)23026-5
https://doi.org/10.1016/S0076-6879(07)23026-5
http://www.ncbi.nlm.nih.gov/pubmed/17609150
https://doi.org/10.1016/0022-2836(91)90497-t
https://doi.org/10.1016/0022-2836(91)90497-t
http://www.ncbi.nlm.nih.gov/pubmed/1660927
https://doi.org/10.1073/pnas.0234782100
https://doi.org/10.1016/s1369-5274(00)00070-9
http://www.ncbi.nlm.nih.gov/pubmed/10745001
https://doi.org/10.1016/s0092-8674(00)80162-2
http://www.ncbi.nlm.nih.gov/pubmed/8808622
https://doi.org/10.1016/j.jtbi.2012.01.007
https://doi.org/10.1016/j.jtbi.2012.01.007
http://www.ncbi.nlm.nih.gov/pubmed/22266661
https://doi.org/10.1073/pnas.71.10.4135
https://doi.org/10.1073/pnas.92.11.5042
https://doi.org/10.1016/0022-5193(80)90008-9
http://www.ncbi.nlm.nih.gov/pubmed/7442295
https://doi.org/10.1371/journal.pcbi.1002127
https://doi.org/10.1371/journal.pcbi.1002127
http://www.ncbi.nlm.nih.gov/pubmed/21909250
https://doi.org/10.1109/TCBB.2012.88
http://www.ncbi.nlm.nih.gov/pubmed/22732691
https://doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490
https://doi.org/10.1038/nmeth.4408
https://doi.org/10.1038/nmeth.4408
http://www.ncbi.nlm.nih.gov/pubmed/28846089
https://doi.org/10.3166/ejc.15.398-406
https://doi.org/10.1016/j.automatica.2017.08.022
https://doi.org/10.1016/j.automatica.2017.08.022
https://doi.org/10.1016/j.ifacol.2018.06.319
https://doi.org/10.1016/j.ifacol.2018.06.319
https://doi.org/10.1371/journal.pcbi.1007681

Supplementary Information to “A Lyapunov-enabled
analysis of biochemical reaction networks”

M. Ali Al-Radhawi!, David Angeli'®, and Eduardo D. Sontag® *

!Departments of Bioengineering and of Electrical and Computer Engineering, Northeastern University, Boston, MA
02115.
2Department of Electrical & Electronic Engineering, Imperial College London, London SW7 2A7Z, UK.
3Dipartimento di Ingegneria dell’Informazione, University of Florence, Florence, Italy.

1 Lyapunov’s Second Method

1.1 Preliminaries

First, let consider specific kinetics R € JZ4. Hence, the ODE is given as

&= f(x) :=TR(x). (1)
We have the following definition:

Definition A-1. Given the ODE (1). Let V : RYq — Rxq be locally Lipschitz. Then V is said to
be a Lyapunov function for (1) if V is
e Positive-Definite (with respect to the steady states set) if V(x) > 0, and V(x) = 0 if and only
if R(z) € ker T,
e Nonincreasing if V(z) := D}'V(m) <0 for all x, where D}' is defined below.

Note that when OV/dx exists at a point x, then V(z) = 0V/0zT R(x).

1.1.1 Generalized Derivatives

The function V is locally Lipschitz, and hence it is not necessarily differentiable everywhere. It has

been known since the early stability literature (see [1], [2]) that the standard Lyapunov theorems

can be generalized without difficulty with locally Lipschitz Lyapunov functions and Dini derivatives.
The upper Dini derivative for V' in the direction of a function f(z) := I'R(x) is defined as:

V(z+hl'R(z)) — V(z)
| . @

D;{V(x) := lim sup
h—0t+
For a locally Lipschitz function, the above quantity is always finite.
An alternative definition of the derivative, which is more restrictive but has more convenient
calculus, is the Clarke derivative, which is defined as [3]:
. V(y+ hl'R(x)) — V(y)
D?V(x(t)) := lim sup A : (3)

h—0t
y%l‘

Note that Dj[(m)V(a:) < D?V(ac(t)). We will define V in the sense of Dini.
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1.1.2 LaSalle’s Condition

Conventional stability theory [1] examines stability with respect to an isolated steady state. How-
ever, for reaction networks, there is usually a continuum of equilibria. This means that asymptotic
stability or Lyapunov stability are not achieved in the classical sense. Nevertheless, the state space
of reaction networks is divided into stoichiometric compatibility classes which are forward invariant.
Furthermore, a stoichiometric class can sometimes be divided into kinetic compatibility classes [4].
In general, any initial condition x, is associated with a compatibility class é;,. Hence we state the
following definition:

Definition A-2 (The LaSalle’s Condition). Given an ODE (1) with a Lyapunov function V. The
LaSalle’s Condition is satisfied if the following statement holds:

If a solution p(t;x,) of (1) satisfies p(t; o) € ker VN €, for allt >0, then @(t;x.) € Ey, for all
t >0, where E,, C 6y, is the set of steady states for (1) contained in €, .

1.1.3 Lyapunov Stability Theorem
We state the following theorem which is standard Lyapunov theory adapted to our settings [5].

Theorem A-1 (Lyapunov’s Second Method). Given (1) with initial condition x, € R'}. Let €,
be its class. Assume there exists a Lyapunov function V and suppose that x(t) is bounded.

e Then the steady state set E,  is Lyapunov stable relative to €y, .

e [f, in addition, the LaSalle’s Condition is satisfied, then x(t) — E,, ast — oo (i.e., the point
to set distance of x(t) to Eg, tends to 0). Furthermore, any isolated steady state relative to
Cr., 1is asymptotically stable.

o [f the LaSalle’s condition is satisfied, and all the trajectories are bounded, then: if there exists
an z* € E,, which is isolated relative to €y, , then it is unique, i.e., E,, = {x*}. Furthermore,
it is globally asymptotically stable steady state relative to €, .

1.2 Robust Lyapunov Functions and Proof of Theorem 1

In the main text, we have defined an RLF V:RY — R>p. For a given R € J#j, the Lyapunov
function is V(z) = V(R(z)).
Before proving Theorem 1, we need to state and prove the following Lemma:

Lemma A-1. Let & := f(x), and let V : REy — R>q be a locally Lipschitz function such that:

oV (x) oV (z)
5 f(z) <0 whenever o

exists,

Then V(z) < 0 for all x.

Proof. Since V is assumed to be locally Lipschitz, Rademacher’s Theorem implies that it is differ-
entiable (i.e., gradient exists) almost everywhere [3]. Recall that for a locally Lipschitz function
the Clarke gradient at x is defined as 0cV (x) := co 9V (z), where:

oV (x) := {p € R": Jz; —» xwith OV (x;)/0x exists, such that,p = lim 8V(xi)/8x} .
1—00



Let p € 0V (x) and let {z;}°, be any sequence as in the definition of the Clarke gradient. By
the assumption stated in the Lemma, (OV (x;)/0x)f(x;) < 0, for all i. Hence, the definition of p
implies that p’ f(x) < 0. Since p was arbitrary, the inequality holds for all p € OV ().

Now, let p € 9V (z) where p =Y, \ip; is a convex combination of any p1, ..., p,11 € OV (x). By the
inequality above, pT f(z) = 3", Xi(p! f(z)) < 0. Hence, p f(x) < 0 for all p € IV ().

As in [3], the Clarke derivative of V' at x in the direction of f(z) can be written as D%I)V(x) =
max{p’ f(x) : p € OV (x)}. By the above inequality, we get D?(x)V(x) < 0 for all z. Since the Dini
derivative is upper bounded by the Clarke derivative, we finally get:

Ve +hf(z)) - Viz) Viy+hf(z) - V()

V(z) = li}an sup " < limsup " =: D?(I)V(x) <0,
—0t h—0+t
Yy—x
for all z. ]

Proof of Theorem 1 We show that the existence of the common Lyapunov function implies the
existence of the RLF. Nonnegativity of V follows from the nonnegativity of V. Let (4, j) = x(£), and
recall that Qp = ej77, hence ker V = (;_, ker Q¢ = ker . Therefore, R(z) € ker V iff TR(z) = 0
which establishes the positive-definiteness of V.

We assumed that V has a negative semi-definite time-derivative for every linear system in the
considered set. Hence, whenever V is differentiable at a point 7, we can write (817/ or)Qer < 0,
¢ =1,...,s. Hence, for any p',...,p* € R,

Z ,0 Q[r < 0, whenever (OV (r)/0r) exists. (4)

Therefore, whenever V is differentiable we have

oV OR oV OR;
(@) =GR ar WTR@ =75 | > Oz,

1,5:05>0

(z)Eji | R(x) (5)

where OV /OR := (dV /dr)

TZR(CC).
Now, denote p¢ = %(w}, which is nonnegative by AK3. This allows us to write:
ov
Z pg 7 Eil R(z) (6)
ov
= Zpe Q¢R(x) <0, for almost all z. (7)

The last inequality follows from (4). Using Lemma A-1, V(z) < 0 for all z, and for all R € J#j.
In order to show the other direction, since most of the properties outlined in the RLF definition
are clearly satisfied, it remains to show nonincreasingness. Assume that there exists £ such that
‘N/(T‘) is not nonincreasing along the trajectories of © = @Qyr. Consider the corresponding term in
(6). Since V(R(x)) is a Lyapunov function for any choice of admissible rate reaction function R,

choose p! = %—i?' to be large enough such that V(x) > 0 for some z; this results in a contradiction.



2 Piecewise Linear RLF's

2.1 Checking a candidate Lyapunov function

Suppose we are given a matrix H € RP*" such that ker H = kerI". Let V : R” — R be a continuous
PWL function given as B
V(r)=lckr|, r € W, k=1,..,m/2,

where the regions Wy, = {r € RY : ¥ Hr > 0},k = 1,..,m form a proper conic partition of R,
while {3 }}", are signature matrices (diagonal matrices with £1 on the diagonal) with the property
Yp = —Ymi1-k, k= 1,..,m/2. (see [5] for a detailed exposition on the geometry of the partition
regions).

The coefficient vectors of each linear component can be collected in a matrix C' = [cq, .., c%]T €

R2*". If the function V is convex, then we have the following simplified representation of V' [6]:
V(z) = |[CR(2)| s

This representation is analogous of the /,.-norm Lyapunov functions that have been used for linear
systems in [7].

Theorem A-2. Let I' and H be given as above. Let V be a candidate continuous nonnegative
PWL function with C = [c; ... 07]T e R2*". Then V is an RLF if and only if:

e kerC' =kerI', and
o there exists matrices {A‘}5_, C RZ*% such that
AH = —CQy, (8)

and AiZk > 0, where A* = [A{T"'}\fn/2T]T'

If V is convex, then the second condition can be replaced with

2) there exists Metzler matrices {A“}s_, C R™ ™ such that
AC = CQq, (9)
and A1 =0 for all £ =1, .., s, where C = [CT —CT|T.

Proof. The proof can be carried out by performing algebraic manipulations on the results presented
in [5, Theorem 4]. The function has been assumed continuous and nonnegative. It remains to show
that the corresponding condition in [5] is equivalent to (9). Considering (9) row by row, it can be
written in the following form for k € {1,.., % }:

T T
A H = —cpjoijg

where (i,7) = K(£). ci; can be replaced with sgn(cy;) and «;; can be replaced with 1 if we are
considering only i € Iy,j € Ji;. Therefore, equivalence with the corresponding condition in [5,
Theorem 4] is established.

For a convex PWL function, we can write the corresponding condition in [5, Theorem 5| as
follows after replacing sgn(cy;) by cij, and inserting a;:

m m
T _ ¢ T ¢ T
—CRj QY = g Akj | ¢ — E AkjCj -
J=1j#k J=Lj#k



¢ T
Ckej’yz Z Ak] J Akkclw
J=1j7#k

which enforces A¢ to be Metzler and A1 = 0 as above. O
Remark A-1. The symmetries in equation (9) imply that it can be written equivalently as:
CQ, = AC, (10)
m

where AY is an % X 5 matriz which is defined by subtracting the upper %5 x % blocks of A* from
each other. The matriz A! satisfies:

N N
max M+ TIN] <o (11)
J#k
This is exactly the condition that {o-norm Lyapunov functions need to satisfy for a linear system
[8, 9]. This shows that Theorem 1 provides the framework to utilize the existing linear stability
analysis techniques in the literature to construct robust Lyapunov functions for nonlinear systems

such as CRNs. For example, we can verify {1 Lyapunov functions of the form V(z) = ||CR(z)|1
directly by replacing condition (11) by

NG NG
max Akk+;|Ajk| <0, (12)
J

instead of converting them to the lso-norm form.

2.2 Proof of Theorem 2

The linear program has the pararnetrlzatlon c,g = fk Y H, which follows from applying Farkas’s
Lemma to ensure that V(r) = ¢fr > 0 on the region Wy. (See [5] for full details.) The second

condition: CQy = —QH follows from Theorem 2 and ensures that V(R(z)) is nonincreasing. To
ensure continuity we need to have C;‘gr = c{r whenever r € WiNW;. Since ker H = ker I', continuity
can be imposed by the constraint (¢ — co)?v; = 0 for i = 1, .., dim(ker I'). O

2.3 Enforcing convexity in a linear program

The linear program presented in the main text does not enforce convexity on the PWL RLF.
Following [5], we describe how to write a linear program to construct convex PWL RLFs in what
follows.

We need to introduce the concept of a neighbor to a region. Fix k € {1,..,m/2}. Consider the
matrix H: for any pair of linearly dependent rows h;[l, hT eliminate hT Denote the resulting matrix
by H € RP*¥ and let 31, .., %, the corresponding signature matrices. Therefore, the region can be
represented as Wy, = {r|ikf~[ r > 0}. The distance d, between two regions Wy, W; is defined to be
the Hamming distance between %, and ZNIJ-. Hence, the set of neighbors of a region W, are defined

as:

={je{1,2,....,m}:d.(W;, Wp) = 1}.



Equivalently, note that a neighboring region to Wj, is one which differs only by the switching of
one inequality. Denote the index of the switched inequality by the map sg(.) : N, — {1,..,p}. For
simplicity, we use the notation sis := si(¢).

Theorem A-3. Given the system (1) and a partitioning matric H € RP*". Consider the linear

program.:
Find Chy &k, G € RV, A € R™™ i € R,

k=1,.,%:j €Ny l=1,.,s,
subject to ¢k = &FYLH,
CQu=—ANH N2 >0,
Ck — Cj = MkjOksy,; Ny
&, > 0,17¢, > 0,A° > 0,
where oy; 1s the jth entry on the diagonal of ¥. Then there exists a PWL RLF with partitioning

matriz H if and only if there exists a feasible solution to the above linear program that satisfies
ker C = kerI'. Furthermore, the PWL RLF can be made convexr by adding the constraints ny; > 0.

2.4 Networks without positive steady states

Let AS1 be the assumption that requires the existence of a positive vector in kerI', which is a
necessary condition for the existence of positive steady states. This assumption simplifies the
geometry of the partition regions and enforces symmetry on the coefficient matrix C. Nevertheless,
our techniques can be extended without difficulty for the construction of PWL RLFs for generic
CRNs that do not satisfy AS1. Consider a matrix H € RP*, with ker H = kerI'. The regions are
defined as:

W ={reR”: X Hr >0,r >0},

where k = 1,..,2P. Note that the inequality r > 0 needs to be explicitly included. As before, let
m be the number of non-empty interior regions. Then, the regions are ordered such that the first
m regions are the non-empty interior ones. Therefore, the following theorem can be stated for
networks that do not necessarily satisfy AS1.

Theorem A-4. Consider the system (1), with H = [[THT]T, {$}7, given as before. Consider
the following linear program:

Find Cho €hy &y G € RV, A = [A{T...)\fnT]T € Rm™xm
k=1,.m¢=1,..,8,5=k+1,...,m
subject to ¢} = EFYLH + el
CQu=—ANH N2 >0,
(ck —¢j)Tv; = 0,i = 1,..,dim(ker T)
&> 0,178, > 0, e 2 0A° > 0,

Then there exists a PWL RLF with partitioning matric H if and only if there exists a feasible
solution to the above linear program with ker C = ker I' satisfied.



2.5 Proof of Theorem 3

The algorithm starts with C' = I'. Hence, it can be interpreted as an initial PWL function V (r) =
maxg—o,1,.,n czr where ¢, = v, k=1,..,n.

We aim at restricting the active region of each function ch(x(t)) to the region on which it
is nonincreasing, i.e c;‘gR(x(t)) < 0. This is accomplished by adding extra linear components that
ensures this. Define the active region of a vector cx, k =1, ..,mq, as:

Woley) :={r e R : ctr > c;‘-Fr,j # k}.

We define the permissible region of a linear component c¢; to be the region for which it is nonin-
creasing:

P(cy) := {r € R” : sgn(cy;)yir <0 for all (i,4) such that j € supp(cy) and i € Z(R;)}.

Note that in general, Wy(ci) ¢ P(ck). Therefore, the iterative procedure defines a new PWL
function with matrix C; so that Wi(cx) C P(ck). To achieve this, new rows are added to C as
follows:

Cmo+i += Ck + 58N (Ckj) Vi (13)

for all (7, 7) such that j € supp(c;) and i € Z(R;).
The procedure is repeated for every row of C. If the procedure terminates, i.e no new rows need
to be added, then V(r) = maxg—01.. » c{r is a PWL RLF. d

sty

3 Construction of PWQ RLF's

3.1 Proof of Theorem 5

We show that V is a common Lyapunov function for {r=Q1r,....,7 = Qsr} as in Theorem 1.
In order to show nonnegativity, inequality (23) implies that:

T Pyr + 2cfr > (SiHr) (A} + AD)SpHr + 2¢f (S H)r,

and since A,lf +A% is copositive this implies that ‘7(7") > 0 when r € £Wp, k =1, .., %, which estab-
lishes nonnegativity. Positive-definiteness follows from (26) and the assumption in the statement
of the theorem.

For continuity, it is sufficient to establish it between neighboring regions. Therefore, assume
j € Ny, and let hz;cjr = 0 be the intersection hypersurface, then (25) implies that r” Pyr + 20%7’ =
rTPjr + 26?7" when r € W, N W;. The other direction holds also by writing P, — P; over the
decomposition R” = span{hs,,} & span{hs,, }*. Continuity of V implies also that V is locally
Lipschitz.

In order to show that this derivative is negative semi-definite, consider the

r € W, then:

0t system, and let

‘L/g(r) = TT(Qng + P.Q)r + 20}5@@7".

Note that (24) implies that ‘L/g(r) < 0 when 7 € Wy,. As it is true for all k, then ‘?4(7“) < 0 for
all £ = 1,..s, and all r such that OV (r)/dr exists. By Lemma 1, this implies that V;(r) < 0 for
£=1,.,s. O



3.2 Proof of Proposition 6

Assume that C' € RZ %" is given such that V7, is a PWL RLF, where V7, is defined as in (2.1). Let
VQ be defined by
f/@(r) =T P =rleelrr e W, k=1,..,m.
The constraints (25),(26) are clearly satisfied. The inequality (23) is satisfied with A} = A2 = 0,
k=1,.., 3. It remains to show that (24) is satisfied.
Fix e {1,.,s}, ke {l,..,2}. Then

Vi = —rT(QePy + PeQe)r = —1r7 (Quéf ek + &1t Qu)r-

Since it is assumed that V; is PWL RLF, there exist X, € > 0 such that ¢, = {,{EkH, 6;{624 =
)\iZkH. Therefore:

2 T
—Vi = (SRHr)T (A& + &N, ) (SeHr).
Hence, (24) is satisfied with B}, = A\¢&, + fk.)\iT7 B2, =0. O]

4 Properties of Attractive Networks

4.1 Robust non-degeneracy

A point z, of (1) is non-degenerate if the Jacobian evaluated at x. relative to €, is nonsingular.
More precisely, let us change coordinates using a transformation matrix 7' = [T{ D]”, where DT
has full row rank and D'T = 0, and 7} is any matrix such that 7" is nonsingular. Then, the
Jacobian in the new coordinates can be written as:

TFZ—?T* = [‘{)1 ‘ﬂ . (14)

Therefore, x. is nondegenerate iff J; evaluated at x. is nonsingular. The matrix J; is called a
reduced Jacobian.

4.1.1 Proof of Theorem 7

Recall that for an attractive network with PWL RLF, the negative Jacobian is Py for any choice of
R € 24 [5]. Using the Cauchy-Binet formula [10], let I C {1,..,n} be an arbitrary subset so that
|I| = k. The corresponding principal minor can be written as:

OR OR
det | (_Fé?a:> = Z det(—T'7) det (&cJI) :ZGL H pe;

JA{1,..,v},|J|=k L teL,c{1,..s}

where the last equality refers to the fact that the sum can be expressed as a linear combination of
products of pq, ..., ps. We claim that the coefficients a, are all nonnegative. To show this, assume
for the sake of contradiction that there is some negative a,,. If we set all p’s to zero except the
ones appearing in the (! term, then this implies that the corresponding principal minor can be
negative; a contradiction.

Now, the theorem can be proven by noting that the reduced Jacobian is non-singular iff the
sum of all k£ x k principal minors of the negative Jacobian is positive, where k = rank(T"). Since
it is assumed that there exists a point for which the reduced Jacobian is non-singular, this implies
that the sum of principal minors is positive for some choice of p1, .., ps. Since all of the principal
minors are nonnegative, then at least one of them is positive. By AK4, that principal minor stays
positive for any choice of positive p1, .., ps, i.e. it stays positive over the interior of R}. O



4.1.2 Uniqueness of the steady states
The following directly from Theorem 7.

Proposition A-5. Consider a network (., %) that satisfies AS1 and admits a PWL RLF. If there
exists a non-degenerate positive steady state x., relative to €y, then it is unique.

Proof. Theorem 7 has shown that the existence of an non-degenerate positive steady state x.
ensures that the reduced Jacobian is non-singular on the interior of the orthant. In order to
show uniqueness, assume for the sake of contradiction that there exists y # x.,y € %, such that
I'R(y) = 0. Then the fundamental theorem of calculus implies,

1
0 =TR(ze) = PR =T [ Gkt + (1= ) (we ~ )t =T 5 (@) e — ),

ox ox
where 2* = t*z.+ (1 —t*)y, and t* € (0,1). The existence of ¢* is implied by the integral mean-value
theorem. Since z* € €, , then the reduced Jacobian at z* is non-singular relative to ImI'. Since
ze —y € ImT', then y = .. This gives a contradiction. O

4.1.3 Exponential stability

We have shown that the existence of a PWL RLF function implies that it is a common Lyapunov
function for all linear systems that belong to a linear differential inclusion.

In fact, one of the properties of systems that admits a piecewise linear Lyapunov function is that
a stable steady state cannot have purely imaginary eigenvalues [11]. Hence, the reduced Jacobian at
a non-degenerate steady state cannot admit pure imaginary eigenvalues which implies the following
Theorem:

Theorem A-6. Let (.7, %) be a network that admits a PWL RLF. If a positive steady state e is
non-degenerate relative to €., then it is exponentially asymptotically stable.

4.1.4 Global stability

Establishing global asymptotic stability of a positive steady state for a network that admits a PWL
RLF has been accomplished via a LaSalle graphical algorithm in [5]. Nevertheless, if a network is
known to be robustly non-degenerate with respect to the stoichiometric class (by the test given in
Theorem 7 for instance), then the following result holds:

Theorem A-7. ([12]) Suppose that the system (1) admits a PWL RLF. If the Jacobian is robustly
non-degenerate relative to a stoichiometric class €, then every positive steady state re € € is
globally asymptotically stable relative to € .

Hence, the graphical LaSalle algorithm is not needed for networks with Jacobians that are
robustly non-degenerate relative to stoichiometric classes.

4.2 Absence of critical siphons: Proof of Theorem 8

Assume P is a critical siphon for the Petri-net associated with I', and let n, = |P|. Let A(P) be
the set of output reactions of P, and let v, = [A(P)|.

Item 1 of Theorem 8 has been proved in [5]. We restate the proof in this paper’s terminology
for completeness. First, the following lemma is needed.



Lemma A-2. Consider a network (&, %). Let P be a set of species that does not contain the
support of a conservation law; let its indices be numbered as {1,...,n,}. Then, there exists a
nonempty-interior region {r|Si['r > 0} with a signature matriz Xy, that satisfies o1 = ... = Okn, =
1.

Proof. Assume the contrary. This implies that N.?, {R|v R > 0} N N, i{Rloivi R >0} =0
for all possible choices of signs o; = +1. However, R" can be partitioned into a union of all possible
half-spaces of the form ﬂ?:an{R]ai’y?R > 0}. Therefore, this implies that N, { Ry R > 0} = 0.
By Farkas Lemma, this implies that there exists A € R™ satisfying A > 0 such that [A70]T" = 0.
Therefore, P contains the support of the conservation law [A” 0]7; a contradiction. O

Therefore, we can state the proof of the first item:

Proof of Theorem 8-1). Without loss of generality, let {1,...,n,} be the indices of the species in
P. Using Lemma 2, there exists a nonempty-interior sign region Sg,1 < k < mg with a signature

matrix Xy that satisfies ox; = ... = ogn, = 1. Since A(P) = %, this implies that we must have
¢ > 0 to match the sign pattern of ¥j. But since Jv > 0 € kerI', then this implies that ¢, = 0
which contradicts the positive definiteness condition on the RLF since ker C' # kerT'. O

In order to proceed, we denote by Wp the face that corresponds to a siphon P. It is given by:
Up ={z R} |X; € P= z; =0}. We state the following lemma next:

Lemma A-3. Consider a network (., %). Let P be a critical siphon, and let Up be the associated
face. If the network is conservative, then for any proper stoichiometric compatibility €, there exists
a steady state x. of (1) such that x. € YpNE.

Proof. The set Yp N¥ is compact, forward invariant, and convex, since both sets ¥ p, % are such.
Hence, the statement of the lemma follows directly from the application of the Brouwer Fixed Point
Theorem on the associated flow. O

We are ready now to prove the second item of Theorem 8.

Proof of Theorem 8-2). By Lemma 3, there exists a steady state in ¥p. Since it is assumed that
there exists a non-degenerate steady state in the interior, Proposition 5 implies that the network
cannot admit a PWL RLF. [

Before concluding the proof, a simple lemma is stated and proved:

Lemma A-4. Let z. be a steady state of (1). Let P be a set of species that correspond to
{1,..,n}\ supp(ze). Then, P is a siphon.

Proof. Assume that P is not a siphon, then there exists some X; € P and R; € Z# such that X; is
a product of R; and R; # A(P) At the given steady state, all negative terms in the expression of
&; vanish since x.; = 0. Since X; is not a reactant in R; this implies 3;; > 0, a;; = 0. Therefore,
R;(x) has a strictly positive coefficient, which implies @; > 0 resulting in a contradiction. ]

Hence, we are ready to conclude the proof of Theorem 8:

Proof of Theorem 8-3). By Lemma 3, there exists a steady state z* € ¥p such that TR(z*) = 0.
Since dim(kerI') = 1, this implies that R(z*) = tv for some ¢t > 0. Consider the case t = 0. This
implies R(z*) = 0. Then, P C P := {1,..,n}\supp(z*). P is a siphon by Lemma 4, and since
P C P it is a critical deadlock. However, by Theorem 8-1), the network is does not admit a PWL
RLF, which is a contradiction. If ¢ > 0, this implies that P = (J; giving a contradiction. O
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5 Concentration-dependent RLF's

5.1 Proof of Theorem 9

Let V(z) = V(z — 2.). Then at those points z where 9V /dz exists, we can write:

.oV, oV y ov
V= 72 = ZW leeﬂz Zpg(t) (&'Figegz> .
/=1

Since we have assumed that V is a common Lyapunov function for the set of linear systems {Z =

(T, 631) (Fzse] )z}, the proof can proceed in both directions in a similar way to the proof
of Theorem 1. Notice that the constraint DTz = 0 is needed since D (t) = 0 is implicit in the
structure of the original system (1). O

5.2 Proof of Theorem 10

Positive definiteness is clearly satisfied. It remains to show the second condition. Let z = v — x..
Then, whenever V is differentiable:

AV (z — x.) oV (z

: o . - xe)
Va(w) = —5—=& = —5—TR(x).

Before proceeding, we prove two statements: First, from (28), we get (V (r)/dr) = (dV (I'r)/dz)T.
Second, note that x — z, € Im(T"), hence there exists r € R” such that I'r = z — z, where r can
always be chosen nonnegative by assumption AS1. Hence, where V is differentiable, we can use
(27) to write:

: oV (x — x.) OR(z") oV (r) OR(z")
= F — e = 771—‘
V() or Ox (2 —z) or ar
= Z pzwﬂr <0,
or
=1
where the last inequality follows from (7). Lemma A1 implies that Va(z) < 0 for all x. O

5.3 Proof of Theorem 11

The first statement follows from Theorem 10. In order to show the second statement, let Va(z) =
bl (z—x.), for t—z, € Vj,. We will show that V;(z) = c¢f R(x), for each R(z) € Wj, is nondecreasing
along the trajectories. Without loss of generality, the partition matrix can be written in the form:
G=|I GT]T. This representation implies that the sign of z — z. is determined in every region
Vi = {2|12xGz > 0}, k = 1,..,m, where ¥} = diag[oxi,...,0kn| are signature matrices. Now,
assume that o — x, € V7. Then:

Va(z) =biTR(z) =cL R(x) <0 = ¢l R(z,), for all R € #}.

Let R;(x) € supp ¢, and let o;; > 0. Since R is nondecreasing by AK3, if sgn(z; —z.,) sgn(cx;) > 0,
there exists R € 4 such that Va(z) > 0. Hence, this implies that the inequality sgn(cx;) sgn(z; —
Ze;) < 0holds. Fix j. If there exists 41,92 such that oy, ;, o,; > 0 and sgn(z;, —Te;, ) sgn(x;, —a:%) <
0, then oy := 0. Otherwise, o; := sgn(x; — x,,;) for some i such that a;; > 0.

Hence, in order to have Va(z) < 0 for all R € #4 we need that oy;(z; — x¢,) > 0 whenever

11



x — xe € Vg, for all k, j,4 with o;; > 0. By Farkas’ Lemma [13], this is equivalent to the existence
of Aji € RE, (kji € RY, such that

orje; = MyiSkG + (D, (15)

where DT € R™" is a matrix whose columns are basis vectors for ker I'T .
If we multiply both sides of (15) by I' from the left, then we get condition C4 in [5, Theorem 4]
which is necessary and sufficient for V;(z) = %(CZR(QU)) <0. O

6 Parameters for Figure 1

For the two mechanisms the total concentrations of the substrate and enzymes are [Xo|r = 6, [E]r =
2.5, [F]r = 6. The following ODE has been simulated for the distributive mechanism :

[ 1202129 ]
- - 101‘3
11 0 0 0 1 0 0 0 0 0 0 S
11 1 0 0 0 -1 1 1 0 0 0 T
1 -1 -1 0 0 0 0 0 0 0 0 0 20,
o 0 1 -1 1 0 -1 1 0 0 0 1 -~
i=| 0o o 0o -1 1 1 0 0 0 -1 1 1 2tz |
0O 0 0 1 -1 -1 0 0 0 0 0 0 ;
o 0 0 0 0 O 1 -1 -1 0 0 0 e
o 0 0 0 0O 0O 0 0 1 -1 1 0 10§«T$JTS
0 0 0 0 0O O 0 0 0 1 -1 -1 5
279
Z9

where r1 = [Xo],xg = [E],.Cbg = [X()E],l‘4 = [X1]7x5 = [F],xﬁ = [XlF],.CC7 = [XlE],l'g =
[Xa], 29 = [X2F).
The following ODE has been simulated for the processive mechanism :

-1 1 0 0 0 0 0 1 77[120z2y ]
-11 0 0 0 0 1 0 213
1 -1 -1 0 0 0 0 0 Bas
s | 0 0 0 -1 1 0 1 0 Bryas
o 0 0 -1 1 0 0 1 4a ’
0o 0 0 1 -1 -1 0 0 Bre
0 0 1 0 0 0 -1 0 2y,
.0 0 0 0 0 1 0 -—1]1[ zxg |

where I = [X],JJQ = [E],:E3 = [XlE],l’4 = [XQ],QZE, = [F],xﬁ = [XQF],$7 = [XQE],ﬂfg = [:L’],:Eg =
(X, F].
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7 The Software Package LEARN

We describe the prerequisites of LEARN, the basic subroutines offered and few example runs. LEARN
can be accessed at github.com/malirdwi/LEARN.

7.1 Prerequisites

LEARN runs on MATLAB with the optimization and symbolic math toolboxes. Also, it needs the
cvx package. The latest version of cvx is available on the link http://cvxr.com/cvx/download/.
After download, the user must run cvx_setup. After cvx_setup reporting that cvx is successfully
installed, LEARN should run without issues.

7.2 List of Subroutines

The following subroutines are available. Note that all the subroutines below take I'" as an input
which is the stoichiometry matrix of the network. If the network has an autocatalytic reaction then
both matrices A, B need to be entered. (see the Methods section in the main text)

7.2.1 Main subroutines

e LEARNmain(Gamma): Prints a basic report on the network. This subroutine should be sufficient
for most users. Examples will follow. Another parallel function, LEARNmainplus (Gamma), is
available which runs a more exhaustive RLF search.

7.2.2 Basic subroutines

e d=IsConservative(Gamma): Checks if the network is conservative. If it is, then the subrou-
tine returns a positive vector d € R’} such that d'T = 0. If the network is not conservative
then d returns a scalar 0.

e v=IsAS1(Gamma): Checks if the stoichiometry matrix has a positive vector in its kernel. If it
does, then the subroutine returns a positive vector v € R’} such that I'v = 0. If the network
is not conservative then d returns a scalar 0.

e [flag,deadlock]=checkSiphons(Gamma): Checks if there are critical siphons and deadlocks.
Each output can be either 0 or 1.

e flag=checkMnetwork(Gamma): Checks if the network is an M-network. The output is either
0orl.
7.2.3 Necessary Conditions

e checkSiphonCondition(Gamma): Checks if the network violates the critical siphon necessary
condition (Theorem 8). It prints a brief report.

e flag=SignPatternCheck(Gamma): Checks if the network violates the sign pattern necessary
condition [5, Theorem 9]. The output is either 0 or 1.

e flag=checkPmatreix(Gamma): Checks if the network violates the P matrix necessary condi-
tion [5, Theorem 8]. The output is either 0 or 1.

13



e flag=RobustNondegeneracy(Gamma): Checks if the network has a robustly non-degenerate

Jacobian (Theorem 7). This only applies to networks that pass the P matrix test. The output
is either 0 or 1.

7.2.4 Construction of RLF's

e C=ConstructGraphical (Gamma): Checks if the network admits the Max-Min RLF as given

in Theorem 4. The output is C'. If the method fails then C will be an empty matrix.

C=ConstructIterate(Gamma): Checks if the network admits an RLF as given in Theorem 3.
The output is C'. If the method fails then C will be an empty matrix.

[C,cvx]=ConstructLP(Gamma,H2,w,c): Checks if a non-autocatalytic network admits an
RLF as given in Theorem 2. The last three inputs are optional. The output is C and the
flag cvx to indicate that the RLF has been certified to be convex. The second input is Hs
which are optional rows to add to the partitioning matrix H = I'. The default value for Hs
is an empty matrix. The third input is w and it is a flag to constrain the search to Sum-of-
Currents RLFs. The default value is 1, but it is set to 0 in the LEARNmainplus subroutine.
The fourth input is a flag to constrain the RLF to be convex. The default value is 0 which is
the recommended value.

[C,cvx]=ConstructLPauto(A,B,H2,w,c): Checksif an autocatalytic network admits an RLF
as given in Theorem 2. The remaining input structure is similar to the previous subroutine.

[C]=ConstructCoP(Gamma,H2): Checks if a non-autocatalytic network admits an RLF as
given in Theorem 5. The last input is optional. The output is a tensor of PWQ RLF
matrices. The second input is Hs which are optional rows to add to the partitioning matrix
H =T. The default value for Hs is an empty matrix.

7.2.5 Checking a candidate RLF

e flag=CheckRLF (Gamma,C): Checks if V = max;, cgr is an RLF for a non-autocatalytic net-

work with the stoichiometry matrix I'.

7.3 Examples

All the examples are included in the folder examples.

7.3.1 The double processive PTM cycle

This is the form of the input to LEARN for the network depicted in Fig. 9-b.

Gamma=[

-1 1 0 0 0 0 0 1;
-1 1 0 0 0 0 1 0;
1 -1 -1 0 0 0 0 0;
0 0 0 -1 1 0 1 0;
0 0 0 -1 1 0 0 1;
0 0 0 1 -1 -1 0 0;
0 0 1 0 0 0 -1 0;
0 0 0 0 0 1 0 -171;

LEARNmain (Gamma)
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Note that the stoichiometry matrix I' can be easily written from a list of reactions. The output of
LEARN is as follows:

Welcome to LEARN v1.01, Jan 2020
Developed by M. Ali Al-Radhawi malirdwi@{northeastern.edu,mit.edu,
gmail.com}

LEARN tries to construct a Robust Lyapunov Function for a given
reaction network.

The network has 8 species and 8 reactions.

The stoichiometric space is b-dimensional.

The network has a positive vector in the kernel of the stoichiometry
matrix, i.e. it has the potential for positive steady states.

The network is comnservative.

The network has no critical siphons. It is structurally persistent.

LEARN will check some necessary conditions

Necessary Condition # 1

The critical siphon necessary condition is satisfied.

Necessary Condition # 2

The sign pattern necessary condition is satisfied.

Necessary Condition # 3

The P matrix necessary condition is satisfied.

LEARN will search for a PWL RLF

Method # 1: Graphical Method

This is an M-network. The graphical criteria will be checked

Success!! A PWL RLF has been found.
The following is always a Lyapunov function for any monotone

kinetics: V(x)=|| CxR(x) ||_infty,

where C is given as follows:

0 0 1 0 0 -1 0 0
0 0 1 0 0 0 -1 0
0 0 1 0 0 0 0 -1
-1 1 1 0 0 0 0 0
0 0 1 -1 1 0 0 0
0 0 0 0 0 1 -1 0
0 0 0 0 0 1 0 -1
-1 1 0 0 0 1 0 0
0 0 0 -1 1 1 0 0
0 0 0 0 0 0 1 -1
-1 1 0 0 0 0 1 0
0 0 0 -1 1 0 1 0
-1 1 0 0 0 0 0 1
0 0 0 -1 1 0 0 1

—_
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1 -1 0 -1 1 0 0 0

The robust non-degeneracy test is passed.

Since the network is conservative and with no critical siphons then
the following holds:

There exists a unique positive globally asymptotically stable steady

state in each stoichiometric class.

Method # 2: Iterative Method

Success!! A PWL RLF has been found.

The following is always a Lyapunov function for any monotone

kinetics: V(x)=|| CxR(x) ||_infty,

where C is given as follows:

-1 1 0 0 0 0 0 1
-1 1 0 0 0 0 1 0
1 -1 -1 0 0 0 0 0
0 0 0 -1 1 0 1 0
0 0 0 -1 1 0 0 1
0 0 0 1 -1 -1 0 0
0 0 1 0 0 0 -1 0
0 0 0 0 0 1 0 -1
0 0 0 0 0 0 -1 1
0 0 -1 0 0 0 0 1
-1 1 0 0 0 1 0 0
0 0 0 0 0 -1 1 0
0 0 1 -1 1 0 0 0
0 0 -1 0 0 1 0 0
-1 1 0 1 -1 0 0 0

The robust non-degeneracy test is passed.

Since the network is conservative and with no critical siphons then
the following holds:

There exists a unique positive globally asymptotically stable steady

state in each stoichiometric class.

Method # 3: Linear Programming Method

The partition matrix H is set to the default choice H=the
stoichiometry matrix

This method for constructing a PWL RLF has failed.

THE END.

7.3.2 The double distributive PTM cycle
This is the output of LEARNmain for the network depicted in Fig. 9-d.

Welcome to LEARN v1.01, Jan 2020
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?Developed by M. Ali Al-Radhawi malirdwi@{northeastern.edu,mit.edu,
gmail.com}

LEARN tries to construct a Robust Lyapunov Function for a given
reaction network.

The network has 9 species and 12 reactions.

The stoichiometric space is 6-dimensional.

The network has a positive vector in the kernel of the stoichiometry
matrix, i.e. it has the potential for positive steady states.

The network is comnservative.

The network has no critical siphons. It is structurally persistent.

LEARN will check some necessary conditions

Necessary Condition # 1

The critical siphon necessary condition is satisfied.

Necessary Condition # 2

The sign pattern necessary condition is satisfied.

Necessary Condition # 3

The P matrix necessary condition is violated. A PWL RLF does not
exist

LEARN will search for a PWL RLF

Method # 1: Graphical Method

This is not an M-network. Method # 1 is not applicable.

Method # 2: Iterative Method

This method for constructing a PWL RLF has failed.

Method # 3: Linear Programming Method

The partition matrix H is set to the default choice H=the
stoichiometry matrix

This method for constructing a PWL RLF has failed.

THE END.

7.3.3 The McKeithan Network
This is the output of LEARNmain for the network depicted in Fig. 11-a with N = 2.

Welcome to LEARN v1.01, Jan 2020
Developed by M. Ali Al-Radhawi malirdwi@{northeastern.edu,mit.edu,
gmail.com}

LEARN tries to construct a Robust Lyapunov Function for a given
reaction network.
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The network has 5 species and 6 reactions.

The stoichiometric space is 3-dimensional.

The network has a positive vector in the kernel of the stoichiometry
matrix, i.e. it has the potential for positive steady states.

The network is comnservative.

The network has no critical siphons. It is structurally persistent.

LEARN will check some necessary conditions

Necessary Condition # 1

The critical siphon necessary condition is satisfied.

Necessary Condition # 2

The sign pattern necessary condition is satisfied.

Necessary Condition # 3

The P matrix necessary condition is satisfied.

LEARN will search for a PWL RLF

Method # 1: Graphical Method

This is not an M-network. Method # 1 is not applicable.

Method # 2: Iterative Method
Success!! A PWL RLF has been found.
The following is always a Lyapunov function for any monotone

kinetics: V(x)=|| C*R(x) ||_infty,

where C is given as follows:

-1 1 0 0 1 1
-1 1 0 0 1 1
1 -1 -1 0 0 0
0 0 1 -1 -1 0
0 0 0 1 0 -1
0 0 -1 0 1 1
-1 1 1 -1 0 1
-1 1 0 1 1 0

The robust non-degeneracy test is passed.

Since the network is conservative and with no critical siphons then
the following holds:

There exists a unique positive globally asymptotically stable steady

state in each stoichiometric class.

Method # 3: Linear Programming Method

The partition matrix H is set to the default choice H=the
stoichiometry matrix

Success!! A PWL RLF has been found.

The following is always a Lyapunov function for any monotone

kinetics: V(x)=|| CxR(x) ||_infty,
where C is given as follows:
0 0 0 1 0 -1
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0 0 1 -1 -1 0
0 0 1 -0 -1 -1
1 -1 -1 0 0 0
1 -1 -1 1 0 -1
1 -1 -0 -1 -1 0
1 -1 -0 -0 -1 -1

The robust non-degeneracy test is passed.
Since the network is conservative and with no critical siphons then
the following holds:
There exists a unique positive globally asymptotically stable steady
state 1in each stoichiometric class.
Please note that this function is a Sum-of-Currents RLF
which can altermnatively be written

as V(x)= sum_i xi_i |dot =x_il, where xi=[xi_1 .... xi_n]l=
1 1 2 2 2
THE END.
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