
Distributed Implementation of Boolean Functions by Transcriptional
Synthetic Circuits
M. Ali Al-Radhawi,∇ Anh Phong Tran,∇ Elizabeth A. Ernst, Tianchi Chen, Christopher A. Voigt,
and Eduardo D. Sontag*

Cite This: ACS Synth. Biol. 2020, 9, 2172−2187 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Starting in the early 2000s, sophisticated technologies have been
developed for the rational construction of synthetic genetic networks that implement
specified logical functionalities. Despite impressive progress, however, the scaling
necessary in order to achieve greater computational power has been hampered by
many constraints, including repressor toxicity and the lack of large sets of mutually
orthogonal repressors. As a consequence, a typical circuit contains no more than
roughly seven repressor-based gates per cell. A possible way around this scalability
problem is to distribute the computation among multiple cell types, each of which
implements a small subcircuit, which communicate among themselves using
diffusible small molecules (DSMs). Examples of DSMs are those employed by
quorum sensing systems in bacteria. This paper focuses on systematic ways to
implement this distributed approach, in the context of the evaluation of arbitrary
Boolean functions. The unique characteristics of genetic circuits and the properties
of DSMs require the development of new Boolean synthesis methods, distinct from
those classically used in electronic circuit design. In this work, we propose a fast algorithm to synthesize distributed realizations for
any Boolean function, under constraints on the number of gates per cell and the number of orthogonal DSMs. The method is based
on an exact synthesis algorithm to find the minimal circuit per cell, which in turn allows us to build an extensive database of Boolean
functions up to a given number of inputs. For concreteness, we will specifically focus on circuits of up to 4 inputs, which might
represent, for example, two chemical inducers and two light inputs at different frequencies. Our method shows that, with a constraint
of no more than seven gates per cell, the use of a single DSM increases the total number of realizable circuits by at least 7.58-fold
compared to centralized computation. Moreover, when allowing two DSM’s, one can realize 99.995% of all possible 4-input Boolean
functions, still with at most 7 gates per cell. The methodology introduced here can be readily adapted to complement recent genetic
circuit design automation software. A toolbox that uses the proposed algorithm was created and made available at https://github.
com/sontaglab/DBC/.

Cells can inherently perform intricate operations that
include adapting to a new environment, responding to

various stimuli, and building complex constructs such as
proteins. This is enabled, in part, by the fact that genes can
connect to each other in a circuit-like manner via diverse
mechanisms and components that include regulators such as
transcription factors (TFs). Hence, it has been long recognized
that genetic circuits resemble electronic circuits in their ability to
process logical operations.1 The implementation of synthetic
circuits for biological computations inside cells is of particular
interest in applications ranging from drug delivery to the
engineering of micro-organisms, immunotherapy, and biofuel
production.2−4 Despite its potential, the rational design of
genetic circuits was initially very difficult and labor intensive, as
it required striking a precise balance of regulator abundances. In
addition, the sensitivity of cells to growth conditions was poorly
understood, and it was difficult to characterize cell behavior.5

Furthermore, the expansion of the set of TFs with negligible

cross-talk that perform reliably under a wide range of conditions
has been challenging.6−8

Recent biotechnological developments have ameliorated
some of these difficulties. First, computer-aided techniques
have been developed to automate the design process.9 Second,
efficient and reliable TFs can now be designed through
repurposing of the CRISPR associated protein, known as
Cas9, by deactivating its endonuclease activity.10 This catalyti-
cally inactive Cas9 known as dCas9 retains the ability to bind to
a single guide RNA (sgRNA). The resulting complex acts as a

Received: April 26, 2020
Published: June 26, 2020

Research Articlepubs.acs.org/synthbio

© 2020 American Chemical Society
2172

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

D
ow

nl
oa

de
d

vi
a

N
O

R
T

H
E

A
ST

E
R

N
 U

N
IV

 o
n

Fe
br

ua
ry

 3
, 2

02
1

at
 1

6:
33

:3
1

(U
T

C
).

Se
e

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n

ho
w

 to
 le

gi
tim

at
el

y
sh

ar
e

pu
bl

is
he

d
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="M.+Ali+Al-Radhawi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anh+Phong+Tran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elizabeth+A.+Ernst"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianchi+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christopher+A.+Voigt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eduardo+D.+Sontag"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eduardo+D.+Sontag"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.0c00228&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?goto=recommendations&?ref=pdf
https://github.com/sontaglab/DBC/
https://github.com/sontaglab/DBC/
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=&ref=pdf
https://pubs.acs.org/toc/asbcd6/9/8?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/8?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/8?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/8?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf

TF by binding to the region on the genome that matches its
sgRNA strand. The bound sgRNA-dCAS9 complex turns the
targeted gene off by repressing the adjacent promoter or by
interfering with the elongation downstream.11 This new
platform, referred to as CRISPR interference (CRISPRi), has
a modular nature that enables a single protein dCas9 to target
multiple genes at once by changing the associated sgRNA.12

CRISPRi has been used to build multi-input genetic circuits that
consist of NOT and NOR gates.12,13

The CRISPRi technology allows the design of an extremely
large number of orthogonal regulators based on sgRNAs. A
limiting factor is the fact that dCas9 is a shared resource among
the different gates which needs to be continuously expressed at
very high concentrations leading to high toxicity for the host
cells.12 This problem is known collectively as the dCas9
bottleneck and has been the subject of a high level of research
activity aimed at reducing dCas9 toxicity.14−18 Such practical
limitations have severely limited the number of repressor-based
gates that can be implemented together in a cell. Hence, the
maximum reported number of repressor-based gates per cell has
not exceeded 7−8 gates in both Escherichia coli9,19 and yeast.13

The typical numbers are even lower than that. For instance,
some of the repressor-based circuits published in the last two
years reported circuits with four gates,20 fives gates,21 and six
gates22 per cell.
The difficulty in designing scalable biological computational

systems has prompted the development of distributed
approaches in synthetic biology.23,24 Bacteria can exercise cell-
to-cell communication via diffusible small molecules
(DSMs)25,26 or conjugation.27 In our context, the problem of
TF bottlenecks can be circumvented by distributing the overall
computation among several (colonies of) cells, each of which
performs a specific part of the computation, thus allowing the
same TFs to be reused, and keeping dCas9 concentrations at
innocuous levels. This approach has been demonstrated by the
construction of all types of two-input Boolean functions in cells,
each containing one gate.28 A rule-based approach to distributed
design of simple Boolean functions via AND/OR/NOT gates
has been proposed.29 More recent designs have cells, each
implementing a 1-input-1-output IDENTITY/NOT function,
used as building blocks in segregated consortia.30 A similar
approach uses IDENTITY/NOT building blocks in a
hierarchical distributed scheme via recombinase logic without
utilizing cell-to-cell communications and without formally
studying the limits on the number of gates per cell.31 Other
recent designs employing DSMs include a 3D cell consortium
which functions as a full adder,32 a multiplexer-demultiplexer
system,20 coupled incoherent feedforward loops,33 and cascades
of toggle switches.34

In this work, we are interested in developing a synthesis
framework for systems using DSMs. A minimal unit consists of
two components: a “sender” consisting of the enzyme that
produces a DSM and a “receiver” that responds to this DSM and
turns on a promoter. However, the number of sender/receiver
pairs that have been used together remains very small. Similar to
crosstalk between TFs, there is the additional challenge of
building an orthogonal set of DSMs where each receiver only
responds to its cognate signal. Using directed evolution
approaches,35 the known methods36 can be applied to create a
set of four orthogonal sender/receiver pairs (C4-HSL Rhl,
3OC12-HSL Las, 3OC6-HSL Lux, and pCou-HSL Rpa). Efforts
to expand the set of the orthogonal DSMs to eight are underway.

The aim of this work is to automate the process of Boolean
synthesis for diffusible systems, under constraints on the number
of available orthogonal DSM molecules and constraints on the
number of gates per cell. In state of the art technology, the
feasible numbers are around seven gates per cell and a total
number of 4−5 DSMs.

■ NOVEL BOOLEAN SYNTHESIS PROBLEM
Due to the nature of the CRISPRi framework and limitations of
the current technology, we assume that the Boolean synthesis
problem is constrained to use 2-input NOR (NOR2) gates only.
(Note that a NOT gate can be implemented as a NOR2 gate
with identical inputs.) NOR gates are universal, in the sense that
any Boolean function can be represented via NOR gates.37 In
order for cells to communicate with each other, DSMs are used
in our design. A cell can release one or multiple DSMs that can
act as inputs to other cells or as overall outputs of a circuit.
Given a Boolean Function (BF) and its full circuit

representation, the most natural “top-down” approach is to
apply graph partitioning algorithms that, in essence, cut the full
design into smaller subdivisions.38,39 However, these partition-
ing methods tend to yield designs that require a large number of
cuts in order to fulfill the constraints on the number of allowed
gates per cell (and thus, requiring the implementation of a large
number of DSMs).
Furthermore, since the small molecules are diffusible, if

multiple cells release the sameDSM, the released concentrations
add up, and the DSM will in effect act to implement a “virtual
OR gate”. If a cell has a DSM input, then the logical value of that
input is the sum of all the logical values of the outputs of all other
cells that release that DSM. These particularities call for an
alternative approach.
In this work, after introducing a formal mathematical

formulation of the problem, we propose an alternative
“bottom-up” approach that builds up from the synthesis of
individual cells. The next step is to take advantage of the additive
properties DSMs in order to compute the output as a
disjunction, thus limiting the number of DSMs required. We
also propose a graph partitioning algorithm to complement the
aforementioned method. Finally, we create a comprehensive
optimized and automated design framework to select the “best”
design among the solutions found satisfying the mandatory
bounds (number of gates per cell and number of total DSMs).
To that end, we propose several secondary criteria, to be chosen
by the user, to get a unique solution. They include minimizing
the number of gates, the average number of gates per cell, or the
range of the number of gates per cell.
Our work uses elements of circuit design theory, combined

with the adaptation of a branch-and-bound algorithm originally
developed in a different context by one of the authors40 to build
a database of optimal NOR2 representations for all Boolean
functions of up to 4 inputs. In comparison, the Cello software9

produces NOR2 realizations via popular packages such as
ABC41 and Espresso42 which are not guaranteed to generate
circuits which are optimal (in the sense of having a minimal
number of gates).43

We will formulate the problem next. Let n be the number of
inputs, and p be the number of outputs, such as reporter signals.
We are given two positive integers N and q, which are the
maximum number of NOR2 gates per cell and the maximum
number of orthogonal DSMs, respectively. Mathematically, a
vector-valued (i.e., multioutput) Boolean function (BF) F:
{0,1}n→ {0,1}p can be thought of as a vector (f1, ..., f p) of scalar-

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2173

pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

valued (i.e., single-output) BFs f j: {0,1}
n → {0, 1}, j = 1, ..., p.

Each scalar-valued BF can be succinctly represented via a
hexadecimal code (see Methods). Given N and q, we are
interested in the problem of finding a distributed circuit
realization that obeys the two following constraints:

1. each cell is constrained to use a maximum of N NOR2
gates;

2. a total of no more than q DSMs are allowed.

If a realization satisfies these constraints, then F = (f1, ..., f p) is
said to be (N, q)-realizable. A mathematically precise definition
is provided in the Methods section. In the remainder of the
paper, a BF refers to a scalar (single-output) BF, while a
multioutput BF is referred to as a vector BF.
The database as well as well as the toolbox that we created to

generate the various designs in this work are made available at
https://github.com/sontaglab/DBC/.

■ RESULTS
Current synthetic biology applications, from the detection of
environmental toxins to the design of engineered immune cells,
involve typically only a handful of inputs. Thus, even though the
methods that we introduce can be, in principle, scaled to an
arbitrary number n of inputs, for computational tractability we
will restrict our attention to BFs of 4 inputs or less. Note that

there are 22n
BFs with n inputs. This is because there are 24

possible binary strings of 4 bits (0000, 0001, ..., 1111), and each
of these can be mapped into either a 0 or a 1. In particular, there
are 216 possible Boolean functions with 4 inputs.
In the following sections, we discuss the number of functions

that can be realized with no DSMs (so that a single colony is
sufficient) and then proceed to the topic of this paper proper,
namely larger numbers of DSMs.
(N, 0)-Realizable BFs via Exact Synthesis. As a first step,

BFs that are realizable without any DSMs are considered. We
use a branch-and-bound algorithm (see Methods) to find the
minimal number of gates required to realize a given BF. The
results are summarized in Figure 1. In particular, we find that
only about 11.69% of the 216 different BFs with 4 inputs can be
realized using sevenNOR gates or less.Moreover, we find that 4-
input BFs can require up to 14 NOR gates, and they most

frequently require ten NOR gates, with a median of 10. Thus,
most realizations are not implementable in a single cell via the
current technological limitation of around seven gates per cell.
The algorithm was used to generate the data for the

histograms in Figure 1, but the main goal was to populate a
database that provides optimal (minimal number of gates)
realizations for all 4-input Boolean functions. This database is
used subsequently as a lookup table, to assign an optimal NOR2
design per cell when building distributed designs.

(N, 1)-Realizable BFs via Disjunctive Form Design. The
main focus of this paper is to study the case when a circuit design
cannot readily fit in a cell (or equivalently, it is not (N, 0)-
realizable in the terminology introduced before). We first
propose a bottom-up approach in which a Boolean realization is
built “from scratch” in a distributed manner. We call this
approachDisjunctive FormDesign (DFD). We then present a top-
down approach in which, starting from a circuit realizing a given
BF taken from the precomputed database, we apply a graph
partitioning algorithm to distribute the computation.
We introduce DFD next. First, we study the case when a single

DSM can be used to distribute the computation. We propose a
design depicted in Figure 2 to realize a disjunctive form of f. Each
cell releases the same DSM. The total concentration of the DSM
adds up; hence, its concentration acts as an OR gate. Hence, BFs
c1, ..., cm are to be found such that

∑=
=

f x x c x x(, ...,) (, ...,)n
j

m

i n1
1

1
(1)

We interpret the summation in the Boolean sense, as an OR
gate (see Methods for more details). The summation in eq 1
uses one DSM. If each of the BFs c1, ..., cm can be realized withN
gates or less, then f is (N, 1)-realizable. Such a design
implements some of the computation (namely, the OR gate)
outside the cells, and this allows us to realize many of the BFs
that cannot be realized via graph partitioning with a single cut to
a full design drawn from the database (see Figure 5 as an
example).
The next step is to determine the circuit for each of the cellular

networks in Figure 2. This requires us to determine the
corresponding BFs c1, ..., cm. One method is to write f as a

Figure 1. Illustration of the minimal number of gates required to represent a given 4- input Boolean function. This assumes no use of DSMs, or in the
language of synthetic biology, circuits that can be built within one cell. (a) Total number of BFs vs minimal number of gates needed for realization; (b)
the cumulative fraction of realizable Boolean functions vs the number of NOR2 gates.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2174

https://github.com/sontaglab/DBC/
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

minimized disjunctive form (MDF) which implies that c1, ..., cm
are product terms (see Methods for definition). Hence, a basic
scheme assigns each cell in Figure 2 with the task of computing
the corresponding product term in the MDF of f. If we assume
that each cellular network cannot contain more than one cell,
then this scheme allows us to compute the number of (N, 1)-
realizable functions that can be written in the form of eq 1 as we
will show later.
The disjunctive form design described above is a basic scheme

that can be improved in many cases. This is since assigning one
cell for each term of the MDF can be inefficient in other aspects.
For example, when applied to the BF x̅1 + x̅4 + x̅2x3x4, the
aforementioned scheme will provide a design consisting of three
types of cells, two implemented by just one gate each and the
other one by six gates. While giving a (6, 1) realization that
satisfies the mandatory bounds, the imbalance between the
computational resources allocated to each of the three types of
cells may be undesirable in some applications and it can be
improved (for instance) by reducing the number of cells. In
general, it is possible to find several solutions satisfying the same
bounds. To address the nonuniqueness of solutions, we will

propose later a framework in which a user is able to choose the
best solution among different trade-offs between N and q by
defining secondary criteria.
Despite the drawbacks mentioned above of the basic scheme

(i.e., the scheme of one cell for each term in the MDF), this
procedure produces a modular design since minterm-computing
cells (MCCs) can be designed once and reused as needed in the
design of single or multiple BFs. For instance, a four-input
function needs only 13 types of such cells to compute minterms
of up to 4 variables. For instance, x1x2x̅3x4 and x1x2x3x̅4 can be
computed by the same circuit after permuting the inputs.

Realizability Test.The next question that we tackle is that of
finding the number of BFs that can be realized with DFD with
only one DSM. We provide next a fast test that determines a
lower bound on the number of (N, 1)-realizable BFs. It relies on
the development of the concept of of fending minterms, which are
minterms that cannot be realized with N gates or less. For
example, the minterm x1x2x3x4 (a 4-input AND) can be realized
with at least 9 NOR2 gates, and hence it is not (7, 0)-realizable.
To that end, we use N to denote the set of all such minterms.
For instance,

= { ̅ ̅ ̅ ̅ }x x x x x x x x x x x x x x x x x x x x, , , ,7 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

After computing the set N , a combinatorial test is provided,
where we show that a BF f is (N, 1)-realizable if the set of prime
implicants of f does not contain an offending minterm. (See
Methods for further details.)
In the case of N = 7, the test shows that there are at least

56,608 (7,1)- realizable 4-input BFs out of a total of 216 = 65,536
BFs. Therefore, the percentage of realizable BFs is at least
86.384% when using one DSM, compared to only 11.690%
without anyDSMs for 4-input BFs, which amounts to a 7.39-fold
increase. In the case of N = 8, the percentage of (8,1)-realizable
functions is at least 96.877%, compared to 25.321% for (8,0)-
realizable functions. Note that these bounds are not tight, as we
will show in the next subsection.

More DSMs Are Needed: Realization with Offending
Minterms. We have shown that using just one DSM
considerably extends the number of realizable BF. Still, there
are BFs which cannot be realized with a single DSM. In

Figure 2.Disjunctive form design. The abbreviation “Cell. Net.” stands
for “Cellular Network”. The figure depicts a distributed computation
design for implementing a Boolean function f of n Boolean variables
with one DSM. The DSM sensor can be, for instance, a DSM-to-GFP
cell. A cellular network can consist of multiple cells communicating with
DSMs. If each cellular network consists of a single cell, and each cell
does not contain more than N gates, then the design is an (N, 1)-
realization.

Figure 3.Construction of cellular networks to realize the offending minterms. Each diagram can be included as a cellular network in the DFD as shown
in Figure 2. (a) Partitioning a realization of the minterm c = x1x2x3x4 that requires a minimum of 9 NOR2 gates. Many partitions are possible. We show
here one partition into two cells of 4 and 5 gates, respectively, via the use of 1 DSM. (b) Partitioning a realization of twominterms sharing two literals c1
= x1x2x3x̅4, c2 = x1x2x̅3x4. These two minterms that require a minimum of 8 NOR2 gates each can be split up in such a way that the computation for the
common product term x1x2 can be reused. This allows us to use a total of three cells instead of four. Different colors indicate different cells.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2175

https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig3&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

particular, one DSM is insufficient if there are offending
minterms in the minimized disjunctive form. In this subsection,
we generalize the method in order to handle the case of
offending minterms appearing in the MDF of a BF. This will be
achieved by allowing some of the cellular networks in Figure 2 to
contain more than a single cell.
First, we propose a generic constructive method that aims at

providing an upper bound on the number of DSMs needed to
realize p BFs simultaneously (i.e., vector BFs). We summarize
here the results for the cases of N = 7, 8, 9 (which are the given
bounds on the number of gates per cell).
Theorem 1 Given a 4-input vector BF F = (f1, ..., f p). Then:

1. For N = 7, there exists 0 ≤ q ≤ p + 2 such that F is (7, q)-
realizable (i.e., no more than p + 2 DSMs are needed).

2. For N = 8, there exists 0 ≤ q ≤ p + 1 such that F is (8, q)-
realizable (i.e., no more than p + 1 DSMs are needed).

3. For N = 9, there exists 0 ≤ q ≤ p such that F is (9, q)-
realizable (i.e., no more than p DSMs are needed).

A constructive proof is provided in the Methods section by
relying on realizing the offending minterms individually by
designing a corresponding cellular network. If an offending
minterm appears in multiple BFs, then it only needs to be
computed once. For instance, consider the case when x1x2x3x4 is
the only offending minterm that appears in the MDFs of F = (f1,
..., f p); then, its 9-gate realization can be partitioned via oneDSM
to produce a cellular network consisting of two cells whose
number of gates are just 4 and 5 (Figure 3a). More offending
minterms can be handled also. Consider, for example, the case
when the only offending minterms are x1x2x3x̅4 and x1x2x̅3x4.
Then, the corresponding cellular network computes the
common product term x1x2 first, and then the computed value
is communicated to two other cells that compute the required
minterms via a single DSM, resulting in a cellular network design
with a total of 3 cells (with 4 gates each) and one DSM (Figure
3b). Other cases are described in the Methods.
Scalar BF with Offending Minterms. The results in

Theorem 1 can be slightly improved in the case of a scalar BF,
and full databases of realizations with arbitrary q can be
provided. Furthermore, we provide lower bounds on the
percentage of realizable 4-input BFs via the disjunctive form
design as shown in Table 1 (see Methods for details). Estimates
are also provided for 5-input Boolean functions in Table 2.

Graph Partitioning Algorithm.DFD represents a bottom-
up approach to the problem of distributed computation. Here
we study a top-down approach which can yield better results in
some cases where the number of DSMs needed can be reduced
with respect to the DFD. We propose a graph partitioning
algorithm applied to a full NOR2 network generated by the exact

synthesis algorithm. In this formulation, the usage of a single
DSM will be equivalent to a single cut in the extended NOR2
graph. See Methods for a detailed description of the algorithm.
Due to the nature of graph partitioning, unless the circuit

readily fits inside a cell, the use of a DSM signal is necessary.
Thus, for 4 inputs and N = 7, 11.690% of BFs can be realized
without a DSM, another 37.680% of BFs can be realized using 1
DSM, and an additional 34.900% using 2 DSMs, using this
technique. This leaves 15.730% of BFs that cannot be realized
using 2 or less DSMs. Thus, given the fact that the number of
mutually orthogonal DSMs is considered to be a limited
resource, the disjunctive-form design is generally preferable as a
way to minimize the use of DSMs. However, there exist cases for
which the partitioning algorithm offers a more compact
realization.
By combining both the disjunctive form design and graph

partitioning, the numbers presented in Table 1 can be improved
(for the case q = 1) compared to those shown in Table 3.

Optimized Distributed Design Framework. The designs
presented so far provide a circuit representation that fulfills the
physical constraints imposed (on numbers of gates and cell
types). In the case of disjunctive form design, the basic scheme
introduced earlier requires the use of at least as many cell types
as there are minterms in the MDF of a given BF. Using the
database developed through the exact synthesis algorithm, it is
straightforward to test all the combinations of various
nonoffending product terms that are (N, 0)-realizable. This
leads, in most cases, to a reduction in the number of required
cells for a given realization. The graph partitioning algorithm

Table 1. Percentage of Realizable 4-Input Boolean Functions
via the Disjunctive Form Design (Lower Bounds)a

q

(N, q) 0 1 2 3

N 7 11.690% 86.384% 99.951% 100%
8 25.321% 96.877% 100% 100%
9 45.297% 100% 100% 100%
10 70.939% 100% 100% 100%
11 89.570% 100% 100% 100%

aN refers to the maximum number of allowed NOR2 gates per cell,
and q refers to the number of DSMs.

Table 2. Estimates of the Realizable 5-Input Boolean
Functions via the Disjunctive FormDesign (Lower Bounds)a

q

(N, q) 0 1 2 3 4 5

N 7 ∼2% 11.0% 34.2% 60.6% 81.1% 93.0%
8 ∼4% 42.3% 74.3% 90.4% 96.8% 99.00%
9 ∼10% 70.0% 92.4% 98.3% 99.6% 99.9%
10 ∼22% 88.6% 98.6% 99.8% 99.8% 99.997%
11 ∼40% 98.4% 100% 100% 100% 100%
12 ∼63% 100% 100% 100% 100% 100%
13 ∼83% 100% 100% 100% 100% 100%

aThe (N, 0) percentage values were estimated from the limited list of
calculated optimal designs of 5-input Boolean functions provided in
ref 40. The (N, q > 0) values were estimated by examining 100,000

MDF decompositions picked at random from the set of 225
possible 5-

input combinations. The reductions due to redundancy when dealing
with more than 1 offending minterm were not accounted for, unlike
the 4-input case. Thus, the listed estimations of the lower bounds are
expected to be looser.

Table 3. Lower Bound on Cumulative Percentage of
Realizable 4-Input Boolean Functions Combining the
Disjunctive-FormDesign and Graph Partitioning Algorithms

q

(N, q) 0 1 2 3

N 7 11.690% 88.666% 99.951% 100%
8 25.321% 97.440% 100% 100%
9 45.297% 100% 100% 100%
10 70.939% 100% 100% 100%
11 89.570% 100% 100% 100%

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2176

pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

Figure 4. Flowchart of the optimized distributed design framework.

Figure 5. Distributed designs with only one DSM (i.e., (7,1)-realizations) using the proposed algorithm for two Boolean functions. (a) Distributed
realization of the Boolean function with the hexadecimal representation (0xE99F), or equivalently f(x) = x̅1x̅2x̅3 + x̅3x̅4 + x2x3x4 + x1x3x4 + x1x2 + x̅1x̅2x̅4,
that requires at least 13 gates to be implemented in a cell. The corresponding graph cannot be partitioned with one DSM. Nevertheless, the optimized
disjunctive form provides a design of two cells with 7 and 5 gates as depicted above. This is notable because the distributed design requires less gates
than the full circuit using NOR2 gates. (b) The Boolean function (0x977E) requires at least 14 gates to be implemented in a cell. The optimized design
yields a design using three cells of 6 gates each. The MDF form is given by f(x) = x̅1x̅2x̅3x̅4 + x̅1x3x4 + x̅1x2x4 + x̅1x2x3 + x1x3x̅4 + x1x̅2x4 + x1x2x̅3. The
symbol “■” refers to a DSM sensor.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2177

https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig5&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

provides also alternative designs in many cases. Hence, there is a
need to develop a framework to choose the “best” solution
among the solutions available. In the parlance of optimization
theory, we aim at creating a framework that enables the user to
explore the “Pareto front” of solutions to choose from.
Generally, there is a trade-off between the maximal number of

gates per cell (N) and the number of DSMs (q). Furthermore,
depending on the application, secondary optimization criteria
can be used depending on the application. For instance, themost
intuitive criterion is to use as few cells and NOR gates as
possible. In other cases, one may want to minimize the number
of cells required, while also minimizing the variability in the
number of NOR gates used per cell, in order to reduce
differences in computational time between cells.
In the context of the DFD, the use of a look-up database allows

for a rapid and exhaustive search of these optimal designs. This is
possible by taking all the nonoffending minterms and testing for
all possible combinations of a given set of minterms. For
example, the five possible combinations of the set {1, 2, 3} are
{{1, 2}, 3}, {1, 2, 3}, {{1, 3}, 2}, {1, {2, 3}}, and {{1}, {2}, {3}}.
In this case, there are five different ways of combining 3
minterms. Given the use of the database, the computation
required to compute all five designs is very minimal. This allows
a rapid look-up of what minterms can be efficiently combined,
while also meeting the constraints of the problem.
Finally, the partitioning algorithm can also be combined with

the distributed disjunctive-form algorithm through combining
offending and nonoffending minterms to find combinations that
lead to more compact or desirable designs. The complete
framework is summarized in the flowchart depicted in Figure 4.
Illustrative Examples and Pareto Trade-offs. In this

section, we show various circuit realizations generated by the
developed framework for different 4-input BFs under the
constraint that N = 7 starting with (7, 1)- up to (7, 3)-realizable
circuits. Examples of (7, 0)-realizable circuits are omitted here
because they can be looked-up directly through the database and
they do not involve distributed computation.
We first start with the case of a single DSM. In Figure 5(a) and

(b), two (7, 1)-realizable circuits are shown with both circuits
having six and seven product terms in their MDF. However,
given the look-up table, these realizations are reduced from
requiring six and seven cells in the disjunctive-form design to
simply requiring two and three cells, respectively. Through
combining various minterms, it was found that it is not possible
to decrease the maximum NOR gates requirement. In other
words, if a minterm is offending, it was not possible for us to find
a combination of this minterm with the other minterms of a
given BF to realize it with a smaller number of NOR2 gates.
However, through these examples, we illustrated that it can be
quite straightforward to reduce greatly the required number of
cells through the exhaustive search of the optimized disjunctive-
form design.
The next examples show the cases in which more than one

DSM is needed and how the algorithm handles offending
minterms. Figure 6 depicts disjunctive form realizations of a BF
for which a DSM is necessary to deal with the offending
minterm. In Figure 6(a), Cell 5 is used to create the first DSM
signal, which feeds as an input to Cell 4. Cells 1 through 4
combine their outputs through a DSM sensor that acts as an OR
gate. Figure 6(b) shows an example dealing with two offending
minterms for which the resulting optimized DFD is (4,2)-
realizable.

In Figure 7, two different DSMs are used to deal with the three
offending minterms. In that design, cells #2 and #3 share a
similar input circuit releasing a common DSM. The remaining
four nonoffending product terms are combined to form two cells
requiring seven NOR gates each. This (7,3)-realizable circuit is
distributing the computation in two steps by first computing the
DSM1 and DSM2 signals from cells 1 and 2 and then computing
the operations in cells 3 through 7.
While only a few examples are shown here, the developed

algorithm can generate optimized realizations for all 65536
possible 4-input BFs.
To illustrate the flexibility of the workflow, various designs are

shown in Figure 8 that can be generated from the DFD form
depending on the criteria of selection that can be, for example,
the average number of gates per cell, the total number of gates in
the design, or the variance in the number of gates in the final
design.

Figure 6. Distributed designs with two DSMs (i.e., (7,2)-realizations)
using the proposed algorithm for two Boolean functions with one and
two offending minterms. (a) The function (0xFEE9) requires 14 gates
to be implemented in a cell. TheMDF form is provided by f(x) = x̅1x̅2 +
x̅2x̅3 + x̅3x̅4 + x̅2x̅4 + x̅1x̅4 + x̅1x̅3 + x1x2x3x4. The optimization procedure
was used to reduce the number of required cells from 7 (based on the
MDF form) to 5, while also ensuring that the final design is (5,2)-
realizable. The symbol “■” refers to a DSM sensor. (b) The BF
(0xF806) requires 11 gates to be implemented in a cell, and the
resulting graph cannot be partitioned with one cut. The MDF form is
provided by f(x) = x̅1x̅2 + x1x2x̅3x4 + x1x2x3x̅4+x̅1x̅3x̅4. The optimized
design required four cells with a unique “sender” (Cell 1) that acts upon
two “receivers” (Cells 3,4), making this design (4,2)-realizable.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2178

https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig6&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

Also, in order to demonstrate the complementary nature of a
unified algorithm that integrates the partitioning and DFD
approaches, we show in Figure 9 how the DFD decomposition
of a circuit can yield a (7,1)-realizable design that would not be
otherwise possible with a partitioning algorithm. In Figure 10,
the opposite scenario is shown, in which the partitioning
algorithm of the full circuit provided by the exact synthesis
algorithm yields a very compact (7,1)-realizable design of 2 cells
using 5 and 7 gates. A comparable design in the DFD would
require at least 3 cells and 2 DSMs.
6-Output 4-Input Design Example.We consider a circuit

with two 2-bit binary numbers y1y0 and x1x0 as inputs. As an
example, let us design a full adder (c2c1c0), a subtractor (d1d0),
and a comparator. The outputs are defined as (c2c1c0) = (y1y0) +
(x1x0), (d1d0) = |(x1x0)− (y1y0)|, where addition and subtraction
here refer to the standard operations on the field of real numbers.

The comparators are defined as follows: e = 1 iff (y1y0) = (x1x0)
(and e = 0 otherwise), and g = 1 iff (y1y0) > (x1x0) (and g = 0
otherwise). A distributed design that shares minterms between
the different BFs is shown in Figure 11.

■ DISCUSSION
Despite impressive progress in the technology of rational
construction of synthetic genetic networks, the implementation
of large logical decision-making circuits has been problematic,
due to repressor toxicity and the lack of large sets of mutually
orthogonal repressors. Indeed, a typical circuit contains no more
than roughly seven repressor-based gates per cell. In
comparison, the implementation of the 4-input AND gate
requires at least 9 NOR2 gates, and up to 14 NOR2 gates for an
arbitrary 4-input BF. Hence only a tiny fraction of 4-input
Boolean functions is within the reach of the current technology.
One way to overcome these limitations is to distribute
processing over multiple cell types, which communicate
among themselves using quorum sensing or other diffusible
small molecules (DSMs). Here, we developed a systematic
framework to implement such a distributed approach to
synthesize distributed realizations, for any Boolean function of
several inputs (such as a combination of chemical and physical
signals), and under constraints on the maximal number of gates
per cell and a maximal number of orthogonal DSMs. We have
shown that cell-to-cell communication increases the number of
implementable Boolean functions significantly. For example,
with at most seven gates per cell and four inputs, a single DSM
increases the number of realizable circuits by at least 7.58-fold
compared to centralized computation, and with two DSMs it is
possible to implement almost all four-input Boolean functions.
Our approach applies equally well to any number of inputs

larger than four. However, computational challenges make it
very hard to obtain exact numbers when the number of inputs is
large; thus, as the number of inputs increase, one must settle for
suboptimal sizes and random sampling of Boolean functions, as
opposed to the exhaustive study that is feasible for four inputs.
Future research will study heuristic algorithms for sampling of

suboptimal designs using the approach discussed here and the
comparison of these algorithms with existing ones−for the case
of no DSMs−such as ABC or Espresso (which result in
considerably suboptimal designs). Another future direction is
the adaptation of our current framework to be conducted on

Figure 7.Distributed designs with three DSMs (i.e., (7,3)-realizations)
using the proposed algorithm. This function (0x2196) requires at least
13 gates to be implemented in a cell. The MDF is provided by f(x) =
x1x̅2x̅3x̅4 + x̅1x̅2x3x̅4 + x̅1x2x3x4 + x1x̅2x3x4 + x1x2x̅3x4 + x1x2x3x̅4. The
symbol “■” refers to a DSM sensor.

Figure 8.Various possible circuit designs using the exact synthesis library are shown for the BF (0xA7D4). While the focus here was on minimizing the
total number of gates, other optimization criteria can be readily implemented. Green bullet points indicate designs that are realizable within the
constraint of 7 NOR2 gates per cell, while red bullet points indicate designs which are unrealizable.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2179

https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig8&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

massively parallel processing devices. By expanding the ability of
these algorithms to test hundredfold or thousandfold more
circuits in the same time span, one would expect even an
exhaustive exact synthesis algorithm to be able to calculate
optimal 5- and 6-input circuits within a reasonable time frame,
while also improving the computing of larger suboptimal
designs. We view this work as a first step in a rational design
theory for distributed cellular computation.

■ METHODS
Background on Boolean Algebra. A Boolean function

(BF) f of n inputs is a mapping f: {0,1}n → {0, 1}. Hence, there

are 22n
BFs with n inputs. A BF can be represented by at least

three equivalent formalisms:

1. By specifying its truth table, i.e., listing its values (zero or
one) for each of the 2n possible binary vectors of n inputs,
this list can be written as a string of 2n binary digits. Thus,

when there are n = 4 inputs, we specify functions as a
string of length 16. For example, the four-input function
f(x) = x̅1x̅2x3x̅4 is nonzero when the input vector is (0, 0, 1,
0), and is zero otherwise. Since (0, 0, 1, 0) is the third
vector in the list of all 16 possible vectors of length 4, the
function would be specified as 00···00100, with a “1” only
in the third entry from the end. A convenient shorthand is
to use a string of ⌈2n−2⌉ hexadecimal digits (so, four hex
digits when n = 4). The example above would be
described as 0x0003 (the “0x” prefix indicates the use of
hex notations).

2. By writing a Boolean algebraic expression that gives the
value for each choice of inputs.

3. By a providing circuit realization that shows the
interconnections between the gates.

There are two dual standard Boolean algebraic representa-
tions of BFs: the disjunctive and the conjunctive forms. Here,
the disjunctive form (DF) is considered37 which uses three
Boolean operators: OR, AND, and NOT. For two Boolean
variables x, ywe use the following notation: x + y≔OR(x, y), xy
≔ AND(x, y), and x̅≔ NOT(x). We also denote 1≔ TRUE, 0
≔ FALSE, x1≔ x, x0≔ 1, and x−1 = x̅. With these notations, any
DF can be written as follows:

∑ ∏= σ

= =

f x x x(, ...,)n
j

m

i

n

i1
1 1

ji

(2)

wherem is the number of terms in the disjunctive form and σji∈
{1, 0, −1}.
A literal is a Boolean variable that is uncomplemented or

complemented, e.g. xi, x̅i are literals. We say that a BF c is a
product term if it is a product of literals. A product term is called a
minterm of n variables if it has exactly n literals. Hence, a product
term∏ σ

= xi
n

i1
i is a minterm if σi∈ {±1}, i = 1, ..., n. A minterm c

can also be defined as a BF for which there exists a unique choice
of Boolean variables x1*, ..., xn*∈ {0,1} such that c(x1, ..., xn) = 1 iff
x1 = x1*, ···, xn = xn*. Hence, it follows that there are 2

n minterms.
A DF of a BF f that is a sum of minterms is called a disjunctive
normal form (DNF). It follows that the number of terms in a

Figure 9.Depicted here is an illustrative example for which the DFD is a lot more economical in terms of required number of DSMs compared to graph
partitioning applied to the full design in the database. (a) The exact synthesis design representing (0x1668) is shownwhere it requires at least 14NOR2
gates. There exists no partitioning using 2 DSMs that can make this representation (7,2)-realizable. (b) The proposed disjunctive design resynthesizes
the logic from the bottom up, and it provides a (7,1)-realization with six cells each containing 7 gates. The BFs are c1(x) = x̅1x̅2x3x4, c2(x) = x̅1x2x̅3x4,
c3(x) = x̅1x2x3x̅4, c4(x) = x1x̅2x̅3x4, c5(x) = x1x2x̅3x̅4, c6(x) = x1x̅2x3x̅4. The symbol “■” refers to a DSM sensor.

Figure 10.Depicted here is an illustrative example for which the design
using the partitioning algorithm is more compact than the most
compact DFD found. The exact synthesis design for (0x0016) is shown.
Highlighted by the red and green colors is the partitioning of this circuit
into two cells requiring only 5 and 7 gates and 1 DSM. The alternative
design (not shown) given by the disjunctive form approach needs a
higher requirement of 3 cells and 2 DSMs.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2180

https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig10&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

DNF is the number of ones in the truth table. The set of
minterms that appear in the DNF of f is denoted by DNF(f).
It is often the case that the DNF can be reduced to a smaller

number of terms. For example, the DNF x1x2x3x̅4 + x1x2x3x4 can
also be written as simply x1x2x3. This is called the problem of
DNF minimization. A reduction can be achieved by finding the
so-called prime implicants of f. A product term c is called an
implicant of f if the following statement holds: c(x1, ..., xn) = 1
implies f(x1, ..., xn) = 1. If the removal of any literal from an

implicant c makes it a nonimplicant, then c is called a prime
implicant. We denote the set of prime implicant product terms of
f by PI(f). The sum of all prime implicants is called the Blake
canonical form. It can be reduced further by determining the
essential prime implicants. Aminimized disjunctive form (MDF) is
a DF in which the number of terms is minimal. Computing an
MDF can be handled by the Quine−McCluskey algorithm
which can be used for a small number of inputs. For a larger
number of inputs, the Espresso heuristic minimizer is the most

Figure 11. A 6-output 4-input circuit that uses 5 DSMs. The circuit implements a 2-bit adder, a 2-bit subtractor, and a comparator. The outputs are
defined as (c2c1c0) = (y1y0) + (x1x0), (d1d0) = |(x1x0)− (y1y0)|, where addition and subtraction here refer to the standard operations on the field of real
numbers. The comparators are defined as follows: e = 1 iff (y1y0) = (x1x0), and g = 1 iff (y1y0) > (x1x0). The symbol “■” refers to a DSM sensor.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2181

https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=fig11&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

popular algorithm.42 Details of these algorithms can be found in
ref 44.
A Boolean function which maps every element from {0,1}n to

a value of 0 or 1 is called completely specified. For purposes of
the exact synthesis algorithm to be discussed, it is also useful to
introduce the notion of an “incompletely specified” or partial
Boolean function, which maps a (possibly proper) subset of the
elements from {0,1}n to a value of 0 or 1. An incompletely
specified Boolean function f on n variables is a mapping f:D →
{0, 1} where D ⊂ {0,1}n. The set {0,1}n\D gives the do not-care
conditions of the function f.
A (partial) Boolean function can be described using three sets:

the on-set, off-set, and do not-care set. These three sets form a
partition of the domain {0,1}n and can be used to fully describe
the function in terms of the entire input space. The on-set of a
Boolean function f, denoted ON(f), is the subset of {0,1}nwhich
fmaps to 1. The off-set of a Boolean function f, denoted off(f), is
the subset of {0,1}n which f maps to 0. The do not-care set of a
Boolean function f, denotedDC(f), is the subset of {0,1}n which
f neither maps to 1 nor 0. It is the set {0,1}n\D. Since the on-,
off-, and do not-care sets form a partition of the input space, only
two of the three sets are required in order to describe the
function. Using the on- and off-set notation we can distinguish
between completely specified and incompletely specified
functions. A completely specified function has an empty do
not-care set while the do not-care set of an incompletely
specified function is nonempty.
If L and U are Boolean functions, then the interval [L, U] is

the set of functions defined by [L,U] = {f∈ B: L≤ f≤U}, where
B is the set of all n-variable completely specified Boolean
functions. L is the lower bound of the interval, while U is the
upper bound of the interval. The requirement L ≤ f implies that
every function f contained in the interval must evaluate to 1 on
the same set of input combinations on which L evaluates to 1.
The requirement f ≤ U implies that every function f in the
interval must evaluate to 0 for the same set of input
combinations on which U evaluates to 0. Intervals can be used
to describe incompletely specified functions. The interval [L,U]
represents the Boolean function that evaluates to 1 on the same
set of input combinations as L and evaluates to 0 on the same set
of input combinations asU. The incompletely specified function
f can be defined as [⌊ ⌋]f , [⌈ ⌉]f . The relationships between the
upper and lower bounds of a Boolean function f with the on-,
off-, and do not-care sets of f are as follows:

= ⌊ ⌋ = ⌈ ⌉ = ⌊ ⌋·⌈ ⌉f f f f DC f f fON() OFF() ()

Formal Definition of the Problem. An (N, q)-network is a
realization of an n-input BF mappings f1, ..., f p, represented as a
directed acyclic bipartite graph (also known as an acyclic Petri
net45), for which:

1. “places” correspond to cells (the output node is a cell with
no out-edges);

2. “transitions” correspond to QS nodes or input nodes. The
input node has no in-edges.

Assume there arem cells, each cell i computes a BF ci, i = 1, ...,
m that is realizable by a maximum ofNNOR2 gates. A QS node
then computes an OR gate of these outputs.
Definition 1. Let f j: {0,1}

n → {0, 1}, j = 1, ..., p be BFs. The
vector BF F≔ (f1, ..., f p) is said to be (N, q)-realizable if there exists
an (N, q)-network, with m cells and q QS nodes, and BFs c1, ..., cm,
each of which is realizable by at most NNOR2 gates. The function F
is evaluated by the network as follows: each cell computes the

corresponding function ci and each QS node computes an OR
operation. For each input w ∈ {0,1}n, wi is substituted into the ith
input node of the network and it is used to compute values for all cells
and QS nodes. The value of the jth output node is taken as the value
of f j(w).
Remark 1. Instead of distinguishing between the two types of

node: cells and QS, an equivalent graphical description is in terms of
directed hypergraphs. A directed hypergraph is specif ied by a set of
nodes, which can be taken as the cells, and a set of “hyperedges”, i.e.
pairs (Si, Ti) where each of Si and Ti is a subset of the set of cells,
thought of as the “source” and “target” of the “hyperedge” in question.
Each QS node may be replaced by a hyperedge that has as its source
the in-edges to QS and as its target the out-edges of QS. However, it is
intuitively preferable to use explicitly the two types of nodes as each of
them computes a Boolean function in our application. Physically,
one may think of QS nodes as concentrations of DSMs in the
environment of the cell population, making the mapping into
physical variables more transparent.

Exact Synthesis Algorithm for (N, 0)-Networks. The
next step is to find the circuit representation using a minimum
number of NOR2 gates for each cell in the design. The exact
synthesis algorithm described here does this by systematically
generating circuits in search of one that uses the minimum
number of NOR2 gates. The algorithm represents a group of
circuits using a partial network. The circuits represented by a
partial network are those that can be created by adding edges
and possibly nodes to the partial network. The algorithm
searches through the space of possible circuits by incrementally
completing the partial network. The search space is divided by
choices made when completing the partial network. This results
in a branch-and-bound algorithm that recursively performs an
exhaustive search of the space in order to guarantee the
optimality of the solution. To make the exhaustive search more
efficient, the algorithm makes use of pruning techniques to help
minimize the search space.

Networks and Boolean Functions. For the purposes of
the exact synthesis algorithm, a (Boolean) network consists of
nodes and directed edges (which are the inputs and the outputs
of the nodes). Each node is either a primary input to the network
or it is a node associated with a Boolean function, NOR2 in our
context, which is the function produced at the output of this
node. The function can be expressed either in terms of its
immediate inputs or in terms of the primary inputs of the
network. The local function is the Boolean function associated
with the NOR2 gate expressed in terms of its immediate inputs,
while the global function is the function associated with the gate
expressed in terms of the primary inputs. A relationship exists
between the global functions at the inputs and output of a gate
node based on the local function of the node. The relationship
for the NOR2 gate is as follows:

= ̅ · ̅

= ·

= +

f g h

f g h

f g h

ON() OFF() OFF()

OFF() ON() ON()

During intermediate stages of the algorithm partial or
incomplete networks will be created. A partial network can be
viewed as representing a set of circuits, namely those that can be
created by adding edges and possibly nodes to the partial
network. There are two types of gate nodes in a partial network,
bounded and unbounded nodes. A node of a partial network is
bounded if the size of the fan-in set has reached 2, the fan-in

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2182

pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

restriction imposed by using NOR2. A node is unbounded if the
size of the fan-in set is less than 2. The Boolean function of a gate
node will be determined by inputs to the gate. However, since
the network is incomplete, there is a possibility that some nodes
may be unbounded. The unassigned inputs of an unbounded
gate node can take any function. Therefore, when computing the
global function of an unbounded node, the unassigned inputs are
given the function [0, 1] (ON = 0, OFF = 0).
The algorithm moves through the search space by adding

nodes and edges to the partial network. The addition of an edge
or a node to a partial network will have an impact on the function
associated with the nodes on either side of this edge or node. In
addition, the change in the function of a node may have an
impact on the function of the nodes in its fan-in and fan-out sets.
The relationships between the inputs and outputs of the NOR2
gate given above will be used to determine the implications that
result when changes are made in a partial network. These
implications will keep the global functions at the inputs and
outputs of each gate node consistent with the local function
described by the logic gate.

= ̅ · ̅

→ →

→ →

· →

· →

· →

f g h

f g f h

g f h f

g h f

f g h

f h g

ON() OFF() and ON() OFF()

ON() OFF() and ON() OFF()

OFF() OFF() ON()

OFF() OFF() ON()

OFF() OFF() ON()

ConnectibleNodes.There are two sets of constraints which
determine what edges can be added to a partial network. These
constraints are based on the functional and structural properties
of the network. The functional constraints determine which
nodes can be connected to the input of a given gate node based
on the global functions of the nodes. Given the current function
at a node N and the functions at its inputs, a constraint function
can be created which when solved will give the permissible
functions for the node’s inputs. Any node whose Boolean
function falls within this set of permissible functions will be
considered functionally connectible to the nodeN. The first step
is to find the constraints for the set of permissible functions. For
aNOR2 node, a function g is permissible as an input to a node if f
= g̅·h̅where f is the function at the output of the node and h is the
function at one of the inputs to the node. If f and h are
completely specified functions, then any function g that satisfies
this constraint would be considered a permissible function as an
input to the node. However, the functions f and h are not always
completely specified.
The constraint for determining the permissible functions

must allow for incompletely specified functions at both f and h. A
function g is permissible as an input to a node with output
function [⌊f⌋, ⌈f⌉] and input function [⌊h⌋, ⌈h⌉] if for some
function f ∈ [⌊f⌋, ⌈f⌉] and some function h ∈ [⌊h⌋, ⌈h⌉],

= ̅ · ̅f g h . This can be simplified into the following constraint.

⌊ ⌋ ≤ ≤ ⌈ ⌉ · ⌊ ⌋ ≤ ≤ ⌈ ⌉ · = ̅ · ̅f f f h h h f g h() () ()

Any function g which satisfies this constraint is considered a
permissible function to the node. There may be more than one
function that satisfies this constraint. The interval describing the
set of permissible functions can be found directly after some
transformations on this constraint.

⌈ ⌉ = ⌊ ⌋ ⌊ ⌋ = ⌈ ⌉·⌈ ⌉g f g f h

A node C in a network is functionally connectible to a gate
node N if the intersection of C’s function interval with the
interval of permissible functions for an input of N is nonempty.
The intersection of the two intervals gives the set of functions
from the permissible set that the node C can take. Let C ∈
[⌊C⌋,⌈C⌉] be the function at node C. C is functionally
connectible to a gate node N with output function f, input
function h, and permissible functions g if the following condition
is satisfied:

[⌊ ⌋ ⌈ ⌉] ∩ [⌊ ⌋ ⌈ ⌉] ≠C C g g, , Ø

This requirement can also be stated as

⌊ ⌋ ≤ ⌈ ⌉ ⌈ ⌉ ≥ ⌊ ⌋

⌊ ⌋ ≤ ⌊ ⌋ ⌈ ⌉ ≥ ⌈ ⌉·⌈ ⌉

· =
· · =

C g C g

C f C f h

C f
C f h

and or

and or

ON() ON() 0 and
OFF() OFF() OFF() 0

The second set of constraints that must be satisfied when
adding edges to the network are structural constraints. These
constraints are needed to ensure that the network remains
acyclic. A nodeC is structurally connectible to a nodeN ifC does
not appear on any path from N to a primary output. In other
words, C cannot be an ancestor of N.
The connectible set of a node N is the set of nodes in the

partial network that are both functionally and structurally
connectible to N.

Covering. The notion of covering is central to the exact
synthesis algorithm. A minterm in the off-set of the global
function of a NOR2 gate node N is covered if the minterm
appears in the on-set of the global function of at least one of N’s
fan-in nodes. Using this notion of covering, the off-set minterms
of a NOR2 gate can be divided into two sets. The covered set is
the set of minterms that are already covered by a fan-in of the
node: OFF(f)·(ON(g) + ON(h)), where f is the global function
describing the output of the node and g and h are the global
functions describing the two inputs to the node. The uncovered
set is the set of minterms that are not yet covered by the inputs of
the gate node: OFF(f)·ON(g)·ON(h). When the uncovered set
becomes empty, the node is completely implemented by its
inputs. These nodes are called covered. The algorithm will
perform a covering when the fan-in set of a node is changed or
the global function of one of the fan-in nodes is changed so that
at least one minterm from the node’s uncovered set moves to its
covered set.

Algorithm Description. The branch-and-bound algorithm
will explore the search space recursively. Each step of the
recursion will perform a covering of at least one uncovered
minterm from some node in the partial network. When the
current network is determined to be complete or its cost
becomes larger than the current cost bound, the recursion stops
and backtracks to the previous step.
The algorithm is initially called on a partial network that

represents the entire set of circuits in the search space. This
initial network will contain one gate node for each output
function and one input node for each primary input. The fan-in
and fan-out sets of all these nodes are empty, while the global
function at each node is set according to the function it
represents. In addition, the connectible set for each of the gate

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2183

pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

nodes must be computed according to the constraints described
above.
The ExploreNetwork procedure is the main procedure of the

algorithm. It takes as input a single partial network. It performs a
covering of some uncovered minterm in the partial network and
then recursively calls the same procedure using the new partial
network. The pseudocode for the ExploreNetwork procedure is
given below where Net, M, and N are shorthand for network,
minterm, and node, respectively.
The ExploreNetwork procedure begins by first determining

whether every gate node in the network is covered by its inputs.
This is performed by the AllCovered function. A gate node G is
covered by its inputs I1 and I2 if OFF(G) = ON(I1) + ON(I2). If
every gate node is completely covered, the network is a complete
circuit. Therefore, it can be stored as the current optimal
network and the cost bound can be set accordingly.
If there are nodes remaining in the network that are not fully

covered by their inputs, then work still remains toward
completing this partial network. The procedure will attempt to
cover an uncovered minterm from at least one node. The
covering process begins by first selecting an uncovered minterm
and its corresponding node from the network. This is done by
the SelectMintermForCovering procedure. The minterm that is
chosen by this procedure is guaranteed to be covered during this
step of the recursion. It may be the case that additional
uncoveredminterms in the networkmay be covered as well. This
will depend on the covering that is made.

The procedure continues from the minterm selection to
obtaining the connectible set for the node whose off-set minterm
is to be covered. A connectible set is stored for every node. This
set gives all the possible ways that exist in the network for
covering every uncovered minterms from the node. The
procedure FindConnectibleSet will prune the node’s connec-
tible set down to only those nodes that can cover the selected
minterm. In order for a node C in N’s connectible set to be
included in Connectible, the minterm M must not appear in the
off-set ofC.C is added toConnectible if OFF(C)·M=0. A nodeC
satisfying this condition can be used to coverM sinceMmust be
contained in (or moved to) C’s on-set in order for C to coverM.
The FindConnectibleSet procedure will also add a new gate
node to the set Connectible if the fan-in set of N is less than 2.
This gate node will be a new node which does not yet appear in
the network.
Each node in the connectible set returned by the

FindConnectibleSet procedure must be considered as a way of
covering the selected minterm. The enumeration of the possible
coverings using each node in the connectible set corresponds to
the branching part of the branch-and-bound search. For a single
connectible node, C, a new network is created by the

PerformCovering procedure. This new network will be a
supernetwork of Net with the added covering of M using C.
The process of coveringM can add a connection between the

nodes N and C as well as change the global function at C. Based
on the relationship between the global functions at a node’s fan-
in and fan-out described by the node’s local function, the
changes made atN and C can effect the global functions at other
nodes in the network. The changes to the global functions that
result from a covering are called functional implications of the
covering. These functional implications must be completed to
maintain the consistency of the global functions.
Once the functional implications have been completed, the

PerformCovering procedure updates the connectible set of each
node in the network. Since the global function may have
changed for some nodes, the set of nodes that are now
connectible may have also changed. It is possible that previously
covered nodes have now become uncovered, and therefore the
set of connectible nodes will need to be computed for these
nodes as well. The connectible set of each uncovered gate node
in the network can be found according to the constraints
described above. The connectible set update will conclude the
PerformCovering procedure.
Once the covering is complete, the cost of the partial network

is compared to the current cost bound. If the cost of the new
partial network is greater than the current cost bound, this
network can be pruned. This is the case since each elementary
network in the set that the new network represents will have cost
larger than the current cost bound. Therefore, none of the
elementary networks represented can be optimal. If the cost of
the new network is less than or equal to the cost bound then it is
possible that some elementary networks in the set that this
partial network represents may have cost less than or equal to the
current cost bound, thus requiring this portion of the search
space to be explored further. The portion of the search space
represented by this new partial network is explored by calling the
ExploreNetwork procedure on the new network.
When the recursive call returns, the next node in the

connectible set is used to cover the selected minterm. Once
again the search space represented by the new partial network is
explored. Each possible way of covering the minterm is selected
and then explored until all options have been exhausted. Once
the recursion returns for the last time, all complete networks
represented by the original partial network have been explored.
Any optimal networks represented by the original partial
network have been stored as such. Now the procedure can
return to the previous recursive call since this call has been
completed. This ends our description of the exact synthesis
algorithm.

Minterms: Realizable and Offending. Our framework
proposed in Figure 2 relies on representing a BF as a disjunction
of other BFs. Hence, we first study the DNF in terms of
minterms. We provide the following definition:
Definition 2. Let N be a given positive integer. A minterm in n

variables is said to be of fending with respect to N if it cannot be
realized with N NOR2 gates or less. The set of all of fending
minterms with respect to N is denoted as N .
The following statement that can be proven using various

methods. It can also be verified via the exact synthesis algorithm
which we have introduced earlier for any given n.
Theorem 2. Let c be a minterm of n variables with n ≥ 2. Then

the minimum number of NOR2 gates to realize c is 3(n− 1)− q(c),
where q(c) is the number of complemented literals in c.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2184

https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?fig=&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

Example.Theminterm x1x2 needs (3)(1)− 0 = 3 gates, while
the minterm x1x2x̅3 needs (3)(2) − 1 = 5 gates.
It follows that any minterm of three variables or less can be

realized with six gates or less. Therefore, the design in Figure 2
can realize any DF of any BF f of three variables or less.
For minterms with four variables, it follows that a minterm

with four or three uncomplemented literals cannot be realized
with 7 NOR gates. The minterm x1x2x3x4 needs at least 9 NOR
gates, and the minterms x̅1x2x3x4, x1x̅2x3x4, x1x2x̅3x4, x1x2x3x̅4
need at least eight NOR gates. These fiveminterms are called the
of fending minterms with respect to N = 7 gates. If an MDF
contains one or more offending minterms, additional DSMs are
used to divide up these circuits further.
Lower Bound on the Number of (N, 1)-Realizable BFs.

We state the following Theorem:
Theorem 3. Let f be a BF, and let N be given. If

∩ =fPI() ØN , then f is (N, 1)-realizable.
Proof. Let us write f as an MDF: f(x1, ..., xn) =∑i=1

m ci(x1,...,xn).
By the assumption, ∉ci N for all i. Hence, f can be realized
using the disjunctive form design in Figure 2 where each ci is (N,
0) realizable.
In other words, any function that does not have a prime

implicant offending minterm is (N, 1)-realizable. Hence, our
objective in this subsection is to count those BFs combinato-
rially.
In order to facilitate the discussion, a binary representation of

minterms is used. An n-variable minterm can be represented
with n bits. If a literal is uncomplemented then it is represented
as 1; otherwise, it is represented as 0. For instance, the minterm
x1x2x3x̅4 is written as 1110. Using this notation, the distance
between two minterms is defined as the Hamming distance
between their binary representations. Two minterms are
neighbors if their distance is 1. Hence, we are ready to state the
following result:
Lemma 4 Let f be a BF, and let c ∈ DNF(f) be a minterm. If

there exists a minterm c* ∈ DNF(f) such that c, c* are neighbors
then c, c* are not prime implicants.
Proof. Since both c, c* ∈ DNF(f), then c + c* appears in the

DNF of f. But since c, c* differ in only one literal, then c + c*
simplifies into a product term with a smaller number of literals.
The resulting product term is an implicant of f; hence, c, c* are
not prime implicants.
The following test follows:
Theorem 5 A BF f is (N, 1)-realizable if for every

∈ ∩c DNF f()N , there exists c* ∈ DNF(f) such that c, c* are
neighbors.
Hence, our task reduces to counting BFs that have a minterm

in ∩ fDNF()N without neighbors. We propose a fast
algorithm to find the set of BFs that satisfy the conditions of
Theorem 5.We use the notation c() as the set of neighbors of a
minterm c. The algorithm is given below:
Parameters: n number of variables, N the maximum number

of gates per cell.
Initialization: Set X = 0;
for i = 0: 2n − 1 do
flag1 ≔ 0;
for ∈c N do
flag2 ≔ 1;
for * ∈c c() do
if c* is an implicant of f, then flag2 = 0; break; end
end
flag1 := flag1 + flag2;

end
if flag1 ≠ 0, then X ≔ X + 1; end
end
Output: X is an upper-bound on the number of networks

which are not (N, 1)-realizable.
Realization with Offending Minterms: Proof of

Theorem 1. We provide a constructive proof of Theorem 1.
If ∩ ∩ == S ØN j

p
N1 , then the numbers of DSMs needed is p at

most. Next, we study the cases of more than one offending
m i n t e r m . R e m e m b e r t h a t

= { }1111, 1110, 1101, 1011, 01117 and = { }11118 . For
the N = 9, we have = Ø9 , and hence the corresponding
statement follows directly.

Vector BFs with One Offending Minterm. We study the
case of only one offending minterm appearing as a prime
implicant. For instance, consider the minterm 1111 which is
offending for both the cases N = 7 and N = 8.
Let x⊞y ≔ NOR(x, y), and remember that x̅ = x⊞x. A

minimal realization of the minterm 1111 consists of 9 gates and
is given as follows:

= ̅ ⊞ ̅ ⊞ ̅ ⊞ ̅x x x x x x x x1 2 3 4 4 3 2 1

One DSM molecule can be used to partition the realization
above into two cells with four and five gates as follows:

= ̅ ⊞ ̅ ⊞

= ̅ ⊞ ̅

x x x x x x z

z x x

1 2 3 4 4 3

1 2

where z is communicated via a DSM. In function format, we are
writing x1x2x3x4 = f1(f 2(x1, x2), x3, x4) where f 2 is (N, 0)-
realizable and f1 is (N, 1) realizable, where N ≥ 5. This partition
is depicted in Figure 3a). Note that this completes the proof of
the statement of Theorem 1 for the case N = 8.
For the caseN = 7. The other four offending minterms can be

treated similarly. Their realizations requiring 8 NOR gates can
be partitioned into two 4-gate cells.

BFs with Two Offending Minterms. For any two
minterms chosen, they will share exactly two uncomplemented
literals. For instance consider 1110, 1101. Both x1, x2 are
uncomplemented. Then, the following realization is proposed:

̅ = ⊞ ̅ ⊞

̅ = ̅ ⊞ ⊞

= ̅ ⊞ ̅

x x x x x x z

x x x x x x z

z x x

1 2 3 4 4 3

1 2 3 4 4 3

1 2

where z is communicated via a DSM. Hence, we compute x1x2,
and then use it for computing the full minterm. This partition is
depicted in Figure 3b).
Hence, any vector BF with no more than two offending

minterms needs no more than p + 1 DSMs.
BFs with Three or More OffendingMinterms. If three or

more offending minterms in the set {1110, 1101, 1011, 0111,
1111} appear in the MDFs of a vector BF then we will show
below that no more 2 DSMs are needed.
Let us consider the case of five offending minterms. It can be

seen that this case can be realized with twoDSMs as follows. The
four minterms can be divided in no particular order into two
subsets which each share exactly two uncomplemented literals.
Then, a similar design follows.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2185

pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

= ̅ ⊞ ̅ ⊞

̅ = ⊞ ̅ ⊞

̅ = ̅ ⊞ ⊞

̅ = ⊞ ̅ ⊞

̅ = ̅ ⊞ ⊞

= ̅ ⊞ ̅
= ̅ ⊞ ̅

x x x x x x z

x x x x x x z

x x x x x x z

x x x x x x z

x x x x x x z

z x x

z x x

1 2 3 4 4 3 1

1 2 3 4 4 3 1

1 2 3 4 4 3 1

1 2 3 4 1 2 2

1 2 3 4 1 2 2

1 1 2

2 3 4

where z1 and z2 are communicated via two different DSMs.
Hence, no more than p + 2 DSMs are needed.
Counting (7, 2) and (7, 3) Realizable BFs. In the case of a

scalar BF, we can count the number of BFs realizable with the
disjunctive form design combinatorially. For a single offending
minterm, we note that if 1111 ∈ DNF(f), then the rest of the
offending minterms cannot appear; otherwise, they will be
neighbors, and the associated BF will be (7,1)-realizable. This
amounts to specifying a fixed value to the vector (f(1, 1, 1, 1),
f(1, 1, 1, 0), f(1, 1, 0, 1), f(1, 0, 1, 1), f(0, 1, 1, 1)), namely (1, 0, 0,
0, 0) out of 25 possible choices. The total number of these BFs is
216/25 = 211 = 2048. The other four minterms need be handled
together since they share neighbors. Similar combinatorial
computations give the total number of BFs with one offending
minterm to 7,808.
If two offending minterms in the set {1110, 1101, 1011, 0111}

appear in the DNF without neighbors then these have been
shown to be (7, 2)-realizable. The total number of BFs with
exactly two offending minterms is 960.
The total number of BFs with exactly three offending

minterms is 27 = 128 BFs. For the case of a scalar BF we can
do better than the upper bound given in Theorem 1 since any
three offending minterms can be realized with one DSM as
follows:

= ̅ + ̅ + ̅ =c x x x x x x x x x x x x x x x x zx(, , ,)1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 4

where z = x̅1x2x3 + x1x̅2x3 + x1x2x̅3 can be computed via a single
DSM.
Hence this expands the set (7, 2) scalar BFs to 8896 using the

disjunctive design. Finally, there are 25 = 32 BFs with four
offending minterms.
Graph Partitioning Algorithm. This algorithm is

implemented by first expanding the design provided by the
exact synthesis algorithm so that the output of each NOR2 gate
is only used once, effectively creating repeated “branches”. For
each gate in the expanded design, the total number of gates is
computed such that this number accounts for all the gates
located downstream of a given gate plus the gate itself. To
determine that a design can be partitioned using 1 DSM, we first
look at the total number of gates of the upstream node Tup.
Going through the other gates, there must exist one gate i such
that its total number of gates Ti with n occurrences within the
expanded design fulfills the following conditions:

− ≤ ≤T nT N T N,up i i

In the case of partitioning using 2 DSMs, two gates i and j are
used. There are two possibilities of partitioning, one in which
neither i or j is located downstream (or upstream) of the other
gate. In this case, the conditions are simply that

− − ≤T n T n T Nup i i j j

≤ ≤T N T N,i j

The second scenario occurs when gate i is either located
upstream or downstream of j. By assuming that we order i and j
such that i is the upstream gate, the conditions to be realizable
with 2 DSMs become

− − − ≤T n T T n T N()up i i j j j

− ≤ ≤T T N T N,i j j

■ AUTHOR INFORMATION
Corresponding Author

Eduardo D. Sontag − Department of Electrical and Computer
Engineering and Department of Bioengineering, Northeastern
University, Boston, Massachusetts 02115, United States;
Laboratory of Systems Pharmacology, Program in Therapeutic
Science, Harvard Medical School, Boston, Massachusetts 02115,
United States; orcid.org/0000-0001-8020-5783;
Email: sontag@sontaglab.org

Authors
M. Ali Al-Radhawi − Department of Electrical and Computer
Engineering, Northeastern University, Boston, Massachusetts
02115, United States

Anh Phong Tran − Department of Chemical Engineering,
Northeastern University, Boston, Massachusetts 02115, United
States

Elizabeth A. Ernst − Department of Mathematics, Statistics, and
Computer Science, Macalester College, Saint Paul, Minnesota
55105, United States

Tianchi Chen − Department of Bioengineering, Northeastern
University, Boston, Massachusetts 02115, United States

Christopher A. Voigt − Department of Biological Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States; orcid.org/0000-0003-0844-4776

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssynbio.0c00228

Author Contributions
∇M.A.A.-R. and A.P.T. contributed equally.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by NSF grant 1849588 and SRC grant
SB-2837-B.

■ REFERENCES
(1) McAdams, H. H., and Shapiro, L. (1995) Circuit simulation of
genetic networks. Science 269, 650−656.
(2) Khalil, A. S., and Collins, J. J. (2010) Synthetic biology:
applications come of age. Nat. Rev. Genet. 11, 367−379.
(3) Esensten, J. H., Bluestone, J. A., and Lim, W. A. (2017)
Engineering therapeutic T cells: from synthetic biology to clinical trials.
Annu. Rev. Pathol.: Mech. Dis. 12, 305−330.
(4) Xia, P.-F., Ling, H., Foo, J. L., and Chang, M. W. (2019) Synthetic
genetic circuits for programmable biological functionalities. Biotechnol.
Adv. 37, 107393.
(5) Brophy, J. A., and Voigt, C. A. (2014) Principles of genetic circuit
design. Nat. Methods 11, 508.
(6) Itzkovitz, S., Tlusty, T., and Alon, U. (2006) Coding limits on the
number of transcription factors. BMC Genomics 7, 239.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2186

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eduardo+D.+Sontag"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8020-5783
mailto:sontag@sontaglab.org
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="M.+Ali+Al-Radhawi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anh+Phong+Tran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elizabeth+A.+Ernst"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianchi+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christopher+A.+Voigt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-0844-4776
https://pubs.acs.org/doi/10.1021/acssynbio.0c00228?ref=pdf
https://dx.doi.org/10.1126/science.7624793
https://dx.doi.org/10.1126/science.7624793
https://dx.doi.org/10.1038/nrg2775
https://dx.doi.org/10.1038/nrg2775
https://dx.doi.org/10.1146/annurev-pathol-052016-100304
https://dx.doi.org/10.1016/j.biotechadv.2019.04.015
https://dx.doi.org/10.1016/j.biotechadv.2019.04.015
https://dx.doi.org/10.1038/nmeth.2926
https://dx.doi.org/10.1038/nmeth.2926
https://dx.doi.org/10.1186/1471-2164-7-239
https://dx.doi.org/10.1186/1471-2164-7-239
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

(7) Garg, A., Lohmueller, J. J., Silver, P. A., and Armel, T. Z. (2012)
Engineering synthetic TAL effectors with orthogonal target sites.
Nucleic Acids Res. 40, 7584−7595.
(8) Stanton, B. C., Nielsen, A. A., Tamsir, A., Clancy, K., Peterson, T.,
and Voigt, C. A. (2014) Genomic mining of prokaryotic repressors for
orthogonal logic gates. Nat. Chem. Biol. 10, 99.
(9) Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V.,
Strychalski, E. A., Ross, D., Densmore, D., and Voigt, C. A. (2016)
Genetic circuit design automation. Science 352, aac7341.
(10) Qi, L. S., Larson,M. H., Gilbert, L. A., Doudna, J. A., Weissman, J.
S., Arkin, A. P., and Lim, W. A. (2013) Repurposing CRISPR as an
RNA-guided platform for sequence-specific control of gene expression.
Cell 152, 1173−1183.
(11) Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A.,
Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H.,
Doudna, J. A., et al. (2013) CRISPR-mediated modular RNA-guided
regulation of transcription in eukaryotes. Cell 154, 442−451.
(12) Nielsen, A. A., and Voigt, C. A. (2014)Multi-input CRISPR/Cas
genetic circuits that interface host regulatory networks. Mol. Syst. Biol.
10, 763.
(13) Gander, M. W., Vrana, J. D., Voje, W. E., Carothers, J. M., and
Klavins, E. (2017) Digital logic circuits in yeast with CRISPR-dCas9
NOR gates. Nat. Commun. 8, 1−11.
(14) Rock, J. M., Hopkins, F. F., Chavez, A., Diallo, M., Chase, M. R.,
Gerrick, E. R., Pritchard, J. R., Church, G. M., Rubin, E. J., Sassetti, C.
M., et al. (2017) Programmable transcriptional repression in
mycobacteria using an orthogonal CRISPR interference platform.
Nat. Microbiol. 2, 1−9.
(15) Cui, L., Vigouroux, A., Rousset, F., Varet, H., Khanna, V., and
Bikard, D. (2018) A CRISPRi screen in E. coli reveals sequence-specific
toxicity of dCas9. Nat. Commun. 9, 1−10.
(16) Zhang, S., and Voigt, C. A. (2018) Engineered dCas9 with
reduced toxicity in bacteria: implications for genetic circuit design.
Nucleic Acids Res. 46, 11115−11125.
(17) Cho, S., Choe, D., Lee, E., Kim, S. C., Palsson, B., and Cho, B.-K.
(2018)High-level dCas9 expression induces abnormal cell morphology
in Escherichia coli. ACS Synth. Biol. 7, 1085−1094.
(18)Markus, B.M., Bell, G.W., Lorenzi, H. A., and Lourido, S. (2019)
Optimizing Systems for Cas9 Expression in Toxoplasma gondii.
mSphere 4, e00386−19.
(19) Shin, J., Zhang, S., Der, B. S., Nielsen, A. A., and Voigt, C. A.
(2020) Programming Escherichia coli to function as a digital display.
Mol. Syst. Biol. 16, 16.
(20) Sexton, J. T. Multiplexing cell-cell communication. Ph.D. thesis,
Rice University, 2019.
(21) Andrews, L. B., Nielsen, A. A., and Voigt, C. A. (2018) Cellular
checkpoint control using programmable sequential logic. Science 361,
No. eaap8987.
(22) Santos-Moreno, J., Tasiudi, E., Stelling, J., and Schaerli, Y. (2020)
Multistable and dynamic CRISPRi-based synthetic circuits. Nat.
Commun. 11, 1−8.
(23) Macía, J., Posas, F., and Sole,́ R. V. (2012) Distributed
computation: the new wave of synthetic biology devices. Trends
Biotechnol. 30, 342−349.
(24) Xiang, Y., Dalchau, N., and Wang, B. (2018) Scaling up genetic
circuit design for cellular computing: advances and prospects. Nat.
Comput. 17, 833−853.
(25) Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss,
R. (2005) A synthetic multicellular system for programmed pattern
formation. Nature 434, 1130−1134.
(26) Wang, S., Payne, G. F., and Bentley, W. E. (2020) Quorum
Sensing Communication: Molecularly Connecting Cells, Their
Neighbors, and Even Devices. Annu. Rev. Chem. Biomol. Eng. 11, 447.
(27) Goñi-Moreno, A., Amos, M., and de la Cruz, F. (2013)
Multicellular computing using conjugation for wiring. PLoS One 8,
e65986.
(28) Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011) Robust
multicellular computing using genetically encoded NOR gates and
chemical ’wires’. Nature 469, 212−215.

(29) Ji, W., Shi, H., Zhang, H., Sun, R., Xi, J., Wen, D., Feng, J., Chen,
Y., Qin, X., and Ma, Y. (2013) A formalized design process for bacterial
consortia that perform logic computing. PLoS One 8, e57482.
(30) Macia, J., Manzoni, R., Conde, N., Urrios, A., de Nadal, E., Sole,́
R., and Posas, F. (2016) Implementation of complex biological logic
circuits using spatially distributedmulticellular consortia. PLoS Comput.
Biol. 12, e1004685.
(31) Guiziou, S., Ulliana, F., Moreau, V., Leclere, M., and Bonnet, J.
(2018) An automated design framework for multicellular recombinase
logic. ACS Synth. Biol. 7, 1406−1412.
(32) Auslan̈der, D., Auslan̈der, S., Pierrat, X., Hellmann, L., Rachid, L.,
and Fussenegger, M. (2018) Programmable full-adder computations in
communicating three-dimensional cell cultures. Nat. Methods 15, 57.
(33) Regueira, M. R., García, J. D., and Aradas, A. R.-P. (2019) The
multicellular incoherent feedforward loop motif generates spatial
patterns. bioRxiv, 579342.
(34) Zhang, R., Goetz, H., Melendez-Alvarez, J., Li, J., Ding, T., Wang,
X., and Tian, X.-J. (2020) Winner-Takes-All Resource Competition
Redirects Cascading Cell Fate Transitions. bioRxiv DOI: 10.1101/
2020.05.23.103259.
(35) Schaefer, A. L., Greenberg, E., Oliver, C. M., Oda, Y., Huang, J. J.,
Bittan-Banin, G., Peres, C. M., Schmidt, S., Juhaszova, K., Sufrin, J. R.,
et al. (2008) A new class of homoserine lactone quorum-sensing signals.
Nature 454, 595−599.
(36) Pearson, J. P., Passador, L., Iglewski, B. H., and Greenberg, E.
(1995) A second N-acylhomoserine lactone signal produced by
Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A. 92, 1490−1494.
(37) Mano, M. M. Digital Design; Pearson Prentice Hall, 2013.
(38) Kernighan, B. W., and Lin, S. (1970) An efficient heuristic
procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291−307.
(39) Papa, D. A., and Markov, I. L. (2007) in Approximation
Algorithms and Metaheuristics (Gonzalez, T. F., Ed.), Chapman & Hall/
CRC.
(40) Ernst, E. A. Optimal Combinational Multi-level Logic Synthesis.
Ph.D. thesis, University of Michigan, 2009.
(41) Brayton, R., and Mishchenko, A. (2010) ABC: An academic
industrial-strength verification tool. Proc. of the Int. Conf. on Comput.-
Aided Verification 6174, 24−40.
(42) Brayton, R. K., Hachtel, G. D., McMullen, C., and Sangiovanni-
Vincentelli, A. (1984) Logic minimization algorithms for VLSI synthesis,
Springer.
(43) Nielsen, A. A. (2017) Biomolecular and computational frameworks
for genetic circuit design. Ph.D. thesis, Massachusetts Institute of
Technology.
(44) Crama, Y., and Hammer, P. L. (2011) Boolean Functions: Theory,
Algorithms, and Applications, Cambridge University Press.
(45) Murata, T. (1989) Petri nets: Properties, analysis and
applications. Proc. IEEE 77, 541−580.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.0c00228
ACS Synth. Biol. 2020, 9, 2172−2187

2187

https://dx.doi.org/10.1093/nar/gks404
https://dx.doi.org/10.1038/nchembio.1411
https://dx.doi.org/10.1038/nchembio.1411
https://dx.doi.org/10.1126/science.aac7341
https://dx.doi.org/10.1016/j.cell.2013.02.022
https://dx.doi.org/10.1016/j.cell.2013.02.022
https://dx.doi.org/10.1016/j.cell.2013.06.044
https://dx.doi.org/10.1016/j.cell.2013.06.044
https://dx.doi.org/10.15252/msb.20145735
https://dx.doi.org/10.15252/msb.20145735
https://dx.doi.org/10.1038/ncomms15459
https://dx.doi.org/10.1038/ncomms15459
https://dx.doi.org/10.1038/nmicrobiol.2016.274
https://dx.doi.org/10.1038/nmicrobiol.2016.274
https://dx.doi.org/10.1038/s41467-018-04209-5
https://dx.doi.org/10.1038/s41467-018-04209-5
https://dx.doi.org/10.1093/nar/gky884
https://dx.doi.org/10.1093/nar/gky884
https://dx.doi.org/10.1021/acssynbio.7b00462
https://dx.doi.org/10.1021/acssynbio.7b00462
https://dx.doi.org/10.1128/mSphere.00386-19
https://dx.doi.org/10.15252/msb.20199401
https://dx.doi.org/10.1126/science.aap8987
https://dx.doi.org/10.1126/science.aap8987
https://dx.doi.org/10.1038/s41467-020-16574-1
https://dx.doi.org/10.1016/j.tibtech.2012.03.006
https://dx.doi.org/10.1016/j.tibtech.2012.03.006
https://dx.doi.org/10.1007/s11047-018-9715-9
https://dx.doi.org/10.1007/s11047-018-9715-9
https://dx.doi.org/10.1038/nature03461
https://dx.doi.org/10.1038/nature03461
https://dx.doi.org/10.1146/annurev-chembioeng-101519-124728
https://dx.doi.org/10.1146/annurev-chembioeng-101519-124728
https://dx.doi.org/10.1146/annurev-chembioeng-101519-124728
https://dx.doi.org/10.1371/journal.pone.0065986
https://dx.doi.org/10.1038/nature09565
https://dx.doi.org/10.1038/nature09565
https://dx.doi.org/10.1038/nature09565
https://dx.doi.org/10.1371/journal.pone.0057482
https://dx.doi.org/10.1371/journal.pone.0057482
https://dx.doi.org/10.1371/journal.pcbi.1004685
https://dx.doi.org/10.1371/journal.pcbi.1004685
https://dx.doi.org/10.1021/acssynbio.8b00016
https://dx.doi.org/10.1021/acssynbio.8b00016
https://dx.doi.org/10.1038/nmeth.4505
https://dx.doi.org/10.1038/nmeth.4505
https://dx.doi.org/10.1101/2020.05.23.103259
https://dx.doi.org/10.1101/2020.05.23.103259
https://dx.doi.org/10.1101/2020.05.23.103259?ref=pdf
https://dx.doi.org/10.1101/2020.05.23.103259?ref=pdf
https://dx.doi.org/10.1038/nature07088
https://dx.doi.org/10.1073/pnas.92.5.1490
https://dx.doi.org/10.1073/pnas.92.5.1490
https://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://dx.doi.org/10.1007/978-3-642-14295-6_5
https://dx.doi.org/10.1007/978-3-642-14295-6_5
https://dx.doi.org/10.1109/5.24143
https://dx.doi.org/10.1109/5.24143
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00228?ref=pdf

