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GLOBAL STABILIZATION FOR SYSTEMS
EVOLVING ON MANIFOLDS

M. MALISOFF, M. KRICHMAN, and E. SONTAG

Abstract. We show that any globally asymptotically controllable
system on any smooth manifold can be globally stabilized by a state
feedback. Since we allow discontinuous feedbacks, we interpret the so-
lutions of our systems in the “sample and hold” sense introduced by
Clarke, Ledyaev, Sontag, and Subbotin (CLSS). We generalize their
theorem which is the special case of our result for systems on Eu-
clidean space. We apply our result to the input-to-state stabilization
of systems on manifolds with respect to actuator errors, under small
observation noise.

1. Introduction

This note is devoted to the study of completely nonlinear systems

ẋ = f(x, u), x ∈ X , u ∈ U, (1.1)

evolving on arbitrary smooth manifolds X with inputs u in general locally
compact metric spaces U, where f is locally Lipschitz in x uniformly for
u in compact sets, and jointly continuous in (x, u). We assume that (1.1)
is globally asymptotically controllable (GAC) to a given compact weakly
invariant nonempty set A ⊆ X (see Sec. 3 below for the definition of GAC
for systems on manifolds).

It is natural to inquire about the relationship between the GAC property
for (1.1) and the existence of a feedback k(x) such that the closed-loop
system

ẋ = f(x, k(x)), x ∈ X , (1.2)
is globally asymptotically stable to A. For the special case where system
(1.1) evolves on X = R

n and A = {0}, this relationship has been well stud-
ied (see [7, 10, 12, 13, 22]). For that case, it is now well known that (1.1)
does not in general admit a continuous stabilizing k(x) (see [22, 24]). This
negative result can also be seen from the Brockett criterion (see [7, 20])
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which states that a necessary condition for the existence of a continuous
stabilizing feedback k(x) for (1.1) with k(0) = 0 is that (x, u) �→ f(x, u) be
open at zero; see also [19, pp. 252–255] for a simple direct proof of Brock-
ett’s result using a homotopy. As a consequence, no totally nonholonomic
mechanical system ẋ = g1(x)u1 + . . . + gm(x)um on R

n with m < n and
rank[g1(0), . . . , gm(0)] = m is stabilizable by a continuous state feedback
(see [20]). On the other hand, if (1.1) is GAC to A = {0} on R

n, then it
can be stabilized by a continuous time varying feedback u = k(t, x) pro-
vided (i) the system is completely controllable without drift or (ii) n = 1
(see [10,22] and Remark 6.4 below).

However, if we allow discontinuous feedbacks, then we have the follow-
ing positive result from [9] known as the Clarke–Ledyaev–Sontag–Subbotin
(CLSS) theorem: If (1.1) is GAC to A on X = R

n, then there exists a dis-
continuous feedback k(x) for which (1.2) is globally asymptotically stable
to A. Here and in the sequel, “discontinuous” means “not necessarily con-
tinuous in the state variable.” The discontinuous feedback k(x) produces a
discontinuous right-hand side in (1.2), which requires a more general inter-
pretation of solutions that can be applied to discontinuous dynamics. In [9],
this issue is resolved by interpreting the trajectories of (1.2) as “sample and
hold” (a.k.a. CLSS) solutions (see Definition 2.4 below). The CLSS so-
lution concept has been used extensively in nonlinear control analysis and
controller design including the input-to-state stabilization of systems rel-
ative to actuator errors under small observation noise (see [12, 13, 20] and
Sec. 6 below). For example, CLSS solutions have been used to stabilize non-
holonomic systems such as Brockett’s example which are not stabilizable by
continuous state feedbacks (see [12,13]).

On the other hand, many important GAC systems evolve on manifolds
other than R

n (e.g., stabilization of rigid bodies on the Lie group of rotations
SO3) and, therefore, are not tractable by the CLSS theorem. In fact, if (1.1)
is GAC to a singleton A = {p} and admits a continuous stabilizing feedback
k(x), then a theorem of Milnor (see [14]) implies that X is diffeomorphic
to the Euclidean space. This is since the existence of k(x) would imply
the existence of a smooth control-Lyapunov function on X that could be
considered as a Morse function with a unique (possibly degenerate) critical
point, and manifolds admitting such a Morse function are diffeomorphic to
the Euclidean space (see [20]). Therefore, even if (1.1) is holonomic, there
may still be topological obstacles to continuous global stabilization when
X �= R

n.
Motivated by these considerations, this note will extend the CLSS theo-

rem to GAC systems on general smooth manifolds X , proving the existence
of a discontinuous feedback k(x) rendering (1.2) globally stable to A in the
sense of CLSS solutions. We follow the construction proposed in [21] which
can be summarized as follows. We first embed X as a closed submanifold
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g(X ) of a Euclidean space R
k for some k, e.g., using the Whitney embedding

theorem. Then we extend the system to all of R
k so that

(a) points outside g(X ) can be controlled to a tubular neighborhood of A,
(b) g(X ) is invariant for the extended system.

Then we apply the CLSS theorem to the extended system on R
k to design

our feedback k(x). The restriction of this feedback to g(X ) provides the
desired stabilizer for the original system.

This note is organized as follows. In Sec. 2, we consider CLSS solutions
and the CLSS theorem. We introduce the relevant definitions for stability
on manifolds in Sec. 3. In Sec. 4, we prove our generalized CLSS theorem on
the discontinuous stabilization of (1.1) on smooth manifolds. We illustrate
our discontinuous feedback constructions in Sec. 5. Finally, in Sec. 6 we
apply our results to the input-to-state stabilization of GAC systems on Rie-
mannian manifolds with respect to actuator errors under small observation
noise. This extends the corresponding results [12, 13, 18] on input-to-state
stabilization for systems evolving on Euclidean space.

2. The CLSS theorem on Euclidean space

In this section, we give the main definitions and results from [9] on the
stabilization of GAC systems on Euclidean space. Throughout this section,
our state space is X = R

n. We extend this material to systems on smooth
manifolds in the next sections. We consider a system (1.1) for which f
is locally Lipschitz in x uniformly for u ∈ U in compact sets, and jointly
continuous in x and u. Our input set U is a locally compact metric space
with a metric dU and a distinguished element 0 ∈ U, and we set |u| =
dU(u, 0) for each u ∈ U. Let U denote the set of all controls for (1.1), i.e.,
the set of all measurable, locally essentially bounded functions u : R≥0 → U.
The essential supremum of any control u ∈ U is denoted by ‖u‖, and
UN = {u ∈ U : ‖u‖ ≤ N} for each N > 0. Given ξ ∈ X and u ∈ U ,
the maximal trajectory of (1.1) for the control u that satisfies x(0) = ξ is
denoted by x(t, ξ,u) or, simply, by x(t) when ξ and u are clear. We say
that x(t) is well defined provided it is defined for all t ∈ R≥0 := [0,∞).

Let A ⊆ X . We say that A is weakly invariant (for (1.1)) provided
that there exists N > 0 such that for any ξ ∈ A there is a control u ∈
UN such that the corresponding trajectory x(t, ξ,u) is well defined and
stays in A. For example, A = {0} is weakly invariant if f(0, ā) = 0 for
some ā ∈ U. More generally, A could be a periodic orbit we want to
stabilize. Let |p| denote the Euclidean norm of any p ∈ X . We denote by
bd (respectively, clos) the boundary (respectively, closure) operator, and we
define the distance dist(N , x) = inf{|p−x| : p ∈ N} for any subset N ⊆ R

n

and x ∈ R
n. For any x ∈ X , we denote by |x|A the distance from x to A.

Therefore, |x|A < ε means x ∈ Bε(A) := {p ∈ R
n : dist(A, p) < ε}.
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Next, we state two equivalent definitions of globally asymptotic control-
lability. First, we state the well-known definition from [12, 20] in terms of
comparison functions. Then we provide the original ε-δ formulation which
we generalize to systems on manifolds in the next section. We use the follow-
ing comparison function definitions from [20]. A function α : R≥0 → R≥0 is
said to be of class K provided that α is continuous, strictly increasing, and
satisfies α(0) = 0; it is of class K∞ provided that it is also unbounded. We
say that α : R≥0 → R≥0 is of class N if α is nondecreasing, and of class L
if α(s) is decreasing to 0 as s → +∞. A function β : R≥0 × R≥0 → R≥0 is
said to be of class KL if

(a) β(s, ·) ∈ L for every fixed s and
(b) β(·, t) ∈ K for every fixed t.

We write β ∈ KL if β is of class KL and similarly for the other types of
comparison functions.

Definition 2.1. Let A ⊆ X be compact, nonempty, and weakly invari-
ant for (1.1). System (1.1) is said to be globally asymptotically controllable
(GAC) to A (on X ) if there exist β ∈ KL and σ ∈ N such that for each
ξ ∈ X , there exists a control u with ‖u‖ ≤ σ(|ξ|A) such that x(t, ξ,u) is
well defined and |x(t, ξ,u)|A ≤ β(|ξ|A, t) for all t ≥ 0.

The following equivalent formulation of GAC has a natural generaliza-
tion to systems on manifolds (see Definition 3.1 below). See [1] for the
equivalence of our GAC definitions on R

n.

Definition 2.2. Let A ⊆ X be compact, nonempty, and weakly invari-
ant for (1.1). System (1.1) is said to be globally asymptotically controllable
(GAC) to A (on X ) if for all ε1, ε2 > 0 with ε1 < ε2, we have the following:

(1) There exist T = T (ε1, ε2) > 0 and δ = δ(ε1) > 0 such that for each
ξ ∈ Bε2(A), there exists a control u such that
(a) x(t, ξ,u) is well defined,
(b) x(t, ξ,u) ∈ Bε1(A) for all t > T ,
(c) if also ξ ∈ Bδ(A), then u can be chosen so that x(t, ξ,u) ∈ Bε1(A)

for all t ≥ 0.
(2) For every positive number ε < ε2, there exists N = N(ε) > 0 such

that if ξ from item (1) also satisfies ξ ∈ Bε(A), then the control u
from item (1) can be chosen so that u ∈ UN .

Definition 2.3. A feedback for (1.1) is defined to be any locally
bounded function k : X → U.

In this note, we study the equivalence of (open loop) asymptotic con-
trollability of (1.1) and the possibility of stabilizing the system to a weakly
invariant set A via a state feedback. The novelty of our work lies in its
applicability to systems on general smooth manifolds. Even for systems on
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R
n, it is often the case that a continuous stabilizing state feedback does not

exist (see [12,13,20]). However, a discontinuous feedback is always possible
to construct, provided that we use the Clarke–Ledyaev–Sontag–Subbotin
(CLSS) definition of a “sample and hold” solution for a discontinuous dy-
namic. Next, we consider this generalized solution notion following the
notation from [12,13].

We define a partition (of R≥0) as a divergent sequence π : 0 = t0 < t1 <
t2 < . . . and we call

d(π) = sup
i≥0

(ti+1 − ti) (respectively, d(π) = inf
i≥0

(ti+1 − ti))

the upper (respectively, lower) diameter of the partition π = {t0, t1, t2, . . .}.
Definition 2.4. Let k be a feedback for system (1.1), ξ ∈ X , and π =

{ti}i≥0 be a partition. The π-trajectory

t �→ xπ(t, ξ, k)

for (1.1), ξ, π, and k is defined as the continuous function obtained by
recursively solving

ẋ(t) = f(x(t), k(x(ti)))

from the initial time ti up to the maximal time

si = max
{

ti, sup
{
s ∈ [ti, ti+1] : x(·) is defined on [ti, s)

}}
, (2.1)

where x(0) = ξ.1 The domain of xπ(·, ξ, k) is [0, tmax), where

tmax = inf{si : si < ti+1}.
We say that xπ(·, ξ, k) is well defined if tmax = +∞.

The argument ti in maximum (2.1) is needed to allow the possibility
that x(·) is not defined at all on [ti, ti+1] in which case the supremum in
(2.1) alone would, by definition, give −∞. The following notion of (global)
stabilization for (1.1) was introduced in [9].

Definition 2.5. A feedback k : X → U is said to s-stabilize system (1.1)
to A if for each pair (r,R) with 0 < r < R, there exist M = M(R) > 0
with lim

R→0
M(R) = 0, δ = δ(r,R) > 0, and T = T (r,R) > 0 such that,

for every π with d(π) < δ and ξ ∈ BR(A), the π-trajectory x(·) for (1.1),
initial value ξ, partition π, and feedback k is well defined and satisfies the
following conditions:

(a) |x(t)|A ≤ r for all t ≥ T and
(b) |x(t)|A ≤ M(R) for all t ≥ 0.

1The continuity requirement for x(·) amounts to stipulating that the final value on
the previous subinterval is used as the initial value at the next subinterval.
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The following result to be generalized was shown in [9] for A = {0}
but can be shown for our general compact, nonempty, weakly invariant set
A ⊆ X = R

n by similar arguments (e.g., using the existence results from [11]
for locally Lipschitz Lyapunov functions for GAC systems and any compact
set A).

Theorem 1. If (1.1) is GAC to A on X = R
n, then it admits a feedback

that s-stabilizes the system to A.

The preceding result is called the CLSS theorem. Our main contribution
is a generalized CLSS theorem for systems on smooth manifolds and is the
subject of the next two sections. We provide related results on input-to-
state stabilization on Riemannian manifolds in Sec. 6.

3. Stabilization on manifolds

We again consider system (1.1) but we assume from now on that the state
space X for the system is an arbitrary smooth (i.e., C∞) (second countable)
manifold. Controls u, as before, are measurable, locally essentially bounded
functions u : R≥0 → U. We assume that

f : X × U → Tx(X ) : (x, u) �→ f(x, u) (3.1)

is locally Lipschitz in x and jointly continuous in x and u, i.e.,

f(x, u) =
∑

i

ai(x, u)
∂

∂xi
,

where each ai : X × U → R is locally Lipschitz in x uniformly for u in
compact sets and jointly continuous, and Tx(X ) is the tangent space to X
at x. We define the solutions x(t, ξ,u) of (1.1) as before. Next, we generalize
Definition 2.2 for GAC to manifolds.

Let A be a compact, nonempty, weakly invariant subset of X for (1.1),
and let PNA be the set of all open precompact subsets of X containing
A. To extend the GAC definition to manifolds, we simply replace the ε-
neighborhoods of A from Definition 2.2 with arbitrary sets in PNA as
follows.

Definition 3.1. We say that (1.1) is globally asymptotically controllable
(GAC) to A (on X ) if the following holds.

(1) Given any E1, E2 ∈ PNA with E1 ⊆ E2, there exist T = T (E1, E2) > 0
and Δ = Δ(E1) ∈ PNA such that for every ξ ∈ E2 there exists a
control u such that
(a) x(t, ξ,u) is well defined,
(b) x(t, ξ,u) ∈ E1 for all t > T ,
(c) if also ξ ∈ Δ, then u can be chosen so that x(t, ξ,u) ∈ E1 for all

t ≥ 0.
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(2) For every set N ∈ PNA, there exists N = N(N ) > 0 such that if ξ
from item (1) also satisfies ξ ∈ N , then the control u from item (1)
can be chosen with u ∈ UN .

Throughout this section, we assume that our dynamic f is GAC to A.
Since our definitions of feedback and π-trajectory from Sec. 2 do not depend
on the structure of the state space X , they remain valid for systems on
manifolds. We extend the definition of an s-stabilizing feedback to manifolds
as follows.

Definition 3.2. A feedback k : X → U is said to s-stabilize system
(1.1) to A if the following holds for all sets R1, R2 ∈ PNA with R1 ⊆ R2.

(1) There exist a set M = M(R2) ⊆ X and numbers δ = δ(R1,R2) > 0
and T = T (R1,R2) such that, for any partition π with d(π) < δ and
any ξ in R2, the π-trajectory x(·) for (1.1), the initial state ξ, and the
feedback k is well defined and satisfies the following conditions:
(a) x(t) ∈ R1 for all t ≥ T ,
(b) x(t) ∈ M for all t ≥ 0.

(2) For each set E ∈ PNA there exists D ∈ PNA such that if R2 ⊆ D,
then the set M in item (1) can be chosen so that M ⊆ E.

Our goal is to show that the CLSS theorem remains true on any smooth
manifold X . To this end, we follow the strategy outlined in [21] which can
be summarized as follows. We first embed the state space manifold X into
some Euclidean space R

k (e.g., using the Whitney embedding theorem).
Then we extend the dynamic to all of R

k so that
(a) the system is asymptotically controllable to a tubular neighborhood

of A and
(b) X is a strongly invariant set under the extended system (see

Lemma 3.5).
Next, we apply the CLSS theorem to the extended system. Thus, we obtain
an s-stabilizing feedback on R

k. When restricted to X , this feedback will
s-stabilize (1.1) to A.

To make this construction precise, we use the following definitions and
facts from differential topology (see [5, 6]). The following is known as the
Whitney embedding theorem (see [6, p. 92]).

Lemma 3.3. If X is an n-dimensional smooth manifold, then there ex-
ists an embedding g : X → R

2n+1 for which g(X ) is a submanifold and a
closed subset of R

2n+1.

By Lemma 3.3, we can assume that our state space X is a smooth sub-
manifold of R

k with X ⊆ R
k closed. The normal bundle Ξ(X ) of X in R

k

is defined by
Ξ(X ) =

{〈x, q〉 ∈ X × R
k : q⊥Tx(X )

}
.
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We define the projections

πM : Ξ(X ) → X
by the rule πM (〈x, q〉) = x and

πN : Ξ(X ) → R
k

by the rule πN (〈x, q〉) = q, and θ(〈x, q〉) := x+ q. For each smooth function
ω : X → R>0, the ω-tube Ξ(X , ω) is defined by

Ξ(X , ω) = {〈x, q〉 ∈ Ξ(X ) : |q| < ω(x)} .

The next result is known as the tubular neighborhood theorem.

Lemma 3.4. Let X be a closed submanifold of R
k. There exists a smooth

function ω : X → R>0 such that θ : Ξ(X , ω) → R
k : 〈x, q〉 �→ x + q is a

diffeomorphism onto an open neighborhood of X in R
k.

In particular, Ξ(X , ω) is an open subset of R
k × R

k. Choose functions
ω and θ as in Lemma 3.4 for our state space manifold X . Since A ⊆ X is
compact and ω is continuous, ω attains its minimum on A. Let

ε =
1
2

min
x∈A

ω(x)

and for each set A1 ⊆ X , define

Ξ(A1, ε) = {〈x, q〉 ∈ Ξ(X ) : x ∈ A1, |q| < ε} ,

Ξ(A1, ω) = {〈x, q〉 ∈ Ξ(X ) : x ∈ A1, |q| < ω(x)} ,

TNεA1 = θ(Ξ(A1, ε)), TNωA1 = θ(Ξ(A1, ω)).

Note that if ε ≤ ω(x) for all x ∈ A1, then

TNεA1 ⊆ TNωA1 ⊆ TNωX .

Also, closTNεA is a compact subset of TNωX . Next, we consider the
system

ẋ = f(x, u), q̇ = qv, 〈x, q〉 ∈ X × R
k, 〈u, v〉 ∈ U × R, (3.2)

whose (maximal) solution for the controls 〈u,v〉 starting from 〈ξ, q0〉 we
denote by 〈x(t, ξ,u), q(t, q0,v)〉, or by 〈x(t), q(t)〉 for brevity. If, for some
initial state 〈x(0), q(0)〉 and controls 〈u,v〉, the trajectory 〈x(t), q(t)〉 of
(3.2) stays in Ξ(X , ω), then y(t, y0,u,v) = θ(〈x(t), q(t)〉) is the correspond-
ing trajectory of

ẏ = f1(y, u, v) := f(πM (θ−1(y)), u) + πN (θ−1(y))v,

y ∈ TNωX , 〈u, v〉 ∈ U × R,
(3.3)

with the initial value y0 = y(0) = θ(〈x(0), q(0)〉). We denote this solution by
y(t) when no confusion would result. We also omit θ−1 inside the projections
πN and πM in the sequel to simplify our notation. We (discontinuously)
extend f1 to R

k by defining it to be zero outside TNωX .
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Next, we extend our GAC system (1.1) to all of R
k as follows. Let

X � ⊆ R
k be any closed set contained in TNωX and containing X in its

interior. Let Cω ⊆ R
k be any open set such that the following holds:

R
k \ TNωX ⊆ Cω ⊆ clos Cω ⊆ R

k \ X �.

Then bdCω ⊆ TNωX . Let φ : R
k → [0, 1] be any smooth function such

that

φ(z) =

{
1, z ∈ X �,

0, z ∈ clos Cω,
(3.4)

which exists by a well-known separation result (see, e.g., [5, Exercise V.4.5]).
Now define the system

ż = f2(z, u, v, w) := f1(z, u, v)φ(z) + (1 − φ(z))w,

z ∈ R
k, 〈u, v, w〉 ∈ U × R × R

k,
(3.5)

whose (maximal) solution starting from z0 for given controls 〈u,v,w〉 we
denote by z(t, z0,u,v,w). Since φ ≡ 0 in Cω, we know that f2 is locally
Lipschitz in z ∈ R

k. We use the following elementary observation.

Lemma 3.5. Any trajectory z(t) for f2 starting from a point η ∈ X
remains in X on its domain of definition and, therefore, is a trajectory of
f . In other words, X is strongly invariant for f2.

Proof. Since 〈x, 0〉 ∈ Ξ(X , ω) for all x ∈ X , the uniqueness property for
solutions of (3.3) in TNωX implies that all trajectories of f1 starting in
X remain in X and, therefore, are trajectories of f . On the other hand,
trajectories z(t) of f2 starting in X are also trajectories of f1 while they
are in X � (by our choice (3.4) of φ), since f1 and f2 agree on X �. By the
uniqueness property for trajectories of f1, z(t) cannot enter X �\X ⊆ TNωX
and, therefore, stays in X . Hence z(t) is a trajectory of f1, and also for f .

This lemma forms the basis for our generalized CLSS theorem in the next
section.

4. The CLSS theorem on manifolds

In this section, we prove the following generalized CLSS theorem for
any smooth manifold X and any compact, nonempty, weakly invariant set
A ⊆ X for (1.1).

Theorem 2. If (1.1) is GAC to A on the manifold X , then it admits a
feedback that s-stabilizes the system to A.

This follows from the following key lemma.

Lemma 4.1. If system (1.1) is GAC to A on X , then system (3.5) is
GAC to closTNεA on R

k.
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We begin with proving Lemma 4.1. Fix z0 ∈ R
k, a precompact open set B

containing closTNεA, and an open set A1 ∈ PNA such that TNεA1 ⊆ B.
First, we assume that η := z0 ∈ TNωX . Since (1.1) is GAC to A, we
can find a control u : [0,∞) → U and constants T1 > 0 and p1 > 0 with
‖u‖ < p1 such that the trajectory x(t) = x(t, πM (η),u) of (1.1) is well
defined and satisfies x(t) ∈ A1 for all t ≥ T1. This gives a compact set
B̄ ⊆ X containing A such that x(t) = x(t, πM (η),u) ∈ B̄ for all t ≥ 0.

Since ω is positive and smooth on X , there exist positive values

p2 = 1 + max
x∈B̄

|∇ω(x)| , p4 = min
x∈B̄

ω(x), (4.1)

and p3 > 0 such that |f(x, u)| < p3 for all x ∈ B̄ and |u| < p1. Then
p4/2 ≤ ε, and

∣∣∣∣
d

dt
ω(x(t))

∣∣∣∣ = |∇ω(x(t)) · f(x(t),u(t))| ≤ p2p3 for almost all t ≥ 0.

(4.2)
In other words, p2p3 is an upper bound on the rate of change of the width
ω(x(t)) of TNωX , as we move along the trajectory x(t). Hence, to ensure
that our stabilizing trajectory of (3.5) starting in TNωX stays there, we
must design a control v so that the solution of (3.3) is pushed towards X
faster than p2p3.

Since we have assumed that η ∈ TNωX , we have 〈πM (η), πN (η)〉 ∈
Ξ(X , ω) and, therefore, |πN (η)| < ω(πM (η)). Define v : [0,+∞) → R by

v(t) =

⎧
⎨
⎩
−p2p3

p4/4
, t ∈ [0, T2],

0, t > T2,
(4.3)

where

T2 = max
{

0,
|πN (η)| − p4/4

p2p3

}
.

Let q(t) be the solution of q̇ = vq starting from πN (η). We set y(t) =
x(t) + q(t), where x(t) = x(t, πM (η),u) is defined above; then y(t) has the
domain [0,∞), and 〈x(t), q(t)〉 is a solution of (3.2) on [0,+∞). Next, we
define

t′ = inf{t ≥ 0 : 〈x(t), q(t)〉 ∈ bd Ξ(X , ω)},
so that 〈x(t), q(t)〉 ∈ Ξ(X , ω) on [0, t′). We show that t′ = +∞. This will
show that y(t) is a solution of (3.3) on all of R≥0. To this end, first note
that:

(i) since the direction of v(t)q(t) is always opposite to that of q(t) when-
ever v(t) �= 0, the function |q(t)| is nonincreasing on R≥0;
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(ii) at all points t ∈ [0, T2] for which ẋ(t) exists and |q(t)| ≥ p4/4, the
following holds:

d

dt
|q(t)| = −p2p3

p4/4
|q(t)| ≤ −p2p3 ≤ −

∣∣∣∣
d

dt
ω(x(t))

∣∣∣∣ ≤
d

dt
ω(x(t)). (4.4)

By separately considering the case where |q(t)| stays above p4/4 on [0, T2]
and using (4.3) and (4.4), one can easily verify that |q(T2)| ≤ p4/4; this
inequality is clear if |q(t)| ever goes below p4/4 on [0, T2], by (i). Hence,
|q(t)| ≤ p4/4 for all t ≥ T2, by the choice of v. Similarly, we can use (4.4),
the definition of p4, and the fact that |πN (η)| < ω(πM (η)) to verify that

|q(t)| < ω(x(t)) ∀t ≥ 0. (4.5)

Suppose that t′ < ∞. Then 〈x(t′), q(t′)〉 ∈ bd Ξ(X , ω). Since Ξ(X ) is closed
and 〈x(t), q(t)〉 ∈ Ξ(X ) on [0, t′), it follows from (4.5) that 〈x(t′), q(t′)〉 ∈
Ξ(X , ω), contradicting the openness of Ξ(X , ω). It follows that t′ = +∞
and, therefore, the solution y(t) := y(t, η,u,v) of system (3.3) maps all of
R≥0 into TNωX .

Finally, we define a control w : [0,∞) → R
k as follows:

w(t) = f1(y(t, η,u,v),u(t),v(t)). (4.6)

The control w cancels the effect of φ in (3.5) for states in TNωX . In fact,

f2(y(t, η,u,v),u(t),v(t),w(t)) ≡ f1(y(t, η,u,v),u(t),v(t)),

hence y(t, η,u,v) ≡ z(t, η,u,v,w). By our choice of T1, p4, and v, we have
(a) x(t) = πM (y(t, η,u,v)) ∈ A1 for all t ≥ T1,
(b) |πN (y(t, η,u,v))| < p4/2 ≤ ε for all t > T2.

Therefore, it follows that

z(t, η,u,v,w) = y(t, η,u,v) ∈ TNεA1 ⊆ B ∀t > T,

where T := max{T1, T2}. This proves the asymptotic controllability of
(3.5) to our arbitrary neighborhood B of closTNεA from any initial value
in TNωX . Next, we show that this controllability property also holds for
initial values outside TNωX .

Then, we assume that z0 /∈ TNωX and, therefore, z0 ∈ Cω. We reduce
this to the case where the initial value is in TNωX . Let p5 = dist(X , z0)
and let η1 ∈ X be such that |η1 − z0| = p5. Define w̄ and z(t) by the
relations

w̄(t) =
η1 − z0

|η1 − z0| ∀t ≥ 0; z(t) = z0 + t
η1 − z0

|η1 − z0| ,

0 ≤ t ≤ t̂ := inf{t ≥ 0 : z(t) ∈ bdCω}.
(4.7)

Then z(t) is a solution of (3.5) starting from z0 for any controls 〈u,v〉 and
the choice w = w̄, and z(t) ∈ Cω on [0, t̂). Also, 0 < t̂ ≤ |η1 − z0|, since if
it were the case that t̂ > |η1 − z0|, then setting t = |η1 − z0| in (4.7) would
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give z(t) = η1 ∈ X ∩Cω. This would contradict the fact that Cω ⊆ R
k \ X .

In particular, we conclude that t̂ < ∞ and, therefore,

η := z(t̂, z0,u,v, w̄) ∈ bdCω ⊆ TNωX .

For our precompact open set B, we now construct the controls u from
the controllability of (1.1), v as in (4.3), and w as in (4.6), driving this
choice of η to B. Let u� and v� be the concatenations of the zero functions
on [0, t̂), followed by u and v, respectively. Let w� be the concatenation
of w̄ on t ∈ [0, t̂) from (4.7), followed by w from (4.6) for t ≥ t̂. The
control vector 〈u,v,w〉 for (3.5) drives η to B in time T and, therefore,
z(t, z0,u�,v�,w�) ∈ B for all t > t̂ + T . Since T and t̂ are locally bounded
functions of z0 and B, we conclude that conditions (1a) and (1b) from the
GAC definition hold for (3.5) and the attractor closTNεA.

To establish condition (1c) of the GAC definition for (3.5), fix any pre-
compact open set E ⊆ R

k containing closTNεA. We can find an open
set E1 ∈ PNA and ε′ > ε such that ε′ < ω(x) for all x ∈ E1, and such
that TNε′E1 ⊆ E. Next, we find a set Δ ∈ PNA as in condition (1c) of
Definition 3.1 for the GAC system (1.1), corresponding to E1. It follows
that closTNεA ⊆ TNε′Δ. By reducing Δ, we can assume ε′ < ω(x) for
all x ∈ Δ, and, therefore, TNε′Δ ⊆ TNωΔ ⊆ TNωX . We show that if
z0 ∈ D := TNε′Δ, then z0 can be driven to B using system (3.3) and the
vector of controls 〈u,v〉 as defined above, hence also by the extended system
(3.5), while being kept inside TNε′E1 ⊆ E for all t ≥ 0.

Let z0 ∈ D. Since πM (z0) ∈ Δ, we can arrange (by the choice of Δ)
that u is such that x(t, πM (z0),u) ∈ E1 for all t ≥ 0. Next, we construct
v defined by (4.3) for the initial state z0 ∈ TNε′Δ ⊆ TNωX . By (i), we
know that t �→ |πN (y(t, z0,u,v))| is nonincreasing. Thus, for all t ≥ 0, we
obtain

|πN (y(t, z0,u,v))| ≤ |πN (z0)| < ε′

and, therefore, also y(t, z0,u,v) ∈ TNε′E1 ⊆ E, proving condition (1c)
from the GAC definition for system (3.5).

It remains to verify that the concatenated controls u�, v�, and w� con-
structed above satisfy the boundedness requirement from Condition (2) of
the GAC definition. That is, we need to verify that ‖〈u�,v�,w�〉‖ is a lo-
cally bounded function of the initial state z0. To do this, first note that
the boundedness requirement on u� is satisfied since (1.1) is assumed to be
GAC to A on X . Next, ‖v�‖ ≤ p2p3/(p4/4), and (letting u be the second
part of the concatenation u� and similarly for v, as before)
∥∥w�

∥∥ ≤ 1 + ess sup
t≥0

{
|f(πM (y(t, η,u,v)),u(t))| + |πN (y(t, η,u,v))|p2p3

p4/4

}
.

Here f(πM (y(t, η,u,v)),u(t)) stays bounded since
(a) πM (y(t, η,u,v)) = x(t, πM (η),u) ∈ B̄ for all t ≥ 0,
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(b) B̄ and pi are locally bounded functions of the state η =
z(t̂, z0,u�,v�,w�).

Also, |πN (y(t, η,u,v))| stays bounded since it decreases from |πN (η)|.
Hence, condition (2) of the GAC definition holds. This completes the proof
of Lemma 4.1.

Finally, we prove Theorem 2. The previous argument applied to η ∈
closTNεA (with u chosen so that x(t, πM (η),u) ∈ A for all t ≥ 0, which
exists by the weak invariance of A) shows that the compact set closTNεA
is weakly invariant for (3.5). Since (3.5) is GAC to closTNεA on R

k, the
CLSS theorem (namely, Theorem 1 above) provides an s-stabilizing feedback
K(x) for (3.5). By Lemma 3.5, X is strongly invariant for f2. It follows
that the u-part of K(x) stabilizes (1.1). This proves Theorem 2.

Remark 4.2. Given a GAC system (1.1) evolving on a manifold, we can
also construct feedbacks that asymptotically stabilize the system in the
sense of Euler or Carathéodory solutions from almost all initial values, or
that stabilize certain Carathéodory solutions using discontinuous patchy
feedbacks (see [2, 16] for the relevant definitions and results for systems
on Euclidean space). The extension to manifolds is done by applying the
corresponding feedback constructions of [2, 16] to the extended system on
R

k, which is GAC to closTNεA on R
k by Lemma 4.1, and then restricting

the feedback to the invariant set X to obtain the desired feedback for the
original system, exactly as before. In the same way, we can use the results
of [12] to design feedbacks for control-affine systems that render the systems
input-to-state stable with respect to actuator errors, in the sense of Euler
solutions.

5. Illustration

Next, we illustrate our stabilization approach using the system

ẋ = A1(x)u1 + A2(x)u2 ∈ Tx(X ), x ∈ X , u = 〈u1, u2〉 ∈ R
2, (5.1)

evolving on the sphere X := S2 = {x ∈ R
3 : |x| = 1}. This simple example

will illustrate how to construct stabilizing state feedbacks and Lyapunov
functions on smooth manifolds. Even in this simple case, we will see the
necessity for using discontinuous stabilizers. Our example is a modified
version of the engineering examples in [8]. We choose the attractor A =
{±q}, where q = 〈0, 0, 1〉, but similar constructions apply for any q ∈ S2.
The vector fields A1 and A2 are chosen as follows. First, define

B1(x) = q − (x · q)x, B2(x) = x × q,

which form an orthogonal basis for the tangent spaces Tx(X ) = span{x}⊥
on S2 \ A (in terms of the cross product ×, the standard inner product ·,
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and the orthogonal complement ⊥). Define the geodesic distance G on S2

by G(x, x′) := arccos(x · x′) for x, x′ ∈ S2. We set r = 〈0, 1, 0〉 ∈ S2 and

Vq(x) = min{G(x, q̄) : q̄ ∈ {±q}},
Vr(x) = max{G(x, r̄) : r̄ ∈ {±r}}, x ∈ S2. (5.2)

Note the asymmetry between Vq and Vr. Roughly speaking, we use max in
Vr to produce a component in our Lyapunov function that penalizes states
near ±r (see (5.6)). Let M1 : S2 → [0, 1] be any smooth function satisfying
the following conditions:

(a) M−1
1 (0) =

{
x ∈ S2 :

x1

4
≤ x2 ≤ 3x1

4
and Vq(x) ≥ π

4

}
,

(b) M−1
1 (1) ⊇

{
x ∈ S2 : x2 ≥ 7x1

8
or x2 ≤ x1

8
or Vq(x) ≤ π

8

}
.

We set

A1(x) = M1(x)B1(x), A2(x) = B2(x). (5.3)

The factor M1 in (5.3) introduces a set of zeros in A1, consisting of a geodesic
rectangle covering a part of the equator of S2 in the quadrant

Q++ := {x ∈ S2 : x1 > 0, x2 > 0}.
In particular, system (5.1) is not completely controllable. The fact that (5.1)
is GAC to A follows since any initial value can be moved to A along the
geodesic direction (i.e., “north” or “south” along a great circle through ±q)
using the vector field A1, possibly by first using A2 to move the state “west”
out of M−1

1 ([0, 1)) (see below for a precise definition of these stabilizing tra-
jectories). In fact, this global stabilization is done by the discontinuous
feedback (5.5) constructed below. On the other hand, a simple continuous
dependence and separation argument (e.g., the argument from the appendix
in [24]) shows that the system has no Lipschitz stabilizing state feedback
K(x). (In fact, there is no continuous stabilizing feedback for this system
either, since this and standard Lyapunov-function arguments would give
a smooth Lyapunov function for the system and hence a stabilizing feed-
back that is smooth outside A, which cannot exist by the same separation
argument.)

The extension of (5.1) from the generalized CLSS theorem amounts to
projecting onto the sphere as follows. The state space X is embedded into
R

3 by inclusion and Ξ(X ) = {〈x, kx〉 : x ∈ X , k ∈ R}. We can choose
ω(x) ≡ 1/4 on X . This gives the ω-tube and annular tubular neighborhood

Ξ(X , ω) = {〈x, kx〉 ∈ X × R
3 : |k| < 1/4},

TNωX = θ(Ξ(X , ω)) =
{
x ∈ R

3 : 3/4 < |x| < 5/4
}

.
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In terms of the projection Πs(y) := y/|y| defined on R
3 \ {0}, the corre-

sponding system f1 on TNωX is (see (3.3))

f1(y, u, v) = M1(Πs(y)) (q − {Πs(y) · q}Πs(y)) u1 + {Πs(y) × q}u2

+ (y − Πs(y)) v, 〈u, v〉 ∈ R
2 × R,

which we (discontinuously) extend to R
3 by setting f1 ≡ 0 for states outside

TNωX . Next, we choose

X � =
{

z ∈ R
3 :

7
8
≤ |z| ≤ 9

8

}
,

Cω = R
3 \

{
z ∈ R

3 :
13
16

≤ |z| ≤ 19
16

}
.

Then the corresponding system f2 on R
3 can be defined by taking φ(z) =

Γ(|z|2) for any smooth function Γ : [0,∞) → [0, 1] such that

Γ ≡
{

1 on [(7/8)2, (9/8)2],
0 outside ((13/16)2, (19/16)2).

Since f2 is GAC to TNω/2A, there exists a sample stabilizing feedback for
f2 whose restriction K(x) to X stabilizes (5.1) to A. This is the content of
our generalized CLSS theorem.

The stabilizing feedback K(x) and the corresponding control-Lyapunov
function (CLF) can be explicitly constructed by the following variant of the
argument from [8, Sec. 2]. We set A� = {±q,±r} ⊆ S2. Define

Y p̄
x := Πs(p̄ − {p̄ · x}x), p̄ ∈ A�, x �= ±p̄;

this gives the geodesic direction from x to p̄. Note that

A1(x) · Y q
x ≡ M1(x)

√
1 − x2

3, A2(x) · Y q
x ≡ 0.

Also, Y −p̄
x ≡ −Y p̄

x for all p̄ ∈ A�. A straightforward calculation (see [8,
Lemma 1]) shows that along any (open loop) trajectory of (5.1) that does
not pass through A�, we obtain

d

dt
G(x, p̄) = −ẋ · Y p̄

x , p̄ ∈ A�, x �= ±p̄. (5.4)

We show that (5.1) can be globally stabilized to A by the (necessarily dis-
continuous) state feedback

K(x) =

⎧
⎪⎨
⎪⎩

〈1, 0〉 if x3 ≥ 0 and M1(x) = 1,

−〈1, 0〉 if x3 < 0 and M1(x) = 1,

〈0, 1〉 if M1(x) < 1,

(5.5)

when the closed-loop trajectories are defined in the usual non-sampling sense
in regions where K is constant. Then an easy argument shows that (5.5)
also sample stabilizes (5.1). Before presenting our argument, we interpret
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(5.5) in terms of the corresponding closed loop (nonsampling) trajectories.
For values where M1(x) = 1, the feedback K drives the state to A geodesi-
cally along a great circle through ±q. On the other hand, any state where
M1(x) < 1 is driven towards −r until the state reaches M−1

1 (1) and then
geodesically to A.

We first analyze those nonsampling trajectories of the closed loop system
for K(x) that remain in regions where K stays constant (which are, in
particular, Carathéodory solutions that are right continuous at t = 0), which
we refer to simply as “closed loop trajectories” in the sequel. We use the
following Lyapunov function construction. In terms of Vq and Vr in (5.2),
we set

V (x) = Vq(x)[1 + Vr(x)], x ∈ S2. (5.6)
Then V is continuous and nonnegative, and V is null only on A. We will
show that V is an integral Lyapunov function for (5.1) in the sense of [1];
this will imply that V is also a CLF in the usual Dini derivative sense
used for example in [9].2 Given a closed loop trajectory x(t), we also let
V̇ (x) denote the derivative of t �→ V (x(t)) when it is defined. Along any
trajectory x(t) of the closed loop system that remains in M−1

1 (1) \ A� and
that satisfies x2 > 0 and x3 > 0 everywhere, we obtain

V (x) = G(x, q)[1 + G(x,−r)]

and, therefore, (5.4) yields

V̇ (x) = −ẋ · Y q
x [1 + G(x,−r)] − ẋ · Y −r

x G(x, q)

= −A1(x) · Y q
x [1 + G(x,−r)] + A1(x) · Πs(r − {x · r}x)G(x, q)

= −A1(x) · Y q
x [1 + G(x,−r)] − x2x3

|r − (x · r)x|G(x, q)

≤ −
√

1 − (x · q)2,
by recalling that |q − (x · q)x| =

√
1 − x2

3, and this is zero only for x ∈ A.
Similar arguments show that

V̇ (x) ≤ −
√

1 − (x · q)2 if x2 �= 0, x3 �= 0, M1(x) = 1, and x /∈ A, (5.8)

2A control-Lyapunov integral function for (5.1) and A is defined to be any continuous
function V : X → [0,∞) for which V −1(0) = A and for which there exist a constant
N > 0 and α3 ∈ K satisfying the following condition: For each ξ ∈ X , there exists u ∈ UN

such that x(t) := x(t, ξ, u) is well defined and satisfies (see [1, 17])

V (x(t)) − V (ξ) ≤ −
∫ t

0
α3(|x(s)|A)ds ∀t ≥ 0. (5.7)

We will verify decay condition (5.7) using closed loop trajectories and corresponding
feedback controls u(t) = K(x(t)) for (5.1). Inequality (5.7) then gives the usual Dini

derivative Lyapunov decay condition for V (e.g., from [9,11,23]) when we divide through
by t and pass to the liminf. This last step uses the fact that t 	→ ẋ(t) = f(x(t), K(x(t)))
is (right) continuous at t = 0 for each closed loop trajectory x(t) of (5.1).
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and

V̇ (x) = −
(
1 +

π

2

) √
1 − x2

3

along trajectories in {x2 = 0, x3 �= 0} (where G(x,±r) = π/2). Note that
V̇ is continuous along closed loop trajectories in M−1

1 (1) starting outside
{x3 = 0}, and that the closed loop trajectories starting in M−1

1 (1) with
x3(0) = 0 also satisfy x3(t) �= 0 for all t > 0. This gives

V (x(t)) − V (x(0)) ≤ −
∫ t

0

√
1 − x2

3(s)ds

along each closed loop trajectory starting in M−1
1 (1).

On the other hand, along closed loop trajectories in M−1
1 ([0, 1)), we know

that Vr(x) = G(x,−r) and, therefore,

V̇ (x) = −ẋ · Y ±q
x [1 + G(x,−r)] − ẋ · Y −r

x Vq(x)

= −A2(x) · Y −r
x Vq(x) (since A2(x) · Y q

x ≡ 0)

= (x × q) · Πs(r − {x · r}x)Vq(x) = − x1 Vq(x)√
x2

1 + x2
3

=: −μ(x)

(5.9)

when x3 �= 0, by recalling that

|r − (r · x)x| =
√

1 − x2
2 =

√
x2

1 + x2
3.

Note that −μ is bounded above by a negative constant in M−1
1 ([0, 1)). Also,

V̇ (x) ≡ −π/2 along closed loop trajectories in M−1
1 ([0, 1)) along x3 = 0,

where G(x,±q) = π/2. Therefore, reasoning exactly as before gives

V (x(t)) − V (x(0)) ≤ −
∫ t

0

μ(x(s))ds

along all closed loop trajectories x(t) remaining in M−1
1 ([0, 1)). Finally,

B1(±q) = B2(±q) = 0. Since M−1
1 (1) is forward invariant for the closed

loop trajectories, it follows that V satisfies the requirements for being a
control-Lyapunov (integral) function for (5.1) and also a CLF for (5.1) in
the usual Dini derivative sense of [9]. The fact that K(x) also sample
stabilizes (5.1) now follows since

(a) the sampling and (nonsampling) closed loop trajectories agree for ini-
tial points in M−1

1 (1) and
(b) the equality V̇ (x) = −μ(x) holds throughout the quadrant Q++ if we

use the control u ≡ 〈0, 1〉 at all points in Q++.
In fact, (a) implies that K sample stabilizes (5.1) for initial values in M−1

1 (1)
for all partitions π. Also, (b) implies that K sample stabilizes the dynamic
for initial values in M−1

1 ([0, 1)) when d(π) is sufficiently small for the sample
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control value to switch to ±〈1, 0〉 in M−1
1 (1) but before the first time, the

sample trajectory exits Q++.

6. Further extensions

Next, we use our results to establish the input-to-state stabilizability
(ISSability) of control affine systems

ẋ = h(x) + G(x)u, x ∈ X , u ∈ U = R
m, (6.1)

evolving on smooth Riemannian manifolds X with respect to actuator er-
rors (but see Remark 6.3 below for an extension to completely nonlinear
systems). We assume that (6.1) is GAC to a weakly invariant compact
nonempty set A ⊆ X . In this context,

G(x)u = g1(x)u1 + · · · + gm(x)um

for locally Lipschitz vector fields gi : X → R. The stabilizers constructed
in this section have the additional desirable feature that they are robust to
small observation noise in the controllers. For continuous feedback stabi-
lizers, small observation noise in the controllers can be tolerated. However,
since our stabilizing feedback may need to be discontinuous (see Sec. 1),
such noise terms can have a substantial effect on the dynamics. Therefore,
the magnitude of the noise needs to be constrained in terms of the sampling
frequency (see [12,13,20] and Definition 6.2 below).

To make our ISSability notion precise, we first introduce a Riemann-
ian metric on X to quantify observation noise. Let Br(y) denote the
corresponding closed ball in X centered at y ∈ X of radius r. As be-
fore, a feedback for (6.1) is defined to be any locally bounded function
k : X → U. We introduce the set of functions O = {e : [0,∞) → [0,∞)},
which represent the observation errors in our controller; and for each
e ∈ O, we set sup(e) = sup{e(t) : t ≥ 0}. We use the set of functions
O(η) := {e ∈ O : sup(e) ≤ η} for each η > 0. We denote by Par the set
of all partitions and Par(δ) :=

{
π ∈ Par : d(π) < δ

}
for each δ > 0. Our

ISSability goal of this section is to find a feedback k such that

ẋ(t) = h(x(t)) + G(x(t))[k(η(t)) + u(t)], η(t) ∈ Be(t)(x(t)) (6.2)

is input-to-state stable (ISS) for sampling solutions with respect to actuator
errors u for small observation errors e.

Definition 6.1. Let k be a feedback for (6.1), e ∈ O, u ∈ U , ξ ∈ X ,
and π = {ti}i≥0 be any partition of R≥0. A π-solution of (6.2), the initial
state ξ, the observation error e ∈ O, and u is defined to be any continuous
function x(·) obtained by recursively choosing any η(ti) ∈ Be(ti)(x(ti)) and
then solving

ẋ(t) = h(x(t)) + G(x(t))[k(η(ti)) + u(t)]
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from the initial time t = ti up to time

si = max
{

ti, sup
{
s ∈ [ti, ti+1] : x(·) is defined on [ti, s)

}}
, (6.3)

where x(0) = ξ.3 The domain of x(·) is the interval [0, tmax), where tmax =
inf{si : si < ti+1}. If tmax = +∞, x(t) is said to be well defined.

Definition 6.2. Let k be a feedback for (6.1). We say that k renders
(6.1) sample-input-to-state stable (s-ISS) to A provided that for each R0 ∈
PNA and each N > 0, there exists R1 = R1(N) ∈ PNR0 such that:

(1) for each R2,R3 ∈ PNR1 with R2 ⊆ R3, there exist M = M(R3) ⊆ X
and positive numbers δ, T , and κ (depending on R2 and R3) such that
if π ∈ Par(δ), ξ ∈ R3, u ∈ UN , and e ∈ O(κd(π)), then the corre-
sponding π-solutions x(t) for (6.2) starting at ξ are all well defined
and satisfy
(a) x(t) ∈ R2 for all t ≥ T ,
(b) x(t) ∈ M for all t ≥ 0.

(2) for each E ∈ PNR1 , there exists D ∈ PNR1 such that if the set R3

in item (1) is a subset of D, then the set M in item (1) can be chosen
to be a subset of E ,

and for each R0 ∈ PNA, there exists N = N(R0) > 0 such that condi-
tions (1) and (2) hold with the choice N = N(R0) and R1 = R0. In this
case, we also say that (6.2) is ISS for sampling solutions and that (6.1) is
ISSable.

This definition requires that the sampling be done sufficiently quickly so
that π ∈ Par(δ), but not so quickly that sup(e) > κd(π). When e ≡ 0, the
condition on d(π) in Definition 6.2 is not needed. (See also [3] for stabiliza-
tion under more general observation errors which are merely required to be
small in total variation.) For X = R

n, one can easily verify that if (6.1)
is sampling ISS in the sense defined in [12,13] using some feedback k, then
it is also ISSable in the sense of Definition 6.2 with the same feedback k.
Then, for any compact nonempty weakly invariant set A for (6.1), we have
the following theorem.

Theorem 3. If (6.1) is GAC to A, then there exists a feedback k(x)
rendering (6.1) s-ISS to A.

Proof. We indicate the changes needed in the proof of Theorem 2. As before,
we first extend the dynamics f(x, u) = h(x) + G(x)u to dynamics (3.5)
defined on all of R

k that is GAC to closTNεA. By [11, Theorem 3.2], this
extended dynamics admits a locally Lipschitz control-Lyapunov function

3As before, the continuity requirement for x(·) stipulates that the final value on the
previous subinterval is used as the initial value at the next subinterval. Also, the ti
argument of (6.3) allows the possibility that x(t) is not defined at all on [ti, ti+1] (see

Sec. 2).
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(CLF) V (see [20] for background on CLFs). Using the argument from [15,
Sec. 5], we can transform V into a (locally) semiconcave CLF for (3.5) on
R

k \ closTNεA. In [12], it was shown that control affine systems that are
GAC to {0} on R

k admit (possibly discontinuous) feedbacks, for which the
corresponding closed loop systems are sampling ISS to {0}. Since (3.5)
is again control affine, a slight variant of the argument from [12, Sec. 3]
provides a feedback K(x) rendering (3.5) s-ISS to closTNεA. Applying
Lemma 3.5 as before shows that the u-part of K(x) renders (6.1) s-ISS
to A.

Remark 6.3. This theorem can be extended to cover completely nonlinear
systems (1.1) on X×R

m if we reinterpret s-ISS in the following more general
sense: a feedback k renders (1.1) s-ISS to A in the weak sense provided
that there exists a smooth everywhere invertible matrix-valued function
G : X → R

m×m such that

ẋ = f(x, k(x) + G(x)u) (6.4)

is s-ISS to A. The s-ISS property for (6.4) is defined by taking e ≡ 0
in Definition 6.2, and the π-solutions of (6.4) are defined by recursively
solving ẋ(t) = f(x(t), k(x(ti))+G(x(t))u(t)) on successive intervals [ti, ti+1]
of the partition π = {ti}i≥0 and proceeding as in Definition 6.1 with e ≡ 0
(see [12] for details). In particular, the sampling is only done in the (possibly
discontinuous) controller k(x). Then we can prove the following for any
smooth manifold X and U = R

m: If (1.1) is GAC to a compact, nonempty,
weakly invariant set A, then there exists a feedback k(x) rendering (1.1)
s-ISS to A in the weak sense. The proof combines the arguments from [12,
Sec. 5] with our proof of Theorem 3 and is left to the reader.

Remark 6.4. As we noted in the Introduction, the GAC system (1.1) does
not admit, in general, a continuous stabilizing state feedback. However,
by [10], system (1.1) is stabilizable by a continuous time varying feedback
u = k(t, x) if it is completely controllable and drift-free (the latter condition
is the requirement that f(x, 0) ≡ 0). In engineering applications, feedback
laws are usually implemented via sampling. This motivated our construc-
tion of discontinuous state stabilizers u = k(x) which we implemented using
CLSS solutions. Yet another approach to stabilizing (1.1) is to look for a
dynamic stabilizer. This means finding a locally Lipschitz regulator dy-
namic ż = A(z, x) and a locally Lipschitz function k(z, x) such that the
interconnected system ẋ = f(x, k(z, x)), ż = A(z, x) is globally asymptoti-
cally stable. (See [19] for an extensive discussion of dynamic stabilizers for
linear systems.)

On the other hand, it turns out that a dynamic feedback for (1.1) may fail
to exist, even if the system is completely controllable. An example from [24]
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where this occurs is

ẋ = f(x, u) =
[

(4 − x2
2)u

2
2

e−x1 + x2 − 2e−x1 sin2(u1)

]
, x ∈ R

2, u ∈ R
2. (6.5)

The fact that (6.5) is completely controllable (and, therefore, GAC to A =
{0}) was shown in the appendix of [24], where it is also shown that it is
impossible to choose paths converging to the origin so that this selection
is continuous in the initial states. Since the flow mapping of any dynamic
stabilizer would give a continuous choice of paths converging to the origin, no
dynamic stabilizer for the system can exist, even if we omit the requirement
that the state of the regulator converges to zero. In particular, we see that
(6.5) cannot admit a continuous time varying feedback u = k(t, x). This
does not contradict the existence results [10] for time varying feedbacks
since in this case, the system has a drift.

Remark 6.5. The feedback construction [12] used to prove Theorem 3
proceeds by first finding a semiconcave control-Lyapunov function (CLF)
for the system and then adapting the feedback design from [18] to allow
nonsmooth CLFs, observation noise, and discontinuous feedback. Semicon-
cave CLFs are known to exist for all (locally Lipschitz) GAC systems on
Euclidean space and all compact nonempty weakly invariant attractors A,
by arguments from [15]. The semiconcavity property is intermediate be-
tween C1 and local Lipschitzness. On the other hand, GAC systems will
not, in general, admit smooth CLFs since their existence would imply the
existence of continuous stabilizers k(x), which are not the case in general
(see [7, 20]).

For a very different approach to ISS on manifolds (based on density
functions) that gives rise to a sufficient condition for ISS-like behavior from
almost all initial values (see [4]). The main ISS-like condition in [4] states
the following: For a given Riemannian manifold X and a compact weakly
invariant set A ⊆ X for (1.1), we say that (1.1) is weakly almost ISS to A
provided that

(i) A is locally asymptotically stable for the system and
(ii) there exists γ ∈ K such that

∀u ∈ U ∃Zu ∈ Null(X ) such that ∀ξ ∈ X \ Zu,

lim inf
t→+∞ |x(t, ξ, u)|A ≤ γ(‖u‖), (6.6)

where Null(X ) denotes the set of subsets of X of measure zero and
| · |A denotes the distance to A.

This condition differs from our ISS requirement mainly in its allowance
of a null set of states that are not necessarily stabilized and in its use
of Carathéodory solutions. An alternative and more intrinsic approach to
feedback stabilization on manifolds would involve generalizing the concepts
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of set-valued differentials and semiconcave CLFs to manifolds and providing
direct feedback constructions without first embedding into R

k. The main
difficulty that can be expected from this approach would be in defining the
stabilizing feedback. We provided a first result in this direction in Sec. 5
above. We leave the development of this more intrinsic approach for another
paper.
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