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Summary. We discuss several issues related to the stabilizability of nonlinear sys-
tems. For a given continuously stabilizable system, we review some constructions
of feedbacks that render the system input-to-state stable with respect to actuator
errors. We also announce a new feedback design that makes globally asymptotically
controllable systems input-to-state stable to actuator errors and small observation
noise. We illustrate our constructions using the nonholonomic integrator, and we
discuss a related feedback design for systems with disturbances.

1 Introduction

The theory of input-to-state stable (ISS) systems forms the basis for much
modern nonlinear feedback design and analysis (cf. [9, 10, 11, 12, 14, 26]).
In this survey, we deal with several issues related to the input-to-state stabi-
lizability of nonlinear finite-dimensional continuous-time control systems. We
focus on some relatively new feedback designs for asymptotically controllable
systems that render the corresponding closed-loop systems ISS with respect
to actuator errors. We cover the following topics:

1. Basic controllability and stability concepts
2. Continuously stabilizable systems with actuator errors
3. Asymptotic controllability implies input-to-state stabilization
4. Feedback stabilization of the nonholonomic integrator
5. Systems with large observation noise
6. Integral-input-to-state stabilization

One of our main tools will be the existence theory for smooth control-
Lyapunov functions (CLF’s) for continuously stabilizable systems. We also
use a recent extension of this theory that provides semiconcave CLF’s for
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systems which are merely asymptotically controllable. Our emphasis will be
on relatively new areas of research, including the integral-input-to-state sta-
bilization of systems with disturbances (cf. [1, 13]). While our discussion will
be mainly conceptual, we will refer the reader to the relevant literature, where
detailed statements and proofs of all our results are found. For a survey
on the underlying theory of CLF’s, stability, and stabilization, see [25]. As
a general reference, we refer the reader to the second author’s preprints at
http://www.math.rutgers.edu/∼ sontag/papers.html.

2 Basic Controllability and Stability Concepts

In much of what follows, we deal with a general nonlinear finite-dimensional
continuous-time deterministic system of the form

ẋ = f(x, u) (1)

evolving over Euclidean space, where x(t) ∈ IRn for all t ≥ 0 and the controls
u (which are also called inputs) are measurable essentially bounded functions
u : [0,∞) → U = IRm taking their values in the control set U which we have
taken to be IRm. We denote the set of all inputs for (1) by Mm. When we
wish to restrict the size of controls u ∈Mm in the essential supremum | · |∞,
we will also use the sets Mm

N = {u ∈ Mm : |u|∞ ≤ N}, defined for each
N > 0. Many of our results easily generalize to locally essentially bounded
inputs mapping into more general control sets U ⊆ IRm. When we refer to
(1), we always assume that f is locally Lipschitz and that f(0, 0) = 0. We
also study systems with no inputs

ẋ = f(x) (2)

for continuous f ; all definitions for such systems are implicitly applied to (1)
by setting u = 0, e.g., we define global asymptotic stability (GAS) for (2), but
we say (1) is GAS if the corresponding zero-input system ẋ = f(x, 0) is GAS.

We denote the solution of (1) starting at any initial state xo for any given
control u ∈ Mm, defined on its maximal interval, by x(·, xo, u). We let | · |
denote the Euclidean norm, and we set rBk := {x ∈ IRk : |x| < r} for each
k ∈ IN and r > 0. We denote the closure of rBk by rB̄k. When we say that
a function is smooth, we mean that it is C1 (i.e., continuously differentiable).
We call a function α : IRk → [0,∞) proper (a.k.a. radially unbounded) if
α(x) → +∞ as |x| → +∞. We say that a function α : IRk → [0,∞) is positive
definite provided α(x) = 0 iff x = 0.

We will frequently use the following types of comparison functions. We let
K∞ denote the set of all continuous functions ρ : [0,∞) → [0,∞) for which
(i) ρ(0) = 0 and (ii) ρ is strictly increasing and unbounded. Also, we let KL
denote the set of all continuous functions β : [0,∞) × [0,∞) → [0,∞) for
which (1) β(·, t) ∈ K∞ for each t ≥ 0, (2) β(s, ·) is nonincreasing for each
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s ≥ 0, and (3) β(s, t) → 0 as t → +∞ for each s ≥ 0. We also use N to denote
the set of all nondecreasing functions σ : [0,∞) → [0,∞).

In terms of comparison functions, the property of global asymptotic stability
(GAS) of the system (2) without inputs is as follows:

(∃β ∈ KL) |x(t)| ≤ β(|xo|, t)
for all xo ∈ IRn, all trajectories x(·) of the system (2) starting at xo, and
all t ≥ 0. More generally, we say that the system (1) with inputs is globally
asymptotically controllable (GAC) provided:

(∃β ∈ KL)(∃σ ∈ N ) ∀xo ∈ IRn, ∃u(·)
|u|∞ ≤ σ(|xo|), |x(t, xo, u)| ≤ β(|xo|, t) ∀t ≥ 0.

Roughly speaking, our definition of GAC amounts to requiring that for each
initial state, there exists a control such that the corresponding solution is
defined on [0,∞) and converges to zero with ‘small overshoot’ and also that
the input remains bounded for x near zero.

The notion of input-to-state stable (ISS) systems provides an alternative
generalization of GAS, in which all trajectories of (1) converge to zero with
an overshoot depending on the sup norm of the input. The ISS property was
introduced in [20], and has become a fundamental concept on which much
modern nonlinear feedback analysis and design are based (cf. [9, 10, 11, 12,
14]). By definition, a dynamics ẋ = f(x, u) is ISS (with respect to u) provided

(∃β ∈ KL) (∃γ ∈ K∞) |x(t)| ≤ β(|xo|, t) + γ(|u|∞) (3)

for all xo ∈ IRn, all u ∈Mm, all trajectories x(·) of the dynamics for u starting
at xo, and all t ≥ 0. In much of what follows, we will be studying systems

ẋ = f(x,K(x) + u) (4)

where K is a specified feedback map for (1) and the input u ∈ Mm repre-
sents an actuator error. By a (memoryless state) feedback, we mean a locally
bounded function K : IRn → U satisfying K(0) = 0. For the special case of
the dynamics (4) and continuous K, the ISS property (3) implies that K is a
stabilizing feedback (meaning that the closed-loop system ẋ = f(x, K(x)) is
GAS) and also that the perturbed system (4) exhibits bounded behavior for
arbitrary (essentially) bounded actuator errors u ∈ Mm (but see also §4 for
the definition of trajectories for ISS systems with discontinuous controllers).
We say that (1) is input-to-state stabilizable (a.k.a. ISSable) provided there
exists a feedback K such that (4) is ISS. We say that (1) is continuously sta-
bilizable (a.k.a. Co-stabilizable) provided there exists a continuous feedback K
such that ẋ = f(x, K(x)) is GAS. Clearly, Co-stabilizable systems are GAC,
but not conversely (cf. §§4-5).

In general, saying that a continuous dynamics ẋ = f(x, u) is ISS implies
that the corresponding zero-input system ẋ = f(x, 0) is GAS. This suggests
the following natural question:
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Question 1. If (1) is Co-stabilizable, is it also ISSable?

We will address this question in §3. More generally, it is natural to ask:

Question 2. If (1) is GAC, is it also ISSable?

We will address Question 2 in §4. We will see that the answers to these ques-
tions are yes, provided the given system (1) is control-affine, i.e., if it has the
form ẋ = h(x)+G(x)u. For the general fully nonlinear system (1), we will see
that the answers to these questions are still yes if the system is transformed
using a feedback equivalence (cf. §3 for the relevant definitions).

However, if the system is merely GAC, then there may be obstructions to
continuous (time-invariant) feedback stabilization (cf. [3, 14, 25]). Therefore,
we will need to allow discontinuous feedbacks. This produces the technical
problem of defining precisely what is meant by a solution of the dynamics
when ẋ = f(x, K(x) + u) is not continuous, since the standard Carathéodory
existence theorems for solutions would not apply. We will resolve this problem
by interpreting the trajectories of (4) for discontinuous K as Euler solutions.
The preceding issues are central to the rest of this survey.

3 Co-Stabilizable Systems with Actuator Errors

In this section, we review the main results from [20, 22] on the input-to-
state stabilizability of the system (1). Throughout this section, we assume the
system (1) is continuously stabilizable (i.e., Co-stabilizable), meaning, there
exists a continuous feedback K1 for which

ẋ = f(x,K1(x)) (5)

is GAS. We wish to design a continuous feedback function K (which we allow
to be different from the feedback used in (5)) rendering the perturbed system
ẋ = f(x,K(x) + u) ISS with respect to the actuator error u. This design
problem plays an important role in control applications, where one wishes to
have a feedback that is robust to noise in the input channel.

For a fully nonlinear system, such a feedback fails to exist in general. For
example, consider the scalar system ẋ = −x + x2u2. By considering closed-
loop trajectories starting at xo = 4 for the input u ≡ 1 (cf. [22]), one can check
that there is no continuous feedback K for which the closed-loop system

ẋ = −x + x2(K(x) + u)2 (6)

is ISS, even though ẋ = −x is obviously GAS (i.e., using K1(x) ≡ 0 as the
stabilizer in (5)). In fact, if we interpret the trajectories of (6) in the more
general sense of sampling and Euler solutions (cf. §4 for the definitions), then
one can show that there is no discontinuous feedback rendering (6) ISS either.
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On the other hand, if we assume the given system (1) has the control-affine
form

ẋ = h(x) + G(x)u, (7)

then we have the following positive result shown in [20]:

Theorem 1. If (7) is Co-stabilizable, then there exists a continuous feedback
K : IRn → IRm for which

ẋ = h(x) + G(x)(K(x) + u) (8)

is ISS.

Theorem 1 follows by choosing K(x) = K1(x) − ∇V (x)G(x), where V is a
C1 control-Lyapunov function (CLF) for (7) and K1 is a continuous feedback
rendering (7) GAS. The existence of such a CLF was established in [2]. (See
also [17, 18] for the existence of semiconcave CLF’s for GAC systems, and [25]
or §4 below for the definition of CLF’s, in terms of set-valued differentials.)

While the example (6) illustrates that Co-stabilizability does not in gen-
eral imply input-to-state stabilizability, we can still extend Theorem 1 to fully
nonlinear systems by using the following weaker notion of ISS that was intro-
duced in [22]: We say that the system (1) is ISSable in the weak sense (a.k.a.
weak ISSable) provided there exist a continuous feedback K, and an m ×m
matrix Θ of continuously differentiable functions which is invertible at each
point, such that ẋ = f(x,K(x) + Θ(x)u) is ISS. We then have the following
extension of Theorem 1 for fully nonlinear systems shown in [22]:

Theorem 2. If (1) is Co-stabilizable, then it is ISSable in the weak sense.

Theorem 2 can be restated in terms of feedback equivalence, as follows. Re-
call that two systems ẋ = f(x, u) and ẋ = f̂(x, u) evolving on IRn × IRm

are said to be feedback equivalent provided that there exist a feedback
K : IRn → IRm and an everywhere invertible function Θ : IRn → IRm×m

for which f̂(x, u) = f(x,K(x) + Θ(x)u) for all x ∈ IRn and u ∈ IRm; the
systems are said to be continuously feedback equivalent if, in addition, K can
be taken to be continuous. (See also [24] for a more general definition of feed-
back equivalence, also involving a diffeomorphic transformation of the state
variable.) The following is then a direct consequence of Theorem 2:

Corollary 1. The fully nonlinear control system (1) is Co-stabilizable if and
only if it is continuously feedback equivalent to an ISS system.

See also [5, 7] for a construction of time-varying ISS stabilizing feedback.

4 Asymptotic Controllability Implies ISS Stabilization

In the last section, we saw how Co-stabilizable systems can be stabilized with
respect to actuator errors. However, in many applications, the given system is
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not Co-stabilizable. For example, if m < n and rank[g1(0), g2(0), . . . , gm(0)] =
m, then it is impossible to continuously stabilize the drift-free system ẋ =
u1g1(x) + . . . + umgm(x), x ∈ IRn; thus, no totally nonholonomic mechanical
system is Co-stabilizable (cf. [25], p.560). On the other hand, drift-free systems
are typically GAC (cf. §5 for an example).

This motivates our study of the more general situation where the given
control-affine system ẋ = h(x) + G(x)u is GAC, but not necessarily Co-
stabilizable. We wish to design a feedback K so that the closed-loop system

ẋ = h(x) + G(x)(K(x) + u) (9)

is ISS. In fact, we will design our feedback for (9) so that the more general
closed-loop system

ẋ = h(x) + G(x)(K(x + e) + u) (10)

is ISS with respect to the actuator error u when the observation error e is
sufficiently small (cf. definitions below). In this context, the precise values of
e(t) are unknown to the controller, but information about upper bounds on
|e(t)| can be used to design the feedback. For the case of continuous feedbacks
K, small errors in the controller in (10) can be tolerated. However, if we allow
discontinuous K, then small observation errors can have a substantial effect on
the dynamics, in which case the magnitude of e will need to be constrained in
terms of the frequency of the sampling (cf. below for the precise restrictions on
e). For a construction of a stabilizing feedback K for (10) under the stronger
assumption that the given system is Co-stabilizable, see [25].

Since GAC systems are not in general Co-stabilizable, we will in fact need
to consider discontinuous feedbacks for (10), which produces the technical
problem of defining precisely what is meant by a solution for a system that is
discontinuous in the state, since the usual existence theorems for solutions of
differential equations would not apply. Our solutions will therefore be taken in
the more general sense of sampling and Euler solutions. By an Euler solution,
we mean a uniform limit of sampling solutions, taken as the frequency of
sampling becomes infinite. The following definitions from [14] make these ideas
precise.

We say that π = {to, t1, t2, . . .} ⊂ [0,∞) is a partition provided to = 0,
ti < ti+1 for all i ≥ 0, and ti → +∞ as i → +∞. The set of all partitions is
denoted by Par. Let F : IRn × IRm × IRm → IRn : (x, p, u) Z→ F (x, p, u) be
a continuous function which is locally Lipschitz in x uniformly on compact
subsets of IRn× IRm× IRm. Recall that a feedback (for F ) is defined to be any
locally bounded function K : IRn → IRm for which K(0) = 0. In particular,
we allow discontinuous feedbacks. The arguments x, p, and u in F represent
the state, feedback value, and actuator error, respectively.

We set O := {e : [0,∞) → IRn} and sup(e) := sup{|e(t)| : t ≥ 0} for all
e ∈ O, and Oη := {e ∈ O : sup(e) ≤ η} for each η > 0. Given a feedback
K : IRn → IRm, an initial value xo ∈ IRn, a partition π = {to, t1, t2, . . .} ∈ Par,
e ∈ O, and u ∈Mm, the sampling solution for the initial value problem
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ẋ(t) = F (x(t),K(x(t) + e(t)), u(t)) (11)
x(0) = xo (12)

is the continuous function defined by recursively solving

ẋ(t) = F (x(t),K(x(ti) + e(ti)), u(t))

from the initial time ti up until time

si = ti ∨ sup{s ∈ [ti, ti+1] : x(·) is defined on [ti, s)},
where x(0) = xo (cf. [4, 14]). The sampling solution of (11)-(12) is defined
from time zero up to the maximal time t̄ = inf{si : si < ti+1}. This sampling
solution will be denoted by t Z→ xπ(t; xo, u, e) to exhibit its dependence on
π ∈ Par, xo ∈ IRn, u ∈Mm, and e ∈ O, or simply by xπ when the dependence
is clear from the context. In particular, if si = ti+1 for all i, then t̄ = +∞, so
in that case, the sampling solution t Z→ xπ(t;xo, u, e) is defined on [0,∞).

We also define the upper diameter and lower diameter of a given partition
π = {to, t1, t2, . . .} ∈ Par by

d(π) = sup
i≥0

(ti+1 − ti), d(π) = inf
i≥0

(ti+1 − ti)

respectively. We let Par(δ) :=
{
π ∈ Par : d(π) < δ

}
for each δ > 0. We say

that a function y : [0,∞) → IRn is an Euler solution of (11)-(12) (robust to
small observation errors) for u ∈ Mm provided there are sequences πr ∈ Par
and er ∈ O such that

(a) d(πr) → 0; (b) sup(er)/d(πr) → 0; and
(c) t Z→ xπr (t; xo, u, er) converges uniformly to y

as r → +∞. In terms of sampling solutions, we have the following analog of
ISS from [14]:

Definition 1. We say that (11) is ISS for sampling solutions provided there
exist β ∈ KL and γ ∈ K∞ satisfying: For each ε,M, N > 0 with 0 < ε < M ,
there exist positive δ = δ(ε,M, N) and κ = κ(ε,M, N) such that for each
π ∈ Par(δ), xo ∈ M B̄n, u ∈Mm

N , and e ∈ O for which sup(e) ≤ κd(π),

|x (t; x , u, e)| ≤ β(M, t) + γ(N) + ε (13)π o

for all t ≥ 0.

Notice that condition (13) is defined to hold in particular for M = |x |o
and N = |u| . Conceptuall , condition (13) sa s that the sy y y∞ stem is ISS,
modulo small overflows, if the sampling is done ‘quickly enough’ to satisfy
π ∈ Par(δ), but ‘not too quickly the additional requirement
that

’, as determined by
d(π) ≥ (1/κ) sup(e). Moreover, if we restrict to the case where e 0= ,

then the condition on d(π) in Definition 1 is no longer needed. Notice that
the bounds on e are in the supremum, not the essential supremum.
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We also use the following analog of Definition 1 for Euler solutions:
Definition 2. We say that the system (11) is ISS for Euler solutions provided
there are β ∈ KL and γ ∈ K∞ satisfying: If u ∈ Mm and xo ∈ IRn and
t Z→ x(t) is an Euler solution of (11)-(12), then

|x(t)| ≤ β(|xo|, t) + γ(|u|∞) (14)

for all t ≥ 0.

The following result on control-affine systems is shown in [14]:

Theorem 3. If (7) is GAC, then there exists a feedback K for which the
corresponding closed-loop system (10) is ISS for sampling and Euler solutions.

The proof of Theorem 3 is based on the existence theory for semiconcave CLF’s
from [17]-[18], which we review next. Let Ω ⊆ IRn be open. A continuous
function g : Ω → IR is called semiconcave on Ω provided for any point xo ∈ Ω,
there exist ρ,C > 0 such that

g(x) + g(y)− 2g
(

x + y

2

)
≤ C||x− y||2

for all x, y ∈ xo + ρBn. The proximal superdifferential (resp., proximal subd-
ifferential) of a function V : Ω → IR at x ∈ Ω, which is denoted by ∂P V (x)
(resp., ∂P V (x)), is the set of all ζ ∈ IRn for which there exist σ, η > 0 such that
V (y)−V (x)−σ|y−x|2 ≤ 〈ζ, y−x〉 (resp., V (y)−V (x)−σ|y−x|2 ≥ 〈ζ, y−x〉)
for all y ∈ x + ηBn. The limiting subdifferential of a continuous function
V : Ω → IR at x ∈ Ω is

∂LV (x) :=
{

q ∈ IRn : there exist xn → x and
qn ∈ ∂P V (xn) such that qn → q.

}
.

In terms of proximal subdifferentials, a CLF is defined as follows (cf. [25]):

Definition 3. A control-Lyapunov function (CLF) for (1) is a continuous,
positive definite, proper function V : IRn → IR for which there exist a contin-
uous, positive definite function W : IRn → IR and α ∈ N satisfying

∀ζ ∈ ∂P V (x), inf
|u|≤α(|x|)

〈ζ, f(x, u)〉 ≤ −W (x)

for all x ∈ IRn.

The existence of continuous CLF’s for GAC systems was established in [19].
On the other hand, the papers [17]-[18] establish the following stronger exis-
tence result: If (1) is GAC, then there exists a CLF V for (1) that is semicon-
cave on IRn \ {0} and α ∈ N that satisfy

∀ζ ∈ ∂LV (x), min
|u|≤α(|x|)

〈ζ, f(x, u)〉 ≤ −V (x) (15)
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for all x ∈ IRn. Theorem 3 follows from this stronger existence result by first
taking an arbitrary selection ζ(x) ∈ ∂LV (x) for x ^= 0, and then using the
combined feedback K = K1 + K2, where for each x ^= 0, K1(x) ∈ α(|x|)Bm is
any vector u satisfying the inequality in (15) for ζ = ζ(x), and

K2(x) = −V (x)


sgn(〈ζ(x), g1(x)〉)
sgn(〈ζ(x), g2(x)〉)

...
sgn(〈ζ(x), gm(x)〉)


where gi is the ith column of the matrix G and

sgn(s) =

 1, s > 0
−1, s < 0

0, s = 0
.

It then follows that the closed-loop system (10) is ISS for sampling and Euler
solutions, using the combined feedback K = K1 + K2 (with K(0) = 0).

Here is a sketch of the proof that this combined feedback renders the
system ISS for sampling solutions when the observation error e = 0. (See [14]
for the proof of the general case, and for the proof that this feedback also
gives ISS for Euler solutions.) In what follows, ||u(s)||J denotes the essential
supremum of the restriction of a function u to an interval J . Let M,N > 0 be
given, and V be a semiconcave CLF for the given dynamics, as above. Define
the functions α, α ∈ K∞ by

α(s) := min{s,min{|x| : V (x) ≥ s}} α(s) := max{|x| : V (x) ≤ s}. (16)

Let x Z→ ζ(x) be any selection as above and ζ(0) ∈ IRn be arbitrary.
For each x ∈ IRn, we can choose u = ux ∈ α(|x|)Bm that satisfies the

inequality in (15) for the given dynamics. Set F (x, p, u) := f(x)+G(x)(p+u).
Choose S := {x ∈ IRn : V (x) ≤ α−1(N)} and ε ∈ (0,min{1, M}) for which
(2ε)Bn ⊆ S. Set

Q :=
{[

α ◦ α−1(N + M) + 1
] B̄n

} \ εBn,
λ− := min

{
V (p) : p ∈ Qε/2

}
, λ+ := max {V (p) : p ∈ Qε} .

It follows that S ⊆ Qε. We can then choose ε̃ ∈ (0, ε) for which

α

(
p +

Lε

4
ε̃

)
≤ α(p) +

ε

8
∀p ∈ [

0, α−1(N) + λ+

]
(17)

where Lε > 1 is a Lipschitz constant for V on Qε/2. Using local uniformity
properties for semiconcave functions (cf. [14]), we can find σ, µ > 0 such that

V (y)− V (x) ≤ 〈ζ(x), y − x〉+ σ|y − x|2 (18)
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for all y ∈ x + µBn and x ∈ Qε/2. We can then choose

δ = δ(ε,M, N) ∈
(

0,
ε̃

16 + λ+ + 16λ+

)
such that (19)

|xπ(t; xo, u, 0)− xi| ≤ min

{
µ,

ε̃

16(1 + Lε)
,

√
λ−
8σ

(t− ti)

}
(20)

(where xi = xπ(ti; xo, u, 0)) and

‖ζ(xi) · (F (xi,K(xi), u(s))− f(xπ(s))−G(xπ(s))[u(s) + K(xi)]) ‖Ji

≤ λ−
8

(21)

where Ji := [ti, ti+1], for all u ∈ Mm
N , t ∈ [ti, ti+1], π ∈ Par(δ), and all i such

that xi ∈ Qε/2. Defining J(t) := 16/(16 + t) and

β(s, t) := α
(
α−1(s)J(t)

)
, γ(s) := α ◦ α−1(s), (22)

we can then use the estimates (20)-(21) to conclude that the sampling ISS
estimate (13) holds for all xo ∈ M B̄n, u ∈Mm

N , π ∈ Par(δ), and e = 0.
The preceding construction uses the control-affine structure of the given

GAC system (7) in an essential way. In fact, it is not difficult to construct
examples of fully nonlinear GAC systems ẋ = f(x, u) for which there is no
feedback K rendering the closed-loop system ẋ = f(x,K(x) + u) ISS for
sampling and Euler solutions. One such example was provided by (6), p.158.

On the other hand, it is possible to extend Theorem 3 to fully nonlinear
systems if we interpret ISS in terms of feedback equivalence, as follows. In what
follows, we assume for simplicity that the observation error in the controller
e ≡ 0. Recall (cf. [14]) that if f and f̂ are feedback equivalent, and if K
and Θ satisfy the requirements of our definition of feedback equivalence, then
we also say that ẋ = f(x, u) is feedback equivalent to (11) with the choice
F (x, p, u) = f(x, p + Θ(x)u). We then have the following corollary from [14]:

Corollary 2. The fully nonlinear control system (1) is GAC if and only if it is
feedback equivalent to a system which is ISS for sampling and Euler solutions.

For a proof of this corollary, see [14].

5 Feedback Stabilization of the Nonholonomic Integrator

In this section, we use the feedback construction from §4 to ISS stabilize Brock-
ett’s nonholonomic integrator control system. The nonholonomic integrator
was introduced in [3] as an example of a system that cannot be stabilized
using continuous state feedback. It is well-known that if the state space of a
system contains topological obstacles (e.g., if the state space is IR2 \ (−1, 1)2,
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and therefore has a topological obstacle around the origin), then it is im-
possible to stabilize the system using continuous state feedback. This follows
from a theorem of Milnor, which asserts that the domain of attraction of an
asymptotically stable vector field must be diffeomorphic to Euclidean space.

Brockett’s example illustrates how, even if we assume that the state evolves
in Euclidean space, obstructions to continuous stabilization may still occur.
These obstructions are not due to the topology of the state space, but instead
arise from the form of the control system. Such obstacles occur when it is
impossible to move instantly in some directions, even though it is possible to
move eventually in every direction; when this is the case, we call the dynamics
nonholonomic (cf. [25]). This gives rise to Brockett’s criterion, which was first
announced in [3]. Brockett’s criterion is a necessary condition for the existence
of a continuous (time-invariant) feedback stabilizer for (1); it requires that the
mapping (x, u) Z→ f(x, u) be open at zero. For linear systems ẋ = Ax + Bu,
this says rank[A,B] = n, which is the Hautus controllability condition at the
zero mode (cf. [25]). The nonholonomic integrator does not satisfy Brockett’s
criterion, and therefore cannot be stabilized by continuous state feedbacks.

The physical model for Brockett’s example is as follows. Consider a three-
wheeled shopping cart whose front wheel acts as a castor. The state variable is
(x1, x2, θ)T , where (x1, x2)T is the midpoint of the rear axle of the cart, and θ
is the cart’s orientation. The front wheel is free to rotate, but there is a “non-
slipping” constraint that (ẋ1, ẋ2)T must always be parallel to (cos(θ), sin(θ))T .
This gives the equations ẋ1 = v1 cos(θ), ẋ2 = v1 sin(θ), and θ̇ = v2, where
v1 is a ‘drive’ command and v2 is a steering command. Using a feedback
transformation (cf. [25], or §4.3 in [24]) brings the equations into the form

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1u2 − x2u1, (23)

which is called the nonholonomic integrator control system.
One can show that (23) is a GAC system. However, since Brockett’s con-

dition is not satisfied for (23), the system has no continuous state feedback
stabilizer. While there does not exist a C1 CLF for the system (23), it is now
well-known that every GAC system admits a continuous CLF (see [19]). In
fact, it was shown in [16] that the dynamics (23) has the continuous CLF

V (x) = max
{√

x2
1 + x2

2, |x3| −
√

x2
1 + x2

2

}
, (24)

which is semiconcave outside the cone x2
3 = 4(x2

1 + x2
2). On the other hand, it

is not difficult to show (cf. [14]) that the system (23) also has the CLF

V̂ (x) =
(√

x2
1 + x2

2 − |x3|
)2

+ x2
3, (25)

which is semiconcave on IR3 \ {0}. This allows us to apply the theory of the
previous section to the nonholonomic integrator with the CLF (25). To check
the semiconcavity of V̂ , it suffices to verify that
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S(x) = −|x3|
√

x2
1 + x2

2

is semiconcave on IR3 \ {0}, since C2 functions are semiconcave and the sum
of two semiconcave functions is semiconcave. On the other hand, the semicon-
cavity of S follows easily because φ(r, s) = −|rs| = min{±rs} is semiconcave,
as a minimum of two C2 functions. The proof that V̂ is a CLF follows from a
slight variant of the change of coordinate arguments used in [16] to show that
(24) is a CLF; we leave the proof to the reader as an exercise.

For the nonholonomic integrator dynamics and the CLF (25), the stabi-
lizing K from §4 is constructed as follows. The system vector fields are

h(x) = 0, G(x) =

 1 0
0 1
−x2 x1

 ,

and we can define ζ(·) by ζ(0) = 0 and

ζ(x) =

 2(|x3| − r(x)) (−x1/r(x),−x2/r(x), sgn(x3)) + 2x3e3, x3r(x) ^= 0,
−2r(x) (−x1/r(x),−x2/r(x), 1) , x3 = 0,
2|x3|(0,−1, sgn(x3)) + 2x3e3, r(x) = 0

for all x ^= 0, where r(x) :=
√

x2
1 + x2

2 and e3 = (0, 0, 1)T . In terms of

b(x) = ζ(x)G(x) =



(
µ(x)(−x1/r(x)− x2sgn(x3))− 2x2x3

µ(x)(−x2/r(x) + x1sgn(x3)) + 2x1x3

)
, r(x)x3 ^= 0

−2r(x)
(−x1/r(x)− x2

−x2/r(x) + x1

)
, x3 = 0(

0
−2|x3|

)
, r(x) = 0

where µ(x) := 2(|x3| − r(x)), the stabilizing feedback is then

K(x) = −V (x)
(

b(x)
|b(x)|2 + (sgn(b1(x)), sgn(b2(x)))

)
(26)

for x ^= 0 and K(0) = 0. It follows that the corresponding closed-loop system
ẋ = h(x) + G(x)(K(x + e) + u) is ISS for sampling and Euler solutions, using
the feedback (26).

6 Systems with Large Observation Noise

In the preceding section, we studied the problem of constructing a state feed-
back K such that the closed-loop system

ẋ = h(x) + G(x)(K(x + e) + u) (27)



Asymptotic Controllability and Input-to-State Stabilization 167

is ISS with respect to the actuator error u, where e is an observation noise.
We assumed that the given system ẋ = h(x) + G(x)u was GAC, and we also
used the fact that the observation noise e in the controller was sufficiently
small. It is natural to ask whether our analysis can be extended to the case
where the observation error e is an arbitrary bounded measurable function.
More generally, one could consider the following conjecture (where we use w
to denote the input to distinguish it from the actuator error):

Conjecture L. If h : IRn → IRn and G : IRn → IRn×m are locally Lipschitz
with h(0) = 0, and if ẋ = h(x) + G(x)w is Co-stabilizable, then there exists
a continuous feedback K : IRn → IRm satisfying the following: There exist
β ∈ KL and γ1, γ2 ∈ K∞ such that for each initial value xo ∈ IRn and each
e ∈ Mn and each u ∈ Mm, each solution x(t) of the closed-loop system (27)
starting at xo satisfies |x(t)| ≤ β(|xo|, t) + γ1(|u|∞) + γ2(|e|∞) for all t ≥ 0.

An important difference between this problem and the previous one is that
the “small” observation noise e is now allowed to be large, but we have relaxed
the stabilization objective to an ISS one. This problem is of interest in the
context of observer design. For details, see [25].

It turns out that Conjecture L is false, even if the effect of actuator errors
u is ignored. A counterexample to the conjecture for a single input plant was
provided in [6]. The counterexample is based on the Co-stabilizable system

ẋ =
(
I + 2Θ

(π

2

)
xxT

)
Θ(xT x) ·

([−1 0
0 xT x

]
Θ

(−xT x
)
x +

[
0
1

]
w

)
, (28)

where x ∈ IR2 and Θ is the rotation matrix

Θ(θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

One can show that there is no continuous feedback K for this system that can
satisfy the requirements of Conjecture L.

This can be seen by choosing the actuator error u ≡ 0 and expressing the
system in terms of the variable

z := Θ(−xT x)x,

and then considering only initial conditions that lie on the invariant set

S = {x ∈ IR2 : z1 = 0}.
One then constructs a sensor disturbance e with the property that the corre-
sponding value for the perturbed state x(t) + e(t) would lie on S ∩ {z2 < 0}
when the actual state x(t) lies on S ∩ {z2 > 0} (cf. [6] for details). See [8] for
a construction of continuous feedback rendering ẋ = f(x)+G(x)K(x+ e) ISS
with respect to e, which applies to a restricted class of Co-stabilizable single
input nonlinear systems in lower triangular form. See also [7] for time-varying
feedbacks that make control-affine systems ISS to observation errors; the feed-
backs in [7] apply for scalar systems, and for systems that satisfy a feedback
passivity property.
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7 Integral-Input-to-State Stabilization

In the previous sections, we constructed feedbacks that render systems ISS to
actuator errors. A system that is ISS exhibits low total energy or low overshoot
when excited by energy bounded or uniformly bounded signals, respectively.
While these are highly desirable characteristics, it is sometimes the case that
feedback design does not render ISS behavior, or that a property weaker than
ISS is verified in a step in a recursive design. One such weaker property,
which was introduced in [23], is integral-input-to-state stability (iISS). The
iISS condition reflects the qualitative property of having small overshoots
when the disturbances have finite energy. It provides a nonlinear analog of
“finite H2 norm” for linear systems, and as such has obvious physical relevance
and significance.

In this section, we study the integral-input-to-state stabilizability of

ẋ = h(x, d) + G(x)u, (29)

where u ∈Mm is an input, d ∈Mm is a disturbance, and the functions h and
G are locally Lipschitz with h(0, 0) = 0. This includes control-affine systems
with no disturbances, as a special case. We wish to design a state feedback k
for which the closed-loop system

ẋ = h(x, d) + G(x)k(x), (30)

exhibits iISS. This design problem is related to the problems in the previous
sections, because k will be used to mitigate the effect of the error term d. We
will require that k be almost smooth, i.e., smooth on IRn \{0} and continuous
on IRn. Recall from [13] that the iISS condition for (30) states that there exist
αo, γ ∈ K∞ and β ∈ KL such that for each disturbance d ∈ Mm and initial
value xo ∈ IRn, each solution x(t) of (30) starting at xo satisfies

αo(|x(t)|) ≤ β(|xo|, t) +
∫ t

0

γ(|d(s)|)ds

for all t ≥ 0. As pointed out in [13, 23], iISS is a weaker requirement than
ISS; for example, the scalar system ẋ = −x + xd is iISS but not ISS.

The feedback constructions in the preceding sections are based on the
existence of CLF’s. In parallel to those results, the feedback k for (30) can be
constructed using an iISS-CLF for (29), which is defined as follows (cf. [13]):

Definition 4. We say that a positive definite radially unbounded smooth func-
tion V : IRn → IR is an iISS-CLF for the system (29) provided there exist a
positive definite function α : IR → [0,∞) and a class K∞ function χ such that

inf
u∈IRm

{a(x, d) + b(x)u} ≤ −α(|x|) + χ(|d|) ∀x ∈ IRn, d ∈ IRm, (31)

where a(x, d) = ∇V (x)h(x, d) and b(x) = ∇V (x)G(x).
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Our construction of the feedback k is based on the well-known ‘universal
formula’ for feedback stabilization, which was introduced in [21] and later
generalized to p-norm bounded controls in [15]. We will use the functions

Ku(a, b) := −
 a +

√
a2 + |b|4
|b|2 b, b ^= 0

0, b = 0
(32)

and
ω(x) := max

d
{a(x, d)− χ(|d|)}

where a(x, d) and χ are from the iISS-CLF definition, and where we assume
without loss of generality that χ(r)/r → +∞ as r → +∞, which is necessary
for ω to be well-defined. The function Ku comes from the ‘universal’ stabilizing
formula from [21] (cf. Remark 1 for details). In terms of the functions α and b
from Definition 4, we say that an iISS-CLF V has the small control property
(scp) provided: for each ε > 0, there exists δ > 0 such that if 0 < |x| < δ,
then there exists u with |u| < ε for which ω(x) + b(x)u ≤ −α(|x|). We also
choose an almost smooth function ω̄ that satisfies

ω(x) + α(|x|)/3 ≤ ω̄(x) ≤ ω(x) + 2α(|x|)/3 ∀x ∈ IRn,

where α is the positive definite function from the definition of an iISS-CLF.
The existence of ω̄ is standard (cf. [13]). In terms of the functions we have
defined, we have the following feedback construction shown in [13]:

Theorem 4. If V is an iISS-CLF for (29) satisfying the small control prop-
erty, then the feedback k(x) := Ku(ω̄(x), b(x)) is almost smooth and renders
the closed-loop system (30) integral-input-to-state stable.

The proof of Theorem 4 is based on the iISS-Lyapunov function charac-
terizations from [1].

Remark 1. In addition to the preceding construction, formula (32) can also
be used to give an explicit expression for our feedback K = K1 + K2 from
§3, under the additional assumption that the CLF V for the given system
ẋ = h(x)+G(x)u satisfies the small control property (cf. [21]). Indeed, in this
case, it suffices to use the feedback K1(x) = Ku(a(x), b(x)) and K2 as before,
where a(x) = ∇V (x)h(x) and b(x) = ∇V (x)G(x) are the Lie derivatives in
the direction of V . When defined in this way, K1 is the so-called universal
formula for feedback stabilization from [21], and is almost smooth. A similar
construction can be made when the given system is merely GAC (cf. §4);
in this case, we replace the Lie derivatives a(x) and b(x) in the formula for
K1 with ã(x) = ζ(x)h(x) and b̃(x) = ζ(x)G(x), respectively, for a selection
ζ(x) ∈ ∂LV (x) for the (possibly nonsmooth, but semiconcave) CLF.

Remark 2. The novelty of Theorem 4 is that it uses a universal formula, rather
than the more commonly used pointwise min norm control laws (which are
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in general just continuous) or partition of unity arguments (which are non-
constructive). For extensions of Theorem 4 to systems with outputs, see [13].
The proof of Theorem 4 is based on the fact that the disturbance d and the
input u in (29) are decoupled. This allows the interchange of the order of
the max from the definition of ω and the inf in the decay condition (31) (cf.
[13], §5). Consequently, the proof breaks down for systems where u and d are
coupled. The search for extensions of the theorem to more general systems is
an important question that is of considerable ongoing research interest.
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