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Abstract

This paper provides representations of switched systems described by controlled differential inclu-
sions, in terms of perturbed control systems. The control systems have dynamics given by differential
equations, and their inputs consist of the original controls together with disturbances that evolve in
compact sets; their sets of maximal trajectories contain, as a dense subset, the set of maximal trajecto-
ries of the original system. Several applications to control theory, dealing with properties of stability
with respect to inputs and of detectability, are derived as a consequence of the representation theorem.
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1. Introduction

In the last decade, the study of the properties of switched systems described by

ẋ(t)= f�(t)(x(t), u(t)), y(t)= h(x(t)), (1)

with � : [0,+∞)→ � an arbitraryswitching signaland� an index set, has received a great
deal of attention, mainly motivated by the rapidly development of the area of intelligent
control (see[11] and references therein for details). In fact, switched systems (1) enable us,
for example, to model the continuous portion of a hybrid system (see[4,14]).
Different stability properties for system (1) were studied and characterized in terms of

Lyapunov functions (see[11,12,16,17]). In [16] in particular, it was proved that, under suit-
able hypotheses, the set of maximal trajectories of system (1) is dense in the set of maximal
trajectories of an associated (non-switched) system with controls and perturbations. This
amounts to arepresentationof the switched system by a system with controls and pertur-
bations. By using this fact, different results about perturbed control systems described by
differential equations could be extended to switched systems (1) ([8,16,17]).
On the other hand, although under mild regularity conditions, the differential equation

(1) provides, for each initial condition and each switching signal, a complete description
of the time evolution of the statex(·), a more robust model of behavior should take into
account uncertainties caused by modeling errors and disturbances that are inevitable in any
real-world control problem. This leads one to consider a more general model: switched
systems described by forced differential inclusions

ẋ(t) ∈ F�(t)(x(t), u(t)), y(t)= h(x(t)). (2)

In thisworkweobtain representationsof switchedsystems (2) (assuming locallyLipschitz
right-hand sides) by means of perturbed control systems described by ordinary differential
equations, drivenby inputs consistingof the controls of theoriginal systemandperturbations
that evolve in compact sets.
The representations obtained are characterized by the facts that every maximal trajectory

of a system (2) is also a maximal trajectory of the representing system, and that the set of
trajectories of (2) is dense (see Remark 2.4 for the precise meaning) in the set of trajectories
of the representing system. The latter statement is closely related to the relaxation theorems
of differential inclusions which assert that, under suitable conditions, relaxed trajectories
can be approximated by (regular) trajectories (see[7,9]). These approximation results allow
one to convert the analysis of an inclusion to its relaxation or vice versa. An interesting
application can be found in the recent work[15].
Our representation results in the current paper allow us to achieve two theoretical and

conceptual simplifications: (1) all “uncertainty” about the system can be summarized into
just one “disturbance” input, and (2) switching, which is in principle very hard to study
(because spaces of switching signals do not have any completeness properties), can be un-
derstood in terms of arbitrary Lebesgue-measurable disturbances with values on a compact
space.
As immediate applications of our results on representations,weextendprevious results on

Lyapunov characterizations of input/output stability and detectability properties for systems
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of differential equations to switched systems defined by differential inclusions. (Further
corollaries will be explored in other papers; for instance, it is shown in[18] that Lyapunov
characterizations canalso bedeveloped for systemswhose switching functions are governed
by digraphs.)
We wish to emphasize that many of the results that we present are new even in the

very special cases of un-controlled differential inclusions (and even ordinary differential
equations) with switching, or of differential inclusions without switching.
The paper is organized as follows. In Section 2 we present the basic notation, the class of

switched systems that we address and the main results. Section 3 presents results on forced
differential inclusions that are instrumental for the proof of the main result. In Section 4, a
result on parametrization of set valued maps is presented and the main results are proved.
In Section 5, we develop Lyapunov characterizations of input–output-to-state stability and
several input-to-output stability properties. Finally, in Section 6, conclusions are given. An
appendix contains several additional results as well as some technical lemmas needed in
the main text.

2. Switched systems

We first introduce some notations and definitions that will be used in the sequel. We use
| · | to denote the Euclidean norm for any givenRq and withBq we denote the closed unit
ball inRq .
Given a metric spaceE, we denote byM(E) the set of Lebesgue measurable functions

� : [0,+∞)→ E that arelocally essentially bounded. In caseE= Rm we writeU instead
of M(Rm). We say that a sequence{�n, n ∈ N} ⊂ M(E) is locally equiboundedif for
each compact intervalJ ⊂ [0,+∞) there exists a compact subsetK ⊆ E such that for all
n ∈ N, �n(t) ∈ K for almost allt ∈ J.
For a measurable function� : [0,∞) → Rl , we denote by‖�‖ the (possibly infinite)

L∞
l -norm of � and, for anyt�0, ‖�‖[0,t] stands for theL∞

l -norm of � restricted to the
interval[0, t].
Let X be a metric space. We denote the distance from a point� ∈ X to a setA ⊆ X by

dist(�, A). TheHausdorff distancebetween two nonempty closed subsets ofX,A andB, is
defined asdH (A,B) := max{sup�∈B dist(�, A), sup�∈Adist(�, B)}.
We letK(X)be the set of nonempty compact subsets ofXandwe recall that theHausdorff

distancedH is ametric onK(X) and thatK(X) is compact in themetricdH if X is compact
(see[19, p. 279]). For a normed spaceX, we still use| · | to denote the norm onX. For a
subsetA of X, coA and clA stand for the convex hull and the closure ofA respectively. We
define‖A‖ := sup{|a| : a ∈ A}.
Givenanothermetric spaceZ, we say that a set-valuedmapG : Z → K(X) is continuous

(Lipschitz) if it is continuous (Lipschitz) when the Hausdorff distance is considered in
K(X). We useC(Z,K(X)) to denote the class of continuous maps fromZ to K(X)

equipped with the topology of uniform convergence on compact sets. It must be remarked
that this topological space is metrizable whenZ is a finite dimensional vector space. In
order to see it, consider any norm| · | on Z and letCr denote the closed ball centered at
0 with radiusr in Z. ThenCr is compact. Letdr be the metric forC(Cr,K(X)) given by
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dr(f, g)= supx∈Cr dH (f (x), g(x)). Then the metricd onC(Z,K(X)) defined by

d(f, g)=
∞∑
j=1

dj (f, g)

1+ dj (f, g) 2
−j ,

induces the topology of uniform convergence on compact sets.
As usual, by aK-functionwemeana function� : R�0 → R�0 that is strictly increasing

and continuous, and satisfies�(0)=0, by aK∞-function one that is in addition unbounded,
and we letKL be the class of functionsR�0 × R�0 → R�0 which are of classK on
the first argument and decrease to zero on the second argument.
Before we introduce the class of switched systems with which we deal in this work, it is

convenient to describe the class of functions that we will take as switching signals:

Definition 2.1. Given a nonempty setC, we say that a functiong : [0,+∞) → C is a
switching signalif g verifies one of the two following conditions:

1. g is a piecewise constant function (i.e. the set of points where the functiong has jumps
is finite in each compact subinterval of[0,+∞), andg is constant between jumps)
continuous from the right;

2. there exist a sequence of real numbers{tk : k ∈ N0} with 0= t0< t1< · · ·< tk < · · ·
and limk→+∞tk = Tg < + ∞, a sequence{ck ∈ C : k ∈ N0} with ck �= ck+1 for all
k�0 and a pointc∗ ∈ C such thatg(t) = ck for all tk� t < tk+1 andg(t) = c∗ for all
t�Tg.

In what follows, we will denote byS(C) the family of allC-valued switching signals
and withSpc(C) the subfamily of allC-valued piecewise constant switching signals.

Remark 2.2. The definition of switching signal that we use here is slightly more general
than that usually considered in the literature on switched systems, where a switching signal
means an element inSpc(C). Switching signals that do not belong toSpc(C) are usually
related with the so-called Zeno-behavior of a hybrid system (see[26]) and due to this reason
they will be here referred to as Zeno-switching signals.

As pointed out above, in this work we consider switched systems whose subsystems
are described by forced differential inclusions. More precisely, given a family of locally
Lipschitz set-valued maps

P = {F� ∈ C(Rn × Rm,K(Rn)) : � ∈ �}, (3)

where� is an index set and, without loss of generality,F� �= F�′ if � �= �′, we consider the
switched system with inputs

ẋ ∈ F�(x, u), (4)

wherex takes values inRn, u ∈ U, and� ∈ S(�).
Given an inputu ∈ U and a switching signal� ∈ S(�), we say that a locally absolutely

continuous functionx : I → Rn whereI = [0, T ] or [0, T ) with 0<T � + ∞ is a
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trajectoryof (4) corresponding tou ∈ U and to� ∈ S(�) if ẋ(t) ∈ F�(t)(x(t), u(t)) for
almost allt ∈ I. Observe that, due to the assumptions aboutF�, for each� ∈ Rn, each
u ∈ U and each� ∈ S(�) there always exists a trajectoryx corresponding tou and to�
that verifiesx(0)= � and that is defined on an interval[0, T ) for some smallT >0.
A trajectoryx : [0, T ) → Rn corresponding tou ∈ U and to� ∈ S(�) is called

maximalif it does not have an extension which is a solution corresponding tou and to�,
i.e., eitherT = +∞ or there does not exist a trajectoryz : [0, T ′) → Rn corresponding to
u and to� with T ′>T so thatz(t)= x(t) for all t ∈ [0, T ). Given a maximal trajectoryx
corresponding tou ∈ U and to� ∈ S(�), we denote its domain by[0, Tx). We write just
Tx for simplicity, even though it isTx,u,�.
For any� ∈ Rn, anyu ∈ U and any� ∈ S(�), we denote byTs(�, u,�) the collection

of all the maximal trajectoriesx of (4) corresponding tou and to� that satisfyx(0)= �.

2.1. Main results

In what follows we will establish one of the main results of this work, which asserts that
under suitable hypotheses on the familyP the set of maximal trajectories of system (4) is
dense, in a sense that we will make precise, in the set of maximal trajectories of a system
with inputs described by a system of differential equations:

ż= f (z, u, d,�), (5)

wherez takes values inRn, u ∈ U, d ∈ M(D) with D a compact metric space, and
� ∈ M(Bn).
In order to establish the precise result, we consider for the familyP the following hy-

potheses:

• C1: The familyP is uniformly locally Lipschitz, i.e., for eachN ∈ N, there existslN�0
such that

dH (F�(�,	), F�(�
′,	′))� lN (|� − �′| + |	 − 	′|),

for all �, �′ ∈ NBn and all	,	′ ∈ NBm (where we have usedrBq to denote the closed
ball centered at 0 of radiusr in Rq ).

• C2: The familyP is pointwise equibounded, i.e., for each(�,	) ∈ Rn×Rm there exists
M(�,	)�0 such that‖F�(�,	)‖�M(�,	) for all � ∈ �.

One of the main results of the paper is the following:

Theorem 1. Suppose thatP verifiesC1andC2.Then there exist a compactmetric spaceD,
an injective function
 : � → D, and a continuous functionf : Rn×Rm×D×Bn → Rn

such that

1. The set
(�) is dense in D.
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2. The mapf (·, ·, �, ·) is locally Lipschitz uniformly on� ∈ D, i.e., for each compact
subset K ofRn × Rm there is some constantcK so that

|f (�,	, �, �)− f (�′,	′, �, �′)|�cK(|� − �′| + |	 − 	′| + |� − �′|),
for all (�,	), (�′,	′) ∈ K, all �, �′ ∈ Bn and all � ∈ D.

3. For each� ∈ Rn, 	 ∈ Rm and� ∈ �,

co F�(�,	)= {f (�,	, 
(�), �) : � ∈ Bn}.
4. Givenu ∈ U, � ∈ S(�) and a maximal trajectory x of(4) corresponding to u and�,

there exists� ∈ M(Bn) such that x is a maximal trajectory of(5) corresponding to u,
d� = 
 ◦ � and�.

5. The trajectories of(4) are dense in the set of trajectories of(5) in the two following
senses:

(a) Given >0 and a trajectoryz : [0, T ] → Rn of (5) corresponding tou ∈ U,
d ∈ M(D) and� ∈ M(Bn), there exist� ∈ Spc(�) and a trajectory x of(4)
corresponding to u and� with x(0)= z(0) such that

|z(t)− x(t)|< , ∀t ∈ [0, T ].
(b) Given a trajectoryz : [0, T ) → Rn of (5) with T �∞ corresponding tou ∈ U,

d ∈ M(D) and� ∈ M(Bn) and a continuous functionr : [0, T ) → R>0, there
exist� ∈ S(�) and a trajectory x of(4) corresponding to u and� such that

|z(t)− x(t)|<r(t), ∀t ∈ [0, T ).
In the case whenT = ∞, the switching function� can be chosen inSpc(�).

Remark 2.3. Parts 1–3 of Theorem 1 contain as a particular case a result obtained in[17]
for switched systems described by differential equations (namely, Theorem 3.2 of[17]). In
fact, if a family of functions{f� ∈ C(Rn × Rm,Rn) : � ∈ �} verifies the hypotheses of
Theorem3.2 of[17], thenP={F� ∈ C(Rn×Rm,K(Rn)) : � ∈ �}withF�(·, ·)={f�(·, ·)}
verifiesC1andC2.Consequently, there exist a compactmetric spaceD, an injective function

 : � → D and a continuous functionf : Rn × Rm × D × Bn → Rn that verify 1–3
of Theorem 1. From statement 3, it easily follows thatf (�,	, �, �)= f (�,	, �, �′) for all
�, �′ ∈ Bn, that is, the functionf (�,	, �, ·) is constant for any given�,	 and�. Hence,f
can be considered as a function fromRn × Rm ×D toRn, and we recover Theorem 3.2 of
[17].

Remark 2.4. Part 5(a) of Theorem 1 asserts that for fixedT >0, u ∈ U and� ∈ Rn, the
set of trajectories of (4) corresponding tou and the initial state� with � ∈ Spc(�) that are
defined on[0, T ] is dense in the set of trajectories of (5) corresponding tou and the initial
state� with d ∈ M(D) and� ∈ M(Bn) that are defined on[0, T ], when the topology in
consideration is the topology of uniform convergence on the interval[0, T ].
On the other hand, part 5(b) states that for fixed 0<T < + ∞ (T = ∞ respectively)

andu ∈ U, the set of trajectories of (4) corresponding tou with � ∈ S(�) (� ∈ Spc(�)
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respectively) that are defined on[0, T ) is dense in the set of trajectories of (5) corresponding
to uwith d ∈ M(D) and� ∈ M(Bn) that are defined on[0, T ), when the topology under
consideration is theC0 Whitney topology.
We point out that part 5(b) does not hold if we consider only piecewise constant switching

signals (see Section 3.1). That is the reason why we must also consider Zeno-switching
signals.

As a corollary of Theorem 1, we will also obtain the following representation theorem:

Theorem 2. Suppose thatP verifiesC1 and C2. Then there exists a locally Lipschitz
functionf ∗ : Rn × Rm × Bn → Rn such that

1. For each� ∈ Rn and	 ∈ Rm,

co cl


⋃

�∈�

F�(�,	)


 = {f ∗(�,	, �) : � ∈ Bn}.

2. Givenu ∈ U, � ∈ S(�) and a maximal trajectory x of(4) corresponding to u and�,
there exists� ∈ M(Bn) such that x is a maximal trajectory of

ẋ = f ∗(x, u,�). (6)

3. The trajectories of(4) are dense in the set of trajectories of(6) in the two following
senses:

(a) Given>0 and a trajectoryz : [0, T ] → Rn of (6) corresponding tou ∈ U and
� ∈ M(Bn) there exist� ∈ Spc(�) and a trajectory x of(4) corresponding to u
and� such thatx(0)= z(0) and

|z(t)− x(t)|< , ∀t ∈ [0, T ].
(b) Givena trajectoryz : [0, T )→ Rn of (6),withT �∞,corresponding tou ∈ Uand

� ∈ M(Bn) and a continuous functionr : [0, T ) → R>0, there exist� ∈ S(�)
and a trajectory x of(4) corresponding to u and� such that

|z(t)− x(t)|<r(t), ∀t ∈ [0, T ).
In the case whenT = ∞, the switching signal� can be choosen inSpc(�).

The two results complement each other: while Theorem1 provides a representation of the
given switched differential inclusion in terms of a switched system of differential equations
(driven by the same switching signal, provided that we identify� with 
 ◦ �), Theorem
2 is more abstract, and it provides a representation in terms of a non-switched system of
differential equations. This latter form, which looses the information about the switching
signal, is of use for theoretical purposes, since it allows reducing questions about switched
differential inclusions into questions about ordinary differential equations; examples are
given later in the paper.
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Next,weestablishanassociationbetween theswitchedsystem(4)anda forceddifferential
inclusion with two inputs. In order to do so, we will use the following result.

Lemma 2.5. Suppose thatP verifiesC1andC2.Then there exist a compact metric space
D, an injective function
 : � → D and a continuous set-valued mapF : Rn× Rm×D →
K(Rn) such that

1. 
(�) is dense in D.
2. F(·, ·, �) is locally Lipschitz uniformly with respect to� ∈ D.
3. F(�,	, 
(�))= F�(�,	) for all � ∈ Rn, all 	 ∈ Rm and all � ∈ �.

Proof. ConsiderP as a subset ofC(Rn× Rm,K(Rn)) equipped with the topology of the
uniform convergence on compact sets. Condition C2 implies that for each(�,	) ∈ Rn×Rm

there exists a compact setK(�,	) ⊂ Rn such thatF�(�,	) ⊆ K(�,	) for all � ∈ �. Thus,
for each pair(�,	), F�(�,	) ∈ K(K(�,	)) for all � ∈ �. SinceK(K(�,	)) is compact,
{F�(�,	) : � ∈ �} has compact closure inK(Rn). Since condition C1 implies that the
family P is also equicontinuous, it follows from the Arzelá–Ascoli Theorem (see[19, p.
290]) thatP, the closure ofP inC(Rn×Rm,K(Rn)), is compact.AsC(Rn×Rm,K(Rn))

is metrizable, we have thatD := P is a compact metric space.
Nowwedefine, foreach� ∈ �, 
(�) := F� and, for(�,	, �) ∈ Rn×Rm×D,F(�,	, �) :=

�(�,	). Clearly statements 1 and 3 of the lemma are verified.
As for the continuity ofF, note that this function is the restriction toRn × Rm × D of

the evaluation mapev : Rn × Rm × C(Rn × Rm,K(Rn)) → K(Rn), and that this last
map is continuous (see[19, p. 287]).
In order to prove assertion 2, it is sufficient to show that for eachN ∈ N, F is Lipschitz

onNBn×NBm uniformly with respect to� ∈ D. LetN ∈ N, � ∈ D and(�,	), (�′,	′) ∈
NBn ×NBm. Then there exists a sequence{�k = 
(�k), �k ∈ �, k ∈ N} such that�k → �
and, due to C1 and to the continuity ofF,

dH (F (�,	, �), F (�
′,	′, �))= lim

k→∞ dH (F�k (�,	), F�k (�
′,	′))

� lN (|� − �′| + |	 − 	′|).

It follows thatF(·, ·, �) is Lipschitz onK=NBn×NBm uniformly with respect to� ∈ D
with constantcK = lN . �

Now we associate with the switched system (4) the following system with two inputs:

ẋ ∈ F(x, u, d), (7)

wherex takes values inRn, u ∈ U, d ∈ M(D) and whereF andD are as in Lemma 2.5.
Given� ∈ Rn, u ∈ U andd ∈ M(D), we denote withT(�, u, d) the collection of all

the maximal solutionsx of (7), corresponding to the inputsu andd, that satisfyx(0)= �.
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Remark 2.6. The following facts readily follow from Lemma 2.5:

(i) For each� ∈ S(�) (Spc(�) respectively), ifd� = 
 ◦ �, thend� ∈ S(D) (Spc(D)

respectively) andTs(�, u,�)= T(�, u, d�).
(ii) For eachd ∈ S(
(�)) (Spc(
(�)) respectively), there exists a unique switching signal

�d ∈ S(�) (Spc(�) respectively) such that
 ◦ �d = d.
In this manner, any switched system (4) corresponding to a familyP that verifies C1 and

C2 can be viewed as a system described by the forced differential inclusion (7) with two
inputs: one of them is the input to the switched system, and the other one is a switching
signal that takes values in a dense subset of a compact metric spaceD.

3. Some results about forced differential inclusions

In what follows we consider the time-varying system with inputs described by

ẋ ∈ G(t, x, d), (8)

wheret�0, x takes values inRn andd ∈ M(D) with D a separable metric space. We also
consider the relaxation of (8)

ẋ ∈ coG(t, x, d). (9)

Throughout the rest of this section we will suppose that the set-valued mapG : R�0 ×
Rn ×D → K(Rn) verifies the following hypotheses:

(H1) G(·, �, �) is measurable for each(�, �) ∈ Rn ×D;
(H2) G(t, ·, ·) is continuous for eacht�0;
(H3) for each compact subsetK ⊂ Rn × D there existsLK ∈ L1loc(R�0,R) such that

for each(�, �), (�′, �) ∈ K,
dH (G(t, �, �),G(t, �

′, �))�LK(t)|� − �′|, ∀t�0;
(H4) for each compact subsetK ⊂ Rn×D there exists�K ∈ L1loc(R�0,R) such that for

each(�, �) ∈ K
‖G(t, �, �)‖��K(t), ∀t�0.

Next, we will show that the set of trajectories of (8) generated by switching signals that
take values in a dense subsetD′ ofDare dense in thewhole set of trajectories of its relaxation
(9) when either one of the two following topologies are considered:

• The topology of the uniform convergence on a compact interval[0, T ] with T >0;
• theC0 Whitney topology on a interval[0, T ) with 0<T � + ∞.

Theorem 3. Suppose that the set-valued mapG: R�0 × Rn ×D → K(Rn),where D is
a separable metric space, satisfies the hypotheses(H1)–(H4). LetD′ be a dense subset of
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D.Then, given a maximal trajectoryz : [0, Tz)→ Rn of (9) corresponding tod∗ ∈ M(D),
the following hold:

1. Given 0<T <Tz and >0, there exist a piecewise constant switching signald ∈
Spc(D

′) and a maximal trajectory x of(8) corresponding to d such thatx(0) = z(0)
and

|x(t)− z(t)|< , ∀t ∈ [0, T ]. (10)

2. Given0<T �Tz and a continuous functionr : [0, T ) → R>0, there exist a switching
signal d ∈ S(D′) (d ∈ Spc(D

′) if T = +∞) and a maximal trajectory x of(8)
corresponding to d such that

|x(t)− z(t)|<r(t), ∀t ∈ [0, T ). (11)

Remark 3.1. Theorem 3 (whose proof is given in Sections 3.2.1–3.2.2) remains valid, with
the same proof, when the domain of the first variable ofG is a finite intervalI of the form
[0, a] or [0, a) with R�0 replaced byI in hypotheses(H1)–(H4).

Remark 3.2. Parts 1 and 2 of Theorem 3 can be considered extensions of the Filippov–
Waz̆ewski Theorem and Theorem 1 of[9], respectively, since they are particular cases of
Theorem 3. To see it, just consider the case whenD in Theorem 3 is a singleton.

3.1. A result on forward completeness of time-varying forced differential inclusions

In this short section we present a result about the forward completeness of the time-
varying differential inclusion (8), which is a simple consequence of Theorem 3 part 2. We
also show that part 2 of that theorem does not hold if we consider only piecewise constant
switching signals.
Given a subclass of inputsA ⊆ M(D), we will say that system (8) is forward complete

with respect toA if every maximal trajectory of (8) which corresponds to an inputd ∈ A
and starts at timet0 = 0, is defined for allt�0. In caseA = M(D) we will say that the
system is forward complete.
The following result follows readily from Theorem 3:

Theorem 4. Suppose that the set-valued mapG : R�0 × Rn × D → K(Rn), with D a
separable metric space, satisfies the hypotheses(H1)–(H4). LetD′ be a dense subset of D.
Then, the following statements are equivalent.

1. System(8) is forward complete.
2. System(8) is forward complete with respect toS(D′).

The implication1.⇒ 2. is trivial.Toprove the implication2.⇒ 1., wequoteanexistence
result for differential inclusions (e.g.[6], Theorem 7 on p. 85).

Lemma 3.3. Let� ⊂ R × Rn be an open set containing(0, x0), and let G be a set-valued
map so thatG(t, x) is nonempty and closed for(t, x) ∈ �. Suppose that, for (t, x) ∈ �,



J.L. Mancilla-Aguilar et al. / Nonlinear Analysis 60 (2005) 1111–1150 1121

‖G(t, x)‖�m(t) for somem(·) ∈ L1loc(R�0,R),and that G is continuous in x,measurable
in t. Then there existT >0 and a solutionx(·) of

ẋ ∈ G(t, x), x(0)= x0
defined on the interval[0, T ].

Proof of Theorem 4.2 ⇒ 1. If system (8) is not forward complete, there exist an input
d ∈ M(D) and a trajectoryz(·) corresponding tod defined on a maximal interval[0, T )
with T <∞. On the other hand, considerr : [0, T ) → R>0 defined byr(t)= (t − T )2.
By Theorem 3 part 2, there exist an inputd ′ ∈ S(D′) and a maximal trajectoryx(·) of
(8) defined on[0,∞) corresponding tod ′ such that|z(t) − x(t)|<r(t) for all t ∈ [0, T ).
Consequently, limt→T z(t) = x(T ). By Lemma 3.3, there exists some�>0 such thatz(t)
can be extended to[0, T + �], which contradicts the maximality ofT. �

Remark 3.4. From the proof of Theorem 4 it is clear that the statements of Theorem 4
still hold if we replaceS(D′) by any subclass of inputsA ⊆ M(D) for which part 2 of
Theorem 3 holds.

Now, we show that part 2 of Theorem 3 does not hold if we consider only inputs that
belong toSpc(D

′) instead of thewholeS(D′). Due toRemark 3.4, a system that is forward
complete with respect toSpc(D) but not forward complete serves as a counterexample.

Example 3.5. Consider the system with(d1, d2) as inputs

ẋ = d1f1(x)+ d2f2(x), (12)

wherefi : R2 → R2 (i = 1,2) is given byf1(�)= (1+ |�|2)A1�, f2(�)= (1+ |�|2)A2�,
with

A1 =
[

0 2
−0.5 −0.1

]
, A2 =

[−0.1 0.5
−2 0

]

and whered = (d1, d2) ∈ M(D) with D =D′ = {(1,0), (0,1)}. Observe that
G(t, �, �) := {�1f1(�)+ �2f2(�)}

verifies hypotheses(H1)–(H4).
Since the vector fieldsf1 andf2 are both globally asymptotically stable and therefore for-

ward complete, it follows that the system (12) is forward complete with respect toSpc(D).
On the other hand, with the inputd = (d1, d2) defined by the feedback rule

d(t)=
{
(1,0) if x1(t)x2(t)�0,
(0,1) if x1(t)x2(t)<0,

(13)

there are trajectories with finite escape time. To see this, observe that the system (12) has
the same phase portrait as the linear system

ż= d1A1z+ d2A2z. (14)
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By explicitly solving the linear system (14), it can be seen that with the input give by (13),
the trajectories of (14) are spirals running clockwise. Consider the trajectory starting at
(0, c) for somec �= 0. Let 0= t0< t1< t2< t3< · · · be the switching times ford(t) given
by (13) (i.e., the time when the trajectory crosses the coordinate axes). Then, fort ∈ [0, t1],
the trajectory of (14) with the initial statez(0)= (0, c) is given by

z1(t)= 2c

b
e−at sin bt,

z2(t)= −ac
b

e−at sin bt + ce−at cosbt,

where a = 0.05, b = √
1− (1/400). From this it can be calculated that

t1 = [arctan(b/a)]/b��/2, |z1(t1)|�1.5|c| (andz2(t1)= 0).
Consequently,|z(t1)|�1.5|z(t0)|. By symmetry (or by the same calculation), it can be

shown that for eachk >1, tk − tk−1 = t1, |z(tk)|�1.5|z(tk−1)|. Furthermore, with
r0 := min0� t� t1|e−A1t |−1 (=mint1� t� t2|e−A2(t−t1)|−1),
one has|z(t)|�r0|z(tk−1)| for all t ∈ [tk−1, tk].
We now consider the trajectoryx(t) of (12) starting at(0,1). By the uniqueness property

of the trajectories, one hasx(t)= z(�(t)), where�(·) is the solution of
�̇ = 1+ |z(�)|2, �(0)= 0.

Let 0= �0< �1< �2< · · · be the crossing times of the trajectoryx(·) with the coordinate
axes. Thentk = �(�k).
Since fort ∈ [�k−1, �k], �̇(t)= (1+ |z(�(t))|2)�1+ r20 |z(tk−1)|2�r20 · 1.52(k−1),
it follows that

�k − �k−1�
tk − tk−1

1.52(k−1)r20
= 1.5−2k �̂,

where�̂ = 1.52t1/r20. Let Tk = �1 + �2 + · · · + �k. ThenTk → T̂ for someT̂ <∞. As
|x(�k)|�1.5k, it follows thatlimsup

t→T̂
|x(t)|=∞. This shows that the system (12) is not

forward complete.

Remark 3.6. Note that system (14) also serves as an example to show that a system that
switches between two globally asymptotically stable linear systems may fail to be asymp-
totically stable for some choices of the switching signals inSpc(D).

3.2. Proof of Theorem 3

The following lemma is needed in the proof of Theorem 3.

Lemma 3.7. Let G be as in Theorem3 andx : [0, T ] → Rn be a solution of(8) corre-
sponding tod ∈ M(D). Let {dk, k ∈ N} ⊂ M(D) be a locally equibounded sequence
such thatlimk→∞ dk(t) = d(t) a.e. on[0,+∞). Then, there exists a sequence{xk}k�1,
with xk amaximal trajectory of(8) corresponding todk that verifiesxk(0)=x(0), such that
xk is defined on[0, T ] for k large enough and in addition{xk} converges uniformly to x on
[0, T ].
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Proof. LetK ⊂ Rn be a compact set such thatx(t) ∈ K for all t ∈ [0, T ]. Pick a smooth
function� : Rn → R such that

• 0��(�)�1 for all � ∈ Rn;
• �(�)= 1 for all � ∈ K + Bn;
• �(�)= 0, for all � ∈ Rn\(K + 2Bn)
(where we have usedK + rBn to denote the set{� ∈ Rn : d(�,K)�r}), and define the

set-valued mapG∗ : [0, T ] × Rn ×D → K(Rn) by

G∗(t, �, �) := �(�)G(t, �, �).

It easily follows thatG∗ verifies

(a) G∗(·, �, �) is measurable for each� ∈ Rn and each� ∈ D;
(b) G∗(t, ·, ·) is continuous for eacht ∈ [0, T ];
(c) for each compact subset� ⊂ D there exists�� ∈ L1([0, T ],R) such that for all

�, �′ ∈ Rn and all� ∈ �,

dH (G
∗(t, �, �),G∗(t, �′, �))���(t)|� − �′|, ∀ t ∈ [0, T ];

(d) for each compact subset� ⊂ D there exists�� ∈ L1([0, T ],R) such that for all� ∈ Rn

and all� ∈ �,

‖G∗(t, �, �)‖���(t), ∀t ∈ [0, T ]. (15)

Then, if we consider for eachk ∈ N, Ĝk : [0, T ] × Rn → K(Rn) defined by

Ĝk(t, �) := G∗(t, �, dk(t)),

we have that̂Gk is measurable int. In addition, from the local equiboundedness of{dk} and
(c), it follows that for all�, �′ ∈ Rn,

dH (Ĝk(t, �), Ĝk(t, �
′)) ��(t)|� − �′|, ∀t ∈ [0, T ],

for a suitable� ∈ L1([0, T ],R).
Let �k(t)= dist(ẋ(t), Ĝk(t, x(t))). We have, for almost allt ∈ [0, T ],

�k(t)= dist(ẋ(t), Ĝk(t, x(t)))

�dist(ẋ(t),G(t, x(t), d(t)))+ dH (G(t, x(t), d(t)), Ĝk(t, x(t)))
= dH (G∗(t, x(t), d(t)),G∗(t, x(t), dk(t))). (16)

Thus, due to the continuity ofG∗ with respect to its third argument,

lim
k→∞ dH (G

∗(t, x(t), d(t)),G∗(t, x(t), dk(t)))= 0, a.e. t ∈ [0, T ].

Consequently, limk→+∞ �k(t)= 0 for almost allt ∈ [0, T ].
On the other hand, from (16) it follows that for almost all

t ∈ [0, T ], �k(t)�‖G∗(t, x(t), d(t))‖ + ‖G∗(t, x(t), dk(t))‖. Taking into account the
equiboundedness of{dk} and (15), we conclude that there exists� ∈ L1([0, T ],R) such
that for eachk ∈ N, �k(t)��(t) for almost allt ∈ [0, T ].
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From Lemma 8.3 of[5] we have that for eachk ∈ N there exists a solutionxk of the
initial value problemẋk ∈ Ĝk(t, xk), xk(0)= x(0) such that

|x(t)− xk(t)|��k(t), ∀t ∈ [0, T ],
where�k is the solution of the initial value problem

�̇k(t)= �(t)�k(t)+ �k(t), �k(0)= 0.

As �k(t)→ 0 almost everywhere and{�k} is majorized by an integrable function,�k → 0
uniformly on[0, T ]. Consequently,{xk} converges uniformly tox on [0, T ].
The proof concludes by noticing thatxk is a solution of (8) corresponding todk for k

large enough. In fact, there existsN ∈ N such that for allk�N , |xk(t)− x(t)|�1 for all
t ∈ [0, T ]. Thus, ifk�N , for almost allt ∈ [0, T ] we have that

ẋk(t) ∈ Ĝk(t, xk(t))= �(xk(t))G(t, xk(t), dk(t))=G(t, xk(t), dk(t)),
and hencexk is a solution of (8) corresponding todk. �

3.2.1. Proof of part 1 of Theorem 3
From the Filippov–Wa˘zewski Relaxation Theorem (cf.[5]) we can easily deduce the

existence of a trajectoryx of (8) corresponding tod∗ so thatx(0)= z(0) and
|z(t)− x(t)|< 

2
, ∀t ∈ [0, T ].

On the other hand, due to the density ofD′ in D, there exists a locally equibounded
sequence{dk} inSpc(D

′) such thatdk → d∗ almost everywhere on[0,+∞). (First of all,
sinceD is separable, by Remark C.1.2 of[21], there exists a locally equibounded sequence
{d̂k} in Spc(D) so thatd̂k → d∗ almost everywhere on[0,+∞). Next, for eachk ∈ N,
we choose a piecewise constant switching signaldk ∈ Spc(D

′) such that the distance from
dk(t) to d̂k(t) is less than 1/k for all t ∈ R�0. The equiboundedness of{dk, k ∈ N} can
be proved by using arguments similar to those of Remark C.1.3 of[21]). By Lemma 3.7,
there exists a sequence{xk}, with xk a maximal trajectory of (8) corresponding todk that
verifiesxk(0)=x(0), such thatxk is also defined on[0, T ] for k large enough and in addition
{xk} converges uniformly tox on [0, T ]. In consequence, for somek∗ we have that

|x(t)− xk∗(t)|< 
2
, ∀t ∈ [0, T ],

and, a posteriori, that

|z(t)− xk∗(t)|< , ∀ t ∈ [0, T ].
The proof of part 1 is completed by takingd = dk∗ . �

3.2.2. Proof of part 2 of Theorem 3
The proof that we give here is similar to the proofs of Lemma III 2 in[22] and its

generalization in Theorem 1 in[9] and it uses similar techniques to those used in these
papers.
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Let {Tk}∞k=0 be a strictly increasing sequence of times such thatT0 = 0 and
limk→+∞ Tk = T .
We claim that there exist a sequence{dk}∞k=1 ⊂ Spc(D

′), a sequence{�k}∞k=0 of positive
real numbers and, for each nonnegative integerk, a sequence of points{�kj }∞j=0 which satisfy
the following:

(i) For eachk�0, 0< �k� min{r(t) : t ∈ [Tk, Tk+1]};
(ii) for eachk�0, �kj ∈ Vk := z(Tk) + �kBn for all j�0, where for� ∈ Rn and�>0,

we use� + �Bn to denote the closed ball centered at� with radius�;
(iii) for any k�1, if a subsequence{�kjl }∞l=1 converges, say to�

k, then the subsequence

{�k−1
jl

}∞l=1 also converges, say to�
k−1, and there is a solutionxk : [0, Tk − Tk−1] →

Rn of the initial value problem

ẋ ∈ G(Tk−1 + t, x, dk), x(0)= �k−1, (17)

that verifiesxk(Tk − Tk−1)= �k and

|xk(t)− z(Tk−1 + t)|<r(Tk−1 + t), ∀t ∈ [0, Tk − Tk−1]. (18)

Proof of the Claim. Let {rk}∞k=1 be the sequence of positive numbers defined by

rk =min{r(t) : t ∈ [Tk−1, Tk]}.
First, we will construct by induction a sequence of positive numbers{�k}∞k=0, a sequence
of sets{Vk}∞k=0, with Vk = z(Tk) + �kBn, and a sequence of piecewise switching signals
{dk}∞k=1 ⊂ Spc(D

′) such that the following hold for eachk�1:

• �k−1�rk;
• there exists a continuous functionxk : [0, Tk − Tk−1] × Vk → Rn which satisfies the
following:

(a) for each� ∈ Vk, xk(·, �) is a solution of
ẋ ∈ Gk(t, x), (19)

with Gk : [0, Tk − Tk−1] × Rn → K(Rn) defined byGk(t, �) = −G(Tk −
t, �, dk(Tk − Tk−1 − t)), that verifiesxk(0, �)= �, and

|z(Tk − t)− xk(t, �)|�rk, ∀t ∈ [0, Tk − Tk−1];
(b) xk(Tk − Tk−1, Vk) ⊆ Vk−1.

We start the induction procedure by setting�0 = r1 andV0 = z(T0)+ �0Bn. Assuming
that we have already constructed�k−1 for some positivek, we will construct�k, dk, andxk.
First note that if we consider the forced differential inclusion

ẋ ∈ Ĝk(t, x, d), (20)
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with Ĝk : [0, Tk − Tk−1] × Rn ×D → K(Rn) defined byĜk(t, �, �)= −G(Tk − t, �, �)
and its relaxation

ẋ ∈ coĜk(t, x, d), (21)

we have thatzk : [0, Tk − Tk−1] → Rn defined byzk(t) = z(Tk − t) is a solution of (21)
corresponding to the inputd∗

k (t)= d∗(Tk − t).
Note thatĜk verifies(H1)–(H4) (with [0, Tk − Tk−1] instead ofR�0). Then, from the

first part of Theorem 3 (which holds if we replaceR�0 by [0, Tk − Tk−1]), there exist a
piecewise constant switching signald̂k ∈ Spc(D

′)anda trajectoryx∗
k of (20) corresponding

to d̂k that verifiesx∗
k (0)= zk(0)= z(Tk) and

|x∗
k (t)− zk(t)|<

k
2
, ∀t ∈ [0, Tk − Tk−1],

wherek := min{�k−1, rk+1}.
Letdk ∈ Spc(D

′) be the piecewise constant switching signal defined bydk(t)= d̂k(Tk−
Tk−1 − t) for t ∈ [0, Tk − Tk−1] anddk(t)= d̂k(0) for t�Tk − Tk−1. Thenx∗

k is a solution
of (19) which corresponds todk and verifiesx∗

k (0)= z(Tk). By applying Lemma 3.1 of[9]
to system (19) (withx∗

k andk/2 instead ofzand respectively), it follows the existence of
a 0< �k < k and a continuous functionxk : [0, Tk − Tk−1] × Vk → Rn such that for each
� ∈ Vk, xk(·, �) is a solution of (19) withxk(0, �)= � and

|x∗
k (t)− xk(t, �)|�

k
2
, ∀t ∈ [0, Tk − Tk−1].

In consequence, for every� ∈ Vk and allt ∈ [0, Tk − Tk−1],
|z(Tk − t)− xk(t, �)| = |zk(t)− xk(t, �)|

� |zk(t)− x∗
k (t)| + |x∗

k (t)− xk(t, �)|
<

k
2

+ k
2

= k�rk+1.

In particular, takingt = Tk − Tk−1, we have that

|z(Tk−1)− xk(Tk − Tk−1, �)|< k��k−1.

In other words,{xk(Tk − Tk−1, �) : � ∈ Vk} ⊆ Vk−1.
Next, we construct a sequence of points{�kj ∈ Rn : k�0, j�0} as follows. We set, for

j�0 andk�j ,

�kj = z(Tk).

For j�0 and 0�k < j , we obtain�kj by the recursive formula

�kj = xk+1(Tk+1 − Tk, �k+1
j ).

By construction, each�kj ∈ Vk.
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We note that{�k}∞k=0 and{�kj : k�0, j�0} verify (i) and (ii). It remains to verify that

this construction satisfies (iii). Suppose that for somek�1,{�kjl }∞l=1 converges to�
k. Taking

into account that, by definition,

�k−1
j = xk(Tk − Tk−1, �

k
j ), ∀k�j

and thatxk is continuous, it follows that

lim
l→∞ �k−1

jl
= xk(Tk − Tk−1, �

k) := �k−1.

Now, considerxk : [0, Tk − Tk−1] → Rn defined byxk(t)= xk(Tk − Tk−1 − t, �k). Note
thatxk is a solution of the initial value problem (17) which verifiesxk(Tk −Tk−1)= �k and
(18). The claim is thus proved.

We are now ready to show the existence of a switching signald ∈ S(D′) and a trajectory
x of (8) corresponding tod that verify (11).
Pick anyc ∈ D′ and defined : [0,+∞) → D′ by d(t) = dk(t − Tk−1) for all t ∈

[Tk−1, Tk) andd(t)= c for all t�T . Clearlyd ∈ S(D′) and, in the case whenT = +∞,
d ∈ Spc(�).
Since{�kj }∞j=0 ⊂ Vk andVk is compact for eachk�0, by using a diagonalization process,

wededuce theexistenceof a subsequence{jl}∞l=1 of the sequenceof the nonnegative integers
such that{�kjl } converges, say to�k, for eachk�0.
Then, from statement (iii) in the previous claim, there exists a solutionxk : [0, Tk −

Tk−1] → Rn of (17) that verifiesxk(0)= �k−1, xk(Tk − Tk−1)= �k and that satisfies (18).
Therefore, the functionx : [0, T )→ Rn given by

x(t)= xk(t − Tk−1) when t ∈ [Tk−1, Tk),

is a trajectory of (8) corresponding tod. In addition, it follows from (18) that

|x(t)− z(t)|<r(t), ∀t ∈ [0, T ). �

4. Proofs of Theorems 1 and 2

In this section we give the proofs of the main results Theorems 1 and 2. For this purpose,
we first study the existence of parametrizations for set-valued maps that take nonempty
convex compact values.

4.1. Parametrizations of set-valued maps

The following parametrization result for set-valued maps, whose proof is based on a
construction developed in[20] for globally Lipschitz set-valued maps (see also[2]), asserts
that under suitable conditions a set-valued mapF ∗ admits a parametrization which is as
regular asF ∗.
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Theorem 5. Consider two metric spaces E, D and a continuous set-valued map
F ∗ : E ×D → K(Rn) which takes convex values. Assume that for each compact subset
K ⊆ D, F ∗(·, �) is locally Lipschitz uniformly in� ∈ K. Then there exists a function
f : E ×D × Bn → Rn such that

1. f is continuous;
2. for each compact subsetK ⊆ D, f (·, �, ·) is locally Lipschitz uniformly in� ∈ K;
3. f (�, �,Bn)= F ∗(�, �) ∀e ∈ E, ∀� ∈ D.

Proof. LetKc(R
n) denote the family of all nonempty compact convex subsets ofRn. For

K ∈ Kc(R
n), let sn(K) be the Steiner point ofK. It follows from Theorem 9.4.1 of[2]

thatsn(K) ∈ K for all K ∈ Kc(R
n) and that

|sn(K)− sn(L)|�ndH (K,L), ∀K,L ∈ Kc(R
n). (22)

Let P : Rn × Kc(R
n)→ Kc(R

n) be the map defined by

P(y,K)=K ∩ (y + 2dist(y,K)Bn).

(It can be seen indeed thatP(y,K) ∈ Kc(R
n) for anyy ∈ E and anyK ∈ Kc(R

n).)
Observe thatP(y,K)= {y} if and only if y ∈ K.

From Lemma 9.4.2 of[2] (see also Lemma 1 of[20]), we have thatP is a Lipschitz map,
more precisely,

dH (P (y,K), P (x, L))

�5(dH (K,L)+ |y − x|), ∀x, y ∈ Rn, ∀K,L ∈ Kc(R
n). (23)

Let f : E ×D × Bn → Rn be defined by

f (�, �, y)= sn(P (‖F ∗(�, �)‖y, F ∗(�, �))).

Proof of 3. First note thatP(‖F ∗(�, �)‖y, F ∗(�, �)) ⊆ F ∗(�, �) for all � ∈ E and� ∈ D.
Sincesn(K) ∈ K for all K ∈ Kc(R

n), it follows thatf (�, �, y) ∈ F ∗(�, �) for all � ∈ E,
all � ∈ D and ally ∈ Bn. This implies thatf (�, �,Bn) ⊆ F ∗(�, �) for all � ∈ E and all
� ∈ D.
On the other hand, for each� ∈ F ∗(�, �) there existsy0 ∈ Bn such that�=‖F ∗(�, �)‖y0.

In consequence,

f (�, �, y0)= sn(P (‖F ∗(�, �)‖y0, F ∗(�, �)))= sn(P (�, F ∗(�, �)))= sn({�})= �.

ThusF ∗(�, �) ⊆ f (�, �,Bn) and statement 3 follows.
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Proof of 1 and 2. From (22) and (23) we easily deduce that

|f (�, �, y)− f (�′, �′, y′)|
= |sn(P (‖F ∗(�, �)‖y, F ∗(�, �)))− sn(P (‖F ∗(�′, �′)‖y′, F ∗(�′, �′)))|
�ndH (P (‖F ∗(�, �)‖y, F ∗(�, �)), P (‖F ∗(�′, �′)‖y′, F ∗(�′, �′)))
�5n[dH (F ∗(�, �), F ∗(�′, �′))+ |‖F ∗(�, �)‖ − ‖F ∗(�′, �′)‖| · |y|

+ ‖F ∗(�, �)‖ · |y − y′|].
As F ∗(�, �) ⊆ F ∗(�′, �′)+ dH (F ∗(�, �), F ∗(�′, �′))Bn, it follows that

‖F ∗(�, �)‖ − ‖F ∗(�′, �′)‖�dH (F ∗(�, �), F ∗(�′, �′)).

Then, by symmetry,

|‖F ∗(�, �)‖ − ‖F ∗(�′, �′)‖|�dH (F ∗(�, �), F ∗(�′, �′)).

In consequence, we have that for all�, �′ ∈ E, all �, �′ ∈ D and ally, y′ ∈ Bn,

|f (�, �, y)− f (�′, �′, y′)|�5n[(1+ |y|)dH (F ∗(�, �), F ∗(�′, �′))
+ ‖F ∗(�, �)‖ · |y − y′|]. (24)

Now, from (24), it easily follows thatf is continuous and thatf (·, �, ·) is locally Lipschitz
uniformly with respect to� ∈ K whenK is a compact subset ofD. �

Now, we are ready to prove Theorem 1 and afterwards Theorem 2.

4.2. Proof of Theorem 1

Consider a compact metric spaceD, a set-valued mapF : Rn× Rm×D → K(Rn) and
an injective function
 : � → D as in Lemma 2.5. As
(�) = D′ is dense inD, part 1 of
Theorem 1 holds.
Let F ∗ : Rn × Rm ×D → K(Rn) be defined by

F ∗(�,	, �)= coF(�,	, �).

SinceF is compact valued,F ∗ takes values inKc(R
n). Also observe thatF ∗ has the

same regularity asF, that is,F ∗ is continuous and locally Lipschitz in(�,	) uniformly
on � ∈ D. According to Theorem 5 (applied with� = (�,	)), there exists a continuous
functionf : Rn × Rm ×D × Bn → Rn so thatf (·, ·, �, ·) is locally Lipschitz uniformly
with respect to� ∈ D and for all� ∈ Rn, all 	 ∈ Rm and all� ∈ D it holds that

f (�,	, �,Bn)= F ∗(�,	, �). (25)

As for each� ∈ Rn, 	 ∈ Rm and� ∈ �, F�(�,	)= F(�,	, 
(�)), we have for all� ∈ Rn,
all 	 ∈ Rm and all� ∈ � that

coF�(�,	)= coF(�,	, 
(�))= F ∗(�,	, 
(�))= f (�,	, 
(�),Bn).
Parts 2 and 3 of the Theorem 1 are thus proven.
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Before we prove the remaining statements of the theorem, it is convenient to note that,
from (25) and Filippov’s Lemma, it easily follows that the set of maximal trajectories of
the relaxation of (7)

ẋ ∈ F ∗(x, u, d) (26)

coincides with the set of maximal trajectories of (5). More precisely, givenu ∈ U and
d ∈ M(D), we have thatx is a maximal trajectory of (26) corresponding tou andd if and
only if there exists� ∈ M(Bn) such thatx is a maximal trajectory of (5) corresponding to
u, d and�.
In order to prove part 4, letx be a maximal trajectory of (4) corresponding tou ∈ U and

� ∈ S(�). Then, according to Remark 2.6,x is a maximal trajectory of (7) and therefore of
(26), corresponding touandd�=
◦�andhence, aswas said above, there exists� ∈ M(Bn)
such thatx is a maximal trajectory of (5) corresponding tou, d� and�.
As for part 5(a), letu ∈ U, d ∈ M(D), � ∈ M(Bn) and letz : [0, T ] → Rn be a

trajectory of (5) corresponding tou, d and�. Pick >0 and consider the set valued map
G : R�0 × Rn × D → K(Rn) defined byG(t, �, �) = F(�, u(t), �). Observe thatG
satisfies(H1)–(H4).
As z is a trajectory of (26) corresponding touandd, z is a trajectory of (9) corresponding

tod. FromTheorem3 part 1, there exist a piecewise constant switching signald ′ ∈ Spc(D
′)

and a maximal trajectoryx of (8) corresponding tod ′ such thatx(0)= z(0) and
|z(t)− x(t)|< , ∀t ∈ [0, T ].

On the other hand, from the definition ofG, we have thatx is a maximal trajectory of (7)
corresponding tou andd ′. The proof of this part concludes by noticing that, from Remark
2.6, we know thatx is amaximal trajectory of (4) corresponding touand a certain piecewise
constant switching signal�d ′ ∈ Spc(�).
The proof of part 5(b) is the same as the proof of part 5(a) if we replace the interval[0, T ]

and by the interval[0, T ) andr(t) respectively, and use part 2 of Theorem 3 instead of
part 1 of that theorem.�

4.3. Proof of Theorem 2

LetD, 
 : � → D, andf : Rn × Rm ×D × Bn → Rn be as in Theorem 1 and define
F̂ : Rn × Rm → K(Rn) by

F̂ (�,	)= f (�,	,D,Bn)= {f (�,	, �, �) : � ∈ D, � ∈ Bn}.
We will consider the following differential inclusions withu as input:

ẋ ∈ F̂ (x, u) (27)

and

ẋ ∈ coF̂ (x, u). (28)
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Sincef satisfies statement 2 of Theorem 1, it follows thatF̂ , and hence the convex hull côF
of F̂ , are both locally Lipschitz. Therefore, fromTheorem 5, there exists a locally Lipschitz
functionf ∗ : Rn × Rm × Bn → Rn, so that for all� ∈ Rn and all	 ∈ Rm it holds that

coF̂ (�,	)= f ∗(�,	,Bn)= {f ∗(�,	, �) : � ∈ Bn}. (29)

We claim thatf ∗ satisfies part 1 of Theorem 2, or equivalently, for all� ∈ Rn and all
	 ∈ Rm,

co cl


⋃

�∈�

F�(�,	)


 = coF̂ (�,	). (30)

Let � ∈ Rn and	 ∈ Rm. By part 3 of Theorem 1,
⋃
�∈�

coF�(�,	)= {f (�,	, �, �) : � ∈ D′, � ∈ Bn},

whereD′ = 
(�) is dense inD. By the continuity off and the compactness ofD andBn,
one has

cl


⋃

�∈�

coF�(�,	)


 = {f (�,	, �, �) : � ∈ D, � ∈ Bn} = F̂ (�,	).

Therefore,

co cl


⋃

�∈�

coF�(�,	)


 = coF̂ (�,	).

Taking into account that

co cl


⋃

�∈�

coF�(�,	)


 = cl co


⋃

�∈�

coF�(�,	)


 = cl co


⋃

�∈�

F�(�,	)




= co cl


⋃

�∈�

F�(�,	)


 ,

we get (30). Part 1 of the theorem thus follows.
Part 2 is a straightforward consequence of part 1 and Filippov’s Lemma. Letx be a

maximal trajectory of (4) corresponding tou ∈ U and to certain� ∈ S(�). Then, from
(30),x is amaximal trajectory of (28) corresponding tou. From this fact, (29) and Filippov’s
Lemma, there exists� ∈ M(Bn) so thatx is a maximal trajectory of (6).
Finally we prove part 3.We note first that for a fixedu ∈ U and due to Filippov’s Lemma,

the maximal trajectories of (5) and those of (27) coincide, and that the same holds for the
maximal trajectories of systems (6) and (28). That is,x is a maximal trajectory of (27) (resp.
(28)) corresponding tou if and only ifx ismaximal trajectory of (5) (resp. (6)) corresponding
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to u and certaind ∈ M(D) and� ∈ M(Bn) (resp.� ∈ M(Bn)). Combining this fact
with parts 5(a)–(b) of Theorem 1, it will be enough to prove the following statements:

(i) Given a trajectoryz : [0, T ] → Rn of (28) corresponding tou ∈ U and>0, there
exists a trajectoryx of (27) corresponding tou satisfyingx(0)= z(0) such that

|z(t)− x(t)|< , ∀t ∈ [0, T ];
(ii) givena trajectoryz : [0, T )→ Rn of (28),withT �+∞, corresponding tou ∈ Uanda

continuous functionr : [0, T )→ R>0, there exists a trajectoryxof (27) corresponding
to u such that

|z(t)− x(t)|<r(t), ∀t ∈ [0, T ).

Part (i) readily follows from the Filippov–Wa˘zewski Theorem (or Theorem 3 part 1;
see Remark 3.2). Part (ii) can be easily deduced from Theorem 1 of[9] (or part 2 of
Theorem 3).

5. Stability properties of switched systems

In this section, we consider several stability properties for switched systems with input
and output as in the following:

ẋ(t) ∈ F�(t)(x(t), u(t)), y = h(x(t)), (31)

wherex, u, � andF� are still as in Section 2, the output maph : Rn → Rp is locally
Lipschitz, andh(0)=0.The results onparametrization given inSection2allow theextension
of several important previous results for systemsgivenbydifferential equations too switched
systems defined by differential inclusions. (Many of these extensions are novel even for
the very special cases of switched systems of differential equations, or for non-switched
differential inclusions.) In this section, we treat the notion of input–output-to-state stability
and a few notions on input-to-output stability.
Throughout this section, we assume that the collectionP (see (3)) satisfies assumptions

C1 and C2.

5.1. Uniform input–output-to-state stability

The following definition is based on the work[10]:

Definition 5.1. Given a subclassS∗ of S(�), we say that the system (31) isuniformly
input–output-to-state stable with respect toS∗ (uIOSS w.r.t.S∗) if there exist� ∈ KL,
� ∈ K and� ∈ K such that for all� ∈ Rn, all u ∈ U, all � ∈ S∗ and allx ∈ Ts(�, u,�),

|x(t)|��(|�|, t)+ �(‖y‖[0,t])+ �(‖u‖), ∀t ∈ [0, Tx). (32)

Observe that it results in the same definition if one replaces‖u‖ in (32) by‖u‖[0,t].
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When applying the uIOSS definition to systems with zero output map (i.e.,h ≡ 0),
one recovers the standard input-to-state stability notion, but extended to switched systems
defined by differential inclusions:

Definition 5.2. The system (31) isuniformly input-to-state stable with respect toS∗
(uISS w.r.t.S∗) if there exist� ∈ KL and� ∈ K such that for all� ∈ Rn, all u ∈ U, all
� ∈ S∗ and allx ∈ Ts(�, u,�),

|x(t)|��(|�|, t)+ �(‖u‖), ∀ t ∈ [0, Tx). (33)

For system (31), letf ∗ : Rn × Rm × Bn → Rn be as in Theorem 2, and consider the
corresponding parametrization of (31):

ẋ(t)= f ∗(x(t), u(t),�(t)), y(t)= h(x(t)). (34)

For such a system, the uIOSS property means that an estimate as in (32) holds for any
maximal trajectory starting at� with anyu ∈ U and any� ∈ M(Bn) over the maximal
interval (c.f.[10]).

Lemma 5.3. The system(31)is uIOSS w.r.t.Spc(�) if and only if the corresponding system
(34) is uIOSS.

Proof. The statement that uIOSS property of (34) implies the uIOSS property of (31) w.r.t.
Spc(�) follows immediately from statement 2 of Theorem 2.
Suppose system (31) is uIOSS w.r.t.Spc(�) with the decay estimate (32). Letz :

[0, Tz) → Rn be a solution of (34) with someu ∈ U and some� ∈ M(Bn). Pick
any>0 and 0<T <Tz. Let r = ‖z‖[0,T ], and let�>0 be such that|h(�)− h(�)|<  for
all � ∈ (r + 1)Bn and all� ∈ (r + 1)Bn such that|� − �|< �. Without loss of generality,
we assume that�� max{1, }.
By 3(a) of Theorem 2, there exists some trajectoryx(·) of (31) corresponding tou and

some� ∈ Spc(�) with x(0)= z(0) such that
|z(t)− x(t)|< �, ∀t ∈ [0, T ]. (35)

By the choice of�, one has

|h(x(t))− h(z(t))|< , ∀t ∈ [0, T ]. (36)

With the uIOSS estimate (32) for (31), we get

|x(t)|��(|x(0)|, t)+ �(‖h(x)‖[0,t])+ �(‖u‖), ∀t ∈ [0, T ].
Sincez(0)= x(0), it follows from (35)–(36) that

|z(t)|��(|z(0)|, t)+ �(‖h(z)‖[0,t] + )+ �(‖u‖)+ , ∀t ∈ [0, T ].
SinceT <Tz and>0 can be chosen arbitrarily, we get

|z(t)|��(|z(0)|, t)+ �(‖h(z)‖[0,t])+ �(‖u‖), ∀ t ∈ [0, Tz).
This shows that the system (34) is uIOSS.�
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Applying the Lyapunov results on IOSS obtained in[10, Theorem 2.4]to system (34),
we get the following:

Theorem 6. Assume for system(31) F�(0,0) = {0} for all � ∈ �. Then the system is
uIOSS w.r.t.Spc(�) if and only if there exists a smooth(C∞) functionV : Rn → R�0
such that

• There existK∞-functions�1, �2 such that

�1(|�|)�V (�)��2(|�|), ∀� ∈ Rn; (37)

• there exist aK∞-function� andK-functions�1,�2 such that

DV (�)v� − �(|�|)+ �1(|h(�)|)+ �2(|	|), ∀� ∈ Rn,

for all 	 ∈ Rm, all � ∈ �, and allv ∈ F�(�,	).

A functionV as in Theorem 6 is called acommon uIOSS-Lyapunov functionfor (31).

Remark 5.4. In Theorem 6 we assume thatF�(0,0)={0} for all � ∈ � because in[10] the
authors consider by hypothesis systems as in (34) that verifyf ∗(0,0, �)=0 for all � ∈ Bn.

Remark 5.5. To be precise, in order to apply[10, Theorem 2.4]in the above proof, one
should assume that the outputmaph isC1. But one can relax this condition to only requiring
h to be locally Lipschitz. To see this point, supposeh is a locally Lipschitz function. Find
a smooth function̂h : Rn → R�0 so that for someK∞-functions�1,�2,

�1(|h(�)|)� ĥ(�)��2(|h(�)|), ∀� ∈ Rn.

(see Lemma B.1 in the appendix for details). Replacing the output maph in (31) with ĥ,
one gets the following system with a smooth output map:

ẋ(t) ∈ F�(t)(x(t), u(t)), y = ĥ(x(t)). (38)

It can be seen that the system (31) is uIOSS if and only if the system (38) is uIOSS; and
V is a uIOSS-Lyapunov function for (31) if and only ifV is a uIOSS-Lyapunov function
for (38). Hence, one can establish Theorem 6 for (31) by first showing the existence of
uIOSS-Lyapunov functions for (38) with theC1 output mapy = ĥ(x).

Applying Theorem 6 to the special case withh ≡ 0, we get the following uISS-Lyapunov
result, which can be viewed as an extension of the Lyapunov results obtained in[17] for
switched systems defined by differential equations to switched systems defined by differ-
ential inclusions.

Theorem 7. The system is uISS w.r.t.Spc(�) if and only if there exists a smooth(C∞)
functionV : Rn → R�0 such that

• for some�1, �2 ∈ K∞, (37)holds; and
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• for someK∞-function� andK-functions� the following holds:

DV (�)v� − �(|�|)+ �(|	|),
for all 	 ∈ Rm, all � ∈ �, and allv ∈ F�(�,	).

5.2. Uniform input-to-output stability

Following the work in[23], in what follows we will introduce some notions on input-
to-output stability properties for switched systems defined by differential inclusions, but
first we need introduce some terminology. Given a subclassS∗ of S(�), we say that a
systemas in (31) is forward completewith respect toS∗ if every trajectoryx ∈ Ts(�, u,�)
corresponding to any� ∈ Rn, anyu ∈ U and any� ∈ S∗ is defined for allt ∈ [0,+∞).
When the system is forward complete w.r.t.S(�) we just say it is forward complete. We
observe that the forward completeness property of (31) with� ∈ Spc(�) does not guarantee
the forward completeness property of (31) w.r.t.S(�) (c.f. Example 3.5).

Definition 5.6. LetS∗ be a subclass ofS(�). A forward complete system w.r.t.S∗ as in
(31) is

1. Uniformly input to output stable with respect toS∗ (uIOS w.r.t.S∗) if there exist a
KL-function� and aK-function� such that for all� ∈ Rn, all u ∈ U, all � ∈ S∗
and allx ∈ Ts(�, u,�),

|y(t)|��(|�|, t)+ �(‖u‖), ∀ t�0; (39)

2. uniformly output-Lagrange input to output stable with respect toS∗ (uOLIOS w.r.t.
S∗) if it is uIOS w.r.t.S∗ and there exist someK-functions�1,�2 such that for all
� ∈ Rn, all u ∈ U, all � ∈ S∗ and allx ∈ Ts(�, u,�),

|y(t)|� max{�1(|h(�)|),�2(‖u‖)}, ∀t�0; (40)

3. uniformly state-independent input-to-output stable with respect toS∗ (uSIIOS w.r.t.
S∗) if there exist some� ∈ KL and some� ∈ K such that for all� ∈ Rn, all u ∈ U,
all � ∈ S∗ and allx ∈ Ts(�, u,�),

|y(t)|��(|h(�)|, t)+ �(‖u‖), ∀t�0. (41)

Note that whenh is the identity function, the properties uIOS, uOLIOS and uSIIOS co-
incide with the uISS property.
As in Section 5.1, we consider the parametrization (34) for system (31), wheref ∗ is as

in Theorem 2.
For a forward complete system as in (34), the uIOS (uOLIOS, uSIIOS, respectively)

property means that (39) ((40), (41) respectively) holds for any trajectory starting at� with
anyu ∈ U and any� ∈ M(Bn).
Following the same idea as in the proof of Lemma5.3, and taking into account that system

(34) is forward complete whenever (31) is forward complete (cf. Theorem 2 part 3(b)), one
can prove the following uIOS analogue of Lemma 5.3.
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Lemma 5.7. Suppose the system(31) is forward complete. Then it is uIOS, uOLIOS,
uSIIOS respectively w.r.t.Spc(�) if and only if the corresponding system(34) is uIOS,
uOLIOS, uSIIOS, respectively.

To present the Lyapunov characterizations of the output stability properties, we need to
introduce the following:

Definition 5.8. A system as in (31) isuniformly bounded input bounded state stable with
respect toS∗ (uBIBS w.r.t.S∗) if there exist some nondecreasing functions�1 and�2
such that for all� ∈ Rn, all u ∈ U, all � ∈ S∗ and allx ∈ Ts(�, u,�),

|x(t)|� max{�1(|�|), �2(‖u‖)}, ∀t�0. (42)

A system as in (34) is uBIBS if there exist some nondecreasing functions�1 and�2 such
that (42) holds for any trajectory of (34) starting at� with anyu ∈ U and any� ∈ M(Bn).
An entirely analogous proof to that of Lemma 5.3 gives the following result:

Lemma 5.9. The system(31)is uBIBS w.r.t.Spc(�) if and only if the corresponding system
(34) is uBIBS.

Remark 5.10. From Lemma 5.9 and Theorem 2 part 2 it follows that if a system as in (31)
is uBIBS w.r.t.Spc(�) then it is forward complete.

In [24], some Lyapunov characterizations on several input-to-output stability properties
were developed for systems as in (34) in the special case when the disturbance term� does
not appear in the system. It is straightforward to generalize the Lyapunov results in[24] to
the more general case when a system as in (34) is subject to disturbances taking values in
compact sets. See Appendix A for more details.
Combining Lemmas 5.7, 5.9, and A.2 and taking into account Remark 5.10, we obtain

the following:

Theorem 8. Suppose the system(31) is uBIBS w.r.t.Spc(�).

1. The system is uIOS w.r.t.Spc(�) if and only if there exist a smooth function
V : Rn → R�0 such that

• for some�1 ∈ K∞, �2 ∈ K∞,

�(|h(�)|)�V (�)��2(|�|), ∀� ∈ Rn; (43)

• for some� ∈ K and�3 ∈ KL, the following holds for all� ∈ Rn, all 	 ∈ Rm, all
� ∈ �, and allv ∈ F�(�,	):

V (�)��(|�|)⇒ DV (�)v� − �3(V (�), |�|). (44)
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2. The system is uOLIOS w.r.t.Spc(�) if and only if there exists a smooth function
V : Rn → R�0 such that

• for some�1, �2 ∈ K∞,

�1(|h(�)|)�V (�)��2(|h(�)|), ∀ � ∈ Rn. (45)

• for some� ∈ K∞ and some�3 ∈ KL, (44)holds for all� ∈ Rn, all 	 ∈ Rm, all
� ∈ �, and allv ∈ F�(�,	).

3. The system is uSIIOS w.r.t.Spc(�) if and only if there exists a smooth function
V : Rn → R�0 such that

• for some�1, �2 ∈ K∞, (45)holds; and
• there exist�3 ∈ K∞ and� ∈ K∞ such that for all� ∈ Rn, all 	 ∈ Rm, all � ∈ �,
and allv ∈ F�(�,	),

V (�)��(|	|) ⇒ DV (�)v� − �3(|�|). (46)

As indicated in Remark A.3, the uBIBS condition is not needed in the uSIIOS case.
Instead, the uBIBS condition can be replaced by the forward completeness property. Hence,
for the uSIIOS case, we have the following:

Proposition 5.11. Suppose the system(31) is forward complete. Then the system is
uSIIOS w.r.t.Spc(�) if and only if there exists a smooth functionV : Rn → R�0 such
that

• for some�1, �2 ∈ K∞, (45)holds; and
• there exist�3 ∈ K∞ and� ∈ K∞ such that for all� ∈ Rn, all 	 ∈ Rm, all � ∈ �, and
all v ∈ F�(�,	), property(46)holds.

6. Conclusions

In this paper we have studied the representation of switched systems given by differential
inclusions, by perturbed control systems described by differential equations, whose inputs
are the original control and perturbations that take values in compact sets.We have obtained,
under suitable hypotheses, representations whose sets of maximal trajectories contain, as
a dense subset (both in the topology of uniform convergence in a compact interval and
in the Whitney topology, according to the switching signals involved) the set of maximal
trajectories of the original switched system. As immediate applications, we have extended
previous results on Lyapunov characterizations for the input–output-to-state stability and
input-to-output stability properties to switched systems defined by differential inclusions.
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Appendix A. Input-to-output stability properties

In this section, we discuss how the Lyapunov results developed in[24] can be generalized
to systems with disturbances taking values in compact metric spaces.
Consider a systemwhose dynamics depend on two types of inputs, which we call respec-

tively controlsanddisturbances:

ẋ(t)= f (x(t), u(t), w(t)), y(t)= h(x(t)), (47)

where the statex(·) and the inputu(·) are the same as in the previous sections. The dis-
turbances are measurable functionsw : R�0 → � with � a compact metric space. The
functionf : Rn × Rm × � → Rn is continuous, and locally Lipschitz in(x, u) uniformly
onw andh : Rn → Rp is locally Lipschitz and vanishes at 0.

Definition A.1. A forward-complete system as in (47) is:

• uniformly input to output stable(uIOS) if there exist aKL-function� and aK-function
� such that

|y(t, �, u,w)|��(|�|, t)+ �(‖u‖), ∀t�0; (48)

• uniformly output-Lagrange input to output stable(uOLIOS) if it is uIOS and there exist
someK-functions�1,�2 such that

|y(t, �, u,w)|� max{�1(|h(�)|),�2(‖u‖)}, ∀ t�0; (49)

• uniformly state-independent input-to-output stable(uSIIOS) there exist some� ∈ KL
and some� ∈ K such that

|y(t, �, u,w)|��(|h(�)|, t)+ �(‖u‖), ∀t�0. (50)

In each case, we interpret the estimates as holding for all inputsuand initial states� ∈ Rn

and all disturbancesw.

Observe that it results in an equivalent definition if one replaces (48) by

|y(t, �, u,w)|� max{�(|�|, t), �(‖u‖)}, ∀t�0. (51)

Wesay that a system (47) isuniformly bounded input bounded statestable (uBIBS) for short,
if it is forward complete and, for some nondecreasing function�, the following estimate
holds for all solutions:

|x(t, �, u,w)|� max{�(|�|),�(‖u‖)}, ∀t�0, ∀�, ∀u, ∀w. (52)
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In [24], some results on Lyapunov characterizations on the output stability properties
were obtained for systems as in (47) for the disturbance free case, that is, the case when the
disturbancew(·) is not present. Following the same proofs as in[24], one can show that the
Lyapunov results obtained in[24] also hold for more general systems with disturbance:

Lemma A.2. Suppose the system(47) is uBIBS.

1. The system is uIOS if and only if there exist a smooth functionV : Rn → R�0, some
�1, �2 ∈ K∞, � ∈ K, and�3 ∈ KL such that

�1(|h(�)|)�V (�)��2(|�|), ∀� ∈ Rn (53)

and

V (�)��(|	|)⇒ DV (�)f (�,	, �)
� − �3(V (�), |�|), ∀� ∈ Rn, ∀	 ∈ Rm, ∀� ∈ �. (54)

2. The system is uOLIOS if and only if it admits a Lyapunov functionV as in the uIOS case
satisfying(54) for some� ∈ K∞ and some�3 ∈ KL, and with(53)strengthened to

�1(|h(�)|)�V (�)��2(|h(�)|), ∀� ∈ Rn, (55)

for some�1, �2 ∈ K∞.
3. The system is uSIIOS if and only if it admits a Lyapunov function as in the uIOS case

with (53)strengthened to(55) for some�1, �2 ∈ K∞, and(54)strengthened to

V (�)��(|	|)⇒ DV (�)f (�,	, �)
� − �3(V (�)), ∀� ∈ Rn, ∀	 ∈ Rm, ∀ � ∈ �, (56)

for some� ∈ K and�3 ∈ K.

Remark A.3. As in thework[24], the uBIBS condition is not needed in the case of uSIIOS,
that is, part 3 of LemmaA.2 holds true for forward complete systems that are not necessarily
uBIBS.

A.1. Uniform output stability properties

Definition A.4. For a system free of the control signals as in

ẋ(t)= f (x(t), w(t)), y(t)= h(x(t)), (57)

we say that the system is uniformly output stable (uOS) if it is forward complete and for
some� ∈ KL it holds that

|y(t, �, w)|��(|�|, t), ∀t�0, ∀�, ∀w. (58)

If, in addition, there exists� ∈ K such that

|y(t, �, w)|��(|h(�)|), ∀t�0 (59)
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holds for all trajectories of the systemwithw ∈ M(�), then the system isoutput-Lagrange
uniformly output stablewith respect tow ∈ M(�). Finally, if (58) is strengthened to

|y(t, �, w)|��(|h(�)|, t), ∀t�0, (60)

holding for all trajectories of the system with respect tow ∈ M(�), then the system is
state-independent uniformly output stablewith w ∈ M(�).

The proof of LemmaA.2 follows the same idea as in[24], which depends on the following
result on uOS (see Theorem 3.2 of[24]).

Lemma A.5. Let� be a compact metric space,and suppose that a system(57) is uniformly
output stable with respect tow ∈ M(�). Then the system admits a smooth Lyapunov
function V satisfying the following properties:

• There exist�1, �2 ∈ K∞ such that

�1(|h(�)|)�V (�)��2(|�|), ∀� ∈ Rn, (61)

• there exists�3 ∈ KL such that

DV (�)f (�, �)� − �3(V (�), |�|), ∀� ∈ Rn, ∀� ∈ �. (62)

Moreover, if the system is output-Lagrange uniformly output stable with respect tow ∈
M(�), then(61)can be strengthened to

�1(|h(�)|)�V (�)��2(|h(�)|), ∀� ∈ Rn, (63)

for some�1, �2 ∈ K∞. Finally, if the system is state-independent uniformly output stable
with respect tow ∈ M(�), then (61) can be strengthened to(63) and also(62) can be
strengthened to:

DV (�)f (�, �)� − �4(V (�)), ∀� ∈ Rn, ∀� ∈ �. (64)

for some�4 ∈ K.

A.2. Proof of Lemma A.2

As in the work[24], to prove LemmaA.2, we need first to explore some relations among
several output stability properties.

A.2.1. Relations among the output stability properties
Lemma 4 in[23] can be generalized to the following:

Lemma A.6. Suppose system(47)is uIOS.Then there exists a smoothK∞-function� such
that the system

ẋ(t)= f (x(t), d(t)�(|h(x(t))|), w(t)), y(t)= h(x(t)), (65)

whered ∈ M(Bm) is uOS(with (d,w) as disturbances).
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LemmaA.6 will be proved in Section A.2.3.
As defined in[23], we say that a system (47) is uOLIOSunder output redefinitionif there

exist a locally Lipschitz maph0 : Rn → R�0 with h0(0)= 0, and a� ∈ K∞, such that

h0(�)��(|h(�)|), ∀�,

and that the system

ẋ = f (x, u,w), y = h0(x) (66)

is uOLIOS. One of the main objectives of this appendix is to generalize Theorem 6 in[23]
to the following result:

Lemma A.7. The following are equivalent for a system(47):

(i) The system is uIOS.
(ii) The system is uOLIOS under output redefinition.

A.2.2. Proof of Lemma A.7
The implication (ii)⇒ (i) should be clear. Below we prove the converse.
Assume that system (47)withy=h(x) is uIOS withanestimateas (51) for some� ∈ KL

and some� ∈ K.Without loss of generality, we assume that� ∈ K∞. Leth0 : Rn → R�0
be defined by

h0(�)= sup
t�0,u,w

{max{|y(t, �, u,w)| − �(‖u‖),0}}. (67)

Observe that forward completeness is being used in this definition. Since|y(0, �, u,w)| −
�(‖u‖)= |h(�)|�0 for u ≡ 0, the above is equivalent to

h0(�)= sup
t�0,u,w

{|y(t, �, u,w)| − �(‖u‖)}.

It is clear that

|h(�)|�h0(�)��0(|�|), ∀� ∈ Rn,

where�0(s)= �(s,0). Since, for anyu0 with �(‖u0‖)��0(s),

max{�(|�|, t), �(‖u0‖)} − �(‖u0‖)� max{�0(|�|), �(‖u0‖)} − �(‖u0‖)= 0,

it follows that

h0(�)= sup{|y(t, �, u,w)|−�(‖u‖):t�0, ‖u‖��−1(�0(|�|)), w∈M(�)}. (68)
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Also note that for any��0, any controlu0 and any disturbancew0,

h0(x(�, �, u0, w0))= sup
t�0,u,w

{|y(t, x(�, �, u0, w0), u,w)| − �(‖u‖)}
= sup
t�0,u,w

{|y(t + �, �, u02�u,w02�w)| − �(‖u02�u‖[�,∞))}
� sup
t�0,u

{max{�(|�|, t + �), �(‖u02�u‖)} − �(‖u02�u‖[�,∞))}
� sup

u
{max{�(|�|, �), �(‖u02�u‖)} − �(‖u02�u‖[�,∞))}

� sup
u

{max{�(|�|, �), �(‖u02�u‖)− �(‖u02�u‖[�,∞))}}
� max{�(|�|, �), �(‖u0‖[0,�))}, (69)

where for any two functionsv1 andv2 defined onR�0, v12�v2 is the concatenation ofv1
andv2 defined by

v12�v2(t)=
{
v1(t), if 0� t < �,
v2(t − �), if t��.

This shows that the system (47) with the output mapy = h0(x) satisfies an uIOS-type
estimate (51) with the same functions� and� as the original system.
Next, let us show that (47) withy=h0(x) also satisfies an output Lagrange estimate (49),

with �1(r) = 2r and�2(r) = 2�(r). Indeed, for any inputu0, any disturbancew0 and any
��0, we have

h0(x(�, �, u0, w0))= sup
t�0,u,w

{|y(t, x(�, �, u0, w0), u,w)| − �(‖u‖)}
= sup
t�0,u,w

{|y(t + �, �, u02�u,w02�w)| − �(‖u02�u‖[�,∞))}
� sup
s�0,u,w

{|y(s, �, u02�u,w02�w)| − �(‖u02�u‖)+ �(‖u0‖)}
� sup
s�0,ũ,w̃

{|y(s, �, ũ, w̃)| − �(‖ũ‖)+ �(‖u0‖)}
= h0(�)+ �(‖u0‖)� max{2h0(�),2�(‖u0‖)}, (70)

as desired.
DefineC := {� : h0(�)= 0}. Then for any� /∈C, it holds that
h0(�)= sup

0� t� t�,‖u‖��−1(�0(|�|)),w∈M(�)
{|y(t, �, u,w)| − �(‖u‖)},

wheret� = T|�|(h0(�)/2), andTr(s) is associated with� as in LemmaA.9.

Lemma A.8. The functionh0 is locally Lipschitz on thesetwhereh0(�) �= 0andcontinuous
everywhere.

Proof. We first remark that

lim
�→�0

h0(�)�h0(�0), ∀�0 ∈ Rn, (71)
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that is,h0(�) is lower semi-continuous onRn. Indeed, pick�0 and letc := h(�0). Take any
>0. Then there are someu0,w0 andt0 so that|y(t0, �0, u0, w0)|− �(‖u0‖)�c− /2. By
continuityofy(t0, ·, u0, w0), there is someneighborhoodŨ0 of�0 so that|y(t0, �, u0, w0)|−
�(‖u0‖)�c−  for all � ∈ Ũ0. Thus,h0(�)�c−  for all � ∈ Ũ0, and this establishes (71).

Fix any�0 /∈C, and letc0 = h0(�0)/2. Then there exists a neighborhoodU0 of �0 with
compact closure such that

h0(�)�c0, ∀� ∈ U0.
Let s0 be such that|�|�s0 for all � ∈ U0. Then

h0(�)= sup{|y(t, �, u,w)| − �(‖u‖) : t ∈ [0, t1], ‖u‖�b, w ∈ M(�)}, ∀� ∈ U0,
where t1 = Ts0(c0/2), and b = �−1(�0(s0)). By [13, Proposition 5.5], one knows that
x(t, �, u,w) is Lipschitz in� ∈ U0 uniformly on the set‖u‖�b, w ∈ M(�) and t ∈
[0, t1], and therefore, so isy(t, �, u,w). LetL1 be a constant such that

|y(t, �, u,w)− y(t, �, u,w)|
�L1|� − �|∀�, � ∈ U0, ∀0� t� t1, ∀‖u‖�b, ∀w ∈ M(�).

For any>0 and any� ∈ U0, there exist somet�, ∈ [0, t1], someu�, and somew�, such
that

h0(�)� |y(t�,, �, u�,, w�,)| − �(‖u�,‖)+ .

Then it follows that, for any�, � ∈ U0, for any>0,

h0(�)− h0(�)� |y(t�,, �, u�,, w�,)| − �(‖u�,‖)
+  − (|y(t�,, �, u�,, w�,)| − �(‖u�,‖))

�L1|� − �| + .

Consequently,

h0(�)− h0(�)�L1|� − �|, ∀�, � ∈ U0.
By symmetry,

h0(�)− h0(�)�L1|� − �|, ∀�, � ∈ U0.
This proves thath0 is locally Lipschitz onR

n\C.
We now show thath0 is continuous onC. Fix �0 ∈ C. One would like to show that

lim
�→�0

h0(�)= 0. (72)

Assume that this does not hold. Then there exists a sequence{�k} with �k → �0 and some
0>0 such thath0(�k)> 0 for all k. Without loss of generality, one may assume that, for
somes1�0, |�k|�s1 for all k. Then it follows that

h0(�k)= sup{|y(t, �k, u,w)| − �(‖u‖) : t ∈ [0, t2], ‖u‖�b1, w ∈ M(�)},
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wheret2 = Ts1(0/2), andb1 = �−1(�0(s1)). Hence, for eachk, there exists someuk with
‖uk‖�b1, somewk ∈ M(�), and some�k ∈ [0, t2] such that

|y(�k, �k, uk, wk)| − �(‖uk‖)�h0(�k)− 0/2�0/2. (73)

Again, by the locally Lipschitz continuity of the trajectories, one knows that there is some
L2>0 such that

|y(t, �k, u,w)− y(t, �0, u,w)|�L2|�k − �0|
∀k�0, ∀0� t� t2, ∀ ‖u‖�b1, ∀w ∈ M(�).

Hence,

|y(�k, �0, uk, wk)| − �(‖uk‖)� |y(�k, �k, uk, wk)| − 0/4− �(‖uk‖)�0/4

for k large enough, contradicting the fact thath0(�0)= 0. This shows that (72) holds onC.
�
Below we follow the same proof as in[23] to modifyh0 to get an output functioñh that

is locally Lipschitz everywhere so that system (66) withh̃ is uOLIOS.
We first pick a function̄h(�) that is smooth onRn\C with the property

h0(�)
2

� h̄(�)�2h0(�), ∀� ∈ Rn.

This can be done according to, e.g., Theorem B.1 in[13]. By Lemma 4.3 in[13], there
exists aK∞-function� such that� ◦ h̄ is smooth everywhere. Leth̃=� ◦ h̄. Note then that

�(h0(�)/2)� h̃(�)��(2h0(�)). (74)

Combining this with the fact thath0(�)� |h(�)|, one sees that
h̃(�)��(|h(�)|), ∀�,

where�(s)= �(s/2). Because of (69), one has

h̃(x(t, �, u,w))� max{�̃(|�|, t), �̃(‖u‖)}, ∀t�0,

where�̃(s, t)= �(2�(s, t)), and�̃(s)= �(2�(s)), and because of (74) and (70), one has

h̃(x(t, �, u,w))��(2h0(x(t, �, u,w)))� max{�(4h0(�)),�(4�(‖u‖))}
� max{�(8�−1(h̃(�))),�(4�(‖u‖))}, ∀t�0,

that is,

h̃(x(t, �, u,w))� max{�̃1(h̃(�)), �̃2(‖u‖)}, ∀t�0,

for all �, all uand allw, where�̃1(s)=�(8�−1(s)) and�̃2(s)=�(4�(s)).We conclude that
system (66) with the output functiony = h̃(x) is uOLIOS.
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In the above proof, we used the following result (see Lemma A.1 in[24]) regarding
KL-functions:

Lemma A.9. For anyKL-function�, there exists a family of mappings{Tr}r�0 such
that

• for each fixedr >0, Tr : R>0
onto−→ R>0 is continuous and strictly decreasing, and

T0(s) ≡ 0;
• for each fixeds >0, Tr(s) is strictly increasing as r increases, and is such that

�(r, Tr(s))< s, and consequently, �(r, t)< s for all t�Tr(s).

A.2.3. Proof of Lemma A.6
We will follow the same idea as in[23] to prove Lemma A.6. We first establish the

following.

Lemma A.10. Assume that the system(47) is forward complete and admits an output-
Lagrange estimate as in(49).Then, there is a smoothK∞ function� such that the system

ẋ = g(x, d,w) := f (x, d�(|y|), w), y = h(x), (75)

whered ∈ M(Bm), is forward complete and

�2(|d(t)|�(|y�(t, �, d, w)|))� 1
2|h(�)| (76)

holds a.e. on[0,∞), where we have usedy�(t, �, d, w) to denote the output function of
(75)with the initial state� and the disturbance functions d andw.

Proof. Let �1,�2 beK-functions such that (49) holds. Without loss of generality, we
assume that both are inK∞ and that�1(s)�s for all s�0. Hence,�−1

1 (s)�s for all s�0.
Let � be any smoothK∞-function such that

�2(�(s))< 1
4 �−1

1 (s), ∀s >0.

Below we show that with such a choice of�, the resulting system (75) satisfies the desired
properties.

To show that system (75) is complete, we first prove that (76) holds a.e. on the maximal
interval of definition[0, Tx�) of the solutionx�.
Pick any�, anydand anyw, and use simplyx�(t) andy�(t) to denote the corresponding

trajectory and the output function respectively. To prove (76) on[0, Tx�), it is enough to
show that

�2(�(|y�(t)|))� 1
2 |h(�)|, (77)

for sucht. �
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Case1: h(�) �= 0. Since�2(�(|y�(0)|)) = �2(�(|h(�)|))< 1
4 �−1

1 (|h(�)|)� 1
4 |h(�)|,

it follows that�2(�(|y�(t)|))� 1
4 |h(�)| for t small enough. Let

t1 = inf
{
t ∈ (0, Tx�) : �2(�(|y�(t)|))> 1

2 |h(�)|} ,
with t1 = Tx� if the set is empty. Suppose by way of contradiction thatt1<Tx� .
Then (77) holds on[0, t1), and hence, (76) holds a.e. on[0, t1). Note that on[0, Tx�),
y�(t)=y(t, �, u,w)with u(t)=d(t)�(|y�(t)|).With (49), one sees that|y�(t)|��1(|h(�)|)
for all 0� t� t1, and in particular,|y�(t1)|��1(|h(�)|). Consequently,

�2(�(|y�(t1)|))� 1
4 �−1

1 (|y�(t1)|)� 1
4 |h(�)|,

contradicting the definition oft1. Thus, (77) holds for allt ∈ [0, Tx�).
Case2: h(�) = 0. In this case, it is enough to show thaty�(t) = 0 for all t ∈ [0, Tx�).

Suppose this is not true. Then there exists some>0 and somet2 ∈ (0, Tx�) such that
|y�(t2)|�. Let 0< 0<  be such that�−1(�−1

2 (0))< /2. Then there is some� ∈ (0, t2)
such that|y�(�)| = 0. Applying (77) proved for case 1 to the new initial state�1 := x�(�),
one sees that

|y�(t)|��−1
(
�−1
2

(1
2 |y�(�)|

))
��−1(�−1

2 (0))< /2

for all t ∈ [�, Tx�), and in particular,|y�(t2)|< /2, a contradiction.This shows thaty�(t)=0
for all t ∈ [0, Tx�).
Wehaveshown that inbothcases, (77)holds for allt ∈ [0, Tx�),which implies that, for any

�, anydandanyw, the functionu(t) := d(t)�(|y�(t, �, d, w)|) remains essentially bounded
on [0, Tx�). SupposeTx� <∞. Then, by the forward completeness property of system (47),
the trajectoryx�(t, �, d, w) (which is in factx(t, �, u,w)withu(t)=d(t)�(|y�(t, �, d, w)|))
is bounded on[0, Tx�). This contradicts themaximality ofTx� . Therefore,Tx� =∞ for every
�, everyd and everyw. Consequently, (76) holds for allt ∈ [0,∞). �

Lemma A.11. Suppose a system(47) is uOLIOS. Then there exists some smoothK∞
function� such that the resulting system as in(75) is output-Lagrange uniformly output
stable with(d,w) as disturbances.

Proof. Suppose estimates as in (51) and (49) hold for some� ∈ KL, � ∈ K,�1 ∈ K
and�2 ∈ K. Without loss of generality, we assume that�1(r)�r for all r and�2 ∈ K∞.

Let the function� be as in LemmaA.10 so that system (75) is forward complete and (76)
holds for almost allt�0. By [1, Corollary 2.3], there exist someK-functions�1, �2 and
somec�0 such that

|x�(t, �, d, w)|��1(t)+ �2(|�|)+ c, (78)

for all �, all d, all w and allt�0.
Below we will show that system (75) satisfies the two properties listed in Remark A.12.

First, by (76) and (49), one has:

|y�(t, �, d, w)|� max
{
�1(|h(�)|), 12 |h(�)|} = �1(|h(�)|)� �̃(|�|), ∀t�0, (79)
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where�̃ is anyK-function such that�1(|h(�)|)� �̃(|�|) for all �. Property 1 follows readily.
To prove Property 2, we first show the following:
Claim. For eachr >0, s >0, there is someTr,s >0 such that

t�Tr,s, |�|�r, |h(�)|�s ⇒ |y�(t, �, d, w)|�s/2, ∀d, ∀w. (80)

To prove the claim, note that by (51) and (76), one has, for all� as in (80),

|y�(t, �, d, w)|� max

{
�(|�|, t), |h(�)|

2

}
� max

{
�(r, t),

s

2

}
, ∀ t�0.

Since� ∈ KL, there is someTr,s >0 such that�(r, t)�s/2 for all t�Tr,s , and conse-
quently,

|y�(t, �, u,w)|� s2, ∀t�Tr,s .

ThisTr,s satisfies the requirements of the claim.
Let � be aK-function such that|h(�)|��(|�|) for all �. Let >0 be given. Pick any

� �= 0 and letr = |�|. Then|h(�)|��(r). Let l >0 be such that 2−l�(r)< . Let s1 = �(r)
andsi = si−1/2 for i�2. By (80), there is someTr,s1>0 such that

|y�(t, �, d, w)|�s1/2, ∀t�Tr,s1, ∀d, ∀w.
By (78), one has

|x�(Tr,s1, �, d, w)|��1(Tr,s1)+ �2(r)+ c := r2, ∀d, ∀w.
Applying (80) tor2 ands2, one sees that there is someTr2,s2 such that the following holds:

|y�(t + Tr,s1, �, d, w)|�s2/2, ∀t�Tr2,s2, ∀d, ∀w.
Inductively, lettingT̃k = ∑k

i=1 Tri ,si (wherer1 = r) and applying (80) tosk+1 and

rk+1 := �1(T̃k)+ �2(r)+ c,
one sees that there is someTrk+1,sk+1 such that

|y�(t + T̃k, �, d, w)|� sk2 , ∀t�Trk+1,sk+1, ∀d, ∀w.

Finally, we letT = T̃l+1. Then, for anyt�T , anyd and anyw,

|y�(t, �, d, w)|� s12l < .

Observe that in the above argument,T only depends on|�| and. Thus, the system satisfies
Property 2 of Remark A.12. Consequently, system (75) admits an estimate as in (58) with
(d,w) as disturbances. The output Lagrange condition required as in (59) follows from
(79). �
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In the above proof, we have used the following (c.f.[13]):

Remark A.12. Suppose system (75) is forward complete. Then, the existence of a� as in
(58) is equivalent to the following:

1. There is aK∞-function�(·) such that for any>0, it holds that

|y(t, �, w)|�, ∀t�0, ∀w,

whenever|�|��(); and
2. for anyr�0 and any>0, there exists someTr,>0 such that

|y(t, �, w)|�,

for all t�Tr,, all w, and all|�|�r.

The proof of LemmaA.6 then follows from Lemmas A.7 and A.11.

A.2.4. Sketch of the proof of Lemma A.2
Finally, we sketch the idea of the proof of LemmaA.2. The sufficiency parts can be done

with some comparison principle (and in fact can be done by exactly the same proofs as in
[24]).
To prove the necessity part of Statement 2 of Lemma A.2, first note that if a system

is uOLIOS, then by Lemma A.11, there exists some smoothK∞-function � such that
the corresponding system (65) is output-Lagrange uniformly output stable with(d,w) ∈
M(Bm) × M(�). By Lemma A.5, there exists a Lyapunov functionV satisfying (63) for
some�1, �2 ∈ K∞ and

DV (�)f (�,	�(|h(�)|), �)� − �3(V (�), |�|), ∀� ∈ Rn, ∀|	|�1, ∀� ∈ �, (81)

for some�3 ∈ KL. Note then that (81) implies that

V (�)��(|	|) ⇒ DV (�)f (�,	, �)� − �3(V (�), |�|),

for all � ∈ Rn, 	 ∈ Rm and� ∈ �, where�(r)= �2(�
−1(r)).

The proof of the necessity of Statement 3 of Lemma A.2 follows the same idea as the
proof of Statement 2. The necessity of Statement 1 of Lemma A.2 follows from Lemma
A.7 and the necessity of Statement 2.

Remark A.13. In theworks[23] and[24], it was assumed thatf (0,0)=0.This assumption
was in fact not necessary. Indeed, in many interesting applications, it is not reasonable to
assume that 0 is an equilibrium for the zero-input system.
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Appendix B. An approximation lemma

Lemma B.1. Leth : Rn → Rp be a continuous map. Then there exists a smooth function
ĥ : Rn → R�0 so that for someK∞-functions�1,�2,

�1(|h(�)|)� |ĥ(�)|��2(|h(�)|), ∀� ∈ Rn.

Proof. Let h be a continuous function, and letO = {� : h(�) �= 0}. Applying [3, Theorem
4.8] to the continuous function|h(·)|, there is aC∞ functionh̃ : O → R�0 such that

||h(�)| − h̃(�)|< |h(�)|
2

, ∀� ∈ O.

Extendh̃ to Rn by letting h̃(�) = 0 if � /∈O. Thenh̃ is C∞ onO, continuous onRn, and
h̃(�)= 0 onRn\O. Note also that

1
2 |h(�)|� h̃(�)�2|h(�)|, ∀� ∈ Rn.

Applying [13, Lemma 4.3]to the functionh̃, one sees that there exists someK∞-function
� such that�(h̃(·)) isC∞. The lemma is proved by lettinĝh(�)= �(h̃(�)), �1(s)= �(s/2)
and�2(s)= �(2s). �
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