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Abstract

Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate
multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the
design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis.
Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells
maintain a steady population of b-cells despite continuous turnover. We develop a new iterative process that incorporates
modular design principles with hierarchical performance optimization targeted for environments with uncertainty and
incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion
models to design and understand system behavior, and find that certain features often associated with robustness (e.g.,
multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these
problems by engineering a new class of genetic modules for ‘synthetic cellular heterogeneity’ that function to generate
beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle
mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental
implementation with various computational techniques. We found that designing modules for synthetic heterogeneity
can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a
‘phenotypic sensitivity analysis’ method to determine how functional module behaviors combine to achieve optimal system
performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships
between a module’s biochemical rate-constants, its high level functional behavior in isolation, and its impact on overall
system performance once integrated.
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Introduction

One of the key challenges facing synthetic biology today is the

ability to engineer large-scale, multicellular systems with sophis-

ticated yet predictable and robust behaviors. Previous work in

synthetic biology has successfully implemented and characterized

a variety of relatively small synthetic gene networks including

oscillators [1–4], toggle switches [5,6], and intercellular sender/

receiver or quorum sensing (QS) communication systems [7–9].

Computational tools have encouragingly demonstrated an ability

to guide experimental optimization of several of such modules

[10,11], and some recent projects have successfully integrated a

few of these ‘standard modules’ and interfaced them with

endogenous pathways to program more sophisticated behaviors

[12–18]. Ultimately, however, the path to success will require

bridging the gap between specifying sophisticated systems-level

objectives and a list of molecular parts and interactions that can be

properly assembled to accomplish these objectives [19]. To

address this challenge, here we present and apply a novel

combination of computational methods to aid the iterative design

and optimization of synthetic biological systems. Importantly,

these tools address issues stemming from the incomplete and

imprecise knowledge of rate constants and cellular context.

As a case study, we design a system to control tissue

homeostasis, broadly defined as the property of balancing growth,

death, and differentiation of multiple cell-types within a multicel-

lular community. Tissue homeostasis represents an important class

of problems in biology, and the ability to control it is fundamental

to the success of a wide range of tissue engineering goals. At the

same time the ability to create and analyze such a system may
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provide insight into mechanisms of endogenous tissue homeostasis

and its misregulation in diseases such as cancer and diabetes. For

example, misregulation of tissue homeostasis plays a central role in

Type I diabetes, in which natural populations of insulin-producing

b-cells are destroyed due to autoimmune defects. Automated

mechanical systems have been proposed for insulin control in

diabetes but still face significant challenges including long-term

efficacy [20]. Stem cell and b-cell transplantations have also been

studied as possible solutions [21,22], but the last decade of results

suggest that the transplanted cells fail to maintain homeostasis and

become either tumorigenic or depleted within months [23].

Approach
As potential solutions for this problem, we propose several

increasingly robust variants of a synthetic gene network that are

designed to maintain a steady level of b-cells despite normal cell

death and constant destruction of the b-cells by the immune

system. The synthetic gene networks continuously direct prolifer-

ation, quiescence, and stem cell differentiation into insulin

producing b-cells as needed (Figure 1A). The resulting engineered

circuits may be employed to regulate tissue homeostasis both in

vitro where the cell culture is removed from natural cues, and in vivo

when natural systems fail or tissue is ectopically transplanted (for

example, the Edmonton protocol involves implanting pancreatic

islets including b-cells to the liver [24]).

The efforts described here are based on encouraging genetic

engineering accomplishments that have demonstrated population

control of bacteria and yeast [12,25], mammalian cell proliferation

[26], and stem cell differentiation [27,28]. To mitigate some of the

uncertainties involved in system construction, we restricted our

designs to use only genetic parts and modules that have already

been demonstrated experimentally. These include engineered cell-

cell communication to determine population densities, a toggle

switch, an oscillator, and a multi-input AND gate.

To gain a detailed understanding of our proposed synthetic

gene networks, we carried out theoretical analysis and computa-

tional simulations using Ordinary Differential Equations (ODE’s),

Langevin, and Gillespie algorithms. The analysis revealed that

while simple modular composition was useful for initial system

design, various factors such as stochastic effects, feedback control,

and module interdependence significantly impacted system

function and hence had to be taken into account when evaluating

system designs. Strikingly, we observed that system features

typically associated with robustness, including cell-synchroniza-

tion, noise attenuation, and rapid signal processing destabilized

our systems. To overcome these problems, we propose and

analyze mechanisms that generate population diversity, and

through this symmetry breaking facilitate proportionate and

homeostatic system response to population-wide cues. Endogenous

mechanisms of cellular heterogeneity have been previously

observed in many physiological processes, including differentiation

[29]. In the synthetic biology context, however, these mechanisms

may be either unavailable for integration into the synthetic genetic

circuit or too poorly understood to fully utilize. As a result, we

forward engineer modules to generate synthetic cellular heteroge-

neity. For example, we incorporate an asynchronous oscillator

module into the design as an engineered generator of intrinsic

variability. Ultimately, our analysis indicates that such modules

greatly improve homeostatic robustness among an isogenic

population of cells, and we identify several examples of natural

analogs.

Key results
We found that the design and optimization of modules for

synthetic heterogeneity is both non-intuitive and multifactorial,

and in general requires a framework for non-linear and

multivariate analysis. For example, with the asynchronous

oscillator, we could not a priori define a simple objective or ideal

‘phenotype’ since oscillator properties such as period, dynamic

range, and asynchronicity affected overall system performance in

complex and interdependent manners. Furthermore, even if ideal

module phenotypes are known, understanding the physical

parameters required to achieve such phenotypes also represents

a challenge. To address these issues, we developed a new

framework using a hierarchy of computational tools to understand

the optimal phenotypic and physical characteristics of the synthetic

heterogeneity modules with respect to overall system behavior. We

developed a ‘phenotypic sensitivity analysis’ method to determine

how functional module behaviors combine to achieve optimal

system performance. Parametric sensitivity analysis then captures

the dependency of a module’s phenotypes on its underlying

physical rate constants. Ultimately, we integrated both analyses

using Bayesian network inference to extract critical, causal

relationships between a module’s biochemical rate constants, its

high level functional behavior in isolation, and its impact on

overall system performance once integrated. Importantly, we

anticipate that our hierarchical optimization strategy prescribes

directions for system design that readily apply to experimental

systems facing high degrees of uncertainty in rate constants and

cellular environment.

Outline
We designed and modeled an artificial tissue homeostasis system

where a population of self-renewing stem cells grow and

differentiate in a regulated manner to sustain a steady population

of adult cells which, in this case, are insulin-producing b-cells

(Figure 1A). Here we present four iterations of system design,

analysis, and redesign with increased sophistication for improved

Author Summary

Over the last decade several relatively small synthetic gene
networks have been successfully implemented and char-
acterized, including oscillators, toggle switches, and
intercellular communication systems. However, the ability
to engineer large-scale synthetic gene networks for
controlling multicellular systems with predictable and
robust behavior remains a challenge. Here we present a
novel combination of computational methods to aid the
iterative design and optimization of such synthetic
biological systems. We apply these methods to the design
and analysis of an artificial tissue homeostasis system that
exhibits coordinated control of cellular proliferation,
differentiation, and cell-death. Achieving artificial tissue
homeostasis would be therapeutically relevant for diseases
such as Type I diabetes, for instance by transplanting
genetically engineered stem cells that stably maintain
populations of insulin-producing beta-cells despite normal
cell death and autoimmune attacks. To manage complex-
ity in the design process, we employ principles of logic
abstraction and modularity and investigate their limits in
biological networks. In this work, we find factors often
associated with robustness (e.g., multicellular synchroni-
zation and noise attenuation) to be actually detrimental,
and overcome these problems by engineering genetic
modules that generate beneficial population heterogene-
ity. A combination of computational methods elucidates
how these modules function to enhance robust control,
and provides guidance for experimental implementation.

Design of Robust Artificial Tissue Homeostasis
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robustness in controlling tissue homeostasis (Figure 1B). The

initial model for artificial tissue homeostasis (System 1) comprises

four integrated modules, and is analyzed using ODE simulation

and global stability analysis. We incorporate a toggle switch in

System 2 to minimize undesired b-cell population fluctuations

observed in System 1, and analyze the improved design using

stochastic differential equations (SDEs). Although System 2

represents an improvement, its homogeneous response to

commitment cues results in poor performance, thereby motivat-

ing the incorporation of an oscillator module and a throttle

module for Systems 3 and 4, respectively. Using SDE simulations,

we optimize these modules and their integration into the full

system. Throughout the discussion, we focus on several aspects of

system design, including module integration, optimization of rate

constants for individual modules, and optimization of module

phenotypic behaviors.

Results

Iterative system design and analysis
Simple mathematical analysis suggested that feedback regula-

tion between the two populations of stem cells and adult cells was

necessary for robust homeostatic control, and recent work has

explored the essential role of feedback control in stem cell biology

(Text S1, Sec. 2.1, [30]). In all alternative system designs presented

in this manuscript, we implemented feedback control through

artificial cell-cell communication pathways. Our first design,

System 1, allows differentiation only with a high density of stem

Figure 1. Overview of system design. (A) The general tissue homeostasis design. Proliferation of stem cells (blue) is regulated by their population
size through negative feedback (dashed blue line). Sequential differentiation into endodermic, pancreatic, and finally b-cells (red) occurs when the
stem cell population has sufficient size, and is governed through negative feedback from differentiated cells (dashed red line). (B) Design workflow.
Starting with a high-level objective, iterative design proceeds through a top-down decomposition into modules and then basic reactions of the
system, followed by analysis and redesign (left). The table columns (right) show the four iterations of system designs presented in this work. Table
rows describe the top-down decomposition for each system, and correspond to the workflow at left.
doi:10.1371/journal.pcbi.1002579.g001

Design of Robust Artificial Tissue Homeostasis
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cells and a low density of b-cells (Figure 2A). The ‘‘Stem Cell

Population Control’’ (SPC) module allows for differentiation only

when the population density of self-renewing cells lies above some

threshold. We also designed the SPC to suppress proliferation

through the expression of a growth arrest factor (GAF), currently

under development in the Weiss lab. The ‘‘b-Cell Population

Control’’ (BPC) module produces high output and inhibits

differentiation when the density of b-cells reaches a threshold

(Figure 2A). We based the cell-cell communication systems in the

SPC and BPC modules on previously described communication

systems [7–9]. As a proof of concept, Supplementary Figure S1 A–

B presents results for a signal-receiver circuit based on the LuxR

protein that responds to 3-oxo-hexanoyl-homoserine lactone

(3OC6HSL), that has been experimentally implemented in human

embryonic kidney (HEK293) cells.

We model stem cell differentiation as a multistage process that

can take several weeks to complete [31]. For example, directed in

vitro differentiation of hES cells into insulin-producing cells

involves stepwise administration of growth factors to first induce

endodermal cell fate, followed by pancreatic specialization,

expansion, and maturation [32]. This general process is modeled

by four cell types: stem cells (population size S) grow with a

constant division rate kb. Upon maturation, they proceed through

two intermediate populations of endodermic (E) and pancreatic

(P) cells before becoming b-cells (B), which die at a constant rate

kk. We describe the sequential maturation of S into E, P, and B as

first-order reactions with rates kc1, kc2, and kd . Feedback terms are

modeled as Hill functions, where KS and KB represent the SPC

and BPC module thresholds, respectively.

dS

dt
~kbS tð Þ: Kn

S

Kn
SzS tð Þn {kc1S tð Þ: S tð Þn

Kn
SzS tð Þn

: Kn
B

Kn
BzB tð Þn ,

dE

dt
~kc1S tð Þ: S tð Þn

Kn
SzS tð Þn

Kn
B

Kn
BzB tð Þn {kc2E tð Þ,

dP

dt
~kc2E tð Þ{kdP tð Þ,

dB

dt
~kdP tð Þ{kkB tð Þ

ð1Þ

The differentiation process is generally long in vivo (e.g., 20 days

[32]. For System 1, such delay in the feedback could induce

undesirable oscillations (Figure 2B–C). As a result, System 1 failed

to maintain homeostasis for a large range of parameter values

(Text S1, Sec. 2).

Toggle switch facilitates rapid feedback but neglects the

heterogeneity requirement. System 2 minimizes feedback

delay by using a ‘commitment’ module to decouple the BPC

module from the slow differentiation process (Figure 3A). Com-

mitment occurs through a one-way toggle switch, which we

Figure 2. System 1. (A) Circuit diagram: two Population Control modules (in gray) sense the density of stem- and b-cells. The AND gate integrates
the output of the modules to induce differentiation. Circles represent intercellular signaling molecules. (B) Two examples of population evolution
showing sustained oscillations (point 1 in C) and a stable steady state (point 2 in C), with other parameters fixed (SI Sec. 2 and Figure S2). (C) A planar
slice of the parameter space where population oscillations occur for System 1.
doi:10.1371/journal.pcbi.1002579.g002
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designed to reflect earlier computational models [33] and an E. coli

implementation [34]. As a first step and proof of concept,

Supplementary Figure S1 C–D presents an experimental imple-

mentation of the proposed toggle switch in human cells. In System

2, the toggle activates both differentiation and population

feedback, such that the feedback control is immediately down-

stream of the toggle switch rather than following the full

differentiation process (Figure 3A). The state of the one-way

switch defines whether or not the cell has irreversibly committed to

differentiate, and this status feeds back into what we now term the

‘‘Uncommitted Population Control’’ (UPC) and ‘‘Committed

Population Control’’ (CPC) modules. The density of cells in any

stage of the differentiation process determines CPC module

output. Consequently, we gained a faster feedback response in

exchange for assuming that a relatively constant fraction of cells

successfully differentiate upon commitment. Accordingly, in our

model for System 2, the rate of the first stage of differentiation

(S?E in Eq. (1)) is now (other equations remain the same):

Figure 3. System 2. (A) Circuit diagram: two Population Control modules sense the density of stem and committed cells. The AND gate
integrates the output of the modules to induce commitment through the switch state (red module). (B) Deterministic time trajectories for
System 2 with two different initial conditions: both converge to the same equilibrium populations. (C) Phase space diagram: all trajectories
converge to a unique equilibrium point. Black lines correspond to trajectories plotted in B. See Text S1, Sec. 2 and Figure S3 for other phase
space diagrams. (D) Stochastic trajectories for a simulation starting with a small stem cell population, showing the output of the Committed
Population Control module (R2) in representative uncommitted cells (right axis, a.u.). (E) Individual rows track the single-cell UPC module output
(A1, shown as a heat map) in uncommitted cells within a population. White signifies single-cell commitment, followed by black ‘‘null space’’ that
is filled by newly divided uncommitted cells. As soon as UPC output is high (yellow), stem cells commit en masse. (F) Overall system
performance, S/N, as a function of the module time-scale for cell communication, TSQS . Several hundred different sets of time-scales were
tested, with all time-scale parameters simultaneously varied. Each point represents an individual set of time-scales. Color and contour lines
indicate point density.
doi:10.1371/journal.pcbi.1002579.g003
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dS

dt
~kbS(t):

Kn
S

Kn
SzS(t)n

{kc1S(t):
S(t)n

Kn
SzS(t)n

: Kn
C

Kn
Cz(E(t)zP(t)zB(t))n

ð2Þ

Compared to System 1, the population sizes quickly equilibrat-

ed in System 2 (Supplementary Figure S2). We further tested

different initial conditions and parameter vectors, and found the

System 2 equilibrium point to be independent of the initial

conditions (Text S1, Sec. 2.2).

For subsequent analyses, we simplified our model to a two-

population system. Given that E, P and B populations are

identical with respect to feedback, we merged them into the

committed population C, resulting in the following equations for

System 2:

dS

dt
~kbS tð Þ: Kn

S

Kn
SzS tð Þn {kdS tð Þ: S tð Þn

Kn
SzS tð Þn

: Kn
C

Kn
CzC tð Þn ,

dC

dt
~kdS tð Þ: S tð Þn

Kn
SzS tð Þn

: Kn
C

Kn
CzC tð Þn {kcC tð Þ

ð3Þ

In this ODE model, the actual b-cell population B is a fraction of

this committed population C (Text S1, Sec. 2.3). We note that a

two population system may not fully restore the complexity of a

four population system, for example by precluding chaotic

behavior. Nonetheless, the two population model showed a

qualitatively similar behavior in the working range of our system.

Henceforth, we focused on maintaining a constant population of

committed rather than differentiated cells. Indeed, this system

demonstrated a stable equilibrium point in a large range of

conditions (Figure 3B–C, S3 and proof in Text S1, Sec. 2.4).

Our deterministic model of continuous population dynamics

suggested that System 2 stabilized homeostasis sufficiently.

However, low molecular count, small population size, and

localized reaction/diffusion may constitute critical determinants

of system dynamics [35,36]. To obtain an improved understanding

of how these factors affect system behavior, we performed

spatiotemporally-resolved simulations of multicellular populations

using stochastic differential equations (Text S1, Sec. 3), assuming

Hill functions for inhibition and activation relations.

These simulations revealed that phenotypic homogeneity within

the isogenic stem cell population impedes system performance.

More specifically, strong population-wide cues to commit may

cause massive simultaneous commitment, thereby depleting the

stem-cell pool and leading to homeostasis failure (Figure 3D–E).

To quantify system performance, we employed a signal to noise

ratio (S/N) metric (inverse of the coefficient of variation, see Text

S1, Sec. 3) that denotes how steady the committed population

density is maintained. As an initial analysis of overall system

robustness, we explored how S/N was affected by variations in the

time-scales with which individual modules operate. We lumped

system parameters according to their module (Text S1, Sec. 5.2.1,

and Table S2) and adjusted them in a coordinated manner to

change only how fast a module processed incoming signals and

produced the appropriate output, while keeping steady-state

behavior of individual modules constant. Perturbing time-scales

for modules such as the toggle switch and cell-cell communication

randomly and simultaneously allowed us to observe how robust S/

N was across the range of time-scales. For System 2, S/N was very

sensitive to module time-scales, and most combinations of time-

scales resulted in a poorly functional system (Figure 3F). Relative

to other processes in the system, rapid feedback kinetics described

by the ‘quorum sensing’ cell-cell communication time-scale (TSQS )

could decrease the simultaneous commitment observed in

Figure 3D–E, but it may not be possible to implement such a

fast response in practice. Moreover, significant environmental

perturbations to the system, for example resulting from injury or

elevated autoimmune response, could still provoke situations

where System 2 fails to maintain homeostasis. We therefore

implemented synthetic modules that generate phenotypic hetero-

geneity in an isogenic population. These modules desynchronize

single-cell responses to population-wide signaling cues, thereby

facilitating a proportionate and homeostatic system response and

balancing the necessity for a fast quorum sensing.

Oscillator stabilizes through asynchronicity. In System

3, we incorporated an asynchronous oscillator (e.g. [3,4]) into the

design as a generator of intrinsic heterogeneity (Figure 4 A). In this

system, a cell’s commitment to differentiation can only occur when

its oscillator peaks (and R4 concentration is low). Stochasticity

drives individual oscillators out of phase, and coupling the

oscillator to cell-fate decisions prevents cells in a population from

all simultaneously responding to homogeneous commitment

signals. Simulations indicated that with the oscillator, our system

maintained tissue homeostasis robustly despite the fact that

feedback signaling cues to commit remained synchronized even

after homeostasis was established (Figure 4B–C). Compared to

System 2, System 3 behaved much more robustly to variations in

module time-scales, with more than double the S/N of System 2

when averaged across all tested time-scales (Figure 4D). Although

our analysis suggested that the oscillator would be a powerful

addition to the system design, unforeseen experimental factors

may hamper its successful implementation. Unaccounted for

drivers of oscillator synchronization across a population, for

example, could negatively impact system performance. To address

this issue, we developed an alternate strategy for generating

population diversity (System 4). Subsequent analysis of these

systems then allows us to compare their specific advantages and

disadvantages.

Commitment throttle stabilizes through local

inhibition. System 4 achieves population heterogeneity through

rapid lateral inhibition acting as a throttle on the commitment

process during toggle switching (Figure 4E). Through this

mechanism, a cell starting to commit blocks the commitment

process of adjacent cells. The throttle approach requires a third

intercellular signaling molecule that is synthesized transiently while

the toggle switches and temporary inhibits neighboring cells from

committing likewise. The rest of the circuit remains similar to

previous systems. Simulations indicated that when populations

reached their steady state values, the throttle mechanism

prevented simultaneous commitment of too many cells and

therefore maintained homeostasis (Figure 4F–G). Consequently,

System 4, like System 3, behaved more robustly to variations in

module time-scales compared to System 2 (Figure 4H). Although

Systems 3 and 4 clearly outperformed System 2 in these

simulations, appreciable differences in time-scale robustness

among the three systems warrant further analysis, and the

following section explores this from a multivariate perspective.

Robustness analysis and optimization
The integration of several network modules presents a challenge

on multiple levels, especially in the context of uncertain biological

environments and complex module dynamics. In the following

sections, we introduce a framework composed of computational

modeling and analysis techniques that addresses these issues in

Design of Robust Artificial Tissue Homeostasis
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Figure 4. Systems 3 and 4. (A) Circuit diagram for System 3: in addition to System 2 modules, the AND gate integrates the output of the oscillator
(red module) that allows commitment only when peaking. (B) Time trajectories for a simulation starting with a small stem cell population. The
oscillator activator (Ao) is plotted for some representative stem cells (right axis, a.u.). (C) Individual rows track the single-cell UPC module output (A1,
shown as a heat map) in uncommitted cells within a population. White signifies single-cell commitment, followed by black ‘‘null space’’ that is filled
by newly divided uncommitted cells. Due to the oscillator, only a fraction of the cells commit when the A1 concentration is high. (D) Overall system
performance, S/N, as a function of the module time-scale for cell communication, TSQS . Several hundred different sets of time-scales were tested,
with all time-scale parameters simultaneously varied. Each point represents an individual set of time-scales. Color and contour lines indicate point
density. (E) Circuit diagram for System 4: a throttle mechanism (red module) activates during a cell’s commitment and represses commitment in its
neighbors. (F–G) Time trajectories for a simulation starting with a small stem cell population, where B shows the average throttle signaling
component (AI3) in the external medium (right axis, a.u.) over time. (H) S/N as a function of the module time-scale for cell communication, TSQS .
doi:10.1371/journal.pcbi.1002579.g004
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optimizing Systems 2, 3 and 4. We first study overall system

robustness to external parameters such as cell survival dynamics,

and introduce time-scale analysis as a method for guiding module

integration. We then optimize the population control module using

a novel ‘clustered sensitivity analysis’ to comprehend global patterns

of parametric sensitivity in the context of a detailed biochemical

model. Finally, we analyze the synthetic heterogeneity modules with

an approach that focuses on module phenotype rather than rate

constants alone. Comparisons among the different system architec-

tures ultimately provide guidance for experimental optimization.

Synthetic heterogeneity enhances robustness to noise and

cell survival times. We first explored the impact of stochas-

ticity on homeostasis by adjusting the simulated cell volume, V,

which is related to the number of molecules in each cell (Text S1,

Sec. 3). Increasing noise, by decreasing V, impacted homeostasis

performance both positively and negatively, depending on several

factors. Without either the oscillator or throttle, System 2’s S/N

value decreased monotonically with decreased noise (Figure 5A).

In contrast, S/N values for Systems 3 and 4 displayed biphasic

dependency on V. For small V, Systems 3 and 4 showed the same

Figure 5. Robustness analyses and time-scale optimization for Systems 2–4. (A) S/N for different cell volume V, which corresponds to the
number of molecules in each cell. (B) S/N for different ratios of stem cell division rate (kb) and b-cell killing rate (kk). (C–D) RS-HDMR analysis of
Systems 2–4 to changes in the reaction time-scales of module components. (C) First- and (D) second-order RS-HDMR component functions describe
the relationship between reaction time-scales (normalized to [0,1]) and the corresponding S/N observed in the overall system. (E) Distribution of S/N
observed in response to time-scale parameter sampling (black) and RS-HDMR inference accuracy of that variation (blue). (F) Total sensitivity indices
(ST

i ) of the module time-scales observed for each system.
doi:10.1371/journal.pcbi.1002579.g005

Design of Robust Artificial Tissue Homeostasis
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performance as System 2, largely because high noise obscured

feedback signals. Intermediate values of V allowed the oscillator

and throttle to generate optimally heterogeneous population

responses. The S/N observed for large V was low for all systems

due to more synchronous cellular commitment during the

dynamic establishment of homeostasis, emphasizing the impor-

tance of stochasticity for generating heterogeneity in homeostasis

regulation.

We analyzed the robustness of the systems to another external

parameter, the average committed-cell survival time (1=kk), which

may fluctuate in vivo, by simulating system behavior with different

ratios of uncommitted-cell division rate to committed-cell killing

rate (kb=kk). In general, Systems 3 and 4 exhibited greater

robustness to decreasing (kb=kk) compared to System 2 (Figure 5B

and Text S1, Sec. 2.5). We also analyzed the effect of the

parameter kk on the homeostatic population size. Equilibrium

populations remained near the desired homeostatic levels for high

(kb=kk), but could decrease at lower ratios (Figure 5B). Ultimately,

the robustness to noise and cell survival times underscores the need

for heterogeneity within the population, and provides further

evidence that the synthetic heterogeneity generated from the

oscillator and throttle improves system performance over a range

of parameters.

Intermodular time-scale matching reveals system

dependent module coupling. In our system, accurate cell

decision processing requires the appropriate integration of

modules that generally have well defined behaviors in isolation.

Even if we assume input-output behavior that meets our design

specifications for each module (see Text S1, Sec. 3), integrating

these modules together still presents a challenge. As introduced in

Figures 3F and 4D,H, we explored system robustness to variations

in the time-scales with which individual modules operate.

We used the Random-Sampling High Dimensional Model

Representation (RS-HDMR) algorithm [11,37] (Text S1, Sec. 5.1)

to understand both the individual and cooperative nonlinear

effects of time-scale modulation on S/N (Figure 5C–F and S5).

RS-HDMR describes the independent and cooperative effects of

inputs, which in this analysis are module time-scales, on an output,

the S/N value, in terms of a hierarchy of interpretable RS-HDMR

component functions. Importantly, RS-HDMR supports global

parametric sensitivity analysis, which is appropriate in this work

where precise parameter values (time-scales in this case) may be

highly uncertain. The first-order component function fi(xi)
describes the generally non-linear independent contribution of

the ith input variable to the output. For System 2, first-order RS-

HDMR component functions showed that fast diffusion and a

rapid toggle switch (through R6 dynamics) contribute to good

system performance. Second-order RS-HDMR component func-

tions indicated cooperative interactions among parameters. Here,

parameters correspond to individual modules; therefore, we

interpreted cooperative relationships as ‘intermodular coupling’

(Figure 5D). For example, having a fast toggle switch (R7)

dynamics in System 2 offset the detrimental impact of slow

diffusion. For System 3, the only significant correlations between

performance and time scales were found for diffusion and, to a

lesser extent, the toggle switch (Figure 5C). Interestingly, RS-

HDMR detected no significant second-order component functions

in System 3. These results indicated that the oscillator, in effect,

decoupled the modules from each other, minimizing cooperative

interactions between diffusion and the toggle switch by creating a

buffer between the two. Compared to Systems 2 and 3, System 4

performance exhibited a more complex dependency on time-scale

parameters, indicated by its significant second-order functions

(Figure 5C–D). In particular, the cooperative interaction of slow

R7 dynamics combined with fast R5 dynamics produced a strong

synergistic improvement in S/N. This combined effect facilitates

effective AI3-mediated lateral inhibition while the toggle switches.

Total sensitivity indices represent the summed weight of first- and

second-order RS-HDMR component functions for each param-

eter (Figure 5F). For Systems 2 and 3, observed S/N was most

sensitive to changes in diffusion (TSQS ). In contrast, toggle-switch

dynamics (TSR7) most significantly affected performance in

System 4. Of note, optimal time-scale matching yielded an

improvement for all systems in robustness to molecular noise and

cell survival dynamics, particularly under conditions of relatively

fast cell death (Supplementary Figure S6). Overall, analysis of

intermodular time-scale matching prescribes strategies for inte-

grating modules and suggests ways in which module dynamics can

be coordinately manipulated to yield improved system perfor-

mance in vitro.

Clustered sensitivity analysis for targeted

optimization. We also modeled System 3 using the Gillespie

algorithm to explicitly account for binding and transcription

events (for example, the binding of the receiver protein Rec1 to its

inducer AI1, Bind Rec1.AI1, Text S1, Sec. 4). Results presented in

the previous section were based on Langevin models that assume

Hill functions for all inhibition and activation interactions, but our

initial results with the Gillespie model suggested that achieving

useful sigmoidal responses in the UPC module may be particularly

challenging. Note that Systems 2 and 4 share the same UPC

module as System 3 and the following results are valid for all

systems. Figure 6A–B demonstrates how excess UPC output below

the threshold (first row) or insufficient output above the threshold

(second row) in suboptimal systems can lead to overactive

commitment or proliferation, respectively. Consequently, we

focused on optimizing the UPC module to obtain a step-like

response to population density, r. We incorporated positive

feedback in the UPC module, and then employed a genetic

algorithm (GA) to optimize module parameters. The GA allowed

us to efficiently navigate the high-dimensional parameter space

and avoid local minima in the optimization process [38].

However, initial optimization of the module’s rate constants only

considered scenarios where the population densities increased

(‘‘forward response’’). Unfortunately, this generated hysteresis,

where high UPC output is maintained as r decreases below the

threshold level (similar to [39]). Such hysteresis can lead to sub-

optimal or even non-functional tissue homeostasis performance

(Figure 6C–D, first row). Consequently, we also took into account

the ‘‘reverse response’’ in the optimization process, which

describes UPC output under conditions of decreasing cell density.

Our GA optimization then successfully generated a diverse

ensemble of rate constants, each yielding UPC networks with

positive feedback that exhibited both step-like and non-hysteretic

behavior (Figure 6C, second row). These optimized subnetworks

produced stable homeostasis when integrated in the full-system

Gillespie model (Figure 6D, second row).

We performed RS-HDMR analysis of the UPC subnetwork to

understand how rate constants affect hysteresis, which would help

guide the experimental construction of the system. We examined

local parameter ‘‘neighborhoods’’ around each GA-generated

vector of optimized parameters from Figure 6E (Text S1, Sec. 5.3).

Our sensitivity analysis suggested that systems displaying similar

UPC behavior can have drastically different responses to similar

changes in rate constants: each parameter neighborhood that we

analyzed had a distinct signature of parametric sensitivity

(Figure 6F). We clustered parametric neighborhoods based on

these signatures. Despite differences in individual sensitivities, the

clustered sensitivity analysis revealed that the majority of
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signatures fell into two main clusters, each with distinctive features.

For example, in one cluster (red on the dendrogram) the decay

rate of the receptor protein Rec1 (rate Decay Rec1) significantly

affected hysteresis, while the binding and dissociation rates of AI1-

bound Rec1 complex (Rec1:AI1) had little influence. The

opposite was true for the other cluster (cyan on the dendrogram).

When building genetic networks experimentally, precise pa-

rameter values and their influence on system behavior may be

unknown, presenting a challenge for optimization. Logistical

constraints limit the number of parameters that can be reasonably

manipulated, but clustered sensitivity analysis can act as a guide

for iteratively prioritizing which parameters to mutate. In our

system, for example, results suggest that we manipulate the most

sensitive parameters from each of the two main clusters (Decay Rec1

and the binding of the Rec1-AI1 complex to its promoter, Bind

pA2.Rec1.AI1). At least one of these two parameter manipulations is

likely to reduce hysteresis. Depending on which parameter is more

sensitive, we may be able to deduce in which cluster the system

lies, predict the sensitivity signature, and use this information for

further optimization.

Parametric sensitivity analysis of synthetic heterogeneity

modules. The impact of the oscillator and throttle modules on

the performance of Systems 3 and 4 presents a particular challenge

to understand and analyze (Figure 7A,G). As the two principle

Figure 6. Parametric optimization of the UPC module. (A) GA optimization progress for three representative generations, using an ODE model
of the UPC module. The GA objective function is a three-component step-function, with zero UPC activity below a defined threshold, an ignored
transition region, and high activity above the transition region. (B) Gillespie simulations of System 3, corresponding to optimization progress in A. (C)
Average UPC module transfer curves when the reverse response is either excluded or included in the subnetwork GA optimization. (D) Full system
behavior corresponding by row to the module optimization results in C. (E) Distribution of rate constants for the optimized parameter vectors
determined by 75 independent GA runs of 1000 generations each, using both forward and reverse response objective functions. (F) Clustered
sensitivity analysis of the UPC Module. Each column corresponds to a ‘‘parameter sensitivity signature’’ for each of the 75 local parameter
neighborhoods that we sampled; rows correspond to the analyzed parameters of the UPC module. First-order sensitivity values shown in the heat
map range from 0.0 (black) to 0.5 (red).
doi:10.1371/journal.pcbi.1002579.g006
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modules for generating synthetic heterogeneity, their ideal

operating characteristics are complex and non-intuitive. Addition-

ally, their non-trivial dynamics imply highly sensitive dependence

on intramodular rate constants. As a first step to understand how

to optimize these modules, we used RS-HDMR to investigate the

sensitivity of S/N to random perturbations of the oscillator’s and

throttle’s individual rate constants (Text S1, Sec. 5.2.4). As

expected, results suggested highly complex and cooperative

interactions among intramodular parameters, and no single

parameter wholly determined system performance for either

module (Figures 7, S7 and S8). Nonetheless, several parameters

stood out as particularly important in governing performance.

For the oscillator, RS-HDMR indicated that the threshold at

which Ro expression is activated by Ao (parameter HRo) had the

largest impact on system behavior (Figure 7B–D). RS-HDMR also

identified cooperative relationships among oscillator rates, the

most significant being between HRo and HAo{A (threshold for Ao

activation by itself), as shown in Figure 7E–F and S9. Although

such correlations can classify ‘good’ performers (S/N w15) from

‘bad’ (S/N v2) with accuracy of roughly 95% (see Text S1, Sec.

6.2), analysis of the rate constants alone insufficiently described

system behavior in a quantitative manner (R2
v0:5, Supplemen-

tary Figure S10).

For the throttle, results indicated that the thresholds for At
repression by R6 (HAt) and R7 activation by At (HR7) had the

largest impact on system performance, and both interacted

cooperatively to affect overall system performance such that low

values of both parameters yielded the best S/N (Figure 7H–L and

S11). As with System 3, our analysis of the rate constants alone

failed to fully capture system performance in a quantitative

manner (R2
v0:5, Supplementary Figure S10).

Phenotypic sensitivity analysis quantitatively informs

system performance. Although a good first step, analysis of

the module rate constants alone demonstrated two main

drawbacks in this application. First, the statistical relationships

between S/N and rate constants are highly convoluted and poorly

captured by RS-HDMR. Second, focusing on rate constants can

limit the analysis to a particularly defined network structure. To

Figure 7. Parametric sensitivity analysis. (A,G) Circuit diagrams of the genetic components considered in (A) oscillator and (G) throttle
optimization. (B,H) The most significant RS-HDMR sensitivity indices, ST

i , for parametric variations of the oscillator and throttle, respectively. (C,I)
Observed S/N values as a function of randomly sampled rate constant values. Around 2000 different parameter sets were tested, with all oscillator or
throttle parameters simultaneously varied. Each point represents an individual parameter set. Warmer colors and contour lines indicate higher point
density. (D,J) Inferred first-order RS-HDMR functions describing S/N as a function of the parameters sampled in C and I. (E,K) Heat map of the S/N
values against the parameters resulting from the 2000 parameter sets tested in C and I. (F,L) RS-HDMR second-order functions describing the
cooperative effects between rate constants, corresponding to E and K. Second-order RS-HDMR functions capture remaining variance after the first-
order functions (see D and J) have been subtracted from the data.
doi:10.1371/journal.pcbi.1002579.g007
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address these issues, we instead turned to analysis of high-level

properties, or ‘phenotypes’, of the oscillator and throttle modules.

With the oscillator, examples of phenotypes include the average

period of R4 oscillations and R4 dynamic range (Figure 8A and

Supplementary Table S4). As with the rate constants, correlations

between oscillator phenotype and system performance are

multivariate by nature (Supplementary Figure S12): for example,

the relationship between sDuration High and S/N suggested a

biphasic relationship, where optimal performance occurred with

an intermediate level of variability (Figure 8B,C). We therefore

used RS-HDMR to identify key phenotypic determinants of

system performance. Interestingly, results indicated that metrics of

oscillator heterogeneity (e.g., the coefficient of variation for the

duration that the R4 concentration is low, CVP
Low, and the

standard deviation for the duration that the R4 concentration is

high, sDuration High), are nearly as important as the concentrations

within which the modules operate (i.e., the high and low oscillator

values, Figure 8D). Ultimately, RS-HDMR results suggested that

module phenotypes are far more predictive of S/N than the rate

constants alone (Figure 8E and S10).

For the throttle, we defined phenotypes (Supplementary Table

S5) of R7 and AI3 behavior as a function of the randomly-

perturbed throttle rate constants. These phenotypes are more

complex than those of the oscillator because the throttle module

responds to two inputs, R5 and AI3 (Figure 8F). Consequently, we

evaluated each throttle phenotype across combinations of both

inputs, thereby producing an ‘image’ of throttle behavior over the

two-input sampling space (Figure 8G and Supplementary Figure

S13). For example, average images of R7 T to St. St. corresponding

to different S/N values (Figure 8G) revealed that the best

performing throttles show a clear pattern of activity: at low A3
or high AI3, no toggle switch occurs; at high A3 and low AI3, R7
stabilizes relatively quickly; lastly, inputs lying between these two

regions cause toggle switching but with much slower (and

heterogeneous) R7 dynamics. For a more systematic approach,

we used feature extraction methods from image processing along

Figure 8. Phenotypic sensitivity analysis. (A,F) Phenotypic behavior of the oscillator (A) and throttle (F), when isolated from the full system.
Roughly 2000 different sets of rate constants were tested, with all oscillator or throttle rate constants simultaneously varied. Module phenotypes were
recorded for each set of rate constants. (B) Observed S/N values as a function of variance in the ‘‘duration high’’ of the oscillator. (C) Heat map of the
S/N values against the phenotypes resulting from the random parameter sets. (G) Average ‘images’ for the phenotype R7 T to St. St., observed from
the random parameter sets yielding an S/N value of either 5, 15 or 25. Black represents regions where no switch occurs and no value for R7 T to St. St.
is recorded. (D,H) The most significant RS-HDMR sensitivity indices, ST

i , for phenotypic variations of the oscillator and throttle, respectively (see also
Supplementary Table S8). (E,I) For the oscillator and throttle, respectively, RS-HDMR cross-validation predication accuracy using rate constants,
phenotypes, or both.
doi:10.1371/journal.pcbi.1002579.g008

Design of Robust Artificial Tissue Homeostasis

PLoS Computational Biology | www.ploscompbiol.org 12 July 2012 | Volume 8 | Issue 7 | e1002579



with RS-HDMR to identify key phenotypic determinants of system

performance (Text S1, Sec. 5.2.4). As with the oscillator analysis,

results indicated that module phenotypes predict overall system

performance significantly better than rate constants alone, with the

most significant phenotype being the time for R7 to reach steady

state after receiving cues to commit (R7 T to St. St., Figure 8H–I).

Strikingly, RS-HDMR identified the variance with which R7
reaches steady state within this region to also be critically important

for overall system performance (Supplementary Figure S8).

Ultimately, phenotypic sensitivity analysis allowed for a more direct

and accurate assessment of module performance compared to the

analysis of rate constants alone, and did so while obviating concerns

regarding the determination of rate constants that are tied to a

particular system architecture (Figure 8I and S10).

Bayesian network analysis integrates rate constants and

module phenotypes with overall system behavior. We

applied Bayesian network inference to graphically represent the

strong interdependencies of the module phenotypes and their

relations with the rate constants that govern them and the S/N

value (Figures 9, S15, S16 and Text S1, Sec. 5.2.4). Consistent with

trends seen in Figures 8D and 8H, Bayesian network inference

revealed that in general, module phenotypes more directly relate to

overall system performance, and the effect of rate constants on

overall S/N can be described in terms of their influence on the

module phenotypic behavior. Nonetheless, in some cases the

module phenotypes failed to adequately capture a rate constant’s

influence. For example, in the oscillator this led to a direct

connection between the decay rate of the oscillator’s repressor, kRo
d ,

and overall S/N. Remarkably Bayesian inference identified

significant upstream effectors of S/N similar to those identified by

RS-HDMR, while also suggesting a hierarchy of conditional

dependencies (Figure 9). Multi-parent interactions identified by

Bayesian networks supported RS-HDMR results; for example, the

standard deviation of the time during which the oscillator is high

(sDuration High) and the oscillator’s Low Value showed significant

cooperative interaction in both analyses (Figures 8C and 9A).

Bayesian inference of the throttle relationships also agreed with RS-

HDMR results, for example confirming relaxation kinetics (e.g., R7

T to St. St.) to be a significant influence on S/N, along with

descriptors of its variability (Figures 8G–H and 9 B).

The integration of module phenotypes with the underlying rate

constants ultimately allowed for efficient experimental optimization.

Modules are likely to be experimentally implemented and

phenotypically characterized in isolation before being integrated

with each other. At this stage of optimization, Bayesian analysis can

predict behavioral features of the individual module that will most

directly influence performance in the fully integrated system, and

such analysis may guide fine-tune adjustments of those module

behaviors. In System 3, for example, Bayesian inference suggested

that the oscillator’s low value critically determined S/N, and that

the threshold at which Ro expression is activated by Ao (parameter

HRo) was the most direct parameter for modulating that phenotype.

Although many module features and rate constants displayed

covariation with overall S/N, Bayesian analysis distilled the most

direct, causal influences on overall system behavior.

Discussion

System design and analogues from natural systems
In this work, we engineer mechanisms of robust control using

synthetic generators of heterogeneity, and use a multi-faceted

computational framework for design and optimization in the

context of a relatively large-scale synthetic gene network. As a case

study we chose tissue homeostasis control where individual cell

decisions need to be coordinated to obtain desired multi-cellular

behavior. To tackle this complex problem, we used top-down

decomposition, achieving the overall task through the creation of

interconnected modules, where each module has its own specific

objective. Throughout this hierarchical optimization process we

used different modeling approaches (population-based, Langevin

and Gillespie simulations, see Figure 1B), while ensuring that the

population-based results are consistent between the models

(Supplementary Figure S17).

We designed System 1 by coupling four modules together, and

simulated this system using a simplified ODE model. Computa-

tional analysis elucidated properties of global stability and

demarcated regimes of steady vs. oscillatory homeostatic behavior

in general tissue homeostasis systems. Analogous oscillatory

homeostatic behavior from delayed feedback has been observed

in natural mammalian systems, for example with hematopoiesis

[40] and bacterial biofilms [41]. To mitigate the problem of

population level oscillations, we created System 2 which includes a

toggle switch module to implement faster feedback (Supplemen-

tary Table S9). Of note, various natural cell types regulate

S/N

σDuration High

High Value

Low Value

CVPeriod Period

kd
Ro

σPeriodHRo

HRo2

BA
σ T to Peak
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HR7
No Switch Value R7 T to St. St. HAt

HAI3-t σ R7 T to St. St.
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Timing
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State values
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Figure 9. Bayesian networks of the impact of synthetic heterogeneity module phenotypes and rate constants on system
performance value (S/N). (A) Bayesian network inference using oscillator rate constants and phenotypes. (B) Bayesian network inference using
throttle rate constants and phenotypes. Black arrows indicate the most direct connections between a node and S/N. The Bayesian inference describes
phenotype groupings relevant to state values (blue), timing (yellow), and variability (red), along with the rate constants that control these
phenotypes (green).
doi:10.1371/journal.pcbi.1002579.g009
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proliferation and differentiation by a switch similar in principle to

that used in our system [42]. Analysis of System 2 using a

stochastic Langevin model revealed how population-wide com-

munication signals can be highly destabilizing to homeostasis,

leading us to two new system designs. For Systems 3 and 4, the

addition of the oscillator or the throttle module, respectively,

provides more robust performance compared to System 2

(Figure 5) because these systems are less dependent on precise

parameter values and are able to maintain sufficient population

heterogeneity at lower levels of intrinsic molecular noise (Supple-

mentary Table S9). Alternative mechanisms for generating

population heterogeneity may exist. For example, the AND gate

in System 2 could have been coupled with endogenously

heterogeneous biological behavior such as Nanog expression

(discussed below) [43]. Nonetheless, we chose to focus on the

oscillator and throttle because they do not rely on potentially

unpredictable endogenous mechanisms that would complicate

computational modeling, and they represent two substantially

distinct mechanisms for generating heterogeneity.

The design and analysis methods developed in this work

attempt to identify relationships between rate constants, module

phenotypes, and overall system performance, while maintaining

an appreciation for the high degree of uncertainty and incomplete

system knowledge in the experimental setting. For example,

relating overall system performance directly to phenomenological

definitions of module behavior frees the analysis from constraints

to a particular module architecture or set of rate constants.

Nonetheless, when more detailed information is desired we can

apply global optimization strategies to capture patterns of

parametric sensitivity that remain consistent across a broad range

of rate constant values. For example, our analysis of the cell-cell

communication module used a detailed biochemical reaction

model with a large number of unknown rate constants. This level

of granularity allowed us to analyze hysteretic response, which is

not possible in the more abstract models. Ultimately, we addressed

uncertainty by employing a novel technique, clustered sensitivity

analysis, that revealed distinct patterns of relative parametric

sensitivity for hysteresis that persisted across a wide range of rate

constants. Previous reports have shown that bistability and

hysteretic responses exist for both natural and engineered bacterial

QS systems [44,45], and in this work such bistability drives

undesired oscillations. Accordingly, we designed the population

control module to avoid hysteretic response and identified specific

properties affecting hysteresis in our system.

Synthetic and natural population heterogeneity
The synthetic heterogeneity modules in our systems display

complex and multivariate behaviors that depend on the cooper-

ative influence of multiple rate constants. Since existing experi-

mental and computational biological circuit optimization methods

do not scale well with system complexity, we decomposed the

analysis and optimization processes for Systems 3 and 4 by

characterizing modules first in isolation and then by relating their

phenotypes to the performance of the overall system. We

correlated module phenotypic behaviors with overall system

performance, and found several significant correlations that were

non-intuitive. Similarly, we identified dependencies between

particular rate constants and the ability to maintain homeostasis.

While Systems 3 and 4 exhibited comparable overall performanc-

es, further analyses revealed several distinguishing strengths and

weaknesses (Supplementary Table S9). For example, the oscillator

in System 3 appears to insulate modules from each other, while the

throttle mechanism in System 4 amplifies their coupling strength

(Figure 5 C–F). Our results suggest that the oscillator may mitigate

problems associated with module integration, at least with respect

to matching dynamics. However, the throttle mechanism is likely

to be better suited for toggle switches with slow switching times

(similar to the one we report on experimentally in Text S1, Sec. 1).

At a high level, our work describes strategies to exploit stochastic

effects for enhancing stability of tissue homeostasis. This concept

has been recently explored in a number of reports emphasizing the

role probabilistic strategies play in natural mechanisms of cell-

decision processing, including differentiation [29,46,47]. Further-

more, attempts have been made at engineering inherently

stochastic processes for functions such as enhanced cellular

reprogramming into induced pluripotent stem (iPS) cells [48].

Nonetheless, to our knowledge no efforts have yet been made that

combine advances in synthetic biology with an appreciation of

stochastic processes to engineer homeostatic tissue from isogenic

cellular populations. The asynchronous oscillator stabilizes our

system by generating population heterogeneity during conditions

of environmental homogeneity and exogenous perturbation.

Among natural systems, recent work has highlighted the role

multistable feedback systems and stochastic switching play in

appropriately priming cells for differentiation [49]. For example,

evidence indicates the Nanog-Sox2-Oct4 network functions in part

to generate population diversity by stochastically interrupting

differentiation signals. Oscillators have been described as mediat-

ing cell-decisions in other biological systems, for example with p53

and NF-kB oscillations in response to DNA damage or other

stimulation. These oscillations are hypothesized to enable discrete

single-cell decisions to achieve a proportionate population-wide

response [50]. Intrinsic noise generated by the oscillator also

affects spatiotemporal clustering in our system (Supplementary

Figures S18 B,E and S19) and natural analogues of this

phenomenon exist. For example, non-genetic sources of cell-cell

variability can cause recently divided cells to react more similarly

to pharmacological treatment [51]. Similarly, lateral inhibition as

proposed in the throttle mechanism of System 4 has also been

observed in biological systems, for example in pattern formation

[52], segmentation [53] or in the Notch signaling pathway [54].

Consistent with these studies, our spatial simulations show strong

bias towards closely spaced alternate cell types in System 4

(Supplementary Figure S18 C).

Our optimization process, as well as the different biological

examples described above, aim at seemingly contradictory

objectives: information has to be processed faithfully from the

population control modules to a commitment signal while, at the

same time, stochasticity has to be amplified to generate

heterogeneity. To achieve the first objective, several of our

modules exhibit digital-like behavior, allowing us to effectively

match components such that downstream modules react appro-

priately and with relative certainty to changes in upstream module

output, attenuating the effects of noise. At the same time, to

generate population heterogeneity, we exploit stochasticity by

amplifying its effects in nonlinear modules operating in a transient

regime. As a consequence, our modules are optimized to exhibit

nonlinear responses to their inputs and, depending on the

objective of the module, are tuned to work far from the transition

regions for robust processing of information, or near the transition

region where the response is highly sensitive to stochastic effects

and hence efficiently generates heterogeneity.

Conclusions and future directions
We present here an integrated framework for forward-

engineering large scale synthetic genetic circuits that combines

several distinct computational approaches, and demonstrate its

application to the design, analysis, and optimization of systems for
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controlling artificial tissue homeostasis. This framework represents

a conceptual advancement for guiding experimental implementa-

tion by introducing hierarchical strategies that coordinate detailed

biochemical models with modular phenotypes and optimization of

module integration, all while considering parametric uncertainty

and incomplete knowledge of the underlying biological context.

With regard to methods development, future work may consider

how to incorporate iterations of computational design with

stepwise experimental implementation. Experiments could be

designed to determine rate constants or high-level properties such

as module phenotypes that most critically impact system perfor-

mance, according to the computational modeling. Future work

may also explore the limits of design automation. Network-level

modeling could benefit from an integration with molecular

modeling for directed optimization of molecular rate constants.

Importantly, the modular design principles described in this work

have been developed in part to facilitate redesign for improved

performance or alternative applications. Artificial homeostasis

systems have a range of potential applications in lower organisms,

including co-culture systems for biosynthetic chemical production

[55], controlled microbial homeostasis for environmental applica-

tions [56], and maintenance of microbial bio-sensors [57]. Medical

applications may include a range of stem cell therapies currently

being researched for treatment of degenerative diseases and

traumatic injuries [58,59]. Forward-engineering efforts such as

those presented here may elucidate roles of heterogeneity and

homeostasis in diseases such as cancer, where tumor diversity

potentially contributes to chemoresistance and metastasis [60].

Beyond guiding experimental implementation of the systems

described herein, we believe the design principles and control

motifs revealed by our analyses may offer more general insights

into the role of population heterogeneity for robust behavior, with

implications for both synthetic and systems biology.

Methods

Experimental implementations of the toggle switch and the cell-

cell communication receiver were performed using immortalized

human embryonic kidney cells (HEK293FT; Invitrogen), further

discussed in the Text S1, Sec. 1. Computational methods and

models utilized a variety of software platforms. We examined

Systems 1–2 using ODE stability analyses and simulations

(described in Text S1, Sec. 2), performed in Maple (Maplesoft;

Waterloo, ON, Canada) and Matlab (MathWorks; Natick, MA).

Systems 2–4 were analyzed using stochastic simulations. Langevin

chemical simulations [35] (Text S1, Sec. 3) were performed using

custom C++ code based on the 2-stage stochastic Runge-Kutta

integration method with optimized parameters as described in

[61]. All equations and parameters are reported in the Text S1,

Sec. 3 and Table S1, respectively. In addition to Langevin

simulations, Gillespie simulations (Figure 6, Text S1, Sec. 4) were

implemented for Systems 2–3 using a standard rate-equation

approach and the Gibson-modified Gillespie algorithm [62].

Transition rates were chosen to match the dynamics of the

Langevin implementations (Table S3). For both the Langevin and

Gillespie simulations, systems were described using a previously

reported multicellular spatiotemporal simulation environment

[15,63]. The simulation platform (written in C++) tracks the

temporal evolution of intracellular reactions within individual cells

that grow and die on a 2D grid. Furthermore, the platform

monitors the spatiotemporal evolution of the cells themselves and

extracellular signaling molecules that diffuse among them (Text

S1, Sec. 2 and 4). We utilized a two-compartment ODE model of

the UPC module for the GA optimizations (Text S1, Sec. 5.3 and

Table S7), and implemented the GA in C++ using a distributed

computing cluster (n = 40 processor nodes). RS-HDMR (Text S1,

Sec. 5.1) was implemented as reported elsewhere [37,64]. A

version of RS-HDMR [64] can be found online at http://www.

aerodyne.com (free for academic users). Partial least squares

regression and support vector machine classification (Text S1, Sec.

6.2) were implemented using standard Matlab functions, and

Bayesian network inference (Text S1, Sec. 5.2.4) was performed in

Matlab using previously described software [65].

Supporting Information

Figure S1 Experimental design and implementation for
the signaling receiver and the toggle switch in mamma-
lian cells. (A) 3OC6HSL mammalian receiver circuit design:

Lux activator is co-expressed with a red fluorescent protein.

Addition of 3OC6HSL induces EGFP expression. (B) Dose-

response of 293FT cells infected with receiver circuit to

3OC6HSL, as measured by FACS. (C) Toggle switch design:

Tet inhibits lac, which is expressed along GFP. Lac inhibits tet

expression, which is coupled to mCherry. (D) Bistability of the

toggle switch for both activation and deactivation. The shaded

gray areas denote incubation with 10mM aTc. Yellow shading

denotes incubation with 0.1 mM IPTG.

(PDF)

Figure S2 Simulations with feedback from all commit-
ted cells on the four-population system. At top, heatmap

shows kc2 & kk influence on b-cell oscillations for System 1, with

kb~1:5, kc1~5, kd~0:1 and n~16. Below the heatmap are

trajectories with feedback from the b-cells (left column) and all

committed cells (middle column), corresponding to parameter

vectors 1–3 in the heatmap. The right column shows an equivalent

two-population system with stem cells (blue line) and committed

cells (red lines). The approximate b-cell population was extrapo-

lated according to Eq. S5 (see Text S1).

(PDF)

Figure S3 Nullclines of the reduced model. (A) Nontrivial

component of nullcline X in the reduced two-population model.

(B) Nullcline Y in the reduced two-population model. (C)

Complete phase-plane in the reduced two-population model. (D)

Nullclines for an example with three nonzero steady states in the

reduced two-population model. (E) Nullcline Y for large Hill

exponents in the reduced two-population model.

(PDF)

Figure S4 Gillespie implementation of System 3. Gille-

spie implementation of System 2 is identical, but without the

oscillator module. Although similar, design details in the

population control modules differ slightly from the Langevin

implementation. Arrowed and barred connections represent

transcriptional activation and repression, respectively. The dashed

connection in the differentiation module represents indirect

transcriptional activation.

(PDF)

Figure S5 Parametric sampling distribution for modu-
lar time-scale analysis. Time scale parameters were randomly

and uniformly varied across one order of magnitude for the time-

scale of each module or component to produce roughly 360

parameter sets for each System (2, 3, and 4). Simulations of each

parameter set yielded a corresponding S/N value, which is plotted

here as a function of the individual time-scale parameters. Each

point represents an individual parameter set. Warmer colors

indicate higher point density; contour lines also indicate point

density. TSQS describes the time-scale of the quorum signaling
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molecules (including diffusion), TSQM denotes the time-scale of

the quorum sensing module (A1, R2, …), and other time-scales are

specific to the components R5, R6, R7 and At.
(PDF)

Figure S6 Population level properties of time-scale
optimized Systems 2, 3 and 4. (A) Signal to noise value (S/

N) for different cell volume V. (B) Signal to noise value (S/N) for

different ratio of stem cell division rate (kb) and b-cell killing rate

(kk). With the time-scale optimization, all systems show an increase

by *5 units of their S/N value.

(PDF)

Figure S7 Oscillator rate constants (see Table S1) were
randomly varied across one order of magnitude around
initial values (uniform distribution in the log space) to
produce roughly 2000 parameter sets. Simulations of each

parameter set yielded a corresponding S/N value, which is plotted

here as a function of the individual parameters. Each point

represents an individual parameter set. Warmer colors and

contour lines indicate higher point density.

(PDF)

Figure S8 Throttle rate constants (see Table S1) were
randomly varied across one order of magnitude around
initial values (uniform distribution in the log space) to
produce roughly 6000 parameter sets. Simulations of each

parameter set yielded a corresponding S/N value, which is plotted

here as a function of the individual parameters. Each point

represents an individual parameter set. Warmer colors indicate

higher point density; contour lines also indicate point density.

(PDF)

Figure S9 RS-HDMR global parametric sensitivity
analysis of oscillator module rate constants (see Figure
S7), describing the influence of parameter variation on
observed S/N. (A) RS-HDMR first-order component functions,

in order of decreasing global sensitivity index Si. (B) Second-order

RS-HDMR component functions in order of decreasing global

sensitivity index Sij .

(PDF)

Figure S10 Inference of the S/N values for Systems 3
and 4. (A) RS-HDMR inference of System 3 S/N value using

oscillator rate constants (A) or oscillator phenotypes (B), and RS-

HDMR inference of System 4 S/N value using either throttle rate

constants (C) or throttle phenotypes (D). The red curve indicates

the distribution of S/N observed in response to parameter

variation in either the oscillator or throttle. Black dots indicate

observed vs. inferred S/N value for individual sets of oscillator or

throttle parameter vectors. Inference accuracy corresponds to R2

values reported in Figure 8E and 8I.

(PDF)

Figure S11 RS-HDMR parametric sensitivity analysis of
the throttle module rate constants (see Figure S8),
describing the influence of parameter variation on
observed S/N. (A) RS-HDMR first-order component functions,

in order of decreasing sensitivity index Si. (B) Second-order RS-

HDMR component functions in order of decreasing sensitivity

index Sij .

(PDF)

Figure S12 S/N values plotted against the different
oscillator phenotypes (as described in Table S4) corre-
sponding to the parameter sets of Figure S7. Multiple

simulations of each parameter set yielded a phenotype in the

isolated System (see Figure 8A) corresponding to the S/N value

evaluated with the whole System 3. Each point represents an

individual parameter set. Warmer colors indicate higher point

density; contour lines also indicate point density.

(PDF)

Figure S13 Standard deviation of the time for R7 to
reach steady state in the throttle module. (A) The standard

deviation of the time for R7 to reach its steady state is measured for

given levels of A3 and external AI3; the colorbar denotes the

standard deviation for 100 independent simulations. (B) Time

trajectories for different combinations of A3 and AI3: (1) the

intermediate case exhibits high variability with switching behavior;

(2) high A3 and low AI3 results in rapid and simultaneous toggle

switching; (3) high AI3 and A3 results in no toggle switching (notice

the different scale on the y-axis). Input A3 and AI3 doses are

introduced into the system at time t~0h as marked by the arrow.

(PDF)

Figure S14 Average heat map for different values of S/N
for the throttle phenotypes (as described in Table S5).
These maps are obtained as the average of the maps resulting from

simulations of parameter sets having similar S/N values.

(PDF)

Figure S15 Scores for the edges of the Bayesian network
of the oscillator module including module parameters
and phenotypes (see Text S1, Sec. 5.2.4). Only the most

significant phenotypes are taken as nodes of the network. For the

Figure 9 A, only edges with scores above 0.8 are shown.

(PDF)

Figure S16 Scores for the edges of the Bayesian network
of the throttle module including module parameters and
phenotypes (see Text S1, Sec. 5.2.4). Only the most

significant phenotypes are taken as nodes of the network. For

the Figure 9 B, only edges with scores above 0.3 are shown.

(PDF)

Figure S17 Population density for different ratios of
division and killing rate. Deterministic simulation with a two-

population model (A,C) and stochastic simulations of the Systems

2, 3 and 4 (B–D) show qualitatively similar results. (A–B) The

population of uncommitted cells remains constant with a small

decrease for low rate ratio. (C–D) The population of committed

cells follows a power law with an exponent near 1 for low ratio and

close to 1=16~0:625 for large ratio. Power laws in (D) are fitted

on the results of System 2, the closest to the ODE model.

(PDF)

Figure S18 Spatial patterning and impact of molecular
noise on the patterning. For a given uncommitted (blue) or

committed (red) reference cell, the Z-score (see Text S1, Sec. 5.4)

indicates the distribution bias of committed neighbors at a given

distance (dashed lines, pv0.01). We performed simulations using the

Langevin models with V~200 (A–C) or V~500 (D–F). For Systems

2 and 4, committed cells are not likely to have committed neighbors

(A,C), whereas System 3 has no significant bias for short distances.

With lower noise (D,E), committed cells in Systems 2 and 3 tend to

cluster, such that committed cells bias to have committed cell

neighbors. (F) System 4 demonstrates enhanced lateral inhibition,

and committed cells bias to not have committed cell neighbors.

(PDF)

Figure S19 Spatiotemporal analysis of System 3 using
the Gillespie model. We define activity for the ‘‘Population

Control’’ (PC) module as the level of Rec2.AI2 complex-bound

promoter for the R5 repressor (pR5.Rec2.AI2). (A) The thick lines

represent the PC activity for uncommitted cells as a function of
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distance from uncommitted (blue) and committed (red) neighboring

cells, averaged over all cells and all time points for a given

simulation. Thin lines represent PC activity +/2 the standard error

of the mean at each distance. (B) Average PC activity for all

uncommitted cells over all time points for a given simulation are

shown as a function of the number of committed neighbors at one

(ordinate) and two (abscissa) grid units away. (C) We measured the

time difference between nearest oscillation peaks of dimerized R1

(R1D) for all pairs of coexistent uncommitted cells throughout a

given simulation. For example, if four uncommitted cells are alive at

a given time point, we would calculate the phase difference among

all of the pairs of cells (six in this case). Average phase difference

increases as the distance between neighboring cells increases (blue

line). The lower and upper black dashed lines represent the first and

third quartiles of the phase difference, respectively. Phase difference

increases as a function of distance because cells closer together are

more likely to have originated from the same parent cell. (D) For a

given uncommitted or committed reference cell, the Z-score (see

Text S1, Sec. 5.4) indicates the distribution bias of committed and

uncommitted neighbors at a given distance (dashed lines, pv0.01).

Patterning was examined for Systems 2 and 3.

(PDF)

Table S1 Parameters for the Langevin models of
Systems 2 to 4.
(PDF)

Table S2 Scaled parameters for the time-scale analysis.
The kinetics parameters (ka

p and ka
d ) from Table S1 are scaled by

the time-scale parameters TSa according to their module. For

each combination of time-scale parameters, the ka
p and ka

d

parameters are used for the Langevin simulations.

(PDF)

Table S3 List of reactions for the full multicellular
model of System 3. Depending on whether the reactions are

associative or dissociative, reaction rates are in units of (molecules

per cell){1(s){1 or s{1.

(PDF)

Table S4 Phenotypes for the oscillator module (see
Figure 8A).
(PDF)

Table S5 Phenotypes for the throttle module (see
Figure 8F).

(PDF)

Table S6 Features used to analyze throttle behavior.
These features were measured for each throttle phenotype (see

Table S5), where ‘‘image’’ refers to the observed phenotype as a

response to the two inputs, A3 and AI3 (see Figure S14).

(PDF)

Table S7 Rate constants for two-compartment model of
the UPC module.

(PDF)

Table S8 Top RS-HDMR identified throttle features
and their corresponding RS-HDMR sensitivity indices,

ST
i (see Figure 8 H).

(PDF)

Table S9 Summary of the advantages and disadvantag-
es of Systems 1–4.

(PDF)

Text S1 Supporting text. Subsections include the following:

(1) experimental proof of concept, (2) methods for the ODE

modeling of Systems 1–2 and related analytical proofs, (3) methods

for the Langevin modeling of Systems 1–2, (4) methods for the

Gillespie modeling of Systems 2–3, (5) methods for results analyses

of Systems 2–4, (6) additional results.

(PDF)
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1 Experimental proof of concept

In recent years, synthetic biology efforts have produced a sizeable number of functional and characterized
elements, ranging from repressors and activators to modules such as the toggle switch, oscillator, and cell
communication systems. The Registry of Standard Biological Parts (http://partsregistry.org/) represents a
collection of such elements [1, 2]. As a proof of concept, here we present experimental results for two critical
components of the systems we aim to build. First, for cell-cell communications we engineered a mammalian
receiver based on the LuxR protein that responds to 3-oxo-hexanoyl-homoserine lactone (3OC6HSL). Second, we
employed two transcription factors, LacI and TetR, to create the toggle switch used in Systems 2-4 (Figures 3 and
4). The Weiss lab is currently developing two other modules needed for these systems: a mammalian 3OC6HSL
sender based on LuxI, and a module to direct stem cell differentiation into insulin-producing pancreatic β-
like cells. The differentiation module functions through stepwise expression of cell-fate regulators. Gata4
expression in stem cells stimulates differentiation into endodermal cells, which activates an alpha-fetoprotein
(AFP) promoter [3]. Preliminary results suggest that ngn3 and pdx1, when fused to the AFP promoter, stimulate
further differentiation into insulin-producing cells (data not shown).

1.1 Cell-cell communication

The mammalian receiver we built consists of a mammalian-optimized LuxR based signal transducer that binds
3OC6HSL and activates transcription from a novel mammalian optimized lux promoter (Figure S1A). We
designed the signal transducer by fusing a p65 activation domain from the mammalian ReLa protein [4] to
a helical linker H4 [5] and the N-terminus of a mammalian codon-optimized LuxRF, a hypersensitive LuxR
mutant [6]. We also appended a nuclear localization signal (NLS) to the C-terminus of this protein. To test
the redesigned receiver circuit (Figure S1A), HEK293FT cells were co-infected with a lentivirus constitutively
expressing p65-H4-LuxRF/DsRed2 and a lentivirus with EGFP under PluxO7 control, demonstrating a highly
functional mammalian 3OC6HSL receiver with an half maximal effective concentration (EC50) of roughly 10µM
(Figure S1B).

1.2 Toggle switch

Our toggle switch consists of two transcription factors, LacI and TetR (Figure S1C), that cross-repress each
other. We fused a Krupple associated box (KRAB) domain to each of the LacI and TetR proteins to ensure
efficient repression. The network design was based on earlier computational models [7] and an E. coli imple-
mentation [8]. Our experimental results indicate that the toggle switch state can be flipped with transient
administration of IPTG and aTc. The system is able to maintain long term stability (>3 days), and the time
required for the switch to reach 50% fluorescence is roughly 34 hours with the addition of aTc and 55 hours
upon IPTG induction (Figure S1D).

1.3 Experimental methods

E. coli XL10-Gold cells were used to clone and propagate plasmids (Agilent; Santa Clara, CA). Cells were grown
in LB broth (Difco, Detroit, MI) with 100µg/mL ampicillin (Sigma, St. Louis, MO) and 50 µg/mL kanamycin
(Shelton Scientific, Shelton, CT) when appropriate. AHL 3-oxohexanoyl-homoserine lactone (3OC6HSL) was
acquired from Sigma-Aldrich.

1.3.1 Mammalian cell culture

293-TetON (Clontech) cells were used to assay plasmids and viruses dependent on rtTA expression. NIH3T3 cells
(ATCC) were used to assay viruses and determine their titer. Polybrene (Sigma) was used at a concentration
of 10 µg/ml for infecting cells. All cells were grown at 37 ◦C and 5% CO2 in a sterile tissue culture incubator.
Media for culturing 293FT/NIH3T3 cells was composed of DMEM (Hyclone), 10% Tet-approved Fetal Bovine
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Serum (Clontech), 1% Penicillin-Streptomycin (Hyclone), and 0.1% Fungin (Invivogen) filtered through a 0.45
µ filter (Nalgene).

Lentivirus production and infection protocols were adapted from [9] using HEK293FT cells, packaging plas-
mids [10], and Superfect transfection reagent (Qiagen). Collected virus was concentrated either by ultrafiltration
using Centricon Plus-70 100 kDa spin filters (Millipore) or by ultracentrifugation at 50000 g for 2.5 hours.
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2 Methods for the ODE modeling of Systems 1-2 and related ana-
lytical results

In this section we discuss results related to analysis of the homeostasis system using ordinary differential
equations (ODEs). We first describe the tissue homeostasis system using a four-population ODE model, but
without any feedback control (termed “System 0”). We then show simulation results for the Systems 0, 1
(includes feedback) and 2 (includes toggle switch) with the four-population model and a corresponding two-
population reduced model, which is equivalent to System 2. In the reduced system, we prove that equilibrium
points exist under certain circumstances. We also show that the committed cell population remains robust to
variations of the killing rate, kk. The proofs are written in a general way and are valid for a broader scope than
the present application.

2.1 System 0: differentiation only

The simplest tissue homeostasis system involves a mechanism that causes cells to differentiate, which we describe
as the differentiation module. We model this system in terms of four cell types. Stem cells (population size
is S) grow at a constant rate kb and mature a constant rate kc1 into endodermic cells (E). Endodermic cells
mature into pancreatic cells (P ) at a rate kc2. Finally, pancreatic cells differentiate at a rate kd into β-cells (B),
which then die at a constant rate kk.

dS

dt
= kb · S − kc1 · S

dE

dt
= kc1 · S − kc2 · E

dP

dt
= kc2 · E − kd · P

dB

dt
= kd · P − kk ·B (S1)

For this system, a non-zero equilibrium exists only if kb = kc1, for any sized equilibrium population S0 > 0. Any
deviation of S0 · kb/kc1 results in unabated proliferation or depletion of S. Moreover, S0 and the equilibrium
β-cell population (B0 = S0 · kc1/kk) are sensitive to any deviation in kc1/kk.

We may also consider an external threshold on cell growth KS , for example representative of nutrient
limitations or contact inhibition:

dS

dt
= kb · S

KS

KS + S
− kc1 · S

dE

dt
= kc1 · S − kc2 · E

dP

dt
= kc2E − kd · P

dB

dt
= kd · P − kk ·B (S2)

This system yields a non-zero stable equilibrium at S0 = kb−kc1
kc1

KS , and B0 = S0 · kc1/kk, so long as kb > kc1.
Even if the stem cell population may be controlled in this scenario, B nevertheless remains highly dependent
on system parameters kb, kc1, and kk. Such sensitive systems represent incomplete solutions to the problem of
tissue homeostasis and are hardly ever observed in vivo; feedbacks ultimately remain critical components of a
robust homeostasis system.

2.2 Convergence and stability in Systems 1 and 2

In System 1, the combination of a long delay (low values of kc1, kc2 and kd) and a nonlinear feedback (large
n) induces undesirable oscillations. As discussed in the main text, reducing the delay in the feedback can
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suppress the oscillations, but even if we engineer feedback within intermediate maturing populations (e.g. E),
there realistically remains at least a two day delay. In System 2, including feedback through the toggle switch
addresses this issue. We examined the difference between feedback control from either the β-cell population
alone (System 1) or all committed cells together, i.e. endodermic, pancreatic and β-cells (System 2, see main
text). Figure S2 demonstrates that including all committed cells in the feedback signal can further stabilize
System 2 compared to System 1. To show the existence of a unique stable equilibrium point for System
2, we sampled all 625 combinations of five different initial values for each population (S ∈ {0.5, 1, 1.5, 2, 2.5},
{E,P,B} ∈ {0, 0.5, 1, 1.5, 2}) for 625 different parameter sets. All trajectories converged to the same equilibrium
point for a given parameter set.

2.3 Reduced two-population model

We reduce the ODE model from a four-population to a two-population abstraction in order to simplify global
stability analysis. We introduce the committed population as a variable C = E+P +B and reduce the system
to the two populations, S and C. Figure S2(third column) reveals consistent dynamics between the two- and
four- population models under certain parameter sets. We can describe the system of four populations as the
following:

dS

dt
= fb(S) · S − fc(S,C) · S

dE

dt
= fc(S,C) · S − kc2 · E

dP

dt
= kc2 · E − kd · P

dB

dt
= kd · P − kk ·B (S3)

where fb(S) represents the control of stem cell division as a function of the number of stem cells and fc(S,C)
represents the control of stem cell commitment as a function of the number of stem and committed cells. With
C = E + P +B, the second equation of (S3) is reduced to:

dC

dt
=
dE

dt
+
dP

dt
+
dB

dt
= fc(S,C) · S − kk ·B . (S4)

At steady state B, the β-cells population, can be expressed as the fraction of C. The following equations
describe the partition of the committed cells for a given equilibrium point (S0, C0 = E0 + P0 +B0):

E0 =
kdkk

kc2kd + kc2kk + kdkk
C0

P0 =
kkkc2

kc2kd + kc2kk + kdkk
C0

B0 =
kdkc2

kc2kd + kc2kk + kdkk
C0 (S5)

Although the fractional composition of C with regards to E, P and β-cells may change dynamically (Figure
S2), it remains a good approximation except for a short transient. Therefore, using the equilibrium populations
(S5), the system (S3) can be written as

dS

dt
= fb(S) · S − fc(S,C) · S

dC

dt
= fc(S,C) · S − kk · C , (S6)

where

kk =
kkkdkc2

kc2kd + kc2kk + kdkk
. (S7)
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2.4 Stability and convergence in the two-population model

The following section proves the existence of equilibrium points in a general system with two populations
and Hill-function feedbacks. With the relations in (S5), we can make a 1:1 correspondence between existing
equilibrium points of the two- and four-population systems. Nevertheless, initial transient responses may differ
between the models (see Figure S2).

In short, we prove that this system has a non-trivial stable equilibrium point when kb > kd. Moreover, at
this equilibrium, we have that S ≥ KS and B ≥ KB , provided that the parameters satisfy kd

kk
≥ 4KB

KS
. In the

case when the condition kb > kd fails, multiple non-trivial equilibria may exist; however, our system is monotone
[11, 12], which insures global convergence to equilibrium even in that case. KS and KB control equilibrium
population levels, and when kd > 4kk, B = KB . Note that the analytical results suggest the necessity of having
a nonlinear function for the feedback (Hill term), which could be biologically realized through cooperative
binding of the signaling elements or a signal cascade.

2.4.1 Model and statements of results

We consider the following general system of two differential equations defined for x = x(t) ≥ 0 and y = y(t) ≥ 0:

ẋ = f(x, y) = kb[1− θx(x)]x− kdθx(x)[1− θy(y)]x
ẏ = g(x, y) = kdθx(x)[1− θy(y)]x− kky (S8)

where kb, kd, kk are positive constants. In the reduced model that we are considering for tissue homeostasis, x
is the stem cell population, y the committed cell population and the constants correspond respectively to the
birth, differentiation and effective killing rates kk. The continuously differentiable functions

θx, θy : [0,∞)→ [0, 1)

are assumed to satisfy:
θ′x(x) > 0 and θ′y(y) > 0 for all x > 0, y > 0

and

θx(1) = θy(1) =
1

2
.

For the main conclusions, we will specialize to the normalized Hill functions:

θx(x) =
xnx

1 + xnx
(S9)

and

θy(y) =
yny

1 + yny
(S10)

where
nx ≥ 1 , ny > 0 . (S11)

With these functions, and for large nx and ny, we have that θx(x) ≈ 0 if x < 1 and ≈ 1 if x > 1, and
θy(y) ≈ 0 if y < 1 and ≈ 1 if y > 1. Thus, the first (growth) term in the definition of ẋ in (S8) will be zero
when the population x is larger than 1, while the second term, which represents the flux from the x to the y
population, will be only nonzero if both x > 1 and y < 1. Intuitively, one would expect a homeostatic behaviour,
which attempts to bring the value of y to a target of 1 while keeping the x population from extinction.

One could consider, more generally, functions θx and θy of the following form, with Vx, Vy,Kx,Ky not
necessarily equal to 1:

θ(s) =
V sn

Kn + sn
,

and replace the terms 1−θ(s) by V −θ(s). This more general situation corresponds to desired values of x ≈ Kx

and y ≈ Ky. We remark that the main conclusions also hold for this more general model. Indeed, (1) the
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coefficients Vx and Vy can be absorbed into the constants kb, kd, kk, and (2) rescaling x and y to, respectively,
Kxx and Kyy, we may take Kx = Ky = 1 without loss of generality, except that the parameter kd in the
equation for y has to be replaced by k′d = kdKS

KB
. However, our results below only rely upon the algebraic form

of the nullclines, the qualitative directions of the flow, and the location of the steady states. Such results remain
invariant when multiplying the equation for y by the constant kd/k

′
d. Thus, we may assume kd = k′d, provided

that we replace kk by kkkd
k′d

= kkKB

KS
. Note, that for the same reasons, we could as well make kk = 1, replacing

kb by kb/kk and kd by kd/kk.

The equilibria are the points at which the x and y nullclines:

X = {(x, y) | f(x, y) = 0} , Y = {(x, y) | g(x, y) = 0}

intersect. Note that there is always an equilibrium at x = y = 0. We are interested in nonzero equilibria.

The main results will be as follows; they are proved in the next section.

Lemma 2.1 The x nullcline X is the union of the line x = 0 and the graph of a strictly increasing and onto
function

ψ : [ξ,∞)→ [0,∞) ,

where

ξ := θ−1
x

(
kb

kb + kd

)
.

See Figure S3A; the arrows in the figure indicate the sign of the x-component of the vector field. Moreover:

• If θx is as in (S9) then ξ → 1 as nx →∞.

• ξ ≥ 1 if and only if kb ≥ kd.

• If θy is as in (S10) and ny > 1, then ψ has a vertical tangent at ξ.

• If both θx is as in (S9) and θy is as in (S10), then for large x the function ψ has the asymptotic form:

y = ψ(x) ≈ c1x
nx
ny with c1 =

(
kd
kb

) 1
ny

(S12)

Lemma 2.2 The y nullcline Y is the graph of a strictly increasing and onto function

γ : [0,∞)→ [0,∞) .

See Figure S3B; the arrows in the figure indicate the sign of the y-component of the vector field. Moreover:

• For all x:

γ(x) ≥ min

{
1,

kd
2kk

θx(x)x

}
and, in particular

γ(x) ≥ min

{
1,

kd
4kk

}
for all x ≥ 1 .

• If kb ≥ kd, then

γ(ξ) ≥ min

{
1,

kd
4kk

}
.

• If both θx is as in (S9) and θy is as in (S10), then for large x the function γ has the asymptotic form:

y = γ(x) ≈ c2x
1

ny+1 , with c2 =

(
kd
kk

) 1
ny+1

. (S13)
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These results suggest that the complete phase diagram is qualitatively as shown in Figure S3C. If there is
a unique positive equilibrium, as in the figure, then the direction of the arrows shows that every trajectory
starting from an initial condition with nonzero x(0) must converge to that positive equilibrium.

However, the figure is misleading. Figure S3D shows a situation where more than one positive steady state
exists. This example has θx as in (S9) and θy is in (S10), with nx = 2, ny = 1, and the following parameters:
kb = 0.15, kd = 4, kk = 0.04.

Thus, to prove that Figure S3C is indeed the correct picture, and global stability to a unique positive
equilibrium holds, we need to impose some constraints on parameters.

Corollary 2.3 If the following condition is satisfied:

kb ≥ kd ≥ 4kk , (S14)

then every equilibrium point (x, y) different from (0, 0) has the property that x ≥ 1 and y ≥ 1.

Corollary 2.4 If both θx is as in (S9) and θy is as in (S10), then there exists at least one positive equilibrium.

Corollary 2.5 In addition to the hypotheses of Corollary 2.4, suppose that kb ≥ kd and nx ≥ 2. Then, there
is at most one positive equilibrium.

We summarize as follows.

Theorem 1 Suppose that:

• θx is as in (S9) and θy is as in (S10),

• nx ≥ 2,

• kb ≥ kd.

Then, there is a unique positive equilibrium (x̄, ȳ). All trajectories, except for those starting with x(0) = 0,
converge to (x̄, ȳ). Moreover, if also

• kd ≥ 4kk

then x̄ ≥ 1 and ȳ ≥ 1.

Remark. It is worth noting that, if θx is as in (S9) and θy is as in (S10), then as nx, ny → ∞, the set Y
takes the limiting form shown in Figure S3E.

To be precise, we show that, as n → ∞, (1) for each fixed x < 1, γ(x, n) → 0 and (2) for each fixed x > 1,
γ(x, n) → 1. To verify (1), we pick any x < 1. As θx(x) → 0 when nx → ∞, also (kd/kk)θx(x)x → 0; since
G−1(0) = 0, we conclude as claimed. To show (2), we pick x > 1, and pick y so that G(y) = (kd/kk)θx(x)x.
If y > 1, then G(y) → +∞ (because θy(y) → 1) as ny → ∞, so for large enough ny, G(y) > (kd/kk)θx(x)x, a
contradiction. If instead y < 1, then 1−θy(y) ≈ 1, and thus (using that kd > kk, and thus also (kd/kk)θx(x)x ≈
(kd/kk)x > 1), as nx → ∞ we have that y ≈ G(y) ≈ (kd/kk)x > 1, contradicting the assumption y < 1. It
follows that y = 1 in the limit, as claimed. This means that, for large Hill exponents, one may expect the value
of y at nonzero steady states to be approximately 1.
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2.4.2 Proofs

Proof of Lemma 2.1

The set X is the union of the line x = 0 and the solution set of

kb(1− θx(x))− kdθx(x)[1− θy(y)] = 0 (S15)

and we are interested in characterizing this latter solution set. We may rewrite the above equation as

1− θy(y) =
kb
kd

1− θx(x)

θx(x)
=

kb
kd

(
1

θx(x)
− 1

)
. (S16)

A solution y = ψ(x) exists if and only if the right hand side is in the range (0, 1], which amounts to saying
(since

kb
kd

(
1

θx(x)
− 1

)
> 0

because θx(x) < 1) that
kb
kd

(
1

θx(x)
− 1

)
≤ 1 .

This property is equivalent to 1
θx(x) − 1 ≤ kd

kb
, that is,

θx(x) ≥ kb
kb + kd

= θx(ξ)

which is the same as asking x ≥ ξ. Thus y = ψ(x) is defined for x ≥ ξ. As both the left and right-hand sides
of (S16) are strictly decreasing functions of their arguments, it follows that ψ is increasing, and it is clearly
differentiable by the same reasoning. Note that ψ(ξ) = 0, by definition of ξ, and that ψ(x) → ∞ as x → ∞,
because θx(x) → 1 as x → ∞, which implies that the right-hand side of (S16) converges to zero, and thus
θy(y)→ 1.

The direction of the vector field is clear from the fact that, for any fixed y, the expression

1

θx(x)
− 1− kd

kb
[1− θy(y)]

is positive when x is very small and negative when x is very large.

Suppose that θx is as in (S9), and use here a subscript nx to indicate its dependence on nx. Pick any ε > 0.
There is uniform convergence θx,nx

(z)→ 0 for z ≤ 1− ε and θx,nx
(z)→ 1 for z ≥ 1 + ε as nx →∞. Therefore,

for each fixed number η ∈ (0, 1), it follows that 1− ε < θx
−1
,nx

(η) < 1 + ε Since ε was arbitrary, this means that

θx
−1
,nx

(η)→ 1 as nx →∞. In particular, applied to η = ξ, we have that ξ → 1 as nx →∞.

Observe that, kb ≥ kd if and only if kb
kb+kd

≥ 1
2 = θx(1). Thus, since θx is an increasing function, kb ≥ kd if

and only if ξ = θ−1
x ( kb

kb+kd
) ≥ θ−1

x (θx(1)) = 1, as claimed.

We next show that if θy is as in (S10) and ny > 1, then ψ has a vertical tangent at ξ. Taking implicit
derivative with respect to x and then a limit as x↘ ξ and y ↘ 0 in (S16), we have that:

ψ′(x) → 1

θ′y(0)

kb
kd

θ′x(ξ)

θx(ξ)2

as x↘ ξ, and therefore this limit is +∞ if θ′y(0) = 0.

The asymptotic form of the nullcline, for large x, when both θx is as in (S9) and θy is as in (S10), is shown
as follows. The equality in (S16) becomes:

1

1 + yny
=

kb
kd

1

xnx
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which means that

ψ(x) =

(
kd
kb
xnx − 1

) 1
ny

≈ c1x
nx
ny

with c1 =
(
kd
kb

) 1
ny

.

This completes the proof of Lemma 2.1.

Proof of Lemma 2.2

The y nullcline set Y consists of the solutions of

G(y) =
y

1− θy(y)
= (kd/kk)θx(x)x .

The function G is continuous and strictly increasing (because θy is strictly increasing), G(0) = 0, and G(y)→∞
as y →∞. Therefore G is invertible, and thus Y is the graph of the strictly increasing function

y = γ(x) = G−1((kd/kk)θx(x)x)

which clearly satisfies that γ(0) = 0. As x→∞, θx(x)→ 1, so θx(x)x→∞, which implies that γ(x)→∞ as
well.

The direction of the vector field is clear from the fact that

g(x, y) = kdθx(x)[1− θy(y)]x− kky > 0

if and only if
G(y) < (kd/kk)θx(x)x

which is the same as y < γ(x), and that the expression is < 0 if and only if y > γ(x).

We claim that:

γ(x) < 1 if and only if γ(x) >
kd
2kk

θx(x)x .

Indeed, suppose that y = γ(x), that is y
1−θy(y) = (kd/kk)θx(x)x. Note that y < 1 is equivalent to θy(y) < 1/2,

which is the same as y
1−θy(y) < 2y. Thus

y < 1 if and only if 2y >
kd
kk
θx(x)x

as claimed. It follows that

γ(x) ≥ min

{
1,

kd
2kk

θx(x)x

}
.

In particular, when x ≥ 1, θx(x) ≥ 1/2, so θx(x)x ≥ 1/2 and therefore kd
2kk

θx(x)x ≥ kd
4kk

If in addition kb ≥ kd, then ξ ≥ 1 by Lemma 2.1, and thus γ(ξ) ≥ min
{

1, kd4kk

}
.

Finally, suppose that θx is as in (S9) and θy is as in (S10). We have that y = γ(x) must satisfy:

y + yny+1 =
kd
kk

xnx+1

1 + xnx

When x → ∞, also y → ∞, so kd
kk

xnx+1

1+xnx ≈ kd
kk
x and y + yny+1 ≈ yny+1. Therefore, y ≈ c2x

1
ry+1 with

c2 =
(
kd
kk

) 1
ry+1

as x→∞ (and so also y →∞).
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Proof of Corollary 2.3

When kb ≥ kd, Lemma 2.1 insures that ξ ≥ 1 and Lemma 2.2 insures that γ(ξ) ≥ min
{

1, kd4kk

}
. Thus, if also

kd ≥ 4kk, it follows that γ(ξ) ≥ 1. Given the forms of the nullclines for x and y, any equilibrium should have
x ≥ ξ ≥ 1. Thus y = γ(x) ≥ γ(ξ) ≥ 1.

Proof of Corollary 2.4

By Lemma 2.1, the function ψ that describes the nontrivial branch of the x nullcline is defined for x ≥ ξ > 0,

with ψ(ξ) = 0, and has the asymptotic form ψ(x) ≈ c1x
nx
ny . By Lemma 2.2, the function γ that describes the

y nullcline has γ(0) = 0 and has the asymptotic form γ(x) ≈ c2x
1

ny+1 . To show a nonzero intersection between
the graphs of these two functions, it suffices to know that ψ(x) > γ(x) for some x. This is clear because, for
some positive constant c:

ψ(x)

γ(x)
≈ c

x
nx
ny

x
1

ny+1

= c x
nx
ny
− 1

ny+1 → ∞ as x→∞

since nx

ny
− 1

ny+1 > 0 (using nx ≥ 1 and ny > 0).

Proof of Corollary 2.5

We must show that there is only one intersection of the zero sets of

kb(1− θx(x)) = kdθx(x)[1− θy(y)]

and
kdθx(x)[1− θy(y)]x = kky .

We can equally well replace the second equation by:

kb(1− θx(x))x = kky .

Thus, it is enough to show that the graphs of these two functions:

α(x) =
kb
kk

(1− θx(x))x

β(x) = θ−1
y

(
1− kb

kd

[
1

θx(x)
− 1

])
(defined for x ≥ ξ, where, as before, θx(ξ) = kb

kb+kd
) intersect at only one point. Since β is a strictly increasing

function defined for x ≥ ξ ≥ 1 (this last inequality uses that kb ≥ kd), with β(0) = 0 and α(x) > 0 for all
x, it is sufficient to show that α′(x) ≤ 0 for x ≥ 1. Indeed, [1 − θx(x)]x = x

1+xnx , so α′(x) vanishes only at

x = x̄ = (nx − 1)−1/nx and is negative for x > x̄. Since nx ≥ 2, nx − 1 ≥ 1, from which it follows that x̄ ≤ 1.
Thus, as required, α′(x) ≤ 0 for x ≥ 1 ≥ x̄.

2.5 Robustness to the rate kk

We present an informal argument to estimate the order of the dependence of the steady state on the degradation
rate kk of y, when all other parameters are kept constant. This is an important property of the homeostasis
system as y, the committed cell population should be independent of external perturbations. We assume that
θx is as in (S9) and θy is as in (S10) and that we are in the asymptotic regime. The nullclines have the forms
in (S12)-(S13):

ψ(x) ≈ c1x
nx
ny with c1 =

(
kd
kb

) 1
ny
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γ(x) ≈ c2x
1

ny+1 , with c2 =

(
kd
kk

) 1
ny+1

.

At equilibrium, ψ(x) = γ(x) gives that x has order kk
p and therefore y = c1x

nx
ny has order kk

q, where

p =
ny

ny − nxny − nx
, q =

nx
ny − nxny − nx

.

If nx = ny = n, these simplify to p = q = −1/n. For example, with nx = ny = 4, we expect that x and y will
grow like kk

−1/4.

2.6 Simulations

We show next nullclines and simulations for these values:

kb = 3, kd = 2, n = 4,

and kk varying by 3 orders of magnitude:

kk = 0.001, 0.01, 0.1, 1 .

Shown below are simulations for x(t) and y(t) (with initial states x(0) = 0.3, y(0) = 0), followed by the
respective x and y nullclines, for values of kk respectively as above. Observe the very weak dependence of the
steady state values x̄ and ȳ on the rate kk, consistently with their order being kk

−1/4, since 0.001−1/4 ≈ 5.6,
0.01−1/4 ≈ 3.16, 0.1−1/4 ≈ 1.78, and 1−1/4 = 1.
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kk = 0.1:
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3 Methods for the Langevin modeling of Systems 2-4

We perform chemical Langevin simulations [13] of the various system designs (Figures 3D-F, 4) and use these
implementations to perform various analyses (Figures 5, 7 and 8). We add modulated white noise to each
reaction at each integration step, with noise amplitude controlled by the parameter Ω. We refer to Ω as ‘cell
volume’, because it relates concentration to molecular count. For example, a volume of 200 denotes that a
particular molecule’s concentration of 1 (which is the average value for most of the active components in our
models) corresponds to a total of 200 molecules per cell. All the equations in the following are written as ODE
to lighten the notation, but are simulated as chemical Langevin equations [15]. For example, for an ODE system
written as

d X

dt
=

m∑
j=1

νjrj(X) ,

where X is the concentration of the different species, νj the stoichiometric vector corresponding to the j-th
column of the stoichiometric matrix and rj the rate function of the j-th reaction. The increment of X for a
time interval τ using the corresponding chemical Langevin equation will be

X(t+ τ) = X(t) +

m∑
j=1

νjrj(X) τ +

m∑
j=1

νj

√
rj(X)

Ω
τ Nj ,

where Nj ∼ N (0, 1) is a normal random variable with mean 0 and variance 1. Note that for the calculus of
rj(X), we used a multiple state procedure as described in [14] for a higher precision.

We aim to optimize the systems such that the number of committed cells remains constant. We define
the objective function as the signal to noise ratio S/N of the fraction of committed cells ρc in a simulation of
duration T :

S/N =
ρc√

1/T
∫ T

0
(ρc(t)− ρc)2

dt
where ρc = 1/T

∫ T

0

ρc(t)dt (S17)

Note that the fraction of committed cells is similar in all systems due to the quorum sensing module (see
Sec. 3.1) and therefore, the S/N value is not biased by large difference in ρc between different systems. S/N
measurement begins after simulations have been allowed to somewhat equilibrate (generally after 500 hours of
simulation).

The following sections detail the equations for Systems 2 to 4. Table S1 summarizes the parameter values for
the three systems. We approximate the evolution of each component in each model (Figures 3-4) to follow a Hill
kinetic with a coefficient of n = 4. kαp and Hα denote the maximum rate and half-rate constant, respectively, for
the component α. Degradation follows mass-action kinetics (rate kαd ) for all components. Finally, we describe
diffusion as a linear function (rate kdiff) of the difference between internal and external (AI) concentrations.
We constrain the maximum number of cells in the simulation (Nmax) to be less than 150.

3.1 Quorum sensing module

In Systems 2-4, uncommitted cells signal through AI1. The toggle switch, comprised of R6 and R7 cross-
inhibition, regulates I1 expression. I1 subsequently controls AI1 production. R7, which is produced only in
committed cells, inhibits AI1 production. In contrast, R6, which is produced only in uncommitted cells, inhibits
the signal for committed cells (AI2). We approximate AI1 and AI2 as being directly dependent upon R6 and
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R7, and we describe the concentration of these components according to the following equations:

d AI1

dt
= kAI1p

Hn
AI1

Hn
AI1 +R7n

−kAI1d AI1

+kdiff(AI1out −AI1) (S18)

d AI2

dt
= kAI2p

Hn
AI2

Hn
AI2 +R6n

−kAI2d AI2

+kdiff(AI2out −AI2) (S19)

The following equations describe the homogeneous extracellular AI concentration:

d AI1out
dt

= −
∑
Cells

kdiff

Nmax
(AI1out −AI1Cells)

−kAI1d AI1out (S20)

d AI2out
dt

= −
∑
Cells

kdiff

Nmax
(AI2out −AI2Cells)

−kAI2d AI2out (S21)

The equilibrium concentrations in uncommitted cells of AI1 and AI2, AI1 and resp. AI2, for given popu-
lation sizes ρu and ρc can be evaluated assuming that the production rate in eq. (S18) and (S19) is either zero
or maximal (kAIαp ) depending on the state of each cell. If the size of both cell populations is expressed as a

fraction of Nmax: ρu = Nu

Nmax
for uncommitted cells and ρc = Nc

Nmax
for the committed cells, AI1 and AI2 can

be written as:

AI1(ρu, ρc) =
kAI1p

kAI1d

(kAI1d + kdiff)(kAI1d + ρukdiff) + ρckdiffk
AI1
d

(kdiff + kAI1d )(kdiff + kAI1d + ρukdiff + ρckdiff)
(S22)

AI2(ρu, ρc) =
kAI2p

kAI2d

ρck
2
diff

(kdiff + kAI2d )(kdiff + kAI2d + ρukdiff + ρckdiff)
(S23)

The production of the component A1 (or for System 4, the repressor R1) is controlled by the receptor Rec1
to which AI1 binds. Similarly, AI2 binds to Rec2 and activates the production of the repressor R2. In this
model, we simplify the expressions of A1/R1 and R2 as depending directly on the concentration of AI1 or AI2
following a Hill-type equation. In all systems, the half-rate constants for the production terms of A1/R1 and R2
within the population control modules, is adjusted to trigger the cell-decision processes for a threshold of the
fraction of uncommitted cells ρu around 0.45 and of committed cells ρc around 0.4. It means that the half-rates
are equal to AI1(ρu = 0.45, ρc = 0.4) for A1/R1 production and AI2(ρu = 0.45, ρc = 0.4) for R2 production as
defined above. Therefore,

d A1

dt
= kA1

p

AI1n

Hn
A1 +AI1n

with HR1 = AI1(0.45, 0.4)

−kA1
d A1 for Systems 2 and 3 (S24)

d R1

dt
= kR1

p

Hn
R1

Hn
R1 +AI1n

with HR1 = AI1(0.45, 0.4)

−kR1
d R1 for System 4 (S25)

d R2

dt
= kR2

p

Hn
R2

Hn
R2 +AI2n

with HR2 = AI2(0.45, 0.4)

−kR2
d R2 (S26)
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3.2 AND gate and toggle switch

The AND gate integrates the information from the two quorum sensing modules (and the oscillator or the
throttle in Systems 3 and 4, respectively). The AND gate in Systems 3 and 4 include an activator A3, and
System 3 also includes an additional repressor (R4). R5 serves as the output and interacts with downstream
modules (e.g., the toggle switch in Systems 2-4). The System 2 AND gate only contains R5, which we describe
by the following equation:

d R5

dt
= kR5

p

A1n

Hn
R5−1 +A1n

Hn
R5−2

Hn
R5−2 +R2n

−kR5
d R5 (S27)

In System 3, the AND gate includes two additional elements (A3 and R4):

d A3

dt
= kA3

p

A1n

Hn
A3−1 +A1n

Hn
A3−4

Hn
A3−4 +R4n

−kA3
d A3 (S28)

d R4

dt
= kR4

p

Hn
R4

Hn
R4 +Ro2n

−kR4
d R4 (S29)

d R5

dt
= kR5

p

A3n

Hn
R5−3 +A3n

Hn
R5−2

Hn
R5−2 +R2n

−kR5
d R5 (S30)

In System 4, the throttle acts on R5 through the signaling molecule AI3. Furthermore, System 4 includes
A3:

d A3

dt
= kA3

p

Hn
A3−1

Hn
A3−1 +R1n

Hn
A3−2

Hn
A3−2 +R2n

−kA3
d A3 (S31)

d R5

dt
= kR5

p

A3n

Hn
R5−3 +A3n

Hn
R5−t

Hn
R5−t +AI3n

−kR5
d R5 (S32)

The toggle switch consists of the two repressors, R6 and R7, which inhibit each other. Cells initially have
the toggle in the uncommitted state, with high R6 and low R7. R5 controls toggle switching by inhibiting R6.
The equations for R6 and R7 are the following:

d R6

dt
= kR6

p

Hn
R6−5

Hn
R6−5 +R5n

Hn
R6−7

Hn
R6−7 +R7n

−kR6
d R6 (S33)

d R7

dt
= kR7

p

Hn
R7

Hn
R7 +R6n

−kR7
d R7 (S34)

The equation for R7 differs for System 4, and is discussed below.

3.3 Cell fate

We describe uncommitted cells as potentially proliferative and immortal. In contrast, committed cells cannot
grow but rather die. We model the control of proliferation in uncommitted cells using growth arrest factor



Synthetic biology design, SI 17

(GAF ), which is regulated by quorum sensing activity. We model differentiation as potentiated by the expression
of a transcription factor such as GATA4. Once above a certain threshold, GATA4 initiates slow cell death as
approximated by a kinetic model described below.

3.3.1 Division process

GAF is controlled by A1/R1 (quorum sensing of the uncommitted cells):

d GAF

dt
= kGAFp

A1n

Hn
GAF +A1n

−kGAFd GAF for Systems 2 and 3 (S35)

d GAF

dt
= kGAFp

Hn
GAF

Hn
GAF +R1n

−kGAFd GAF for System 4 (S36)

The cell grows if GAF lies below a threshold thGAF . To model growth, we use an integrator for the division
depending on GAF level,

d Div

dt
= kbΘ(thGAF −GAF )− kb

3
Θ(GAF − thGAF )

with Div = 0 at the time at cell division and Θ represents the Heaviside function (Θ(x) = 0 if x < 0 and
Θ(x) = 1 if x ≥ 0). kb denotes the division rate. We choose kb = 1

96h
−1, such that the average time for

division (in absence of GAF ), is set to 96h. Division occurs when Div(t) ≥ 1. The two daughter cells inherit
all concentrations of the mother cell’s components except Div, which is reset to zero.

3.3.2 Commitment process

R6 inhibits GATA, and GATA production begins when the toggle switches to low R6:

d GATA

dt
= kGATAp

Hn
GATA

Hn
GATA +R6n

−kGATAd GATA (S37)

When GATA concentration reaches a threshold, the cell becomes differentiated and no longer proliferates. We
describe the lifetime of committed cells by the following:

d Death

dt
= kk

with Death = 0 at the time of differentiation and kk denotes the death rate. A cell dies when Death reaches 1.
We choose kk = 1

200h
−1, such that the average time for the death of a β-cell is set to 200h.

3.4 System 3 – implementation of an oscillator

To break symmetry between individual cells in the population, oscillations are introduced through a relaxation
oscillator with a design similar to previous experimental studies in prokaryotic and eukaryotic cells [16, 17, 18, 19,
20, 21]. The simplest possible oscillator is made of a component Ao that activates itself (autopositive feedback)
and regulates the expression of a repressor Ro that inhibits Ao. Two successive components integrate oscillator
dynamics with the AND gate. A second repressor Ro2 acts on R4, which in turn represses commitment. With
proper parameter values, this system generates short intervals of low R4, with an irregular latency where R4
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concentration remains high. The equations of the oscillator are as follows:

d Ao

dt
= kAop

(
kAo0 +

Aoscn

Hn
Ao−A +Aon

)
Hn
Ao−R

Hn
Ao−R +Ron

−kAod Aosc (S38)

d Ro

dt
= kRop

Aon

Hn
Ro +Aon

−kRod Ro (S39)

d Ro2

dt
= kRo2p

Aon

Hn
Ro2 +Aon

−kRo2d Ro2 (S40)

Linking the oscillator and the quorum sensing module to the toggle switch occurs in two steps as described
above. The element A3 is controlled by both A1 and R4, therefore A3 is produced only when A1 is high (enough
uncommitted cells) and R4 is low.

3.5 System 4 – implementation of a throttle

We implement a throttle design involving a third quorum sensing molecule, AI3, as another mechanism to inhibit
the simultaneous commitment of cells in a population. We design the activator At to control the production of
AI3, such that AI3 is produced transiently when the toggle is switching. AI3 diffuses through the membrane
and gives rise to an external concentration AI3out that enters other cells. The throttle equations are as follows:

d At

dt
= kAtp

Hn
At−6

Hn
At−6 +R6n

−kAtd At (S41)

d AI3

dt
= kAI3p

Atn

Hn
AI3−t +Atn

Hn
AI3−7

Hn
AI3−7 +R7n

−kAI3d AI3

+kdiff(AI3out −AI3) (S42)

d AI3out
dt

= −
∑
Cells

kdiff

Nmax
(AI3out −AI3Cells)

−kAI3d AI3out (S43)

The remaining elements are similar to System 2, except for two key differences: first, the addition of A3 (see
Eq. S31 and S32), and second, the control of R7 by At instead of R6:

d R7

dt
= kR7

p

Atn

Hn
R7 +Atn

−kR7
d R7 (S44)

3.6 Spatial simulations

We implement spatially resolved multicellular simulations using the Langevin model to analyze spatiotemporal
commitment patterns (discussed further in Supplementary Text 5.4). We represent the spatial distribution of
individual cells in a manner similar to that employed in the Gillespie-simulations (discussed in the following
section). The extracellular volume of the system is divided into a 6x5x5 grid with Nmax = 150 boxes, each with
the same volume as a cell. Each cell occupies one box on the grid. Diffusion can occur between the cell and
its box or between the boxes. As diffusion is physically faster than any other process in the cell, we simulate
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it as an ODE without the Langevin noise term. Diffusion occurs from one edge to edge (periodic boundary
conditions) in order to mimic a larger system and avoid border effects. A dividing cell can push neighboring
cells into the nearest empty box; therefore, daughter cells are adjacent at time of division.
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4 Methods for the Gillespie modeling of Systems 2-3

In addition to the Langevin model, we implement more mechanistically detailed models of Systems 2 and 3
that do not make quasi-steady-state assumptions for many of the network components. We use these models
primarily for analysis of hysteresis in the UPC module (see section Clustered sensitivity analysis in the main
text), but also use the Gillespie models to confirm several results observed in the Langevin simulations (including
patterning analysis). We use a standard rate-equation approach and monitor the spatiotemporal evolution of
cells, proteins, and signaling molecules with a Gibson-modified Gillespie algorithm. We describe the full tissue
homeostasis system as a set of discrete stochastic reactions occurring in cells using a previously described
multicellular spatiotemporal simulation environment [22, 23]. The simulation platform tracks the temporal
evolution of intracellular reactions within individual cells that grow on a 2D grid, as well as the spatiotemporal
evolution of the cells themselves and extracellular signaling molecules that diffuse among them. We model
cell growth as a stochastic buildup of a species “Volume” that triggers cell division upon reaching a threshold.
We model growth inhibition as the binding of GAF to a “Volume” precursor, thereby inhibiting “Volume”
accumulation. “Volume” levels divide with cell division, and newly created cells form adjacent to their parents
on the 2D grid. If needed, neighboring cells are “pushed” to adjacent grid positions in order to make room for
newly divided cells.

4.1 Gene network design

The overall designs of Systems 2 and 3 are generally similar to the Langevin implementations in network
topology (Figure 3-4) but contain more details about the receptor and the UPC model (Figure S4).

We model repressors and activators binding to a gene’s promoter, thus changing transcription and translation
rates. Repressors such as TetR-KRAB fusion protein and activators such as VP16-AraC fusion protein fit this
model and have been previously implemented in mammalian synthetic genetic networks [24]. Our model of
engineered cell-cell communication in a mammalian system is based on bacterial two-gene QS systems, such as
rhlI/rhlR in Pseudomonas (P.) aeruginosa [25] and luxI/luxR in Vibrio (V.) fischeri [26]. QS systems have
previously been used in synthetic gene networks to engineer cell-cell communication in both bacteria [27] and
mammalian cells [28]. Generally, one protein (LuxI or RhlI, modeled generically as I1 and I2) catalyzes synthesis
of a freely diffusing small molecule, known as an autoinducer (AI), specific to a particular QS system (modeled
here as AI1 and AI2). A receptor protein (LuxR or RhlR, modeled generically as Rec1 and Rec2) binds the
appropriate intracellular autoinducer. The resulting complex acts as an activating transcription factor similar
to activators described above, and is engineered to reach high concentration when population density reaches a
“QS threshold.” Other artificial signaling pathways, for example those previously engineered in yeast [29], may
also be implemented. As with the Langevin models, the proposed circuit design can be described in terms of six
key modules: “Uncommitted Population Control” (UPC), the “Oscillator”, the “Committed Population,” the
“AND” gate module, the “Toggle Switch” module, and the “Differentiation” module (see Figure 4A). Model
reactions and rates are listed in Table S3.

The following section discusses the genes that comprise these modules and qualitatively discusses system
dynamics. Each of the fourteen individual genes comprising the genetic modules belong to one of five categories:
quorum sensing (QS) genes, repressors, activators, growth arrest factor, and cell-fate regulators. As discussed
in the main part of the paper, repressors and activators are referred to generically as (Ro, Ro2,...) and (Ao,
A3,...). QS molecular species adapted to a mammalian host from gram-negative bacterial communication are
referred to as LuxR homologues (Rec1 and Rec2), LuxI homologues (I1 and I2), and cognate autoinducers
(AI1 and AI2).

4.1.1 The UPC Module

In the UPC module, population control of uncommitted cells is controlled through a cell-cell communication
system involving two proteins, I1 and Rec1. I1 catalyzes synthesis of AI1, which diffuses freely across cell
membranes and acts as an intercellular biochemical signal. AI1 binds Rec1, a receptor protein. The resultant
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complex is an activating transcription factor (Rec1.AI1) that can bind specifically engineered promoters of
various genes [30]. In our system, Rec1.AI1 binds the promoter of I1, causing activated transcription of that
gene. The positive feedback in I1 expression produces nonlinear response to increasing AI1, ultimately leading
to a step-like function in Rec1/I1 expression as population density increases. Within the UPC module, Rec1.AI1
binds the promoter for growth arrest factor (GAF) and activates its transcription when uncommitted population
density is above the QS threshold. Once cells commit to differentiation via switching of the toggle switch
(discussed later), expression of I1 is inhibited by R7. This repression allows I1 expression, and consequently
AI1 concentration, to be reflective only of uncommitted population density.

4.1.2 The Committed Population

With the switch to commitment and to high R7 expression, gene I2 is no longer repressed by R6. I2 catalyzes
synthesis of AI2, which binds Rec2 to form the complex Rec2.AI2. Rec2.AI2 activates both I2 and Rec2
expression through a double-positive feedback mechanism. As with the Rec1/I1 QS system used in the pop-
ulation control module, positive feedback creates a sharp gain in AI2 production as the population density of
committed cells increases.

4.1.3 Symmetry Breaking Oscillator

To break symmetry between individual cells in the population, oscillations are introduced through a relaxation
oscillator with a design similar to previous experimental studies in prokaryotic and eukaryotic cells [16, 17, 18,
19, 20, 21]. Ao activates expression of itself and two repressors, Ro and Ro2. Ro in turn represses Ao expression.
Ro and Ro2 are activated as Ao levels increase. Ro subsequently represses further expression of Ao and, as
Ao levels decrease, Ro expression is inactivated. As Ro levels fall to a sufficiently low level (due to inactive
transcription), Ao again is freely expressed. Ro is modeled as a slowly degrading protein to maximize oscillation
period, and Ro2 is designed as a relatively fast decaying protein to minimize periods of high Ro2.

4.1.4 The AND Gate

The AND gate module regulates the commitment of individual cells to differentiate. Rec1.AI1 interfaces with
the commitment module through binding the A3 promoter and activating A3 expression. A3 expression is high
only when the uncommitted population is high (Rec1.AI1 is bound to the A3 promoter at high levels) and the
oscillator peaks (Ao is high). Ro2 output from the oscillator (high when Ao is high) represses R4, which in
turn represses A3. Even when bound by Rec1.AI1, A3 expression is repressed when R4 is bound. A3 activates
expression of the repressor R5. R5 subsequently interacts directly with the toggle switch. The “committed
population” module interfaces with the AND module through Rec2.AI2 activation of Ro2. Ro2 represses R5
expression regardless of whether A3 is bound to the R5 promoter. Ro2 is high when the population of committed
cells is high, thereby repressing further commitment. R5 expression is activated only when (1) uncommitted
population density is high, (2) the oscillator is high, and (3) committed population density is low.

4.1.5 The Toggle Switch

The toggle switch defines whether an individual cell is uncommitted or committed. The bi-stable toggle switch
consists of two mutually inhibitory repressors: R6 and R7. High expression of one repressor inhibits expression
of the other. The switch is initially set to high R6 levels in uncommitted cells. This can be accomplished in
engineered systems through the introduction of an inducer that inactivates R7. For example, if R7 was LacI,
transient addition of IPTG would stably set the toggle switch to high R6. When the AND module output
is high, R5 represses R6 expression, thus allowing R7 to be expressed. R7 then represses R6, stabilizing the
toggle switch in the high R7 state. To increase the bi-stability of the switch, multiple repressor binding sites
are incorporated into each of the promoters of the switch. The transition from high R6 to high R7 expression
in the toggle switch signifies commitment to differentiation. R7 represses I1 expression in the UPC module,
causing repression of AI1 expression.
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4.1.6 The Differentiation Module

With the switch to commitment, subsequently low R6 levels allow differentiation to occur through unrepressed
expression of cell fate regulators. For differentiation into pancreatic β-cells, for instance, the unrepressed cell
fate regulator could be an endoderm-directing cell fate regulator such as Gata4. In order to describe Gata4
as inducing differentiation into endoderm cells, cells are modeled as having a one way toggle switch involving
the factors that sustain either the undifferentiated or differentiated state. As a cell-fate regulator, Gata4 is
modeled as inducing the switch from the undifferentiated to differentiated state. Because differentiated cells
exhibit significantly lower growth rates and higher death rates as compared to stem cells, differentiated cells
are modeled as accumulating killer protein (“E”) and being unable to grow. When killer protein levels reach a
given threshold, the cell dies.

Differentiation may be successfully directed if guided by stepwise expression of various cell-fate regulators
at critical points in the differentiation pathway. Promoters have been identified which are only active in certain
cell types. For example, the Alpha-FetoProtein promoter (pAFP) is only active in cells that have differentiated
into endoderm cells. Such promoters could be used for the sequential expression of key transcription factors
at specific points along the differentiation pathway. As described in this circuit, the pancreas specific cell-fate
regulator genes pdx1 and ngn3 are fused downstream of pAFP. Thus once the cell reaches the endoderm stage,
pdx1 and ngn3 expression is activated, and differentiation is further directed into a β-cell fate.
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5 Methods for results analyses of Systems 2-4

5.1 RS-HDMR sensitivity analysis

RS-HDMR is a tool to deduce non-linear interactions between a set of inputs and an output [31]. In this work, we
use RS-HDMR in multiple distinct applications. RS-HDMR describes the independent and cooperative effects
of n parameters x = (x1, x2, ...xn) on an output, y = f(x), in terms of a hierarchy of RS-HDMR component
functions:

f(x) = f0 +

n∑
i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + ...+ f12...n(x1, x2, ...xn) (S45)

Here f0 represents the mean value of f(x) over the sample space, the first-order component function fi(xi)
describes the generally non-linear independent contribution of the ith input variable to the output, the second-
order component function fij(xi, xj) describes the pairwise cooperative contribution of xi and xj , and further
terms describe higher order cooperative contributions. In this work, we generally consider first-, second-, and
third-order RS-HDMR component functions. We approximate RS-HDMR component functions as weighted
orthonormal basis functions, which take the following form:

fi(xi) ≈
k∑
r=1

αirϕ
i
r(xi) (S46)

where k is an integer (generally ≤ 3 for most applications), {α} are constant weighting coefficients to be
determined, and the basis functions {ϕ} are optimized from the distribution of sample data points to follow
conditions of orthogonality [31]. Basis functions are approximated here as non-linear polynomials, where

ϕi1(xi) = a1xi + a0 ϕi2(xi) = b2x
2
i + b1xi + b0 ϕi3(xi) = c3x

3
i + c2x

2
i + c1xi + c0 (S47)

The coefficients a0,a1,b0,...c3 are calculated using Monte Carlo integration under constraints of orthogonality,
such that when integrated over all data points,

∫
ϕr(x)dx ≈ 0 ∀ r

∫
ϕ2
r(x)dx ≈ 1 ∀ r

∫
ϕp(x)ϕq(x)dx ≈ 0 (p 6= q) (S48)

Optimal basis functions are weighted by coefficients (αir), which are calculated from least-squares regression.
Only inputs and their respective component functions measured as significant by the statistical F -test were
included in RS-HDMR expansions [32]. The resultant expansion in Eq. S45 serves both as a predictive model of
network response due to its parametric interactions and as a statistical representation of the underlying system.

The relative strength of response to parametric changes can be quantitatively determined through sensitivity
analysis based on the respective RS-HDMR component functions. A global sensitivity analysis may be calculated
from the RS-HDMR expansion through a decomposition of the total variance σ2 of an output species, f(x), into
hierarchical contributions from the individual RS-HDMR component functions. For each RS-HDMR expansion,
the total sensitivity/variance σ of the output f(x) is decomposed into hierarchical contributions (σi, σi,j , . . .)
from the individual RS-HDMR component functions of the remaining input variables:

1 =

n∑
i=1

Si +
∑

1≤i<j≤n

Sij + ...+ Sε (S49)

In Eq. (51), Si = σ2
i /σ

2 is defined as the sensitivity index of the corresponding RS-HDMR component function,
fi(xi). Sij = σ2

i,j/σ
2 is the sensitivity index of the corresponding second-order component function, fij(xi, xj).

Sε is the sensitivity index of the residual variation of the model. The collection of sensitivity indices Si,



Synthetic biology design, SI 24

∑n
j 6=i Sij ,

∑n
j 6=i
∑n
k 6=i,j Sijk corresponding to first, second, and third order component functions of the input

variable xi can then be summed into an index STi (i = 1, 2...n), describing both independent and higher-order
effects of xi on an output. The magnitudes of STi (i = 1, 2, ..., n) can be used to quantify the relative interaction
strength between the outputs and the inputs.

5.2 Langevin model analysis

5.2.1 Time-scale optimization

Time-scale optimization involves multiplying rate constants by a scalar TS parameter while preserving the
ratio of closely related rates (see Table S1). We scale the rate kp (production rate), kd (degradation rate)
and kdiff (diffusion rate) of all components in the quorum signaling module by a factor TSQS ∈ [ 1

3 , 3]. We
perform analogous scaling for the quorum sensing module (TSQM ∈ [ 1

3 , 3]). For the commitment module, we
independently analyze three individual components. TSR5 ∈ [ 1

3 , 3] scales kR5
p and kR5

d . TSR6 ∈ [ 1
3 , 3] and

TSR7 ∈ [ 1
3 , 3] denote analogously lumped parameters. For System 4, we include an additional parameter for the

dynamics of the component At (TSAt ∈ [ 1
3 , 3]). For Systems 2 & 3, we analyze five total time-scale parameters.

We analyze six time-scale parameters in System 4 (see Table S2). We randomly sample the time-scale space
from a log-uniform distribution over one order of magnitude for each parameter, ultimately generating 360
independent parameter sets (Figure S5). For each time-scale set, we average the observed S/N over eight
simulations. We perform RS-HDMR analysis to map the input-output relationships between the time-scale
parameters (inputs) and their corresponding S/N, the output (Figure 5C-F). We excluded 30% of the dataset
to cross-validate RS-HDMR inference and used the remaining 70% of the data as the training set. RS-HDMR
inference results indicated consistent fitting accuracy between the test and training sets.

5.2.2 Robustness to variations of molecular noise amplitude

To test the influence of stochastic fluctuations in the models, we changed the volume from 40 to 1400 as shown
in Figures 5A and S6. For each value of Ω, 24 simulations are performed and the average S/N value is recorded.
Error bars in these plots indicate standard deviation of the results for the 24 simulations.

5.2.3 Robustness to variation of the killing rate kk

To test the influence of the killing rate in the models, we change the value of kk from 45 to 550 hours (corre-
sponding to a ratio kb/kk of 0.5 to 6) as shown in Figures 5B and S6. For each value of kk, 24 simulations are
performed and we record the average S/N value and the average committed population density. Error bars in
these plots indicate standard deviation of the results for the 24 simulations.

5.2.4 Module optimization

We randomly and independently modified twelve parameters involving the oscillator in System 3 (Figure 7A),
and nine parameters involving the throttle in System 4 (Figure 7G), to understand the impact of parameter
variation on module properties and, ultimately overall S/N. We randomly sampled the parameter space from
a log-uniform distribution, one order of magnitude around the nominal values for each parameter (see Table
S1). We generated 2000 independent parameter sets for the oscillator and roughly 6000 parameter sets for
the throttle. For each parameter set, we simulated system behavior with the Langevin models and recorded
the observed S/N value (average of 16 independent simulations). We also performed simulations where the
module is isolated from the system and focus on different phenotypes of the module. For System 3, we isolate
the oscillatory module (Figure 7A) and record the properties for the R4 component (output of the module) as
described in Figure 8A and Table S4. For System 4, we isolate the throttle (Figure 7G) by analyzing the toggle
response (AI3 and R7 concentrations) to independently (exogenously) modulated inputs of A3 (signal from the
QS modules) and AI3 (signal from adjacent cells), as shown in Figure 8F. For the isolated throttle, produced
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AI3 is kept separate from the input of AI3 and therefore does not act on R5. We focus on changes in R7
and AI3 concentrations in response to exogenously controlled combinations of A3 and AI3 as inputs (see Table
S5). For the oscillator, each tested parameter set yields a single value for each phenotype. In contrast, we test
the isolated throttle with combinations of different A3 and AI3 inputs. Therefore, for each throttle parameter
set, we obtain a 2-dimensional grid for each phenotype with 11 sampled values of A3 (0.07, 0.16, . . . , 0.97)
and 18 sampled values for AI3 (0.06, 0.12, . . . , 1.08). These input values were chosen based on A3 and AI3
concentrations observed in the full system simulations.

We performed several types of analysis on both Systems 3 and 4 to understand the relationships between
the module rate constants, the module phenotypes, and corresponding S/N of the full system (Figures 7, 8 and
S7-S14). We perform RS-HDMR analysis using either rate constants, module phenotypes, or both as inputs to
describe the system output, S/N. Because throttle phenotypes are described as a function of two inputs (A3
and AI3), we describe the two-input functions (“images”) of each phenotype (see Figures S13-S14) as a set of
features (see Table S6). For features extracted using regionprops(), images were thresholded at various levels,
digitized accordingly, and then analyzed. regionprops() calculates properties such as “Centroid,” and “Filled
Area” for the region of an the image falling above a particular threshold; we used both relative thresholds,
such as > 90% max value, and absolute thresholds for this analysis. For features extracted using graycoprops,
images were first converted to gray-level co-occurrence matrices. Overall, we extracted roughly 10,000 features
from the original 16 phenotype images. We performed partial least squares regression (PLSR, plsregress(),
Matlab, Natick, MA) using the 10,000 features as inputs, and ranked features by their variable importance in
the projection (VIP) [33]. The 20 most significant variables were then analyzed by RS-HDMR. Table S4 shows
the most significant features identified by RS-HDMR. Even with the reduced number of features, RS-HDMR
inference performs with roughly equal or better accuracy compared to partial least squares regression in all
cases tested.

We used Bayesian network analysis to produce graphical representations of the conditional probabilistic
dependencies of the module rate-constants and phenotypes on each other and on overall S/N. Directed graph
structures produced by Bayesian network inference consist of “nodes”, which in this application are the module
phenotypes and S/N, and “edges”, which represent conditional probabilistic relationships between the nodes.
Bayesian network inference was performed as described previously [34]. Briefly, we derived consensus directed
graph structures from exact Bayesian network model averaging over all directed acyclic graph (DAG) structures
having at most four parents per node [35, 36]. Consensus networks for Systems 3 and 4 (Figure 9) only include
those edges with a score > 0.8 and > 0.3, respectively, where an edge score of 0.8, for example, denotes that
80% of the derived Bayesian networks tested over all iterations of optimization include that edge. Although
our implementation of Bayesian inference cannot capture cyclical feedback, bi-directional edges can be observed
with model averaging when using a significance threshold below 0.5. The bi-directional edges reported in System
4 (Figure 9B) arise from observation of both edge directions above the 0.3 threshold. For System 3, we ranked
phenotypes and rate-constants by their VIP score after performing PLSR as referred to above, and analyzed the
top 15 most significant rate-constants and phenotypes using Bayesian inference. For System 4, we analyzed the
9 most significant module phenotypes (as determined by their VIP), along with all 9 module rate-constants. For
both systems, we only considered DAGs with directed edges from module phenotypes to the “S/N” node (i.e.,
we defined module phenotypes as strictly upstream of S/N), and we specified rate-constants as strictly upstream
of both the module phenotypes and S/N. From these constraints, we consequently inferred directionality from
the remaining edges. We iteratively removed nodes that were not upstream of S/N in the consensus network,
and recalculated the consensus network structure. As a result, the final network structures are comprised of S/N
and only those nodes upstream of S/N at the chosen significance threshold. Prior to network inference, nodes
were discretized using two, three, and four-level k-means clustering with squared Euclidean distance metric
and 50 iterations. Bayesian inference results across the three types of k-means clustering were then averaged.
Software used for Bayesian network inference has been previously described [35].

5.3 Analysis of a two-compartment ODE model of the UPC module

We implement the full model (Systems 2 and 3) as a system of discrete stochastic reactions using an established
multicellular, spatiotemporal simulation platform [22, 23] (see section 4). Because computational costs of
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running this platform are high, we can turn to a simpler simulation framework for high-throughput sampling
and optimization of rate-constants within individual subnetworks of the full system model. We employ a
deterministic, two-compartment ordinary differential equation (ODE) model of the UPC module for efficient
genetic algorithm (GA) optimization and sensitivity analysis of a portion of the full system stochastic model.
(See the following page for specific equations and a table of rate constants.) Intracellular reactions of the
ODE system use identical rate constants to those in the stochastic model, with the standard correction for
dimerization reactions [37]. We approximate individual cells within the population as identical to reduce the
complexity of the ODE system. We model diffusion as occurring between a variable population density and a
homogeneous extracellular volume, thus neglecting the effect of spatial signaling gradients. Using kdiff as the
rate of diffusion across a cell membrane, kc as the rate of AI decay, and ρp as the population density of cells in
the culture, concentration of AI outside of the cell ([AIout]) is described by the following equation:

d [AIout]

dt
= ρpkdiff ([AIin]− [AIout])− kc [AIout] (S50)

where [AIin] represents the concentration of AI within the cells. As with the stochastic simulator, cell density
and concentration of species within cells are approximated as uniform. In the ODE model, we also approximate
the concentration of extracellular AI as homogeneous. We describe diffusion in and out of individual cells as
independent of population density (at least explicitly, by exclusion of ρp), such that

d [AIin]

dt
=
∑
i

fin(x) + kdiff ([AIout]− [AIin])− kc [AIin] (S51)

where
∑
i fin(x) represents the sum of all i = 12 intracellular reactions described on the following page and in

Table S6.
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d [pI1]

dt
= k2 [pI1.Rec1.AI1] + k3 [pI1.Rec1.AI1]− k1 [pI1] [Rec1.AI1]

d [pRec1]

dt
= 0.0

d [LuxI]

dt
= k0 [pI1] + k4 [pI1.Rec1.AI1]− k10 [LuxI]

d [Rec1]

dt
= k9 [pRec1]− k11 [Rec1]− k7 [Rec1] [AI1in] + k8 [Rec1.AI1]

d [AI1in]

dt
= −k7 [Rec1] [AI1in] + k8 [Rec1.AI1] + k5 [LuxI]

−k6 [AI1in] + k17([AI1out]− [AI1in])

d [Rec1.AI1]

dt
= k7 [Rec1] [AI1in]− k8 [Rec1.AI1]− k3 [Rec1.AI1]

+k2 [pI1.Rec1.AI1]− k1 [pI1] [Rec1.AI1]

−k15 [pA2] [Rec1.AI1] + k16 [pA2.Rec1.AI1]

d [pI1.Rec1.AI1]

dt
= −k2 [pI1.Rec1.AI1] + k1 [pI1] [Rec1.AI1]− k3 [pI1.Rec1.AI1]

d [pA2]

dt
= −k15 [pA2] [Rec1.AI1] + k16 [pA2.Rec1.AI1] + k3 [pA2.Rec1.AI1]

d [pA2.Rec1.AI1]

dt
= k15 [pA2] [Rec1.AI1]− k16 [pA2.Rec1.AI1]− k3 [pA2.Rec1.AI1]

d [A2]

dt
= k12 [pA2] + k13 [pA2.Rec1.AI1]− k14 [A2]

dρp
dt

= k34

d [AI1out]

dt
= k17ρ([AI1in]− [AI1out])− k6 [AI1out]

5.3.1 Genetic algorithm

For the GA optimization, parameter vectors in initial generations consist of random points within biologically
reasonable ranges of parameter space. To calculate the “forward QS response” in the ODE model, initial
ρp = 0 and ρp increases at rate k34 that is much slower than other reactions in the system, such that module
output, defined as [pA2.Rec1.AI1], maintains quasi-steady-state. The “reverse QS response” in the ODE
model is similarly calculated, but using the initial value ρp = 1, and having the population decrease at rate
dρp/dt = −k34. The cost function for the GA defines the forward and reverse responses of [pA2.Rec1.AI1] as
a function of ρp to be a least-squares fit to a three component step function, described in the main text. Over
1000 generations (100 individual parameter vectors to a generation), system behavior evolves from a relatively
flat response to a more optimal digital-like step function response.

5.3.2 RS-HDMR analysis of hysteresis

We use RS-HDMR to understand the impact of parametric variation on system performance in the two-
compartment model of the UPC module. Input-output relationships are defined as the effects of parametric
variation on hysteresis of the UPC module response to fluctuations in population density. More specifically, we
define hysteresis as the difference between the forward and reverse response values of population density (ρp),
where the UPC module’s output ([pA2.Rec1.AI1]) is 50% of maximum, or (max output + min output)/2. We
focus on absolute levels of hysteresis rather than normalizing to the average population density threshold, be-
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cause we focus on systems with similar average thresholds and consider absolute changes in population density
to be a relevant optimization feature of our system in the context of its biomedical application.

We performed RS-HDMR sensitivity analysis on datasets describing neighborhoods of parameter space
around optimal parameter vectors obtained from GA runs. We generated two sets of 75 GA optimizations:
the first set considered both the forward and reverse QS responses to changing population density, and the
second set only considered forward response. Random sampling around each optimal parameter vector was
from a normal distribution N(µ, σ) where µ is the optimized parameter’s value and σ = µ/20. Empirical
evidence suggested that significantly broader sampling resulted in too many parameter sets that did not yield
QS behavior. Sample size of the training set was 2000, and the resultant model was tested on unsampled points
for validation purposes. In this application, we only considered the first-order RS-HDMR component functions
in order to perform efficient high-throughput analyses of local parameter “neighborhoods.”

5.4 Patterning and Neighbor Density Analysis

We analyzed distances between pairs of committed and uncommitted cells to identify patterning between the
two cell-types. For a given committed or uncommitted reference cell, the ratio of committed to uncommitted
neighbors at a given distance was calculated for all distances. We define p(c)i,d,t as the observed fraction
of committed cell neighbors at distance d for the ith cell at time t. The normalized score Z(c)i,d,t for that
observation is then described by

Z(c)i,d,t =
p(c)i,d,t − µt

σi,t
(S52)

where µt represents the overall fraction of committed cells at time t and σi,t describes the standard deviation
of the observed probability given by the standard form:

σi,t =

√
µt(1− µt)

ni,t
(S53)

where ni,t is the number of total neighbors observed for the ith cell at time t. Normalized Z-scores are combined

into an average Z-score, Z(c)d, for each distance value,

Z(c)d =
∑
i

∑
t

Z(c)i,d,t/
√
Nd (S54)

where Nd is the total number of sample Z-scores Z(c)i,d,t for each distance. In Figures S18 and S19, the

“Z-score” metric refers to Z(c)d.
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6 Additional results

6.1 Detailed results for time-scale analysis

With the results of the time-scale analysis (see the section Intermodular time-scale in main text), we selected
individually optimized values for Systems 2–4. The optimized parameter values below are an average of the
10% top performing parameter sets tested.

TSQS TSQM TSR5 TSR6 TSR7 TSAt
System 2 2.31 1.14 1.29 1.67 1.24 –
System 3 2.14 0.91 1.08 1.84 1.11 –
System 4 1.95 0.88 1.38 1.54 0.72 1.01

Such parameter optimization increases system performance and robustness to variations in the killing rate kk
and the cell volume Ω (Figure S6). On average, the optimization affords a gain of 5 units for the S/N value in
all systems for all conditions. The major qualitative difference is the ability of the time-scale optimized System
4 to function even with low molecular noise (Ω > 1000) in a comparable way to System 3. Results can be
compared to Figure 5A-B in the main text.

6.2 Detailed results for the oscillator and throttle module analyses

We employ RS-HDMR to predictively model the relationship between module rate-constants, phenotypes, and
overall system performance (see Figures 7 and 8). RS-HDMR infers and predicts precise S/N values with
little accuracy when only the module rate-constants are employed as predictive variables (Figure S10A,C).
R2 ≈ 0.5 for the analysis of both Systems 3 (Figure 8E) and 4 (Figure 8I). This relatively poor fit arises from a
highly uneven distribution of observed S/N values (>50% of parameter sets have S/N<2) and what are likely
to be significant higher (greater than third) order RS-HDMR component functions, which we do not account
for in this application. Nonetheless, RS-HDMR can classify system performance as ‘good’ or ‘bad’ based on
the rate-constants alone with an area under the ROC-curve (AUROC) of 0.97 (we define ‘good’ performers
as parameter sets with observed S/N > 15 and ‘bad’ ones as parameter sets with S/N < 2). When module
phenotypes are used to classify system performance (Figure S10B,D) in the same manner, RS-HDMR predicts
with AUROC>0.98 for both Systems 3 (Figure 8E) and 4 (Figure 8I). Prediction with both the rate-constants
and module phenotypes marginally improves this accuracy to an AUROC>0.99 for both systems. This trend
in accuracy mirrors the R2 values reported Figure 8E,I, where inference using module phenotypes generally
out-performs inference using rate-constants alone. To compare RS-HDMR classification accuracy with another
algorithm, we also implemented SVM classification using MATLAB (R2009a, The MathWorks, Natick, MA),
with a two-norm soft-margin SVM classifier and linear kernel. For both Systems 3 and 4, RS-HDMR outperforms
SVM in classification accuracy in the three scenarios (rate-constants only, phenotypes only, and rate-constants
and phenotypes combined).

6.3 Population size when varying β-cell killing rate

In the previous section describing the ODE model (section 2), we found three important results concerning the
sensitivity of the population to variations of the β-cell killing rate (kk). First, the population of uncommitted
cells is well controlled and remains constant even for low ratio of division rate over killing rate (kb/kk). Second,
for high ratio, the population of committed cells follows a power law with an exponent 1/n where n is the Hill
coefficient in the feedback function. Third, for low ratios, on the contrary, the population decreases linearly
with the killing rate. It means that the population of committed cells follows a power law with exponent 1
when plotted against the ratio of division over killing rates.

The results of simulations with the ODE model with two populations (see section 2.5) are consistent with
these theoretical results (Figure S17). For an ODE model with a Hill coefficient n = 16, the uncommitted
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population is very robust to variations of the killing rate. The committed population is also robust (exponent of
0.07, close the theoretical value 1/n = 0.0625) for high ratio, but follows exactly a linear dependence (exponent
of 1.00) for high killing rate.

But more interestingly, the results of the stochastic simulations with the Langevin model are qualitatively
similar (Figure S17). If the three systems show small differences for low ratio kb/kk, the fits of System 2 – which
is the closest to the ODE model and have power laws with exponents 0.06 and 1.14 for respectively high and
low ratio. These values are very close to both the theoretical analysis and the ODE simulations of the simplified
model.
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1

System 2 System 3 System 4
Module Name para. # Value Name para. # Value Name para. # Value

Quorum kAI1
p 1 2.0 identical identical

singaling HAI1 2 1.5 identical identical
kAI1
d 3 0.2 identical identical

kAI2
p 4 2.0 identical identical

HAI2 5 0.45 identical identical
kAI2
d 6 0.2 identical identical
kdiff 7 5.0 identical identical

Quorum kA1
p 8 1.0 identical to Syst. 2 kR1

p 8 1.0
sensing HA1 9 2.7 identical to Syst. 2 HR1 9 2.7
module kA1

d 10 1.0 identical to Syst. 2 kR1
d 10 1.0

kR2
p 11 1.0 identical identical

HR2 12 2.0 identical identical
kR2
d 13 1.0 identical identical

– kA3
p 14 2.0 identical

– HA3−1 15 0.5 identical
– HA3−4 16 0.5 HA3−2 16 0.5
– kA3

d 17 2.0 identical

Commitment kR5
p 18 1.0 identical identical

module HR5−1 19 0.6 HR5−3 19 0.6 identical
HR5−2 20 0.5 identical to Syst. 2 HR5−t 20 0.9
kR5
d 21 1.0 identical identical

kR6
p 22 1.0 identical identical

HR6−5 23 0.5 identical identical
HR6−7 24 0.5 identical identical
kR6
d 25 1.0 identical identical

kR7
p 26 3.0 identical identical

HR7 27 0.4 identical identical
kR7
d 28 1.0 identical identical

Cell fate kGAF
p 29 1.7 identical identical

parameters HGAF 30 0.7 identical to Syst. 2 HGAF 30 0.3
kGAF
d 31 1.0 identical identical

kGATA
p 32 1.0 identical identical

HGATA 33 0.2 identical identical
kGATA
d 34 1.0 identical identical

Additional – kAo
p 35 50 kAt

p 35 4.0
modules – kAo

0 36 0.0002 HAt 36 0.5
– HAo−A 37 0.5 kAt

d 38 4.0
– HAo−R 38 0.01 kAI3

p 39 200
– kAo

d 39 0.1 HAI3−t 40 0.6
– kRo

p 40 2.5 HAI3−7 37 0.5
– HRo 41 0.5 kAI3

d 41 0.5
– kRo

d 42 0.04 –
– kRo2

p 43 5 –
– HRo2 44 0.2 –
– kRo2

d 45 2.0 –
– kR4

p 46 1.0 –
– HR4 47 0.9 –
– kR4

d 48 1.0 –

Table S1: Parameters for the Langevin models of Systems 2 to 4



1

Quorum signaling module Quorum sensing module Toggle switch

kAI1p = TSQSk
AI1
p kA1

p = TSQMkA1
p kR5

p = TSR5k
R5
p

kAI1d = TSQSk
AI1
d kA1

d = TSQMkA1
d kR5

d = TSR5k
R5
d

kAI2p = TSQSk
AI2
p kR2

p = TSQMkR2
p kR6

p = TSR6k
R6
p

kAI2d = TSQSk
AI2
d kR2

d = TSQMkR2
d kR6

d = TSR6k
R6
d

(in Systems 3 & 4)

kdiff = TSQSkdiff kA3
p = TSQMkA3

p kR7
p = TSR7k

R7
p

kA3
d = TSQMkA3

d kR7
d = TSR7k

R7
d

(in System 4) (in System 4)

kAI3p = TSQSk
AI3
p kAtp = TSAtk

At
p

kAI3d = TSQSk
AI3
d kAtd = TSAtk

At
d

Table S2: Scaled parameters for the time-scale analysis. The kinetics parameters (kαp and kαd ) from
table S1 are scaled by the time-scale parameters TSα according to their module. For each combination of
time-scale parameters, the kαp and kαd parameters are used for the Langevin simulations.



1

Reactants Products Rate

pI1 pI1+I1 5.7 · 10−5

pI1+R72 pI1.R72 1.0 · 10−3

pI1.R72 pI1+R72 1.0 · 10−3

pI1.R72 pI1 1.0 · 10−3

pI1.R72 pI1.R72+I1 1.0 · 10−6

pI1+Rec1.AI1 pI1.Rec1.AI1 1.0 · 10−1

pI1.Rec1.AI1 pI1+Rec1.AI1 1.6 · 10−2

pI1.Rec1.AI1 pI1 2.5 · 10−3

pI1.Rec1.AI1 pI1.Rec1.AI1+I1 1.0 · 10−1

pI1.Rec1.AI1+R72 pI1.R72.Rec1.AI1 1.0 · 10−3

pI1.R72+Rec1.AI1 pI1.R72.Rec1.AI1 1.0 · 10−1

pI1.R72.Rec1.AI1 pI1.Rec1.AI1+R72 1.0 · 10−3

pI1.R72.Rec1.AI1 pI1.R72+Rec1.AI1 1.6 · 10−2

pI1.R72.Rec1.AI1 pI1.R72 2.5 · 10−3

pI1.R72.Rec1.AI1 pI1.Rec1.AI1 1.0 · 10−3

pI1.R72.Rec1.AI1 pI1.R72.Rec1.AI1+I1 1.0 · 10−6

pGAF+Rec1.AI1 pGAF.Rec1.AI1 8.7 · 10−2

pGAF.Rec1.AI1 pGAF+Rec1.AI1 8.0 · 10−3

pGAF.Rec1.AI1 pGAF 2.5 · 10−3

pGAF pGAF+GAF 1.0 · 10−7

pGAF.Rec1.AI1 pGAF.Rec1.AI1+GAF 2.0 · 10−2

pRec1 pRec1+Rec1 1.5 · 10−2

I1 I1+AI1 2.1 · 10−3

AI1 3.0 · 10−3

Rec1+AI1 Rec1.AI1 5.6 · 10−5

Rec1.AI1 Rec1+AI1 1.4 · 10−3

Rec1.AI1 2.5 · 10−3

GAF+GAF GAF2 5.0 · 10−3

GAF2 GAF+GAF 1.0 · 10−3

GAF 5.0 · 10−4

I1 5.7 · 10−3

Rec1 2.5 · 10−3

GAF2 1.0 · 10−3

pAo pAo+Ao 1.0 · 10−5

pAo+Ro2 pAo.Ro2 1.0 · 10−3

pAo.Ro2 pAo+Ro2 1.0 · 10−7

pAo.Ro2 pAo 1.0 · 10−5

pAo.Ro2 pAo.Ro2+Ao 1.0 · 10−7

pAo+Ao2 pAo.Ao2 1.0 · 10−3

pAo.Ao2 pAo+Ao2 5.0 · 10−4

pAo.Ao2 pAo 1.0 · 10−4

pAo.Ao2 pAo.Ao2+Ao 4.0 · 10−2

pAo.Ao2+Ro2 pAo.Ro2.Ao2 1.0 · 10−3

pAo.Ro2+Ao2 pAo.Ro2.Ao2 1.0 · 10−3

pAo.Ro2.Ao2 pAo.Ao2+Ro2 1.0 · 10−7

pAo.Ro2.Ao2 pAo.Ro2+Ao2 5.0 · 10−4

pAo.Ro2.Ao2 pAo.Ro2 1.0 · 10−4

pAo.Ro2.Ao2 pAo.Ao2 1.0 · 10−5

pAo.Ro2.Ao2 pAo.Ro2.Ao2+Ao 1.0 · 10−7

Table S3: List of reactions for the full multicellular model of System 3. Depending on whether the
reactions are associative or dissociative, reaction rates are in units of (molecules per cell)−1(s)−1 or s−1.
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Reactants Products Rate

pRo pRo+Ro+Ro2 1.0 · 10−5

pRo+Ao2 pRo.Ao2 1.0 · 10−3

pRo.Ao2 pRo+Ao2 5.0 · 10−4

pRo.Ao2 pRo 1.0 · 10−4

pRo.Ao2 pRo.Ao2+Ro+Ro2 5.0 · 10−3

pRo.Ao2+Ao2 pRo.Ao2.Ao2 1.0 · 10−3

pRo.Ao2.Ao2 pRo.Ao2+Ao2 5.0 · 10−4

pRo.Ao2.Ao2 pRo.Ao2 1.0 · 10−4

pRo.Ao2.Ao2 pRo.Ao2.Ao2+Ro+Ro2 5.0 · 10−3

Ro 4.0 · 10−5

Ro2 1.0 · 10−3

Ao 1.0 · 10−4

pR4 pR4+R4 1.0 · 10−2

pR4+Ro22 pR4.Ro22 7.0 · 10−4

pR4.Ro22 pR4+Ro22 1.0 · 10−3

pR4.Ro22 pR4 1.0 · 10−3

pR4.Ro22 pR4.Ro22+R4 1.0 · 10−3

pR4.Ro22+Ro22 pR4.Ro22.Ro22 7.0 · 10−4

pR4.Ro22.Ro22 pR4.Ro22+Ro22 1.0 · 10−3

pR4.Ro22.Ro22 pR4.Ro22 1.0 · 10−3

pR4.Ro22.Ro22 pR4.Ro22.Ro22+R4 1.0 · 10−3

R4 1.0 · 10−3

pA3 pA3+A3 1.0 · 10−6

pA3+R42 pA3.R42 2.0 · 10−4

pA3.R42 pA3+R42 1.0 · 10−3

pA3.R42 pA3 1.0 · 10−3

pA3.R42 pA3.R42+A3 1.0 · 10−6

pA3.R42+R42 pA3.R42.R42 2.0 · 10−4

pA3.R42.R42 pA3.R42+R42 1.0 · 10−3

pA3.R42.R42 pA3.R42 1.0 · 10−3

pA3.R42.R42 pA3.R42.R42+A3 1.0 · 10−6

pA3+Rec1.AI1 pA3.Rec1.AI1 8.7 · 10−2

pA3.Rec1.AI1 pA3+Rec1.AI1 8.0 · 10−3

pA3.Rec1.AI1 pA3 2.5 · 10−3

pA3.Rec1.AI1 pA3.Rec1.AI1+A3 2.0 · 10−2

pA3.Rec1.AI1+R42 pA3.R42.Rec1.AI1 2.0 · 10−4

pA3.R42+Rec1.AI1 pA3.R42.Rec1.AI1 8.7 · 10−2

pA3.R42.Rec1.AI1 pA3.Rec1.AI1+R42 1.0 · 10−3

pA3.R42.Rec1.AI1 pA3.R42+Rec1.AI1 8.0 · 10−3

pA3.R42.Rec1.AI1 pA3.R42 2.5 · 10−3

pA3.R42.Rec1.AI1 pA3.Rec1.AI1 1.0 · 10−3

pA3.R42.Rec1.AI1 pA3.R42.Rec1.AI1+A3 1.0 · 10−6

pA3.R42.Rec1.AI1+R42 pA3.R42.R42.Rec1.AI1 2.0 · 10−4

pA3.R42.R42+Rec1.AI1 pA3.R42.R42.Rec1.AI1 8.7 · 10−2

pA3.R42.R42.Rec1.AI1 pA3.R42.Rec1.AI1+R42 1.0 · 10−3

pA3.R42.R42.Rec1.AI1 pA3.R42.R42+Rec1.AI1 8.0 · 10−3

pA3.R42.R42.RhlR.AI1 pA3.R42.R42 2.5 · 10−3

pA3.R42.R42.Rec1.AI1 pA3.R42.Rec1.AI1 1.0 · 10−3

pA3.R42.R42.Rec1.AI1 pA3.R42.R42.Rec1.AI1+A3 1.0 · 10−6

A3 1.0 · 10−3

Table S3 continued.



3

Reactants Products Rate

pR5 pR5+R5 1.0 · 10−6

pR5+A32 pR5.A32 1.0 · 10−4

pR5.A32 pR5+A32 1.0 · 10−3

pR5.A32 pR5 5.0 · 10−4

pR5.A32 pR5.A32+R5 1.0 · 10−5

pR5.A32+A32 pR5.A32.A32 1.0 · 10−4

pR5.A32.A32 pR5.A32+A32 1.0 · 10−3

pR5.A32.A32 pR5.A32 5.0 · 10−4

pR5.A32.A32 pR5.A32.A32+R5 1.0 · 10−2

pR5+R22 pR5.R22 3.0 · 10−4

pR5.R22 pR5+R22 1.0 · 10−3

pR5.R22 pR5 1.0 · 10−3

pR5.R22 pR5.R22+R5 1.0 · 10−6

pR5.R22+A32 pR5.A32.R22 1.0 · 10−4

pR5.A32+R22 pR5.A32.R22 3.0 · 10−4

pR5.A32.R22 pR5.R22+A32 1.0 · 10−3

pR5.A32.R22 pR5.A32+R22 1.0 · 10−3

pR5.A32.R22 pR5.A32 1.0 · 10−3

pR5.A32.R22 pR5.R22 5.0 · 10−4

pR5.A32.R22 pR5.A32.R22+R5 1.0 · 10−6

pR5.A32.R22+A32 pR5.A32.A32.R22 1.0 · 10−4

pR5.A32.A32+R22 pR5.A32.A32.R22 3.0 · 10−4

pR5.A32.A32.R22 pR5.A32.R22+A32 1.0 · 10−3

pR5.A32.A32.R22 pR5.A32.A32+R22 1.0 · 10−3

pR5.A32.A32.R22 pR5.A32.A32 1.0 · 10−3

pR5.A32.A32.R22 pR5.A32.R22 5.0 · 10−4

pR5.A32.A32.R22 pR5.A32.A32.R22+R5 1.0 · 10−6

R5 1.0 · 10−3

pR2 pR2+R2 1.0 · 10−5

pR2+Rec2.AI2 pR2.Rec2.AI2 3.0 · 10−4

pR2.Rec2.AI2 pR2+Rec2.AI2 1.0 · 10−3

pR2.Rec2.AI2 pR2 1.0 · 10−3

pR2.Rec2.AI2 pR2.Rec2.AI2+R2 1.0 · 10−2

R2 1.0 · 10−3

R2+R2 R22 5.0 · 10−4

R22 R2+R2 1.0 · 10−3

R22 1.0 · 10−3

pI2 pI2+I2 2.0 · 10−3

pI2+R62 pI2.R62 1.0 · 10−3

pI2.R62 pI2+R62 1.0 · 10−3

pI2.R62 pI2 1.0 · 10−3

pI2.R62 pI2.R62+I2 1.0 · 10−5

pI2+Rec2.AI2 pI2.Rec2.AI2 3.0 · 10−4

pI2.Rec2.AI2 pI2+Rec2.AI2 1.0 · 10−3

pI2.Rec2.AI2 pI2 1.0 · 10−3

pI2.Rec2.AI2 pI2.Rec2.AI2+I2 1.0 · 10−2

pI2.Rec2.AI2+R62 pI2.R62.Rec2.AI2 1.0 · 10−3

pI2.R62+Rec2.AI2 pI2.R62.Rec2.AI2 3.0 · 10−4

pI2.R62.Rec2.AI2 pI2.Rec2.AI2+R62 1.0 · 10−3

pI2.R62.Rec2.AI2 pI2.R62+Rec2.AI2 1.0 · 10−3

pI2.R62.Rec2.AI2 pI2.R62 1.0 · 10−3

pI2.R62.Rec2.AI2 pI2.Rec2.AI2 1.0 · 10−3

pI2.R62.Rec2.AI2 pI2.R62.Rec2.AI2+I2 1.0 · 10−5

Table S3 continued.
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Reactants Products Rate

I2 I2+AI2 1.2 · 10−3

AI2 1.0 · 10−3

Rec2+AI2 Rec2.AI2 3.0 · 10−4

Rec2.AI2 Rec2+AI2 1.0 · 10−3

Rec2.AI2 1.0 · 10−3

pRec2 pRec2+Rec2 4.4 · 10−4

pRec2+Rec2.AI2 pRec2.Rec2.AI2 3.3 · 10−4

pRec2.Rec2.AI2 pRec2+Rec2.AI2 1.0 · 10−3

pRec2.Rec2.AI2 pRec2 1.0 · 10−3

pRec2.Rec2.AI2 pRec2.Rec2.AI2+Rec2 5.3 · 10−3

I2 1.0 · 10−3

Rec2 1.7 · 10−3

pR6 pR6+R6 2.0 · 10−2

pR6+R52 pR6.R52 1.0 · 10−3

pR6.R52 pR6+R52 1.0 · 10−3

pR6.R52 pR6 1.0 · 10−3

pR6.R52 pR6.R52+R6 1.0 · 10−6

pR6.R52+R52 pR6.R52.R52 1.0 · 10−3

pR6.R52.R52 pR6.R52+R52 1.0 · 10−3

pR6.R52.R52 pR6.R52 1.0 · 10−3

pR6.R52.R52 pR6.R52.R52+R6 1.0 · 10−6

pR6+R72 pR6.R72 8.0 · 10−4

pR6.R72 pR6+R72 1.0 · 10−3

pR6.R72 pR6 1.0 · 10−3

pR6.R72 pR6.R72+R6 1.0 · 10−6

pR6.R72+R52 pR6.R52.R72 1.0 · 10−3

pR6.R52+R72 pR6.R52.R72 8.0 · 10−4

pR6.R52.R72 pR6.R72+R52 1.0 · 10−3

pR6.R52.R72 pR6.R52+R72 1.0 · 10−3

pR6.R52.R72 pR6.R52 1.0 · 10−3

pR6.R52.R72 pR6.R72 1.0 · 10−3

pR6.R52.R72 pR6.R52.R72+R6 1.0 · 10−6

pR6.R52.R72+R52 pR6.R52.R52.R72 1.0 · 10−3

pR6.R52.R52+R72 pR6.R52.R52.R72 8.0 · 10−4

pR6.R52.R52.R72 pR6.R52.R72+R52 1.0 · 10−3

pR6.R52.R52.R72 pR6.R52.R52+R72 1.0 · 10−3

pR6.R52.R52.R72 pR6.R52.R52 1.0 · 10−3

pR6.R52.R52.R72 pR6.R52.R72 1.0 · 10−3

pR6.R52.R52.R72 pR6.R52.R52.R72+R6 1.0 · 10−6

pR6.R72+R72 pR6.R72.R72 8.0 · 10−4

pR6.R72.R72 pR6.R72+R72 1.0 · 10−3

pR6.R72.R72 pR6.R72 1.0 · 10−3

pR6.R72.R72 pR6.R72.R72+R6 1.0 · 10−6

pR6.R72.R72+R52 pR6.R52.R72.R72 1.0 · 10−3

pR6.R52.R72+R72 pR6.R52.R72.R72 8.0 · 10−4

pR6.R52.R72.R72 pR6.R72.R72+R52 1.0 · 10−3

pR6.R52.R72.R72 pR6.R52.R72+R72 1.0 · 10−3

pR6.R52.R72.R72 pR6.R52.R72 1.0 · 10−3

pR6.R52.R72.R72 pR6.R72.R72 1.0 · 10−3

pR6.R52.R72.R72 pR6.R52.R72.R72+R6 1.0 · 10−6

pR6.R52.R72.R72+R52 pR6.R52.R52.R72.R72 1.0 · 10−3

Table S3 continued.
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Reactants Products Rate

pR6.R52.R52.R72+R72 pR6.R52.R52.R72.R72 8.0 · 10−4

pR6.R52.R52.R72.R72 pR6.R52.R72.R72+R52 1.0 · 10−3

pR6.R52.R52.R72.R72 pR6.R52.R52.R72+R72 1.0 · 10−3

pR6.R52.R52.R72.R72 pR6.R52.R52.R72 1.0 · 10−3

pR6.R52.R52.R72.R72 pR6.R52.R72.R72 1.0 · 10−3

pR6.R52.R52.R72.R72 pR6.R52.R52.R72.R72+R6 1.0 · 10−6

pR6.R52.R72+R52 pR6.R52.R52.R72 1.0 · 10−3

pR6.R52.R52+R72 pR6.R52.R52.R72 8.0 · 10−4

pR6.R52.R52.R72 pR6.R52.R72+R52 1.0 · 10−3

pR6.R52.R52.R72 pR6.R52.R52+R72 1.0 · 10−3

pR6.R52.R52.R72 pR6.R52.R52 1.0 · 10−3

pR6.R52.R52.R72 pR6.R52.R72 1.0 · 10−3

pR6.R52.R52.R72 pR6.R52.R52.R72+R6 1.0 · 10−6

R6 4.0 · 10−3

R6+R6 R62 1.0 · 10−3

R62 R6+R6 1.0 · 10−3

R62 2.0 · 10−3

pR7 pR7+R7 2.0 · 10−2

pR7+R62 pR7.R62 1.0 · 10−3

pR7.R62 pR7+R62 1.0 · 10−3

pR7.R62 pR7 1.0 · 10−3

pR7.R62 pR7.R62+R7 1.0 · 10−6

pR7.R62+R62 pR7.R62.R62 1.0 · 10−3

pR7.R62.R62 pR7.R62+R62 1.0 · 10−3

pR7.R62.R62 pR7.R62 1.0 · 10−3

pR7.R62.R62 pR7.R62.R62+R7 1.0 · 10−6

R7 4.0 · 10−3

R7+R7 R72 1.0 · 10−3

R72 R7+R7 1.0 · 10−3

R72 2.0 · 10−3

pGATA4 pGATA4+GATA4 5.0 · 10−3

pGATA4.R62 pGATA4.R62+GATA4 1.0 · 10−6

pGATA4+R62 pGATA4.R62 1.0 · 10−3

pGATA4.R62 pGATA4+R62 1.0 · 10−3

GATA4 1.0 · 10−3

pGATA4.R62 pGATA4 1.0 · 10−3

pNotEndo pNotEndo+NotEndo 1.0 · 10−2

pNotEndo+GATA4 pNotEndo.GATA4 7.0 · 10−4

pNotEndo.GATA4 pNotEndo+GATA4 1.0 · 10−3

pNotEndo.GATA4 pNotEndo 1.0 · 10−3

pNotEndo+Endo pNotEndo.Endo 1.0 · 10−3

pNotEndo.Endo pNotEndo+Endo 1.0 · 10−3

pNotEndo.Endo pNotEndo 1.0 · 10−3

NotEndo 1.0 · 10−3

Table S3 continued.
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Reactants Products Rate

pEndo pEndo+Endo+GAF2 5.0 · 10−3

pEndo.NotEndo pEndo.NotEndo+Endo+GAF2 1.0 · 10−7

pEndo pEndo+E 3.0 · 10−5

pEndo+NotEndo pEndo.NotEndo 1.0 · 10−3

pEndo.NotEndo pEndo+NotEndo 1.0 · 10−3

pEndo.NotEndo pEndo 1.0 · 10−3

Endo 1.0 · 10−3

Ao+Ao Ao2 1.0 · 10−3

Ao2 Ao+Ao 5.0 · 10−3

Ao2 1.0 · 10−4

Ro+Ro Ro2 1.0 · 10−3

Ro2 Ro+Ro 2.5 · 10−2

Ro2 2.0 · 10−5

Ro2+Ro2 Ro22 1.0 · 10−3

Ro22 Ro2+Ro2 1.0 · 10−3

Ro22 1.0 · 10−3

R4+R4 R42 1.0 · 10−3

R42 R4+R4 1.0 · 10−3

R42 1.0 · 10−3

R5+R5 R52 1.0 · 10−3

R52 R5+R5 1.0 · 10−3

R52 1.0 · 10−3

A3+A3 A32 5.0 · 10−3

A32 A3+A3 1.0 · 10−3

A32 5.0 · 10−4

CELL AI1 GRID AI1 1.0 · 10−1

GRID AI1 CELL AI1 1.0 · 10−1

CELL AI2 GRID AI2 1.0 · 10−1

GRID AI2 CELL AI2 1.0 · 10−1

GRID AI1 3.0 · 10−3

GRID AI2 1.0 · 10−3

Table S3 continued.
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Phenotype Name Description
Duration High Average duration of the intervals where R4 concen-

tration is above 50% of the dynamic range.
Duration Low Average duration of the intervals where R4 concen-

tration is below 50% of the dynamic range.
Period Average time interval between two switches from

high to low concentrations of R4.
Fraction High Fraction of the time when R4 concentration is high

(Duration High/Period).
σDuration High Standard deviation of the duration of the intervals

where R4 concentration is high.
σDuration Low Standard deviation of the duration of the intervals

where R4 concentration is high.
σPeriod Standard deviation of the time interval between two

switches from high to low concentrations of R4.
High Value Average concentration of R4 when R4 has a high

concentration.
Low Value Average concentration of R4 when R4 has a low con-

centration.
Dynamic Range Difference between the high and low values divided

by the high value.
CVPeriod Coefficient of variation of the Period: standard

deviation of the Period divided by its mean
(σPeriod/Period).

CVP
High Standard deviation of the Duration High divided by

the mean Period (σDuration High/Period).
CVP

Low Standard deviation of the Duration Low divided by
the mean Period (σDuration Low/Period).

CVHigh Standard deviation of the duration of the intervals
where R4 concentration is high divided by its mean
(σDuration High/Duration High).

CVLow Standard deviation of the duration of the intervals
where R4 concentration is low divided by its mean
(σDuration Low/Duration Low).

Peak Integral Duration High multiplied by High Value.

Table S4: Phenotypes for the oscillator module (see Figure 8A).
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Phenotype Name Description
Switch Fraction of toggles that switch after the input (a

switch occurs when R7 reaches a steady state with a
concentration above 2 a.u.).

R7 Value Average concentration of R7 at steady state (concen-
tration above 2 a.u.) after a switch.

R7 T to St. St. Average time for R7 to reach steady state (de-
fined as the time when R7 concentration reaches
R7 Value − 2 · R7 Noise) after input (when a
switch occurs).

σ R7 T to St. St. Standard deviation of the time for R7 to reach steady
state after input (when a switch occurs).

AI3 Value Average concentration of AI3 at steady state (de-
fines as 1 hour after R7 reaches steady state) after a
switch.

AI3 Noise Standard deviation of AI3 concentration at steady
state after a switch.

Peak Average peak (maximal) value of AI3 concentration
after input (when a switch occurs).

T to Peak Average time for AI3 to reach its maximal concen-
tration after input (when a switch occurs).

σ T to Peak Standard deviation of the time for AI3 to reach its
maximal concentration after input (when a switch
occurs).

T to St. St. Average time for AI3 to reach steady state (defined
as the time when AI3 concentration decreases be-
low AI3 Value + 2 · AI3 Noise) after peak (when a
switch occurs).

σ T to St. St. Standard deviation of the time for AI3 to reach
steady state after peak (when a switch occurs).

Value before Input Average concentration of AI3 at steady state before
input.

Noise before Input Standard deviation of AI3 concentration at steady
state before input.

No Switch Value Average concentration of AI3 at steady state after
input when no switch occurs (R7 remains below 2
a.u. after input).

No Switch Noise Standard deviation of the concentration of AI3 at
steady state after input when no switch occurs.

No Switch Peak Average maximal concentration of AI3 at steady
state after input when no switch occurs.

Table S5: Phenotypes for the throttle module (see also Figure 8F).
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Feature Name Description
Valuex=[AI3],y=[A3] Phenotype value at a particular pair of [AI3],[A3]

input values.
Integral Sum of all values over the image.
Max Max value over the image.
Min Min value over the image.
Mean Mean value over the image.
σ Standard deviation over the image.
Entropy Entropy over the image.
Contrast See graycoprops(), Matlab (Natick, MA)
Correlation See graycoprops(), Matlab (Natick, MA)
Energy See graycoprops(), Matlab (Natick, MA)
Homogeneity See graycoprops(), Matlab (Natick, MA)
Area See regionprops(), Matlab (Natick, MA)
Centriod See regionprops(), Matlab (Natick, MA)
Bounding Box See regionprops(), Matlab (Natick, MA)
Major Axis Length See regionprops(), Matlab (Natick, MA)
Minor Axis Length See regionprops(), Matlab (Natick, MA)
Eccentricity See regionprops(), Matlab (Natick, MA)
Orientation See regionprops(), Matlab (Natick, MA)
Convex Area See regionprops(), Matlab (Natick, MA)
Filled Area See regionprops(), Matlab (Natick, MA)
Euler Number See regionprops(), Matlab (Natick, MA)
Equivalent Diameter See regionprops(), Matlab (Natick, MA)
Solidity See regionprops(), Matlab (Natick, MA)
Extent See regionprops(), Matlab (Natick, MA)
Perimeter See regionprops(), Matlab (Natick, MA)
Pattern Matching Compare two-input function to mean functions cal-

culated for every S/N (binned by integer) in a train-
ing set. Record S/N at which pattern most closely
fits according to least-squares.

Pattern Matchingi=S/N Compare image to mean function calculated for
S/N=i (binned by integer) in a training set. Record
the sum-of-squares difference calculated over the
two-input space.

Pattern MatchingNorm Same as “Pattern Matching,” but images (and the
averages to which they are compared) are mean-
centered and variance-normalized.

Table S6: Features used to analyze throttle behavior. These features were measured for each throttle
phenotype (see Table S5), where “image” refers to the observed phenotype as a response to the two inputs,
A3 and AI3 (see Figure S14).
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Rate Label Reaction

k0 Express pI1
k1 Bind pI1.Rec1.AI1
k2 Dissoc.pI1.Rec12.AI1
k3 Decay.Rec1.AI1 (Same as Decay.Rec1)
k4 Express.pI1.Rec1.AI1
k5 Synth.AI1
k6 Decay.AI1
k7 Bind.Rec1.AI1
k8 Dissoc.Rec1.AI1
k9 Express.pRec1
k10 Decay.LuxI
k11 Decay.Rec1
k12 Express.pA2
k13 Express.pA2.Rec1.AI1
k14 Decay.A2
k15 Bind.pA2.Rec1.AI1
k16 Dissoc.pA2.Rec1.AI1
k17 AI1 diffusion across cell membrane

Table S7: Rate constants for two-compartment model of the UPC module.



1

ST
i Phenotype/Rates Feature Name

0.55 R7 T to St. St. Value at A3 = 0.34, AI3 = 0.06
0.16 Peak Extent when image is thresholded at 90% max value
0.06 σ R7 T to St. St. Bounding Box (corner of high A3, low AI3) when

image is thresholded at 10% max value
0.06 No Switch Value Pattern Matching
0.04 No Switch Value Pattern MatchingNorm

0.03 HAt

0.03 σ T to St. St. Pattern MatchingNorm

Table S8: Top RS-HDMR identified throttle features and their corresponding RS-HDMR sensitivity
indices, ST

i (table supplements Figure 8H).



System 1 System 2 System 3 System 4 
Ad

va
nt

ag
es

 
• Simplicity 

• Analytical 
solutions 

 

• Intermediate 
simplicity 

• Rapid feedback 
for reduced 
oscillations and 
improved 
homeostasis 

• Oscillator generates 
population heterogeneity. 

• Oscillator behavior and 
its ability to maintain 
homeostasis is well 
insulated from parameter 
values of other modules. 

• Improves homeostasis 
when intercellular 
signaling is slow. 

• Throttle generates 
population 
heterogeneity. 

• Improves homeostasis 
when toggle switching 
times are slow. 

• Works well for various 
intercellular signaling 
rates. 

• Better overall 
performance relative to 
System 3 with 
intermediate molecular 
noise levels. 

D
is

ad
va

nt
ag

es
 

• Poor population 
heterogeneity 

• Undesired 
oscillations in  
β-cell population 
levels due to 
delayed 
feedback 

 

• Poor population 
heterogeneity 

• Highly dependent 
on reaction rates: 
requires rapid 
toggle switching 
and intercellular 
signaling. 

• Reduced performance 
relative to System 4 with 
slow toggle switching 
and intercellular 
signaling. 

• Requires significant 
molecular noise to 
operate well relative to 
System 4. 

• Requires a third 
intercellular signal. 

• Optimal performance 
requires parameter 
fine-tuning to match 
other modules. 

 


