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Abstract

This note provides explicit algebraic stabilizing formulas for clf ’s when controls are restricted to certain Minkowski
balls in Euclidean space. Feedbacks of this kind are known to exist by a theorem of Artstein, but the proof of Artstein’s
theorem is nonconstructive. The formulas are obtained from a general feedback stabilization technique and are used to
construct approximation solutions to some stabilization problems. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Smooth control-Lyapunov functions (clf’s) provide foundations for much current feedback control design.
See for instance the appropriate sections in the textbooks [3–6,11]. The theory of smooth clf’s had its origins
in Artstein’s paper [1]. See also [9] for nonsmooth clf’s, and the recent work [2] for applications of the latter.
A very useful characteristic of clf’s is the existence of ‘universal formulas’ for stabilization (cf. [10] and the
above textbooks).
This note continues the search, started in [7] (see also [8]), for universal clf formulas for constrained

controls. By a universal formula one means, informally (with precise de�nitions given later), an expression
for a feedback law in terms of the directional (or ‘Lie’) derivatives of the given clf (which is assumed known)
in the directions of the vector �elds that de�ne the system which renders the plant globally asymptotically
stable. Paper [7] provided one such formula in the case of unit balls {x∈Rm: ‖x‖2¡ 1} with respect to
Euclidean norms. The formula is a very simple algebraic function of the Lie derivatives. This paper will
present analogous formulas for the case of control sets

Bm;p :=


x = (x1; : : : ; xm)′ ∈Rm: ‖x‖p :=


 m∑
j=1

|xj|p


1=p

¡ 1
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(which we call unit balls in p-norms) for certain values of p¿ 1 other than two. These new formulas are then
used to approximately solve the stabilization problem for the control set (−1;+1)2 (which we will sometimes
denote by B2;∞) and the control set Bm;1 and to exactly stabilize with respect to these latter two sets when
a ‘strong clf’ (cf. Section 6) is known.
Consider the following control system on Rn:
ẋ = f(x) + G(x)u: (1)

The entries of f and of the n×m matrix G are smooth functions on Rn and f(0)=0. Controls take values in
Bm;p, where p is a positive number we further specify shortly. This note will consider the following problem.

Problem. Find a control law k : Rn → Bm;p with the property that the closed-loop system

ẋ = f(x) + G(x)k(x) (2)

has a continuous right side for x 6= 0 and is globally asymptotically stable about x = 0.

For example, �nd a feedback for a multi-input plant with two independent saturating inputs which renders
the plant globally asymptotically stable with respect to x = 0. This is a signi�cant saturation problem which
frequently arises in aerospace engineering, robotics, chemical process control, etc. Since B2;2⊆ (−1;+1)2, a
natural approach to solving this problem is to �nd a clf for the plant with controls in (−1;+1)2 and then to
use that clf in the stabilizing feedback formula of Lin and Sontag [7] for plants with controls in B2;2. This
procedure gives a feedback which is valued in (−1;+1)2, but the feedback that results may not render the
plant globally asymptotically stable with respect to x = 0. As an example, set

f((x1; x2)′) := (x1; x2)′ and G((x1; x2)′) := − 2
3

(
x1 �((x1; x2)′)x1
x2 �((x1; x2)′)x2

)
; (3)

where

�((x1; x2)′) :=
1
2

[
1 +

x21 + x
2
2

1 + x21 + x
2
2

]
:

The function 1
2 (x

2
1 + x

2
2) is a clf for the system de�ned by (3) with controls in (−1;+1)2, but if we use the

feedback law of Lin and Sontag [7] with this clf, then we get a feedback that does not stabilize the plant. We
will study this example in greater detail in Section 2, and Section 6 gives a general technique for stabilizing
systems with saturating inputs.
Let us now suppose that some feedback k : Rn → Bm;p is such that (2) has a continuous right side for

x 6= 0 and is globally asymptotically stable about x = 0. Converse Lyapunov theorems then guarantee the
existence of a positive de�nite (meaning, V (0) = 0 and V (x)¿ 0 for x 6= 0), proper (i.e., V (x) → ∞ as
‖x‖2 → ∞), smooth mapping V = Vk : Rn → R such that the Lyapunov condition

inf
u∈ Bm;p

{a(x) + b(x)u}¡ 0 (4)

holds for each x 6= 0, where a(x) :=3Vk(x)f(x) and b(x) :=3Vk(x)G(x). To show that Vk exists, simply
�nd a Lyapunov function for (2) and put u= k(x) in (4). Any positive de�nite, proper, smooth function Vk
satisfying (4) for each x 6= 0 is called a control-Lyapunov function (clf ) with respect to (1) with controls in
Bm;p. If k is continuous at the origin, then Vk has an additional small control property (scp): For each �¿ 0,
there is a �¿ 0 such that if 0 6= ‖x‖2¡�, then there is some u with ‖u‖2¡� such that a(x) + b(x)u¡ 0.
Observe, for future use, that if Bm;p⊆W , then any clf with respect to (1) and controls in Bm;p having the scp
is also a clf with respect to (1) and controls in W having the scp.
In [1], the following elegant converse to these facts is shown: If there is a clf V with respect to (1) with

controls in Bm;p, then there is a feedback k : Rn → Bm;p which is smooth on Rn \ {0} and which globally
stabilizes the system, and this k can be taken to be continuous on Rn if V has the scp. The result holds
for rather arbitrary control-value sets, including all Minkowski unit balls. The proof is nonconstructive, being
based on partitions of unity.
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In [7], an explicit formula for k which is algebraic in a and b is given for (1) for the case of controls
valued in Bm;2. The formula is a simple algebraic function of the Lie derivatives a(x) and b(x). However, as
we saw above, this formula is not appropriate for controls in other Minkowski balls (cf. Section 2).
In this paper, we give the following formulas for feedback stabilizers for controls valued in Bm;p when

p= 2r=(2r − 1) and r is any positive integer:
kp(x) = (kp;1(x); : : : ; kp;m(x))′; (5)

where

kp;j(x) = �p(a(x); ‖b(x)‖2r2r)(bj(x))2r−1 for j = 1; : : : ; m; (6)

and

�p(a; b) =−




a+ 2r
√
a2r + b2r

(1 + 2r
√
1 + b2r−1)b

if b¿ 0;

0 if b= 0:

(7)

Call a function on Rn almost smooth if it is smooth on Rn\{0} and continuous. We generalize the construction
in [7] by proving the following.

Theorem 1. Let p = 2r=(2r − 1) for some r ∈N. If V is a control-Lyapunov function with respect to (1)
with controls in Bm;p; then (5)–(7) is smooth on Rn \ {0}; takes values in Bm;p; and globally stabilizes the
system with respect to x = 0. Moreover; if the right-hand side of (1) is real analytic in x and V is real
analytic; then k is real analytic on Rn \ {0}. Furthermore; if V satis�es the small control property; then the
feedback kp is almost smooth on Rn.

Note that (6) with r = 1 gives the feedback stabilizer of Lin and Sontag [7]. Also note that the case of
controls valued in the closure of the relevant Minkowski ball o�ers no di�culty, since if (4) holds with such
controls, then by continuity it also holds with u∈Bm;p, so that if the Lyapunov condition holds with the
closed constraint set, then there is a feedback taking values in the ball itself (and hence in particular in its
closure).
As an application of Theorem 1, we deduce the following approximation theorem. For each S ⊂Rm and

�¿ 0, we put

S� :=
{
x∈Rm: inf

y∈ S
‖x − y‖2¡�

}
;

the �-enlargement of S, and we set

Bm;∞ :=
{
x = (x1; : : : ; xm)′ ∈Rm: max

i=1;:::;m
|xi|¡ 1

}
for each m∈N.

Theorem 2. Let j = 1 or ∞ (in the second case; assuming m = 2). If V is a control-Lyapunov function
satisfying the small control property for (1) with controls in Bm;j and �¿ 0 is given; then there is an almost
smooth feedback �j; taking values in B�m;j and algebraic in the corresponding Lie derivatives; which globally
stabilizes the system with respect to the equilibrium x=0. This feedback is real analytic on Rn \ {0} if the
right side of (1) is real analytic in x and V is real analytic.

In this way, algebraic feedback stabilization is also ‘almost’ possible for Bm;1 and B2;∞, modulo vanishingly
small overows of the feedbacks’ values.
This paper is organized as follows. In Section 2, we show that the use of the earlier formula of Lin and

Sontag [7] can lead to wrong results when the control set is Bm;p for p 6= 2. This is followed in Section
3 by the precise de�nitions of universal stabilizing formulas (usf’s) and a lemma which produces usf’s for
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rotated Minkowski balls. In Section 4 we introduce the notion of universal stability maps (usm’s) and their
associated control sets, and we give a general technique useful for �nding stabilizing feedback laws for control
sets associated with invertible usm’s. In Section 5, the general technique is used to prove Theorem 1 and
the main results of Lin and Sontag [7] as well as Theorem 2, which is a consequence of the rotation lemma
of Section 3. We also give a procedure, illustrated in Section 6, for exact almost smooth stabilization for
(−1;+1)2 and Bm;1 for cases where the known clf has extra regularity (cf. Theorem 4 below).

2. Examples

We illustrate, by means of simple counterexamples, how the use of the previously known formula for the
feedback of Artstein’s theorem for controls constrained to Bm;2 can lead to wrong results if the constraint set
is Bm;p for some p other than 2. First, we consider the case where the inputs of the plant saturate and the
known clf for the plant with controls in (−1;+1)2 is not a clf for the plant with controls in B2;2. In this
case, the feedback law from Lin and Sontag [7] is valued in the right control set, but it does not stabilize
the system. We also consider the case where the stabilizing formula for controls in Bm;2 cannot be used for
systems with controls in Bm;p for p 6= 2 because it takes some of its values outside Bm;p. In this case, the
previously known formula stabilizes the plant, but the input restrictions on the plant prevent the stabilizer
from being used.

2.1. Clf ’s for (−1;+1)m which are not clf ’s for Bm;2

Since Bm;2⊆(−1;+1)m, one natural approach to stabilizing a plant with two independent saturating inputs
is to �nd a clf for the plant with controls in (−1;+1)2 and to then use this clf in the stabilizing formula in
[7] for controls in B2;2. As noted above, any clf for our system with respect to controls in a set U is also a
clf with respect to Ũ whenever Ũ ⊇U . However, it is not always the case that V is clf for (1) and controls
in Ũ when Ũ ⊂U and V is a clf for (1) and controls in U . Thus, use of the Bm;2 feedback law of Lin and
Sontag [7] with a clf for Bm;∞ can lead to a feedback which is valued in the correct control set but which
does not globally asymptotically stabilize the system.
For example, put n= m= 2, with

q :=

(
x

y

)
; f(q) := q; �(q) :=

1
2

[
1 +

x2 + y2

1 + x2 + y2

]
and G(q) := − 2

3

(
x �(q)x

y �(q)y

)
:

Set V (q) = 1
2‖q‖22. Then, for q 6= 0, we get

x2 + y2 =3V (q)f(q)¿ ‖3V (q)G(q)‖2 = 2
3

√
[x2 + y2]2(1 + �(q)2) = 2

3 (x
2 + y2)

√
1 + �(q)2

(since �¡ 1), so V cannot be a clf with respect to B2;p for any p62. In fact, if k is a feedback law for the
system which is valued in B2;p for some p∈ [1; 2], and � is a trajectory for the corresponding closed loop
system with �(0) 6= 0, then we have

d
dt
V (�(t)) = 3V (�(t))f(�(t)) +3V (�(t))G(�(t))k(�(t))

¿3V (�(t))f(�(t))− ‖3V (�(t))G(�(t))‖2‖k(�(t))‖2
¿3V (�(t))f(�(t))− ‖3V (�(t))G(�(t))‖2‖k(�(t))‖p
¿3V (�(t))f(�(t))− ‖3V (�(t))G(�(t))‖2
¿ 0

for t ¿ 0, so the system is not g.a.s. for any feedback law valued in B2;p for p62.
On the other hand, if

r2 := x2 + y2 6= 0;
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then

3V (q)
[
f(q) + G(q)

(
1

1

)]
= r2 − 2

3 (r
2; �(q)r2)

(
1

1

)
= r2

{
1− 2

3 [1 + �(q)]
}
¡ 0;

since �¿ 1
2 . By continuity, we conclude that V is a clf with respect to B2;∞, even though it is not a clf with

respect to any of the Minkowski balls B2;p for p62.

2.2. Cases where the B2;2 formula gives values outside B2;p for p¡ 2

Even in the presence of a clf V with the scp for a given Minkowski ball Bm;p for p¡ 2, use of the Bm;2
law, evaluated along the Lie derivatives for V , can give feedback values outside Bm;p. Therefore, use of the
formula from Lin and Sontag [7] for plants with controls in B2;p for p 6= 2 can give excessive feedback
values which overwhelm the system. We show this to be the case in a rather strong sense by exhibiting an
analytic control-a�ne system with equilibrium value zero which has

V (·) := 1
2‖ · ‖22

as a clf with the scp for all the Minkowski balls and which has the property that for any p∈ (1; 2), the Bm;2
law given above, evaluated along the Lie derivatives a(·) = 3V (·)f(·) and b(·) = 3V (·)G(·), takes some
values outside Bm;p.
Take m= n= 2, with

f ≡ 0 and G(x; y) :=

(
x x2

y y

)
:

Then,

3V (x; y)G(x; y)
(
u

v

)
= u(x2 + y2) + v(x3 + y2)¡ 0

except at the origin for suitable (u; v)’s in any Minkowski ball (and, in fact, in any neighborhood of the
origin, by merely picking v = 0 and u = −�=(x2 + y2) with �¿ 0 small). So V is a clf for the system with
respect to all the B2;p’s and the origin. Moreover, these clf’s have the scp. The Bm;2 feedback law in this
case is

− 1

1 +
√
1 + (x2 + y2)2 + (x3 + y2)2

(
x2 + y2

x3 + y2

)
:

When x = 0, this has p norm[
21=2y2

1 +
√
1 + 2y4

]
2(2−p)=2p:

When p∈ [1; 2), this tends to a limit above 1 as |y| increases. Thus, the Bm;2 feedback law may be invalid
for all the control sets Bm;p with p∈ [1; 2), even when the feedback laws are constructed using a clf which
is valid for all of these Minkowski balls.

3. Universal stabilizing formulas

Following Lin and Sontag [8], we reduce the search for regular feedbacks to a search for universal formulas.
For any U ⊂Rm, we set D(U ) := {(a; b)∈R × Rm: a + bu¡ 0 for some u∈U} and recall the following
de�nition.
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De�nition 3.1. Let U⊆Rm. A universal stabilizing formula relative to U is a real-analytic function

� : D(U )⊆R× Rm → U⊆Rm
such that the following two conditions hold:

1. For any (a; b) in D(U ); a+ b�(a; b)¡ 0.
2. For any �¿ 0, there is a �¿ 0 such that

{(a; b)∈D(U )} ∧ {a¡�‖b‖2} ∧ {|a|¡�} ∧ {‖b‖2¡�} ⇒ ‖�(a; b)‖2¡�: (8)

We require analyticity to disallow ‘tricks’ such as partitions of unity. Observe that condition 2 can be
replaced by the following: 2′. For any �̃¿ 0 and any norms ‖ · ‖s; ‖ · ‖t , and ‖ · ‖u which are equivalent to
‖ · ‖2, there is a �̃¿ 0 such that

{(a; b)∈D(U )} ∧ {a¡ �̃‖b‖s} ∧ {|a|¡�̃} ∧ {‖b‖t ¡ �̃} ⇒ ‖�(a; b)‖u ¡ �̃: (9)

From Lin and Sontag [8], we have the following clf characterization.

Lemma 3.2. Let � be a universal stabilizing formula relative to U⊆Rm and let V be clf relative to (1) and
U . Set a(x) :=3V (x)f(x) and b(x) :=3V (x)G(x). Then; k(x) := �(a(x); b(x)) is smooth on Rn \ {0} and
globally stabilizes (1). If; in addition; V has the scp; then k is almost smooth. Moreover; if the right-hand
side of the system is real analytic in x and V is real analytic; then k is real analytic on Rn \ {0}.

The proof uses condition 2 only to establish the almost smoothness of k when V has the scp. The proof
of the second theorem makes use of the following ‘rotation lemma’.

Lemma 3.3. If k(a; b) is a universal stabilizing formula with respect to the control set U⊆Rm and if
T :Rm → Rm is an invertible linear map; then kT (a; b) :=Tk(a; T ′b) is a universal stabilizing formula with
respect to TU .

Proof. First note that

D(TU ) = (I × (T ′)−1)D(U ):

Thus, if (a; b)∈D(TU ), then (a; T ′b)∈D(U ), so

a+ Tk(a; T ′b)b= a+ k(a; T ′b)T ′b¡ 0;

so kT satis�es the �rst condition in De�nition 3.1.
Now let �¿ 0. Since ‖ · ‖2 and ‖T ′(·)‖2 are equivalent, it remains to show that there is a �¿ 0 such that

{(a; b)∈D(TU )} ∧ {a¡�‖T ′b‖2} ∧ {|a|¡�} ∧ {‖T ′b‖2¡�} ⇒ ‖Tk(a; T ′b)‖2¡� (10)

be the equivalence of conditions 2 and 2′ above. Pick �̂ so that

{(a; b)∈D(U )} ∧ {a¡ �̂‖b‖2} ∧ {|a|¡�̂} ∧ {‖b‖2¡�̂} ⇒ ‖Tk(a; b)‖2¡�: (11)

If (a; b) satis�es the hypothesis of (10) with �= �̂, then (a; T ′b)∈D(U ) satis�es the hypothesis of (11), so
we can pick �= �̂ to satisfy condition (10).

This lemma will be used to reduce the stabilization problem for the control set (−1; 1)2 to the problem of
stabilizing with respect of Bm;1.

4. Usm’s and their associated control sets

This section illustrates how the search for usf’s for Minkowski balls can be viewed in the more general
framework of a search for feedback formulas for control sets associated with universal stability maps (usm’s).
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These control sets have the form U = {x∈Rm: �(x)¡ 1}, where � is scalar homogeneous (meaning �(�x) =
��(x) for all x∈Rm and �¿0), but in this more general framework, � need not be continuous and U need
not be precompact. The feedback laws obtained in this more general framework will be called usm-based
feedbacks. We use the following de�nitions.

De�nition 4.1. A universal stability map (usm) is a concave surjective function � : [0;∞) → [0;∞) which
is real analytic on (0;∞) and satis�es �(xy)¿�(x)�(y) and �′(x)¿ 0 for all x and y in (0;∞). A usm is
called invertible if its inverse extends to an even real analytic function on R.

De�nition 4.2. Let � be an invertible usm, let U⊆Rm, and let q :R→ R be real analytic. We say that U is
q-associated with the usm � if

D(U )⊆

(a; b)∈R× Rm: a¡�


 m∑
j=1

q(bj)bj




 ;

where D(U ) is as de�ned in Section 3 above.

4.1. Examples of usm’s

Observe that x1=2r is an invertible usm for all r ∈N, and one easily checks that Bm;2r=(2r−1) is q-associated
with this usm with the choice q(x) := x2r−1. A totally di�erent example is as follows. We show that �(x) =
(x tanh x)1=4r is a usm for each r ∈N. The concavity of these �’s follows from the fact that

sinh x
x

increases on (0;∞) and
tanh x
x

decreases on (0;∞) (12)

and the calculation

d
dx
(x tanh x)1=4r =

1
4r
(x tanh x)(1−4r)=4r(tanh x + x sech2 x)

=
1
4r

{
1

x1−(1=2r)

[
tanh x
x

]1=4r
+
[

x

tanh4r−1 x cosh8r x

]1=4r}

=
1
4r

{
1

x1−(1=2r)

[
tanh x
x

]1=4r
+
[

x

sinh4r−1 x cosh4r+1 x

]1=4r}

=
1
4r

{
1

x1−(1=2r)

[
tanh x
x

]1=4r
+
[
1

x4r−2
( x
sinh x

)4r−1 1

cosh4r+1 x

]1=4r}
;

and one easily veri�es that �′¿ 0 on (0;∞) also. Since tanh is real analytic, we conclude that the �’s
are usm’s if tanh xy¿tanh x tanh y for x and y in (0;∞). If y¿1; the monotonicity of tanh implies that
tanh y616tanh xy=tanh x, so by symmetry in x and y we can assume that x and y are both smaller than
one. Fix y∈ (0; 1), and de�ne �y by �y(x) := tanh xy− tanh x tanh y. It remains to show that �′y(x)¿0 for all
x∈ (0; 1), i.e., that

(
cosh x
cosh xy

)2
¿
tanh y
y

for all x∈ (0; 1): (13)

But if y¡ 1, then x¿xy, so the left of (13) is at least one, and one dominates the right side, since tanh y−y
has the nonpositive derivative 1=cosh2(y) − 1. The fact that (x tanh x)1=4r is an invertible usm follows from
the following general invertibility result.
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Proposition 4.3. Let � be a usm; and assume there is an �¿ 0; an r ∈N; and a real analytic function
h : (−�; �)→ R so that h(0)¿− 1 and

�(x) = x1=2r[1 + h(x)] for all x∈ (−�; �):
Then � is an invertible usm.

Proof. Introduce g(u)=u[1+h(u2r)]. We see that g′(0) 6= 0, so we can let G denote the local inverse of g near
0, the existence of which is guaranteed by the Inverse Function Theorem. For x¿ 0 near zero, we therefore
get G[x1=2r(1+h(x))]=x1=2r , so x=[G(�(x))]2r . Put K(y)=[G(y)]2r , which is real analytic in a neighborhood
of 0. Since g is odd, G is odd, so K is even. About any positive number, the Inverse Function Theorem
implies that � is invertible. The uniqueness of inverse now gives a �¿ 0 and a well-de�ned ̃ : (−�;∞)→ R
which is even on (−�; �) and which inverts � on [0;∞). Extending ̃ to R by symmetry (i.e., evenness), we
get a real analytic, even function  which inverts �, as desired.

To show that [x tanh x]1=4r is an invertible usm, �rst write x tanh x=x2(1+�(x)), then set h(x)= 4r
√
1 + �(x)−1

in the above proposition. Similarly, [x2 tanh x2]1=8r is an invertible usm for all r ∈N, with the concavity
following from (12) and the calculation

d
dx
(tanh x2)1=4r =

x
2r
[tanh x2](1−4r)=4r sech2 x2

=
x(cosh x2)−1=4r

2r cosh x2[sinh x2](4r−1)=4r

=
(

1

2rx(2r−1)=2r[cosh x2](4r+1)=4r

)(
x2

sinh x2

)(4r−1)=4r
:

4.2. Universal formulas for usm’s

From Sontag [10], we know that the function de�ned on S := {(a; b)∈R2: b60⇒ a¡ 0} by

(a; b) 7→



a+

√
a2 + b4

b
if b 6= 0;

0 if b= 0

is real analytic. To get our general class of usm-based feedbacks, we generalize this result to the following.

Proposition 4.4. Let S be as above; let � be an invertible usm; and let � −1 extend to the even analytic
function  on R. Let � :R→ R be positive de�nite and real analytic. Then � : S → R de�ned by

�(a; b) =



�((a) + �(b)b2) + a

b
if b 6= 0;

0 if b= 0

is real analytic.

Proof. First note that if f :R3 → R is real analytic, then

Df(a; t; y; b) :=



f(a; t + b; y)− f(a; t; y)

b
if b 6= 0;

@f
@t
(a; t; y) if b= 0
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is real analytic on R4, as is seen by writing it as
∫ 1
0 (@f=@t)(a; t + �b; y) d�. Choosing

f(a; t; y) := (ty − a)
and then evaluating the result at t = 0 allows us to conclude that

L(y; a; b) :=



(by − a)− (a)− �(b)b2

b
if b 6= 0;

y′(−a) if b= 0

too is real analytic. But, (�(a; b); a; b) is a root of L for all (a; b)∈ S, so analyticity will follow from the
Implicit Function Theorem if (@L=@y)(�(a; b); a; b) 6= 0 on S. But,

@L
@y
(�(a; b); a; b) =



′(�[(a) + �(b)b2]) if b 6= 0;

′(−a) if b= 0;

For b 6= 0, this is nonzero, since ′(l)¿ 0 when l¿ 0 and since �(u) is positive for u positive; and for b=0,
this is again nonzero, since on S; a and b are not simultaneously zero and since |′(·)| is positive away from
zero. This gives the needed analyticity of �.

Note that the condition �(xy)¿�(x)�(y) from the de�nition of a usm was not needed in the proof. Equipped
with Proposition 4.4, we are now ready to give the technique for constructing usm-based feedbacks.

Theorem 3. Assume that � :Rm → R¿0 is even and scalar homogeneous; that � is an invertible usm; and that
U := {x∈Rm: �(x)¡ 1} is q-associated with �. Let � and  be as in Proposition 4:4; and set �((b1; : : : ; bm)′)=∑m

j=1 q(bj)bj. If

�{(q(b1); : : : ; q(bm))′}6 [1 + �{1 + �[�(b)]�(b)}]�(b)
�{�(b)}+ �{�(b) + �[�(b)][�(b)]2} for all b 6= 0; (14)

then the mapping � = (�1; : : : ; �m) de�ned by

�j(a; b) := −



a+ �((a) + �[�(b)][�(b)]2)
(1 + �{1 + �[�(b)]�(b)})�(b) q(bj); b 6= 0;

0; b= 0;

(15)

is real analytic on D(U ); satis�es a + �(a; b)b ¡ 0 for all (a; b)∈D(U ); and is U -valued. Therefore; if
V is a clf for (1) with controls in U; then �(3V (x)f(x); 3V (x)G(x)) is smooth on Rn \ {0} and globally
stabilizes the system with respect to x = 0 and controls in U . It is real analytic on Rn \ {0} when the
right-hand side of (1) is real analytic in x and V is real analytic.

Proof. It su�ces to show that the following two conditions hold on D(U ):

a¡
a+ �((a) + �(

∑m
j=1 q(bj)bj)(

∑m
j=1 q(bj)bj)

2)

1 + �(1 + �(
∑m

j=1 q(bj)bj)
∑m

j=1 q(bj)bj)
when a¿ 0 (16)

and

[a+ �((a) + �(
∑m

j=1 q(bj)bj)(
∑m

j=1 q(bj)bj)
2)]�{(q(b1); : : : ; q(bm))′}

[1 + �(1 + �(
∑m

j=1 q(bj)bj)
∑m

j=1 q(bj)bj)]
∑m

j=1 q(bj)bj
¡ 1 when b 6= 0: (17)

These correspond to the negativity and boundedness requirements from De�nition 3.1, respectively. The other
assertions would then follow from the fact that compositions of analytic functions are analytic and the fact that,
in the proof of Lemma 3.2 in [8], Condition 2 of De�nition 3.1 is used only to show the almost smoothness
of the feedback when V has the scp. When a¿0, condition (17) obtains as an immediate consequence of
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(14), since a¡�(
∑m

j=1 q(bj)bj) implies (a)¡�(b); and for a¡ 0, (17) follows from (14) and subadditivity
(which is consequence of the concavity of usm’s).
It remains to verify condition (16). This follows if �{1+�(∑m

j=1 q(bj)bj)
∑m

j=1 q(bj)bj} is strictly majorized
by

�((a) + �(
∑m

j=1 q(bj)bj)(
∑m

j=1 q(bj)bj)
2)

�((a))
;

whenever 0¡a¡�(
∑m

j=1 q(bj)bj). But by the concavity assumption, the mapping

y 7→ �(y + �(
∑m

j=1 q(bj)bj)(
∑m

j=1 q(bj)bj)
2)

�(y)
;

is strictly decreasing on (0;∞), so the majorization would follow from

�


1 + �


 m∑
j=1

q(bj)bj


 m∑

j=1

q(bj)bj


6�(

∑m
j=1 q(bj)bj + �(

∑m
j=1 q(bj)bj)(

∑m
j=1 q(bj)bj)

2)

�(
∑m

j=1 q(bj)bj)

which follows from the condition

�(xy)¿�(x)�(y)

from the de�nition of a usm.

Remark 4.5. Note that condition (14) was used only to show that the feedback given by (15) was valued in
U and to require that �(·) is positive except possibly at 0. Also, if one does not require � to be U -valued,
then we can relax the requirement that the usm � is concave to the requirement that � is log-concave (i.e.,
that ln � is concave on (0;∞)).

5. Proof of Theorems 1 and 2

To prove Theorem 1, it su�ces to show that for each �xed r ∈N, the function kp given by

kp = (kp;1; : : : ; kp;m); kp;j(a; b) = �p(a; ‖b‖2r2r)b2r−1j for j = 1; : : : ; m

is a universal stabilizing formula relative to Bm;p. The argument is an elementary application of Theorem 3.
Fixing p= 2r=(2r − 1) for some r ∈N, we set

�(x) = ‖x‖2r=(2r−1); �(x) = x1=2r ; (x) = x2r ;

U = Bm;2r=(2r−1); �(b) = b2(r−1) and q(x) = x2r−1:

Then � is an invertible usm, and one easily checks that with this choice of �, �, �, and q, the feedback law
(15) is exactly (6). Therefore, all but the last assertion of Theorem 1 follows once we check that Bm;2r=(2r−1)
is q-associated with the usm x1=2r and that condition (14) holds.
If a+ bu for some u∈Bm;p, then H�older’s inequality gives

a¡ |bu|6‖b‖p=(p−1)‖u‖p6‖b‖p=(p−1) =

 m∑
j=1

|bj|p=(p−1)


(p−1)=p

=


 m∑
j=1

b2r−1j bj



1=2r

;

which gives the associatedness.
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If b= (b1; : : : ; bm)′ 6= 0, then the right-hand side of (14) becomes
[1 + {1 + (‖b‖2r2r)2(r−1)‖b‖2r2r}1=2r]‖b‖2r2r

‖b‖2r + [‖b‖2r2r + (‖b‖2r2r)2(r−1)[‖b‖2r2r]2]1=2r
=
1 + {1 + (‖b‖2r2r)2r−1}1=2r]‖b‖2r2r
1 + {1 + (‖b‖2r2r)2r−1}1=2r]‖b‖2r

= ‖b‖2r−12r =


 m∑
j=1

b2rj



(2r−1)=2r

=




m∑
j=1

(b2r−1j )
2r
2r−1



(2r−1)=2r

= ‖(b2r−11 ; : : : ; b2r−1m )‖2r=(2r−1);
which is exactly �((q(b1); : : : ; q(bm))′), so (14) holds also.
The last assertion of Theorem 1 is also easily veri�ed. Indeed, by the equivalence of conditions 2 and 2′

above, we need only show that, given �¿ 0, one could �nd a �¿ 0 such that

{(a; b)∈D(Bm;p)} ∧ {a¡�‖b‖2r} ∧ {|a|¡�} ∧ {‖b‖2r ¡�} ⇒ ‖kp‖p¡�: (18)

We show this next. (The fact that (a; b)∈D(Bm;p) is redundant). Let (a; b) be as in the hypothesis of this
implication, with �¿ 0 arbitrary for the moment. Then, ‖kp‖p is at most

�+ 2r

√
�2r + (‖b‖2r2r)2r−1

1 + 2r

√
1 + (‖b‖2r2r)2r−1

;

which can evidently be made as small as desired when ‖b‖2r and � are both taken to be small enough.
To prove our second theorem, let �¿ 0 be given, then pick p = 2r=(2r − 1) with r large enough so that

Bm;p⊂B�m;1. Since kp is a universal stabilizing formula for Bm;p, and since V is a clf for Bm;p when it is one
for Bm;1, we can pick �1 = kp. The result for the Bm;∞ case with m= 2 now follows by rotating the p = 1
result. Let T be the rotation-dilation of R2 satisfying

T (B2;1) = B2;∞

and let �¿ 0 be given. Let �1 be the version associated with �=
√
2. By Lemma 2:3, T�1(a; T ′b) is a universal

stabilizing formula for T (B2;1), and therefore is a suitable �∞. Indeed, (a; b)′ ∈D(B2;∞) implies

d‖·‖2 (T�1(a; T ′b); B2;∞)6
√
2d‖·‖2 (�1(a; T ′b); B2;1)¡

√
2
�√
2
= �:

Remark (Maximality of the feedback family (6)).
For each p¿ 1, we let q :=p=(p− 1), and de�ne kq : D(Bm;p)→ Rm by
kq = (kq;1; : : : ; kq;m)′;

where, for j = 1; : : : ; m, we put

kq;j(a; b) =−




a+ q

√
|a|q + (‖b‖qq)q

(1 + q

√
1 + (‖b‖qq)q−1)‖b‖qq

bq−1j if b 6= 0;

0 if b= 0:

(19)

Then,

kq;1(0; (1=2; b2; 0; : : : ; 0)′) =
−1=2q−1

1 + q

√
1 + [(1=2q) + |b2|q]q−1

:

If this function is real analytic on D(Bm;p), then |x|q is real analytic near 0, so q is an even integer and
p= 2r=(2r − 1) for some r ∈N. This establishes the ‘maximality’ of the Minkowski ball construction (6).
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6. Universal formulas for strong CLFs

As we saw in Section 2, if V is a clf with respect to (1) and controls in a set U , and if Ũ ⊂U , then it
may or may not be the case that V is also a clf with respect to (1) and controls in Ũ . If U is open and V
is a clf for (1) with controls in U and also for (1) with controls in some set Ũ with cl(Ũ )6U; then we call
V a strong control-Lyapunov function (sclf) with respect to (1) and controls in U . Now suppose that V is
an sclf for (1) and controls in U = B2;∞, and set

�Bm;p := {x∈Rm: ‖x‖p¡�}
for all m∈N; p¿ 1, and �∈ (0; 1). Choose T as in the proof of Theorem 2, i.e., T is the linear transformation(

x

y

)
T7→
(
1 −1
1 1

)(
x

y

)
:

For �∈ (0; 1) ∩ Q near enough to 1, it follows that V is also a clf for the control sets �B2;∞ and T̂ (B2;p)
when p=2r=(2r− 1) and r ∈N is chosen large enough so that T̂ (B2;p)⊂B2;∞ and T̂ := �T . A reapplication
of Theorem 1 and Lemma 3.3 now gives a T̂ (B2;p)-valued feedback which globally stabilizes (1) with respect
to 0 and B2;∞. Similar reasoning gives the following variant of Theorem 2.

Theorem 4. Let j = 1 or ∞; assuming in the second case that m= 2. If V is an sclf for (1) with controls
in Bm;j; then there is a Bm;j-valued feedback �j which is algebraic in the Lie derivatives and smooth on
Rn \{0} which globally stabilizes the system with respect to x=0. This feedback is real analytic on Rn \{0}
if the right-hand side of (1) is real analytic in x and V is real analytic.

As in Theorems 1 and 2, we can take the �j’s of Theorem 4 to be almost smooth if V also satis�es the
scp. To illustrate the stabilizing procedure of Theorem 4, consider the system

ẋ1 =−x1 + 10x2;
ẋ2 = (10x1 + x2)u;

ẋ3 =−x3 + 10x4;
ẋ4 = (10x3 + x4)v

(20)

with the controls

(u; v)′ ∈B2;∞
and set x= (x1; x2; x3; x4)′ in the sequel. We look for a feedback law k : R4 → B2;∞ which is real analytic on
R4\{0}, which is algebraic in the corresponding Lie derivatives a(x)=3V (x)f(x) and b(x)=(b1(x); b2(x))′=
3V (x)G(x) for a suitable clf V , and which renders (20) g.a.s. Setting

V (x) = 1
2‖x‖22;

the Lyapunov condition (4) becomes

inf
(u;v)′ ∈ B2;∞

{10x1x2 − x21 + 10x3x4 − x23 + (10x1x2 + x22)u+ (10x3x4 + x24)v}¡ 0; (21)

which is satis�ed for u = v = −1 for all nonzero x. By continuity, it follows that V is a clf for (20) with
controls in B2;∞. One obvious choice for the stabilizing feedback is

k1(x) =−




(10x1x2 + x22 ; 10x3x4 + x
2
4)

′

max{|10x1x2 + x22|; |10x3x4 + x24|}
; (10x1x2 + x22)

2 + (10x3x4 + x24)
2 6= 0;

0 otherwise;

which evidently stabilizes the system, but this cannot be extended continuously to R4 \ {0} (as is seen by
setting 10x3x4 + x24 = 0; x2 = 1, and examining the one-sided limits x1 → − 1

10
+
and x1 → − 1

10
−
). We now

use the method of Theorem 4 to �nd the desired feedback.



M. Maliso�, E.D. Sontag / Systems & Control Letters 40 (2000) 247–260 259

We �rst show that V is a strong clf for (20). The polynomial �2 − 51
25� + 1 is positive on (0; 0:81) and

negative on (0.82,1]. Setting u= v=−� in the in�mand in (21) and completing squares gives∑
j=1;3

{10(1− �)xjxj+1 − x2j − �x2j+1}=
∑
j=1;3

{−[xj + 5(�− 1)xj+1]2 + 25x2j+1 (�2 − 51
25�+ 1

)}
;

which is negative for all x when �∈ (0:82; 1]. If x1 = x2 6= 0 and x3 = x4 =0, then the in�mand in (21) is only
negative if u¡ −9

11 . Therefore, V is a clf for (20) with controls in (
−9
10 ;

9
10 )

2 but not for (20) with controls in
(−�; �)2 with �¡ 8

10 .
Let T̃ be the linear transformation(

x

y

)
T̃→ 9
10

(
1 −1
1 1

)(
x

y

)
;

so T̃ (B2;1) = 9
10B2;∞. We look for a p¿ 1 so that

B2;1⊂B2;p ( 10
9 B2;1:

The �rst inclusion, of course, holds by de�nition. The second inclusion is equivalent to

1
21=p

¡
10
18
; (22)

i.e., the boundary points of B2;p along the line y=x are inside 10
9 B2;1. Notice that we cannot pick p=2, even

if 9
10 is replaced by some �∈ (0:82; 1), so even in conjunction with the rotation lemma, we cannot stabilize

(20) for controls in (−1;+1)2 using the formula in [7]. Condition (22) holds for p=2r=(2r− 1) when r=5,
so we apply the rotation lemma to get a feedback stabilizer for T̃ (B2;10=9). Setting

(x) :=
(
9
10

)10
{[x2(10x1 + x2) + x4(10x3 + x4)]10 + [x2(10x1 + x2)− x4(10x3 + x4)]10};

and

�±:=10x3x4 + x24 ± (10x1x2 + x22);
this gives

−( 910 )10
(∑

j=1;3 (10xjxj+1 − x2j ) + 10

√[∑
j=1;3 (10xjxj+1 − x2j )

]10
+ 10(x)

)

[1 + 10
√
1 + 9(x)](x)

(
�9+(x)− �9−(x)
�9+(x) + �

9
−(x)

)

for (x) 6= 0 and 0 otherwise. By the proof of Theorem 4, this feedback is real analytic on R4 \ {0}, valued
in B2;∞ and renders (20) g.a.s.

7. Conclusions

Let �¿ 0 be given, and consider system (1) with controls in (−1;+1)2. Suppose that V is a real-analytic
control-Lyapunov function for this system which has the small control property and that the vector �elds
de�ning the system are also real analytic. Then one can �nd a feedback law k : Rn → ((−1;+1)2)� such that
(2) has x = 0 as a globally stable equilibrium. The control can be written as a simple algebraic function of
the Lie-derivatives and is real-analytic on Rn \ {0}. The same is true if (−1;+1)2 is replaced by Bm;1 for any
m in N. If V is merely smooth, then k is almost smooth.
In both cases, the formulas are members of a family of algebraic universal stabilizing formulas having the

feedback formula of Lin and Sontag [7] as one of its members, up to a rotation that reduces the (−1; 1)2
case to the B2;1 case. The formulas can also be viewed as members of a more general class of not-necessarily
algebraic, usm-based feedback laws with similar properties. In this way, we can globally stabilize (1) relative
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to U =Bm;1 or U =Bm;∞ with an algebraic feedback k as long as we permit k to take its values in U�, where
�¿ 0 is as small as desired. We can also globally stabilize (1) with respect to the control set U :=Bm;2r=(2r−1),
for any r and m∈N using universal stabilizing formulas, and for cases where a strong clf is known, this can
be done for Bm;1 for each m and for B2;∞ as well. This generalizes the result of Lin and Sontag [7], which
treats only the case of the control set Bm;2.
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