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Abstract— The “Modular Response Analysis” (MRA)
reverse-engineering algorithm has been utilized in the systems
biology literature in order to unravel the interactions between
different “modules” in biochemical networks. We review the
MRA technique, and discuss why its (mis-)application might
lead to incorrect results due to impedance or load (“retroactiv-
ity”) effects, and present a computational criterion to discover
stoichiometrically-dependent steady-state retroactivity.

I. INTRODUCTION

Reverse-engineering techniques in systems biology at-
tempt to unravel the interactions among the components
(“modules”) of biomolecular (signaling, gene regulatory,
metabolic) networks, often using data gathered from steady-
state perturbation experiments. Perturbations are done to
particular gene or signaling components, by means of tra-
ditional genetic experiments such as gene knock-down or
overexpression, RNA interference, hormones, growth fac-
tors, or pharmacological interventions such as kinase and
phosphatase inhibitors. Based on steady-state changes in
concentrations of active proteins, mRNA levels, transcription
rates, and so forth, the objective is to map out the direct or
“local” interactions among components, which capture the
topology of the functional network, with the ultimate goal
of elucidating the mechanisms underlying observed behavior
(phenotype).

A graph is used to summarize the deduced interactions.
For example, if there are two components “A” and “B”,
one might perform an up-perturbation in A: if this leads to
an increased value of B, a directed edge A → B labeled
“activation” is introduced; if, instead, it leads to a decreased
level of B, then an edge labeled “repression” is drawn; and
if there is no effect on B, no edge is put into the graph.

A major problem with such steady-state (or even some
time-resolved) experiments is that perturbations might prop-
agate rapidly throughout the network, causing “global”
changes which cannot be easily distinguished from direct
effects. To illustrate this difficulty, consider the two graphs
shown in Figure 1 (arrows indicate activation). An up-
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Fig. 1. Serial vs. feedforward architectures

perturbation of the external signal u (or of the block labeled
“x”) results in an increase in the signals represented by the
block labeled “y” in both cases. How does one distinguish
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the two architectures? The “unraveling,” or “Modular Re-
sponse Analysis” (MRA) method proposed in [3] and further
elaborated upon in [8], [1] and other papers, provides one
approach to solving this global-to-local problem.

The MRA experimental design compares those steady
states which result after performing independent perturba-
tions to each “modular component” of a network. These
perturbations might be genetic or biochemical. For example,
in eukaryotes they might be achieved through the down-
regulation of mRNA, and therefore protein, levels by means
of RNAi. For example, the authors of [6] uncovered con-
nectivity differences in the Raf/Mek/Erk MAPK network in
rat adrenal pheochromocytoma (PC-12) cells depending on
whether the cells are stimulated with epidermal growth factor
(EGF) or instead with neuronal growth factor (NGF). They
employed MRA in order to discover positive and negative
feedback effects, using the algorithms from [8] and [1].

One possible source of errors when applying MRA is that
“impedance” or “load” effects (retroactivity in the language
of [5], see [2]) may lead to wrong conclusions when one only
measures “communicating intermediates” among modules –
there are subtle conditions for applicability of MRA, often
not checked by those using the algorithms. When apply-
ing MRA in a modular fashion, only perturbation data on
these communicating signals are collected. The connectivity
strength among a pair of such intermediary signals, such
as levels of activated signaling proteins, is estimated, but
this apparent connectivity might not due to a “directed” bio-
chemical interaction. Specifically, stoichiometric constraints
(conservation laws) might lead to misleading conclusions.
In Section II we briefly review MRA and discuss this issue,
and in Section III we present a method for detecting (exactly)
retroactivity effects at steady state in a known network.

II. MODULAR RESPONSE ANALYSIS

The basic idea of MRA is easy to understand through a
very simple example. Suppose that we wish to distinguish
between the two possible architectures schematically shown
in Figure 1. In general, components may be described by
single variables, or by many variables; for instance, a gene
expression component might be described at various levels
of resolution: using one variable (resulting protein levels),
or by a far more complicated mechanism (including binding
and unbinding of transcription factors, transcription initiation
and mRNA polymerase dynamics, ribosome binding and
translation dynamics, etc.). For simplicity, let us take the
simple model in which each component is described by a
scalar linear system, so that both possible architectures are
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special cases of:

ẋ = −ax+ bu

ẏ = cx− dy + pu

where all parameters are positive but otherwise unknown
(a, d > 0, so the model is stable). The question that we
are interested in is that of deciding whether p = 0 or p 6= 0.
(Obviously, it would be difficult to distinguish a small p 6= 0
from p = 0, if measurements are noisy. We assume for this
introductory discussion that measurements are exact.)

The available data are the steady states for both x and
y, for a constant (but unknown) input u, under these three
“experimental” scenarios: (1) a = a0, u = u0; (2) a = a0,
u = u1; (3) a = a1, u = u0. Both u and a are unknown,
except for the information that they change, one at a time,
in experiments (2) and (3). (Respectively, a change in the
concentration of u and a change in the degradation rate of
x.) The steady state, obtained by setting ẋ = ẏ = 0, is, for
constant u, x(∞) = (b/a)u and y(∞) = (cb/a + p)u/d.
We write x∆u = (b/a0)u1 − (b/a0)u0 = (b/a0)∆u, the
difference between the measured steady state of x for exper-
iments (2) and (1), and the corresponding quantity y∆u =
(cb/a + p)∆u/d for y. Similarly, subtracting the data from
experiments (3) and (1) provides the measured quantities
x∆a = (1/a1 − 1/a0)bu0 and y∆a = (1/a1 − 1/a0)cbu0/d.
Next, we compute from the data: y∆u/x∆u − y∆a/x∆a =
a0p/(bd). We are done: if this number is zero, then p = 0
(cascade architecture), and if it is nonzero, then p 6= 0
(feedforward architecture). Our objective of distinguishing
between the two structures has been achieved.

Moreover, we can even recover the numerical value
y∆a/x∆a = c/d, and if u0 or u1 were also known, then we
would also be able to compute b/a0 from the steady state
value of x, and hence we would also obtain the value of p/d,
as (b/a0) · (a0p/(bd)). In this way, the relative strengths of
all the terms in the equation for ẏ can be computed. This is
the best that one can do, because the actual values of all three
constants can never be obtained from purely steady-state
data, since multiplying all constants by the same number
doesn’t affect the steady state location.

The MRA method generalizes the procedure just dis-
cussed. We consider systems

ẋ = f(x, p)

where x = (x1, . . . , xn) is the state and p = (p1, . . . , pm)
is a vector of parameters. Parameters can be manipulated,
but, once changed, they remain constant for the duration of
the experiment. We will assume that m ≥ n. In biologi-
cal applications, the variables xi might correspond to the
levels of protein products corresponding to n genes in a
network, and the parameters to translation rates, controlled
by RNAi. Another example would be that in which the
parameters represent total levels of proteins, whose half-
lives are long compared to the time scale of the processes
(such as phosphorylation modifications of these proteins in a
signaling pathway) described by the variables xi. Yet another

example would be one in which the parameters represent
concentrations of enzymes that control the reactions, and
whose turnover is slow. The goal is to obtain, for each pair
of variables xi and xj , the relative signs and magnitudes of
the partial derivatives ∂fi

∂xj
, which quantify the direct effects

of each variable xj upon each variable xi. The entries of
∂fi/∂xj of the Jacobian F of f with respect to x are func-
tions of x and p. The steady-state version of MRA estimates
this Jacobian when x = x̄ is an “unperturbed” steady state
attained when the vector of parameters has an “unperturbed”
value p = p̄. The steady-state condition means that f(x̄, p̄) =
0. Ideally, one would want to find the matrix F , since this
matrix completely describes the influence of each variable xj
upon the rate of change of each other variable xi. However,
since for any parameter vector p and associated steady-state
x, f(x, p) = 0 implies that Λf(x, p) = 0, for any diagonal
matrix Λ = diag (λ1, . . . , λn), the best that one could hope
for is for steady state data to uniquely determine each of the
rows Fi = (Fi1, . . . , Fin) = ∇fi, i = 1, . . . , n of F only up
to a scalar multiple.

The critical assumption for MRA, and indeed the main
point of [3], [4], [8], is that, while one may not know the
detailed form of the vector field f , often one does know
which parameters pj directly affect which variables xi. For
example, xi may be the level of activity of a particular pro-
tein, and pi might be the total amount (active plus inactive) of
that particular protein; in that case, we might postulate that
pi only directly affects xi, and only indirectly affects the
remaining variables. Under this assumption, the steady-state
MRA experimental design consists of the following steps:

1) measure a steady state x̄ corresponding to the unper-
turbed vector of parameters p̄;

2) separately perform a perturbation to each entry of p̄,
and measure a new steady state.

The “perturbations” are assumed to be small, in the sense
that the theoretical analysis will be based on the computation
of derivatives. Under mild technical conditions, this means
that a perturbed steady state can be found near x̄. There
are m + 1 experiments, and n numbers (coordinates of
the corresponding steady state) are measured in each. (In
practice, of course, this protocol is repeated several times,
so as to average out noise and obtain error estimates.)
Using these data (and assuming that a certain independence
condition is satisfied), it is possible to calculate, at least in
the ideal noise-free case, the Jacobian of f , evaluated at
(x̄, p̄), except for the unavoidable scalar multiplicative factor
uncertainty on each row.

We assume given a parameter vector p̄ and state x̄ such
that f(x̄, p̄) = 0 and so that the following generic condition
holds for the Jacobian of f : detF (x̄, p̄) = det ∂f∂x (x̄, p̄) 6=
0. Therefore, we may apply the implicit function theorem
and conclude the existence of a mapping ϕ, defined on a
neighborhood of p̄, with the property that, for each row i,

fi(ϕ(p), p) = 0 for all p ≈ p̄, (1)

and ϕ(p̄) = x̄ (and, in fact, x = ϕ(p) is the unique state x
near x̄ such that f(x, p) = 0).

3374



We next discuss how one reconstructs the gradient
∇fi(x̄, p̄), up to a constant multiple. (The index i is fixed
from now on, and the procedure must be repeated for each
row fi.) We do this under the assumption that it is possible
to apply n − 1 independent parameter perturbations: there
are n − 1 indices j1, j2, . . . , jn−1 with the following two
properties:
(a) fi does not depend directly on any pj : ∂fi/∂pj ≡ 0,

for j ∈ {j1, j2, . . . , jn−1}, and
(b) the vectors vj = (∂ϕ/∂pj)(p̄), for these j’s, are linearly

independent.
We then have, taking total derivatives in (1): ∇fi(x̄, p̄)vj =
0, j ∈ {j1, j2, . . . , jn−1}. Thus, the vector Fi = ∇fi(x̄, p̄)
which we wish to estimate is known to be orthogonal to
the n− 1 dimensional subspace spanned by {v1, . . . , vn−1}.
Therefore, it is uniquely determined, up to multiplication by
a positive scalar. The row vector Fi satisfies Fi Σ = 0 where
Σ is defined as the n × (n − 1) matrix whose columns are
the vi’s. Generically, we assume that the rank of Σ is n −
1. Thus, Fi can be computed by Gaussian elimination, as
a vector orthogonal to the span of the columns of Σ. Of
course, the sensitivities represented by the vectors vi (entries
of the matrix Σ) cannot be directly obtained from typical
experimental data. However, approximating the vectors vj
by finite differences, one has that ∇fi(x̄, p̄) is approximately
orthogonal to these differences as well.

Noise: We refer the reader to [1] for modifications to allow
for noisy measurements, using total least-squares.

Modular Approach: Let us suppose that the entire network
consists of an interconnection of n subsystems or “modules”,
each of which is described by a set of differential equations
such as:

ẋj = gj(yj , x1, . . . , xn, p1, . . . , pm) , j = 1, . . . , n
ẏj = Gj(yj , x1, . . . , xn, p1, . . . , pm) , j = 1, . . . , n ,

where the variables xj represent “communicating” or “con-
necting” intermediaries of module j that transmit information
to other modules, whereas the vector variables yj represent
chemical species that interact within module j. Each vector
yj has dimension `j . The integers `j , j = 1, . . . , n are
in general different for each of the n modules, and they
represent one less than the number of chemical species in
the jth module respectively. Observe that, for each j, the
rate of change of the communicating variable depends only
on the remaining communicating variables xi, i 6= j, and
on the variables yj in its own block, but does not directly
depend on the internal variables of other blocks. In that sense,
we think of the variables yj as “hidden” (except from the
communicating variable in the same block).

We assume that each Jacobian of Gj with respect to the
vector variable yj , evaluated at the steady state correspond-
ing to p̄ (assumed to exist, as before) is nonsingular. By the
Implicit Mapping Theorem, in a neighborhood of this steady
state, we may solve Gj(yj , x, p) = 0 (x denotes the vector
x1, . . . , xn, and similarly for p) for the vector variable yj ,
as a function of x, p, locally by a function yj = Mj(x, p).

Those steady states that are obtained by small perturbations
of p̄ are the same as the steady states of the “virtual” system
ẋj = hj(x1, . . . , xn, p1, . . . , pm) = gj(Mj(x, p), x, p), j =
1, . . . , n. Now the analysis continues as before, using the
hj’s instead of the fj’s.

Using quasi-steady state data: In certain problems,
steady-state data do not provide enough information, for ex-
ample when the system “adapts” to perturbations. A variant
of MRA, which allows for the use of general non-steady-
state, time-series data was developed in [8]. However, that
method requires one to compute second-order time deriva-
tives, and hence is hard to apply when time measurements are
spaced far apart and/or are noisy. An intermediate possibility
is to use quasi-steady state data, meaning that one employs
data collected at those times when a variable has been
observed to attain a local maximum (peak of activity) or a
local minimum. (This is the approach taken in [6], which, for
EGF stimulation, measured network responses at the time of
peak Erk activity, approximately 5 minutes, and not at steady
state.) The paper [7] provided an extension to quasi-steady
state MRA.

Effect of stoichiometric constraints on MRA: We will use
a very simple example in order to show how stoichiometric
constraints may lead to misleading results when using the
MRA algorithm. Suppose that we want to study a system in
which we postulate that there are two “modules” involving
enzymes X and Y , the “active forms” of which are the
“communicating variables.” The active form X is reversibly
produced from an inactive form X0, and Y is formed when
X reversibly binds to a substrate S thus producing a complex
C, which may dissociate into X and S or into X and Y
(this is a standard Michaelis-Menten type of reaction). We
also assume that Y can revert to S in one step; a more
complicated model could be used as well, by modeling
the phosphotase action in a Michaelis-Menten form, or by
modeling mechanistically its binding and unbinding to Y ,
but the principle is the same. The network of reactions is as
follows:

X0
1−⇀↽−
1
X , X + S

1/2−−⇀↽−−
1

C
1/2−−→ X + Y , Y

α/2−−→ S

and we consider experiments in which X(0)=3,
C(0)=Y (0)=0, and S(0)=β, and either α or β is to
be perturbed experimentally. We think of X0 and X as
constituting the first “module” and S,C, Y as the second
one. The two parameters α, β are usually viewed as affecting
only the second module. The unique positive steady state
(X,S,C, Y ) is then obtained by solving: 2X + C =
3, C = XS,C = αY, S + C + Y = β (and X0 = X).
We will consider perturbations around α=1 and β=3. For
these nominal parameter values, (X,S,C, Y ) = (1, 1, 1, 1).
Taking implicit derivatives with respect to α, evaluating at
X=S=C=Y=1, α=1, β=3, and denoting x = ∂X/∂α,
u = ∂S/∂α, v = ∂C/∂α, y = ∂Y/∂α, we have that:
2x + v = 0, v = x + u, v = 1 + y, u + v + y = 0 which
solves to: x = −1/7, u = −3x, v = −2x, y = 5x and thus
“dX/dY ” computed as ∂X/∂α

∂Y/∂α equals 1/5 > 0. The MRA
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method, or any other sensitivity-based approach, applied to
the phenomenological model in which only X and Y are
“communicating intermediaries” will lead us to include an
edge Y → X labeled “activating”. But such an edge does
not represent a true feedback effect: for example, it is not
possible to delete this edge with a “mutation” in the system
that does not affect the forward edge. The edge merely
reflects a “loading” or impedance effect. In fact, the situation
is even more confusing. Arguing in the same way with
derivatives with respect to β (evaluated at the same values),
one obtains x = −1/7, u = −3x, v = −2x, y = −2x and
thus “dX/dY ” computed as ∂X/∂β

∂Y/∂β is −1/2 < 0. Now the
(false) effect is inhibitory. (The intuition is that when we
increase α, the substrate for X increases, sequestering more
of X , and also D is smaller. If instead we over-express
B, then both X is sequestered more and D is larger. But
intuition is not enough: for some parameters, dX/dY < 0
for both experiments.) Experimentally, it is often the case
that one measures X + C and Y , instead of X and Y , so
that one would be interested in the relative variations of
x̂ = x+ v and y. Since 2x+ v = 0, it follows that x̂ = −x.
Thus, d(X+C)/dY = −dX/dY , so the signs are reversed,
but are, again, ambiguous.

Of course, there is a simple explanation for the problem:
the parameter α affects the differential equation for X , and
the variables S and C in fact enter that differential equation.
Thus, the conditions for applicability of MRA have been
violated. The point, however, is that a naive application of
sensitivity analysis (as usually done in practice) that does not
account for these subtle dependencies is wrong. One way to
avoid this potential pitfall is to insure that the postulated
mechanism (without additional feedback loops) does not
exhibit such “load” effects. The next section presents an
algorithm to detect such effects (at steady state).

III. RETROACTIVITY AT STEADY STATES

We now turn to characterizations of steady-state retroactiv-
ity (we do not define “retroactivity” but instead use the term
only informally; the results to be given provide a precise
content to the term under slightly different contexts). The
main issue is to understand what is the relation between the
steady states of individual systems (described by chemical
reactions) and the steady states of their interconnection.
One expects that retroactivity at steady state arises only
when there are more conservation laws imposed by an
interconnection, in addition to those that hold for each of
the interconnected systems separately. Making this intuition
precise is not completely trivial. In fact, unless certain
properties are imposed on interconnections, it is not even
correct. Our main results are Theorems 1 and 2. They
give sufficient conditions for retroactivity to exist or not,
respectively. Neither is necessary. However, we will define
a “consistency” property for interconnections, under which
Theorem 1 and Theorem 2 constitute a dichotomy.

Chemical reaction networks: We assume that the entries of
S = col(S1, . . . , SN ) are the (concentrations of the) reacting
species, and each Si = Si(t) is a non-negative function

of time, evolving according to Ṡ = ΓR(S). The matrix
Γ ∈ RN×r is the stoichiometry matrix, and R(S) ∈ Rr is
the vector of reactions: R(S(t)) indicates the values of the
reaction rates when the species concentrations are S(t). A
technical assumption is that solutions that start non-negative
remain so. This property is automatically satisfied for the
usual chemical reaction rate forms. We will also assume that
each S0 ∈ RN≥0 the solution ϕ(t, S0) of Ṡ = ΓR(S) with
S(0) = S0 is defined for all t ≥ 0.

For any chemical reaction system Ṡ = ΓR(S), and any
state S0, the stoichiometry equivalence class of S0, denoted
here as ∆(S0), is the intersection of the affine manifold S0+
∆ with RN≥0, where ∆ is the span of the columns of Γ. Thus,
two states S0 and S1 are in the same stoichiometry class if
and only if S0−S1 ∈ ∆, or equivalently if ∆(S0) = ∆(S1).
Observe that ϕ(t, S0) ∈ ∆(S0) for all t ≥ 0. Moreover, since
∆(S0) is a closed set, any S in the closure of the forward
orbit O+(S0) = {ϕ(t, S0), t ≥ 0} is also in ∆(S0).

We also introduce the vector space of “conservation laws”.
This is the set of all vectors perpendicular to the stoichiome-
try space, written as rows: Π := ∆⊥ = {π ∈ R1×N |πΓ = 0}
Observe that a state S1 is in the stoichiometry class of a state
S0 (that is, S1 − S0 ∈ ∆) iff π(S1 − S0) = 0 for all π ∈ Π.

For any chemical reaction system Ṡ = ΓR(S), and any
steady state S̄ (that is, ΓR(S̄) = 0) we say that S̄ is a
local attractor relative to its stoichiometry class if there
is some neighborhood U of S̄ in RN≥0 such that, for each
S0 ∈ U

⋂
∆(S̄), ϕ(t, S0)→ S̄. A positive state S is one for

which all components are strictly positive, that is, S ∈ RN>0.
Under certain hypotheses on the structure of the chemical
reaction network, one may insure that in each stoichiometry
class there is at least one positive steady state that is a local
attractor relative to the class. Moreover, this steady state is
often unique and is a global attractor relative to the class
(deficiency theory).

Modular systems: We will assume that the vector S of
species has N = n + m components, which we partition
into two vectors x ∈ Rn and z ∈ Rm: S = (x′, z′)′

(we use primes to indicate transpose). Corresponding to
these coordinates, the reaction vector is partitioned into two
vectors R1(x) and R2(x, z) of dimensions r1 and r2 =
r− r1 respectively: R(x, z) = (R1(x)′, R2(x, z)′)′. We also
assume that, in terms of this partition, the stoichiometry
matrix looks as follows:

Γ =
(
P
Q

)
=
(
A B
0 C

)
where P ∈ Rn×r, Q ∈ Rm×r, A ∈ Rn×r1 , B ∈ Rn×r2 ,
C ∈ Rm×r2 . Sometimes it is more convenient to use the
“(P,Q)” form or the the “(A,B,C)” form. The equations
for the system take the following partitioned form:

ẋ = AR1(x) + BR2(x, z)
ż = C R2(x, z)

If there are no reactions involving x alone, we write A = 0,
thought of as an n×1 matrix. Of course, the actual reactions
entering x and z need not be the same, since B and C may
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multiply different elements of the vector R2(x, z) by zero
coefficients. We think of the overall system as an intercon-
nection of the “upstream” subsystem described by the x-
variables, that feeds a signal to the “downstream” subsystem
described by the z variables. The “x” appearing in CR2(x, z)
is seen, in that sense, as an input signal to the second system.
The role of BR2(x, z) is different. This term represents the
“retroactivity to the output,” denoted by the letter“r” in [2],
and is interpreted as a “load” effect that arises due to the
physical interconnection. Of course, these interpretations are
subjective, and partitioning a system into an interconnection
can be done in non-unique ways. However, the questions
to be posed depend on one such partition. The system
ẋ = AR1(x) is by definition the isolated system, and the
full system Ṡ = ΓR(S) the interconnected system.

We use the notation ∆1(x) for the stoichiometry class of
a state x of the isolated system: ∆1(x) = (x+ ∆1)

⋂
Rn≥0,

where ∆1 is the span of the columns of A.
Example 3.1: Our first example is this network:

X0

k1−⇀↽−
k2

X , X + S
k3−⇀↽−
k4

C
k5−→ X + Y , Y

k6−→ S

where the upstream system is described by the vector x =
(X0, X)′ which drives the downstream system described by
the vector z = (S,C, Y )′. Thus, with n = 2, m = 3, r1 = 2,
and r2 = 3, we take, using mass-action kinetics, R1(x) =
(k1X0, k2X)′ and R2(x, z) = (k3XS, k4C, k5C, k6Y ). Note
that

A =
(
−1 1
1 −1

)
, B =

(
0 0 0 0
−1 1 1 0

)

C =

 −1 1 0 1
1 −1 −1 0
0 0 1 1

 .

There are conservation laws in this system which tie together
the isolated (x) system to the downstream (z) system, and
one may expect that retroactivity effects appear. Indeed, this
system will satisfy the sufficient condition for retroactivity
given in Theorem 1 below. 2

Example 3.2: Consider these reactions:

1 u−→ X , X
δ−→ 0 , X + P

k1−⇀↽−
k2

C .

Then, with x = X and z = (P,C)′, and listing reactions in
the obvious order:

A =
(

1 −1
)
, B =

(
−1 1

)
, C =

(
−1 1
1 −1

)
.

Because of the production and/or decay of X , there are
no conservation laws tying together the X and the P,C
systems, and there is no retroactivity effect. Indeed this
system will satisfy the sufficient condition in Theorem 2 for
non-retroactivity. 2

Example 3.3: Consider the following reaction:

X
k1−→ Z , Z

k2−→ 0

with x = X and z = Z. Here B = (−1 0) and C = (1 −1),
and A = 0. This example is one in which there are no

conservation laws whatsoever, yet retroactivity holds. Neither
Theorem 1 nor Theorem 2 applies to this example, showing
the gap between the conditions. However, this example is
somewhat pathological, as it represents an “inconsistent”
interconnection in the sense defined below. 2

Main results: Consider the following property:

rank
(
P
Q

)
= rankP + rankQ (∗)

Remark 3.4: Since the weak inequality “≤” is always
true, the negation of (*) is equivalent to:

rank
(
P
Q

)
< rankP + rankQ (6 ∗)

or, equivalently, the requirement that the row spaces of P
and Q have a nonzero intersection. 2

If property ( 6 ∗) holds, then there is retroactivity at steady
state. The precise statement is as follows:

Lemma 3.5: Suppose that Property (∗) does not hold.
Then, for each positive state S̄ = (x̄′, z̄′)′ of the intercon-
nected system, there exists a state S0 = (x′0, z

′
0)′ such that

∆(S0) = ∆(S̄) but ∆1(x0) 6= ∆1(x̄). Moreover, S0 can be
picked arbitrarily close to S̄.

Proof: Suppose that (6 ∗) holds, and pick any positive
state S̄. By (6 ∗), there is some nonzero row vector θ which is
in the row spaces of P and Q, that is to say, there are two row
vectors µ0 and ν0 such that θ = µ0P = ν0Q 6= 0. Replacing
ν0 by −ν0, we will assume that µ0P = −ν0Q 6= 0. Let r
be any vector such that µ0Pr 6= 0 (for example, one may
pick r = P ′µ′0), and let u := Pr and v := Qr. Let, as
earlier, Π := ∆⊥. Note that, for each π = (µ, ν) ∈ Π,
µP + νQ = 0, by definition of Π, and therefore also µu +
νv = (µP + νQ)r = 0. In particular, (µ0, ν0) ∈ Π satisfies
that µ0u = µ0Pr 6= 0 and also ν0v = ν0Qr = −µ0Pr 6= 0.
Since P = (A B) and Q = (0 C), every element (µ, ν) ∈ Π
has the property that, in particular, µA = 0.

Notice that one could pick u and v as close to zero as
wanted (multiplying, if necessary, u and v by a common
small positive factor). So, without loss of generality , we
assume that both x0 := x̄ + u and z0 := z̄ + v are non-
negative, and write S0 := (x′0, z

′
0). We claim that S0 and S̄

are in the same stoichiometry class. Indeed, for any (µ, ν) ∈
Π: µx̄ + νz̄ = µx̄ + νz̄ + 0 = µx̄ + νz̄ + µu + νv =
µ(x̄+ u) + ν(z̄ + v) = µx0 + νz0 .

Finally, we claim that x0 and x̄ are not in the same
stoichiometry class for the isolated system. Since µ0A = 0,
µ0 is a conservation law for the isolated system. So it
will be enough to show that µ0x̄ 6= µ0ξ. Indeed, µ0x̄ =
µ0(x0 − u) = µ0ξ − µ0u, and µ0u 6= 0.

Lemma 3.5 implies a steady-state retroactivity effect, in
the following sense. Suppose that S̄ is an attractor for points
near it and in ∆(S̄). If x0 is taken as the initial state of a
trajectory x(t) for the isolated system, then every limit point
ξ of this trajectory is in ∆1(x0). On the other hand, if the
composite system is initialized at this same state x0 for the
x-subsystem, and at z0 for the z-subsystem, then the ensuing
trajectory converges to the steady state S̄, with x-component
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x̄. But ξ 6= x̄, because x̄ 6∈ ∆1(x0). The following result
formalizes this fact.

Theorem 1: Suppose that there is some positive steady
state S̄ = (x̄′, z̄′)′ of the interconnected system which is a
local attractor relative to its stoichiometry class. If Property
(∗) is false, then there exist x0 and z0 such that, with the
initial condition S0 = (x′0, z

′
0)′:

1) ϕ(t, S0)→ S̄ as t→ +∞, but
2) for the solution x(t) of the isolated system ẋ =

AR1(x) with x(0) = x0, x̄ 6∈ clos {x(t), t ≥ 0}.
Proof: We use Lemma 3.5. Let S0 be as there. Since

S0 can be picked arbitrarily close to S̄ and in ∆(S), we
may assume that S0 belongs to the domain of attraction of
the steady state S̄. Property (1) in the Theorem statement
is therefore satisfied. Finally, we consider the solution x(t)
of the isolated system ẋ = AR1(x) with initial condition
x(0) = x0, and pick any state ξ ∈ clos {x(t), t ≥ 0}. As
∆0(ξ) = ∆0(x0) 6= ∆0(x̄), it follows that ξ 6= x̄.

Next, consider the following property:

rank(A B) = rankA (∗∗)

i.e., the column space of B is included in that of A. Note
that if this condition holds, then (∗) holds too.

Lemma 3.6: Suppose that (∗∗) holds. Pick any two states
S̄ = (x̄′, z̄′)′ and S0 = (x′0, z

′
0)′ of the interconnected

system. Then

∆(S̄) = ∆(S0) ⇒ ∆1(x̄) = ∆1(x0) . (2)
Proof: As S̄−S0 belongs to the column space ∆ of Γ,

in particular, x̄− x0 is in the column space of (A B). Since
the latter equals the column space of A, it follows that x̄−x0

is in the column space of A, which means that x0 and x̄ are
in the same stoichiometry class in the isolated system.

Lemma 3.5 implies a steady-state retroactivity effect, in
the following sense. Suppose that there is a unique steady
state in each stoichiometry class in the isolated system, and
that this steady state is a global attractor relative to its class.
Then, every omega-limit point of the composite system has
the property that its x-component equals this same steady
state of the isolated system. The following result formalizes
this discussion..

Theorem 2: Suppose that (∗∗) holds. For any initial con-
dition S0 = (x′0, z

′
0)′, if a state S̄ = (x̄′, z̄′)′ of the

interconnected system is in the omega-limit set of S0, then
x0 and x̄ are in the same stoichiometry class relative to the
isolated system.

Proof: If S̄ = (x̄′, z̄′)′ is in the omega-limit set of
S0 then ∆(S0) = ∆(S̄). The conclusion thus follows from
Lemma 3.6.

There is a gap between the negation of Property (∗) in
Theorem 1 and Property (∗∗) in Theorem 2. In order to
bridge this gap, we introduce the following property:

kerC ⊆ kerB (C)

which we call consistency.
An interpretation of property (C) is as follows. Suppose

that S = (x̄′, z̄′)′ is a steady state of the interconnected

system. That is to say, AR1(x̄) + BR2(x̄, z̄) = 0 and
CR2(x̄, z̄) = 0. Since then R2(x̄, z̄) ∈ kerC ⊆ kerB,
this means that also BR2(x̄, z̄) = 0, and therefore we can
conclude that AR1(x̄) = 0. In summary, under consistency,
the x-component of every steady state of the interconnected
system is a steady state of the isolated system. Moreover, the
“retroactivity” signal BR2(x, z) also vanishes at steady state.
This property is satisfied in most interesting interconnections.

Property (C) is equivalent to the requirement that the row
space of B be a subspace of the row space of C. Under this
property, rank Γ = rankA + rankC, and therefore Property
(∗), i.e. rank Γ = rank (A B) + rankC is equivalent to Prop-
erty (∗∗). In other words, for consistent interconnections,
the two Theorems provide a dichotomy. Summarizing this
discussion and consequences of the two technical lemmas:

Corollary 3.7: Suppose that Property (C) holds. Then, the
following statements are equivalent:
(a) Property (∗) holds.
(b) Property (∗∗) holds.
(c) Property (2) holds for any two states.

Example 3.1 fails Property (∗): the ranks of P and Q are
2 and 3 respectively, but the composite matrix has rank 4<5.
Thus this example exhibits retroactivity, by Theorem 1. This
example is consistent.

Example 3.2 does not exhibit any retroactivity effects, as
is easy to see directly, or appealing to Theorem 2, since
Property (∗∗) is satisfied. This example is consistent.

Example 3.3 satisfies Property (∗), but nonetheless ex-
hibits a retroactivity effect, in the sense that every state of the
isolated system is a steady state, but for the interconnected
system ẋ = −x, ẏ = x − y every solution converges to
x = y = 0. However, Property (∗∗) cannot be used to show
retroactivity, since this property also fails. Intuitively, this
is a system that has no conservation laws, yet retroactivity
fails. However, this system is “inconsistent” in the sense that
property (C) does not hold.
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