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Summary. One of the key ideas in control theory is that of viewing a complex
dynamical system as an interconnection of simpler subsystems, thus deriving con-
clusions regarding the complete system from properties of its building blocks. Fol-
lowing this paradigm, and motivated by questions in molecular biology modeling,
the authors have recently developed an approach based on components which are
monotone systems with respect to partial orders in state and signal spaces. This
paper presents a brief exposition of recent results, with an emphasis on small gain
theorems for negative feedback, and the emergence of multi-stability and associated
hysteresis effects under positive feedback.

1 Introduction

Tools from control theory have long played an important role in the analysis
of dynamical systems properties such as stability, hysteresis, and oscillations.
Key to the application of control tools, is the idea of viewing a complex
dynamical system as feedforward and feedback interconnections of simpler
subsystems, thus deriving conclusions regarding the complete system from
properties of its building blocks. One may then analyze complicated structures
on the basis of the behavior of elementary subsystems, each of which is “nice”
in a suitable input/output sense (stable, passive, etc), in conjunction with the
use of tools such as the small gain theorem to characterize interconnections.

This paper focuses on a special case of this idea, when the components are
monotone systems with a well-defined steady state response. Although this
work originated in our study of certain particular models in the area of cell
signaling, a field of interest in contemporary molecular biology, and we will
use such models in order to illustrate our results, the mathematical results
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and techniques that we have developed are of independent interest, and one
can easily foresee many other areas of application.

Our framework is that of monotone systems with inputs and outputs, a
class of systems introduced recently in [2] and further studied in [3]. They
provide a natural generalization of classical (no inputs and outputs) monotone
dynamical systems, defined by the requirement that trajectories must preserve
a partial ordering on states; classical monotone systems include the subclass
of cooperative systems, in which different state variables reinforce each other
(positive feedback) as well as certain more general systems in which each pair
of variables may affect each other in either positive or negative, or even mixed,
forms. Among the classical references for monotone dynamical systems are the
textbook by Smith [29] and the papers [16, 17] by Hirsch, which provide a rich
and elegant theory dealing with the precise characterization of omega limit
sets and other asymptotic behavior.

The extension to systems with inputs and outputs is by no means a purely
academic exercise, but it is a necessary first step in order to analyze intercon-
nections, especially those including feedback loops, built up out of monotone
components. It is perhaps remarkable that this ‘system-theoretic’ view of dy-
namical systems fits perfectly with one of the main themes and challenges in
current molecular biology, namely, the understanding of cell behavior in terms
of common ‘modules’ (see e.g. [15]).

In this paper, we provide a brief exposition of several of our results for
monotone i/o systems. Proofs are not included, as they can be found in [2, 3].
In addition, in order to make the presentation easier to follow, we often make
simplifying assumptions, such as convexity of state spaces and input spaces,
which can be substantially relaxed, as discussed in [2, 3]. We first review the
basic setup, based upon monotone i/o systems with well-defined steady-state
responses. Then we present a very simple yet powerful result for the analysis
of global convergence of feedback interconnections in the special case where
feedback does not introduce multiple steady states. This result plays the role
of a small-gain theorem when applied to negative feedback loops. In general,
however, positive feedback may lead to bifurcations of equilibria, and our
second main result deals with the analysis of this type of situation, providing
a characterization of locations and stability of steady states. A unifying theme
to our work is the reduction of the analysis of high-dimensional dynamics to
a simple planar graphical test.

In closing this introduction, we wish to comment upon the biological mo-
tivations for our work. The study of oscillations in biochemical systems is a
major theme in molecular biology modeling; see, for instance, the book [13],
which is one of the major references in the field. Our work in monotone sys-
tems originated in the analysis of the emergence of oscillations in certain bio-
logical inhibitory feedback loops, and specifically in a mathematical model of
mitogen-activated protein kinase (MAPK) cascades, which represent a ‘biolog-
ical module’ or subcircuit which is ubiquitous in eukaryotic cell signal trans-
duction processes. In the paper [32], one of the authors presented a small-gain
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theorem which provided very tight estimates of parameters at which a Hopf
bifurcation occurs, in a model of inhibitory MAPK cascades given in [20],
and which had been previously studied numerically in [26]. Analyzing a more
realistic model than the one in those references (multiple as opposed to single
phosphorylation) led us the results presented in [2] and reviewed here. We
will discuss that example, as well as a classical model of circadian oscillators.
Multi-stability and associated hysteresis effects form the basis of many models
in molecular biology, in areas such as cell differentiation, development, and
periodic behavior described by relaxation oscillations. See for instance the
classic work by Delbrück [8], who suggested in 1948 that multi-stability could
explain cell differentiation, as well as references in the current literature (e.g.,
[5], [9], [10], [11], [19], [22], [24], [33]). We will discuss a system of differential
equations which describes a biochemical network of the type which appears
in cell signaling, as an illustration of our theorems on multi-stability.

2 Basic Definitions

We will only consider systems defined by ordinary differential equations. Thus,
all state-spaces, as well as input and output signal spaces, are assumed to be
subsets of Euclidean space. By an ordered Euclidean space we mean here
an Euclidean space IRn, for some positive integer n, together with an order
R induced by a positivity cone K. That is, K ⊆ IRn is a nonempty, closed,
convex, pointed (K

⋂−K = {0}), and solid (K has a nonempty interior) cone,
and x1 R x2 (or “x2 c x1”) means that x1 − x2 ∈ K. Given a cone K, two
notions of strict ordering are possible. By x1 Q x2, one means that x1 R x2 and
x1 ^= x2, and by x1 T x2 that x1 − x2 ∈ int(K). For example, with respect
to the ‘NorthEast’ ordering given by the first orthant K = IRn

≥0, x1 R x2

means that each coordinate of x1 is bigger or equal than the corresponding
coordinate of x2, x1 T x2 means that every coordinate of x1 is strictly larger
than the corresponding coordinate of x2, and x1 Q x2 which means that some
coordinate is strictly larger.

(More general notions of ordered spaces, not necessarily induced by cones,
may be considered as well; and indeed some of the results in [2] are proved for
more abstract ordered spaces. In addition, one may wish to study monotone
I/O systems on infinite-dimensional spaces, particularly when dealing with
delay-differential systems or systems defined by partial differential equations.)

By a state-space we will mean a subset X of an ordered Euclidean space
(IRn,KX) such that X is the closure of an open subset of IRn and is convex.
Similarly, by an input set U we mean a subset of an ordered space (IRm,KU ),
and by an output set Y a subset of an (IRp,KY). When there is no risk of
ambiguity and the meaning is clear from the context, we drop the superscripts
and write just ‘K’ instead of KX , KU , or KY . For simplicity, we state many
of our results for single-input single-output (“SISO”) systems, those for which
input and output signals are scalar: m = p = 1. By an input (function)
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we mean a locally essentially bounded Lebesgue measurable function u(·) :
IR≥0 → U , and we write u1 R u2 provided that u1(t) R u2(t) for almost all
t ≥ 0.

By a (finite-dimensional continuous-time) system, we mean the usual con-
cept from control theory (see e.g. [31]), namely a system with inputs and
outputs

ẋ = f(x, u) , y = h(x) (1)

specified by a state space X, an input set U , and an output set Y, such that
solutions of (1) that start in X do not leave X (forward invariance of X). We
assume that f : X ×U → IRn (which may be thought of as a vector field with
parameters) is continuous in (x, u), and is locally Lipschitz continuous in x
locally uniformly in u, and that the function h : X → Y is continuous. When
mentioning derivatives of f , we will implicitly assume that we have in addition
required f to be differentiable, meaning that map f extends differentiably to
an open subset of IRn × IRm that contains X ×U . We will make the assump-
tion that all solutions with initial states in X must be defined for all t ≥ 0
(forward completeness), and denote by x(t) = φ(t, ξ, u) (or just “x(t, ξ, u)”)
the (unique) solution of ẋ(t) = f(x(t), u(t)) with initial condition x(0) = ξ
and input u(·) at time t ≥ 0. We also sometimes use the notation y(t, ξ, u)
as a shorthand for h(φ(t, ξ, u)). For classical dynamical systems ẋ = f(x), f
does not depend on inputs, and there is no mapping h; they can be thought
of as the particular case in which U and Y reduce to a single point, so that
all definitions to be given will also apply to them.

The system (1) is said to be monotone if the following property holds, with
respect to the orders on states and inputs:

ξ1 R ξ2 & u1 R u2 ⇒ x(t, ξ1, u1) R x(t, ξ2, u2) ∀ t ≥ 0

and also the mapping h is monotone (with respect to the orders on states and
output values). It is an elementary fact (see e.g. [2]) that the above inequality
is equivalent to:

ξ1 T ξ2 & u1 R u2 ⇒ x(t, ξ1, u1) T x(t, ξ2, u2) ∀ t ≥ 0

(which follows from the fact that a set which is the closure of its interior is
invariant under a controlled dynamics iff its interior is invariant). A monotone
system is strongly monotone if the following stronger property holds:

ξ1 Q ξ2 & u1 R u2 ⇒ x(t, ξ1, u1) T x(t, ξ2, u2) ∀ t > 0.

This is a fairly strong statement, saying that a very strict inequality among
states holds immediately after the initial time, provided only that the initial
states be weakly comparable to each other.

The basic components to be interconnected will not be merely monotone,
but they will satisfy the additional requirement that they be monostable in the
sense of having a well-defined steady-state response for each possible constant
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input. This property, which we define next, when combined with monotonicity,
will strongly constrain the limiting behavior or arbitrary time-varying inputs.

Definition 1. The system (1) admits an input to state (I/S) static charac-
teristic kX(·) : U → X if, for each constant input u(t) ≡ u ∈ U , there exists a
unique globally asymptotically stable equilibrium kX(u). The characteristic is
said to be non-degenerate if, in addition, the Jacobian Dxf(kX(u), u) is non-
singular, for all such u. If (1) admits an I/S characteristic, its input/output
(I/O) characteristic is by definition the composition kY := h ◦ kX .

2.1 Infinitesimal Characterizations

It is obviously important to be able to check monotonicity without having to
actually solve the differential equations. We quote two results from [2]; in both
cases we assume we are given appropriate positivity cones. The first one uses
(contingent) tangent cones, in the sense of nonsmooth analysis, and admits
generalizations beyond orders defined by positivity cones:

Theorem 1. The system (1) is monotone if and only if h is monotone and
the following property holds:

ξ1 R ξ2 and u1 R u2 ⇒ f(ξ1, u1)− f(ξ2, u2) ∈ Tξ1−ξ2K , (2)

where TξK denotes the (contingent) tangent cone to K at the point ξ.

The second one relies upon convex analysis, and is based upon viewing
monotone systems with inputs (and outputs) as those for which the vector
field f is quasi-monotone in the sense of differential equations (see e.g. [25]):

Theorem 2. The system (1) is monotone if and only if h is monotone and
the following property holds:

ξ1 R ξ2, u1 R u2, ζ ∈ K∗, and 〈ζ, ξ1〉 = 〈ζ, ξ2〉
⇒ 〈ζ, f(ξ1, u1)〉 ≥ 〈ζ, f(ξ2, u2)〉 (3)

where K∗ is the set of all ζ ∈ IRn so that 〈ζ, k〉 ≥ 0 for all k ∈ K.

Condition (3) may be separated into the conjunction of: for all ξ and all
u1 R u2, f(ξ, u1) − f(ξ, u2) ∈ K, and for all u, ξ1 R ξ2, and 〈ζ, ξ1〉 = 〈ζ, ξ2〉,
〈ζ, f(ξ1, u)〉 ≥ 〈ζ, f(ξ2, u)〉. A similar separation is possible in Theorem 1. In
both cases, it suffices to check the properties for ξ1 − ξ2 ∈ ∂K instead of
arbitrary points.
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2.2 Orthant Orders

We assume in this section, to simplify the exposition, that both the interior
of the state space X and of the input set U are convex; also, f is supposed to
be continuously differentiable.

A special class of positivity cones are orthants. Any orthant K in IRn has
the form

K(ε) = {x ∈ IRn | (−1)εixi ≥ 0 , i = 1, . . . , n}
for some binary vector ε = (ε1, . . . , εn) ∈ {0, 1}n. A special case is when states,
inputs, and outputs are ordered with K = the main orthant (all εi = 0); sys-
tems that are monotone with respect to these orthants are called cooperative
systems.

Proposition 1. The system (1) is cooperative if and only if the following
properties hold:

∂fi

∂xj
(x, u) ≥ 0 ∀x ∈ X, ∀u ∈ U , ∀ i ^= j

∂fi

∂uj
(x, u) ≥ 0 ∀x ∈ X, ∀u ∈ U , ∀ i, j

∂hi

∂xj
(x) ≥ 0 ∀x ∈ X, ∀ i, j .

The term “cooperative” arises from the fact that the various variables
“help” each other (rates of change depend increasingly on the remaining vari-
ables).

Under appropriate changes of variables, one may reduce the study of mono-
tone systems with respect to arbitrary orthants to the study of cooperative
systems; see [2] for details. The following corollary results from this reduction:

Corollary 1. The system (1) is monotone with respect to the orders induced
from orthants KX = K(ε), KU = K(δ), and KY = K(µ), if and only if the
following properties hold:

(−1)εi+εj
∂fi

∂xj
(x, u) ≥ 0 ∀x ∈ X, ∀u ∈ U , ∀ i ^= j

(−1)εi+δj
∂fi

∂uj
(x, u) ≥ 0 ∀x ∈ X, ∀u ∈ U , ∀ i, j

(−1)εi+µj
∂hi

∂xj
(x) ≥ 0 ∀x ∈ X, ∀ i, j .

It is important to be able to decide, just from the system equations, if there
is some orthant K such that a given system is monotone with respect to K.
Graphical conditions are very useful for that. It is not difficult to see that
the conditions given in [21] for classical monotone systems can be generalized
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as follows. We associate to a given system (1) a signed digraph, with vertices
x1, x2 . . . xn, u1, u2, . . . um, y1, y2 . . . yp and edges constructed according to the
following set of rules and constraints (if the rules do not all apply, the graph
is undefined).

For edges between nodes xk, the graph is defined only for systems so that,
for any pair of integers 1 ≤ i, j ≤ n with i ^= j, either (a) ∂fi/∂xj(x, u) ≡ 0,
or (b) ∂fi/∂xj(x, u) ≥ 0 for all x, u and ∂fi/∂xj(x, u) > 0 for some x, u, or
(c) ∂fi/∂xj(x, u) ≤ 0 for all x, u and ∂fi/∂xj(x, u) < 0 for some x, u; in that
case, we draw no edges, a positive edge, or a negative edge, respectively, from
xj to xi. For edges from nodes uj to nodes xi, similar rules apply, where we
consider the Jacobians ∂fi/∂uj . Finally, for edges from nodes xj to nodes yi,
we proceed analogously using the Jacobians ∂hi/∂xj .

A cycle, not necessarily directed, is a sequence of vertices vn0 , vn1 . . . vnL

such that vn0 = vnL
and the constraint that, for each 0 ≤ k ≤ L − 1, either

there is an edge from vk to vk+1 or there is an edge from vk+1 to vk. The sign
of a cycle is defined as the product of the signs of the edges comprising it, and
the sign of a path is defined to be the product of the signs of its edges.

Proposition 2. The system (1) which admits an incidence graph according
to the above set of rules, is monotone with respect to some orthants KX , KU

and KY if and only if its graph does not contain any negative cycles.

Graphical conditions for strong monotonicity can also be given. Sup-
pose that we strengthen the conditions to require either ∂fi/∂xj(x, u) ≡ 0,
∂fi/∂xj(x, u) > 0 for all x, u, or ∂fi/∂xj(x, u) < 0 for all x, u, and similarly
for edges from nodes uj to nodes xi and for edges from nodes xj to nodes yi.
Assuming that a graph in this sense is well-defined, results are provided in [3]
which allow one to check if a closure under unity feedback is strongly mono-
tone. The results are stated in terms of “excitability” and “transparency”
notions associated to the input/output system. For the purposes of treating
the examples in this paper, we only require the more classical version of these
results, for systems ẋ = f(x) with no inputs:

Proposition 3. Suppose that the system ẋ = f(x) is monotone with respect
to an orthant K. If either of these conditions hold:

1. the Jacobian ∂fi/∂xj(x) is an irreducible matrix, for each x ∈ X, or
2. the Jacobian ∂fi/∂xj(x) is an irreducible matrix, for each x ∈ inter X

and every trajectory lies in the interior of X for all t > 0,

then the system is strongly monotone with respect to K.

See Theorem 1.1 in [16] or Chapter 4 in [29] for a proof. (These references
assume that the system evolves on an open set; however, the same proofs apply
when the state space is closed, so part 1 follows immediately. Regarding part
2, one may reduce to case 1 as follows: given ξ1 Q ξ2, we know that x(t/2, ξ1) Q
x(t/2, ξ2) (monotonicity plus the fact that a flow is always one-to-one); as the
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interior is forward invariant, one need only consider these states at time t/2
as initial states, to conclude that, using the strong monotonicity results for
the interior, x(t, ξ1) T x(t, ξ2). Incidentally, an even weaker condition may be
assumed, namely that irreducibility of the Jacobian holds almost everywhere
in time along a trajectory.)

3 Feedbacks with Single Steady-States

It is easy to verify that cascade interconnections of monotone systems ad-
mitting characteristics are again monotone and admit characteristics. More
interesting is the study of feedback, where the output is fed back to the input
of (1) via a static or dynamic feedback law. In this section we study feedback
interconnections that lead to global attractivity, and in the next section we
study multiple steady states.

We restrict attention to SISO systems, as the results are easier to state in
that context. Without loss of generality (otherwise, one may consider −u as
an input or −y as an output), we will assume that KU = KY = IR≥0. Our
interest will be in the effect of either “positive” or “activating” feedback (which
preserves the orders on inputs and outputs) or “negative” or “inhibitory”
feedback (which inverts the orders). The study of general dynamic feedbacks
can be reduced to the study of static feedback, simply by viewing a feedback
interconnection

ẋ = fx(x, u) , y = hx(x)
ż = fz(z, y) , u = hz(z)

as the closure under the static feedback u = y of the composite system

ẋ = fx(x, u)
ż = fz(z, hx(x)) , y = hz(z)

so we will only state a result for static feedback. (The theorem is proved
directly for arbitrary dynamic feedback in [2], and the proof is virtually the
same.)

Theorem 3. Suppose that the system (1) is monotone, with KU = KY =
IR≥0, and that it has a well-defined I/O characteristic k : U → Y. Let ^ : Y →
U be a monotone (increasing or decreasing) map, and denote F := ^◦k : U →
U . Suppose that every trajectory of the closed-loop system

ẋ = f(x, (^ ◦ h)(x)) (4)

is bounded. Then, system (4) has a globally attractive equilibrium provided
that the scalar discrete time iteration on U

uk+1 = F (uk) (5)

has a unique globally attractive equilibrium ū.
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Fig. 1. I/O characteristics in (u, y) plane: negative feedback

For a graphical interpretation of condition (5), for the special case in which
^ is decreasing (“negative feedback”), see Fig. 1. The figure shows the “con-
vergent spiderweb” diagram that establishes global convergence to the equi-
librium of the discrete-time iteration.

The proof of this theorem is not difficult; let us sketch it here. Consider
an arbitrary (bounded, by assumption) solution of the closed-loop system,
and the signals u(t) and y(t) that appear as input and output of the original
system (1). Note that u(t) = ^(y(t)) for all t. The key is to consider the
quantities

u+ := lim sup
t→+∞

u(t), u− := lim inf
t→+∞ u(t), y+ := lim sup

t→+∞
y(t), y− := lim inf

t→+∞ y(t),

and to use the fact that monotonicity of (1) implies that

k(u−) ≤ y− ≤ y+ ≤ k(u+) (6)

and the fact that (from monotonicity of ^) either ^(u−) = y− and ^(u+) = y+,
or ^(u−) = y+ and ^(u+) = y−. In the first case, we apply the increasing
function ^ to (6) and obtain F (u−) ≤ u− ≤ u+ ≤ F (u+), and, inductively
using that F is increasing,

F i(u−) ≤ u− ≤ u+ ≤ F i(u+)

for all i ≥ 1, so taking limits and using F i(u−) → ū and F i(u+) → ū, we ob-
tain that u− = u+ = ū, and hence u(t) → ū. Then, from the “convergent input
convergent state” property for monotone systems with well-defined character-
istics (cf. [2]), one concludes that the state x(t) → kX(ū). In the second case,
we obtain F (u−) ≥ u+ ≥ u− ≥ F (u+), and, applying F (now a decreasing
function) we have that F 2(u−) ≤ u− ≤ u+ ≤ F 2(u+), and, inductively using
that F 2 is increasing,

F i(u−) ≤ u− ≤ u+ ≤ F i(u+)

for all even i; the proof then is finished as before.
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It is worth noting that, in the case of increasing ^ (positive feedback), the
global attractivit whenevery has
a unique fixed point ¯

condition on (5) is satisfied automaticall Fy
¯u and it holds that ¯ and

¯
u ≤ F (u) ≤ u for all u ≥ u

¯u ≥ F (u) ≥ u for all u ≤ u. This is in turn satisfied whenever the graphs of k
1 ′ 1 ′and ^− intersect at onl u and there k (¯ −y one point ¯ u) < (^ ) (ū).

Boundedness is assumed in our statement of the theorem. Often in bio-
logical applications, boundedness is automatic from conservation of mass and
similar assumptions; in any event, we show in [2] how the assumption can be
weakened provided that some more information is available about the char-
acteristic of the system.

We also remark that arbitrar delay s in the feedback loop do not affect
the argument. That is, suppose that

y
u(t) = ^(y(t − σ(t))), for some possibly

time-varying delay σ(t), where σ ma be fairl arbitrary y y, for instance any
continuous function such that t − σ(t) → ∞ as t → ∞, so that lim sup y(t −
σ(t)) = lim sup y(t) and similarly for lim inf. The same proof then applies.
This means that the condition that we gave is a condition for stabilit under
arbitrar

y
delay ys, as is typically the case with “small-gain” arguments.

A partial converse to this result holds as well: if the feedback ^ induces a
periodic orbit for the discrete iteration, then, for an appropriate delay σ(t),
an approximate periodic orbit appears. The idea, whose precise statement
and proof we leave for a future work, is roughly as follows. Suppose that
k(a) = b ^(b) = c k(c) = d, and ^(d) =, , . We consider the initial state of
the output as

a
t dy( ) ≡ for a time long enough that the input u(t) = ^(d) = a

forces the output y(t) to converge to b. Now, for a long enough interval so
that convergence to stead ^ by state ensues, the input will converge to ( ) = c,
and after a suitable time, the output will converge to k(c) = d, after which
the pattern will repeat. There results an oscillation of the input between
(approximatel ) the constant values a and . By periods,
one can achieve sustained oscillations for as long as desired.

c y adjusting the delay

4 Multiple Steady States

We now turn to the more general case when several steady states may appear
in closed-loop; our result will provide a global analysis tool for systems ob-
tained by positive feedback loops involving monotone systems. In [33], Thomas
conjectured that the existence of at least one positive loop in the incidence
graph is a necessary condition for the existence of multiple steady states.
Proofs of this conjecture were given in [14], [23], [30], and [7], under different
assumptions on the system. (The last reference provides the most general re-
sult, using a degree theory argument.) However, the existence of positive loops
is not sufficient, and our next theorem deals precisely with this question.

Theorem 4. Assume that the system (1) is monotone, with KU = KY =
IR≥0, and that it has a well-defined nondegenerate characteristic k. Let ^ : Y →
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U be a monotone increasing map, and set F := ^ ◦ k : U → U . Assume that
every fixed point of F is non-degenerate (F ′(x) ^= 1) and that the system (4),
namely,

ẋ = f(x, (^ ◦ h)(x)),

is strongly monotone and all of its solutions are bounded. Then, the steady-
states of (4) are in 1-1 correspondence with the fixed points of F , and for
almost all initial conditions, solutions converge to the set of equilibria of (4)
corresponding to inputs for which F ′(u) < 1.

The proof of this theorem is given in [3]. It relies upon linear control theory
arguments for analyzing local stability of the closed loop system, together
with the use of a theorem due to Hirsch on almost-everywhere convergence
for strongly monotone systems.

Note that the condition F ′(u) < 1 amounts to local (exponential) stability
of the discrete iteration (5). Strong monotonicity of the closed-loop system (4)
can be checked in several graph-theoretic ways, based upon conditions on the
open-loop system (1); see [2]. Monotonicity of (1) with respect to some orthant
and orders KU = KY = IR≥0 amounts to the incidence graph (defined earlier)
having no negative cycles plus the requirement that all paths from the input
to the output node must be positive.

5 Example of Multiple Steady States

A typical situation for the application of Theorem 4 is where a monotone sys-
tem with a well-defined I/O characteristic of sigmoidal shape is closed under
unitary feedback: if the sigmoidal function is sufficiently steep, this configu-
ration is known to yield 3 equilibria, 2 stable and 1 unstable. In biological
examples, this might arise when a feedback loop comprising any number of
positive interactions and an even number of inhibitions is present (but no inhi-
bition at all is also a situation which might lead to the same type of behavior).
This is a well-known principle in biology. One of its simplest manifestations is
the so called “competitive exclusion” principle, in which one of two compet-
ing species completely eliminates the other, or more generally, for appropriate
parameters the bistable case in which they coexist but the only possible equi-
libria are those where either one of the species is strongly inhibited. Of course,
the interest of our results is in the high-dimensional case in which phase-plane
techniques cannot provide the result, and we turn to such an example next.
However, let us note that, for the special case of two-dimensional systems, our
techniques are very close to those of [6]. In fact, even the 4-dimensional exam-
ple of a two-repressor system with RNA dynamics, treated in [6] (Appendix
I) in an ad-hoc manner, can be shown to be globally bistable as an immediate
application of our techniques.

We now turn to a less trivial example where our tools may be applied.
(A different example, involving cascades of systems of this type, and with
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comparisons with experimental data, is treated in [1].) Consider the following
chemical reaction, involving various forms of a protein E:

E1

U−→←− E2

U−→←− . . .
U−→←− En−1

U−→←− En

being driven forward by an enzyme U, with the different subscripts indicating
an additional degree of phosphorylation, and with constitutive dephosphory-
lation. This is a very general type of “module” that appears in cell signaling.
We will be interested in positive feedback from En to U.

A typical way to model such a reaction is as follows. We introduce variables
xi(t), i = 1, . . . , n to indicate the fractional concentrations of the various forms
of the enzyme E (so that x1 + . . . + xn ≡ 1, and xi ≥ 0, for the solutions
of physical interest), and u(t) ≥ 0 to indicate the concentration of U. The
differential equations are then as follows:

ẋ1 = −σ1(u)α1(x1) + β2(x2)
ẋ2 = σ1(u)α1(x1)− β2(x2)− σ2(u)α2(x2) + β3(x3)

...
ẋn−1 = σn−2(u)αn−2(xn−2)− βn−1(xn−1)− σn−1(u)αn−1(xn−1) + βn(xn)

ẋn = σn−1(u)αn−1(xn−1)− βn(xn) .

We make the assumptions that αi and βi (respectively, σi) are differentiable
functions [0,∞) → [0,∞) with positive (respectively, either positive or iden-
tically zero) derivatives, and αi(0) = βi(0) = 0 and σi(0) > 0 for each i.
(We allow some of the σi to be constant, and in this manner represent steps
that are not controlled by U.) Since we are interested in studying the effect
of feeding back En, we pick y = xn.

We first prove that the characteristic is well-defined. Recall that we are
only interested in those solutions that lie in the intersection X of the plane
x1 + . . . + xn ≡ 1 and the nonnegative orthant in IRn. This set is easily seen
to be invariant for the dynamics, and it is convex, so the Brower fixed point
theorem guarantees the existence of an equilibrium in X, for any constant
input u(t) ≡ a. We next prove that this steady-state is unique. Redefining
if necessary the functions αi, we will assume without loss of generality that
σi(a) = 1 for all i. Let us introduce the nondecreasing functions

Gk = β−1
k ◦ αk−1 ◦ β−1

k−1 ◦ . . . ◦ β−1
2 ◦ α1

for each k = 2, . . . , n and G(r) := r + G2(r) + . . . + Gn(r). This function
is defined on some maximal interval [0,M ], consisting of those r such that
α1(r) belongs to the range of β2, α2(β−1

2 (α1(r))) belongs to the range of
β3, and so forth, and it is strictly increasing. Moreover, for each equilibrium
x = (x1, . . . , xn), it holds that xk = Gk(x1), and therefore, recalling that
x1 + . . . + xn = 1, G(x1) = 1. Thus, if x and x̃ are two steady states, we have
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G(x1) = G(x̃1). Since G is strictly increasing, it follows that x1 = x̃1, and
therefore that xk = Gk(x1) = Gk(x̃1) = x̃k for all k, so uniqueness is shown.

We must prove stability. For that, we first perform a change of coordinates:

z1 = x1, z2 = x1 + x2, . . . , zn−1 = x1 + . . . + xn−1, zn = x1 + . . . + xn

so that the equations in these new variables become (using that żk =
(d/dt)(x1 + . . . + xk) and xk = zk − zk−1 for k > 1):

ż1 = −σ1(u)α1(z1) + β2(z2 − z1)
...

żk = −σk(u)αk(zk − zk−1) + βk+1(zk+1 − zk)
...

żn−1 = −σn−1(u)αn−1(zn−1 − zn−2) + βn(1− zn−1)

(and zn ≡ 1). When the input u(t) is equal to any given constant, the sys-
tem described by the first n − 1 differential equations, seen as evolving in
the subset of IRn−1 where 0 ≤ z1 ≤ z2 ≤ . . . ≤ zn−1 ≤ 1, is a tridiagonal
strongly cooperative system, and thus a theorem due to Smillie (see [27]) in-
sures that all trajectories converge to the set of equilibria. (The proof given
in [28] is also valid when the state-space is closed, as here.) Moreover, lineariz-
ing at the equilibrium preserves the structure, so applying the same result to
the linearized system we know that we have in fact an exponentially stable
equilibrium. Thus, characteristics are well defined and nondegenerate.

It is easy to verify from our graph conditions that the system (in the new
coordinates) is monotone, since dfi/dzj > 0 for all pairs i ^= j, dfi/du ≤ 0
for all i, and dh/dzi = 0 for all i < n − 1 and dh/dzn−1 < 0 (the output is
y = xn = 1− zn−1).

The closed-loop system (4) is obtained in this case (unity feedback) by
setting u = ^(y) = y (and changing to the new coordinates zi), so, since
the output is 1 − zn−1, we have u = (^ ◦ h)(z) = 1 − zn−1. We need to
prove strong monotonicity of (4). Closure under positive feedback preserves
monotonicity (see [2]). By Proposition 3, it is enough to see that the Jacobian
is irreducible in the interior of the state space (where zi < zi+1 strictly)
and that solutions exit the boundary instantaneously. In order to prove the
irreducibility property, it is enough to note that the size (n − 1) × (n − 1)
Jacobian matrix A at any interior point has the properties that ai,i−1 = σi(1−
zn−1)α′i(zi − zi−1) > 0 for all 2 ≤ i ≤ n− 1, ai,i+1 = β′i(zi+1 − zi) > 0 for all
1 ≤ i ≤ n−3, and an−2,n−1 = σ′n−1(1−zn−1)αn−2(zn−2−zn−3)+β′n−1(zn−1−
zn−2) > 0. To show that every trajectory lies in the interior of X for all t > 0,
as the interior of X is itself forward invariant (see e.g. [2]), it is sufficient to
prove: for any T > 0, if Φ is the set of t ∈ [0, T ] such that x(t) is in the
boundary of X (relative to the linear space x1 + . . .+xn = 1), then Φ ^= [0, T ].
(It is more convenient to use x coordinates to show this property.) Assume
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otherwise. For each i, consider the closed set Φi = {t ∈ [0, T ] | xi(t) = 0},
and note that

⋃
i Φi = Φ. If Φi would be nowhere dense for every i, then their

union Φ would be nowhere dense, contradicting Φ = [0, T ]. Thus there is some
i so that Φi contains an open interval (a, b) ⊆ [0, T ]. It follows that, for this i,
ẋi ≡ xi ≡ 0 on (a, b), and (looking at the equations) this implies that xi±1 ≡ 0
and, recursively, we obtain xj ≡ 0 for all j, contradicting x1 + . . . + xn = 1.

As a numerical example, let us pick σi(r) = (0.01 + r)/(1 + r), αi(r) =
10 r/(1 + r), and βi(r) = r/(1 + r) for all i, and n = 7. (The constants have
no biological significance, but the functional forms are standard models of
saturation kinetics.) A plot of the characteristic is shown in Fig. 2(a). Since
the intersection with the diagonal has three points as shown, we know that
the closed-loop system (with u = xn) will have two stable and one unstable
equilibrium, and almost all trajectories converge to one of these two stable
equilibria. To illustrate this convergence, we simulated six initial conditions,
in each case with x2(0) = . . . = x6(0) = 0 and with the following choices of
x7(0): 0.1, 0.2, 0.3, 0.4, 0.5, and 0.8 (and x1(0) = 1− x7(0)). A plot of x7(t)
for each of these initial conditions is shown in Fig. 2(b); note the convergence
to the two predicted steady states.

u
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Fig. 2. Enzyme example: (a) Characteristic and (b) Simulations

6 An Example of Negative Feedback

A large variety of eukaryotic cell signal transduction processes operate through
“Mitogen-activated protein kinase (MAPK) cascades,” which play a role in
some of the most fundamental processes of life (cell proliferation and growth,
responses to hormones, etc.). A MAPK cascade is a cascade connection of
three SISO systems, each of which is a system of the type studied in Section 5,
the first with with n = 2 and the next two with n = 3. We already proved
that such systems admit I/O characteristics and are monotone, so cascades
have the same property. Alternatively, a proof can be given directly for this
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example; see [2]. Thus the complete theory may be applied. We pick now a
numerical example in order to illustrate the application of Theorem 3.

Instead of the change of variables used in Section 5, we use the change
of variables in [2], in which we eliminate x2 in the case n = 3. The cascade
then becomes, in terms of the reduced variables, a system of dimension five.
As a concrete illustration, let us consider the open-loop system with these
equations:

ẋ1 =
v2 (100− x1)

k2 + (100− x1)
− g1x1

k1 + x1

g2 + u

g4 + u

ẏ1 =
v6 (300− y1 − y3)

k6 + (300− y1 − y3)
− κ3 (100− x1) y1

k3 + y1

ẏ3 =
κ4 (100− x1) (300− y1 − y3)

k4 + (300− y1 − y3)
− v5 y3

k5 + y3

ż1 =
v10 (300− z1 − z3)

k10 + (300− z1 − z3)
− κ7 y3 z1

k7 + z1

ż3 =
κ8 y3 (300− z1 − z3)
k8 + (300− z1 − z3)

− v9 z3

k9 + z3
.

This is the model studied in [20], from which we also borrow the values of
constants (with a couple of exceptions indicated below): g1 = 0.22, g2 = 45,
g4 = 50, k1 = 10, v2 = 0.25, k2 = 8, κ3 = 0.025, k3 = 15, κ4 = 0.025 k4 = 15,
v5 = 0.75, k5 = 15, v6 = 0.75, k6 = 15, κ7 = 0.025, k7 = 15, κ8 = 0.025, k8 =
15, v9 = 0.5, k9 = 15, v10 = 0.5, k10 = 15. Units are as follows: concentrations
and Michaelis constants (k’s) are expressed in nM, catalytic rate constants
(κ’s) in s−1, and maximal enzyme rates (v’s) in nM.s−1. The paper [20]
showed that oscillations may arise in this system for appropriate values of
negative feedback gains. (We have slightly changed the input term, using
coefficients g1, g2, g4, because we wish to emphasize the open-loop system
before considering the effect of negative feedback.) Figure 3 shows the I/O
characteristic of this system, as well as the characteristic corresponding to a
feedback u = K/(1 + y), with the gain K = 30000. It is evident from this
planar plot that the small-gain condition is satisfied - a ‘spiderweb’ diagram
shows convergence. Our theorem then guarantees global attraction to a unique
equilibrium. Indeed, Figure 4 shows a typical state trajectory.

7 Another Example: Circadian Oscillator

The molecular biology underlying the circadian rhythm in Drosophila is the
focus of a large amount of both experimental and theoretical work. Gold-
beter proposed a simple model for circadian oscillations in [12] (see also his
book [13]) using a mechanism based on the negative feedback loop of the
protein PER inhibiting its own transcription. This (somewhat oversimplified)
model is described by the following equations:
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Fig. 3. I/O characteristic and small-gain for MAPK example
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Fig. 4. Simulation of MAPK system under negative feedback satisfying small-gain
conditions. Key: x1 dots, y1 dashes, y2 dash-dot, z1 circles, z3 solid

Ṁ = vsK
n
I /(Kn

I +Pn
N )− vmM/(km+M)

Ṗ0 = ksM − V1P0/(K1+P0) + V2P1/(K2+P1)
Ṗ1 = V1P0/(K1+P0)− V2P1/(K2+P1)− V3P1/(K3+P1) + V4P2/(K4+P2)
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Ṗ2 = V3P1/(K3+P1)− V4P2/(K4+P2)− k1P2 + k2PN − vdP2/(kd+P2)
ṖN = k1P2 − k2PN

where the subscript i = 0, 1, 2 in the concentration Pi indicates the degree of
phosphorylation of PER protein, PN is used to indicate the concentration of
PER in the nucleus, and M indicates the concentration of per mRNA. The
parameters (in suitable units µM or h−1) are: k2 = 1.3, k1 = 1.9, V1 = 3.2,
V2 = 1.58, V3 = 5, V4 = 2.5, vs = 0.76, vm = 0.65, km = 0.5, ks = 0.38,
vd = 0.95, kd = 0.2, n = 4, K1 = 2, K2 = 2, K3 = 2, K4 = 2, KI = 1. The
whole point of the model, of course, is that limit cycle oscillations appear. It
is important, therefore, to understand to what extent these parameters affect
the existence of periodic orbits. We choose to view the system as the feedback
closure of the system having M (mRNA) as input and PN as output (P equa-
tions), with the system where PN negatively regulates the production of M
(first equation). The P -subsystem is a monotone tridiagonal system, and char-
acteristics can be analyzed, for small enough inputs M , using techniques as in
the previous examples (see [4] for details), while the M subsystem is scalar.
We view vs as a bifurcation parameter. It is remarkable that the conditions for
Theorem 3 are satisfied with e.g. vs = 0.4: no oscillations can happen in that
case, even under arbitrary delays in the feedback from PN to M . See Figure 5
for the ‘spiderweb diagram’ that shows convergence of the discrete iteration.
(the dotted and dashed curves are the characteristics). On the other hand,
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Fig. 5. Stability of spiderweb (vs = 0.4)

for e.g. vs = 0.5, the conditions are violated; see Figure 6 for the ‘spiderweb
diagram’ that shows divergence of the discrete iteration. Thus, and one can
expect periodic orbits; and indeed, simulations show that, for large enough
delays, such periodic orbits arise, see Figure 7.
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Fig. 6. Instability of spiderweb (vs = 0.5)
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Fig. 7. Oscillations seen in simulations (vs = 0.5, delay of 100, initial conditions all
at 0.2), using MATLAB’s dde23 package

8 Final Remarks

The theory of monotone systems with well-defined characteristics provide a
very powerful method for analyzing both positive and negative feedback in-
terconnections. The theory has only recently started to be developed, but
already a large number of nontrivial applications have been handled by it.

For reasons of space, we have omitted a discussion of how complete bi-
furcation diagrams, with respect to magnitudes of gains, can be immediately
derived from the forms of characteristics; see [1, 3] for details.
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Another interesting issue, not included here, regards the necessity of the
monotonicity assumption in Theorem 4. We show by examples in [2] how
relying upon a well-defined characteristic may lead to erroneous conclusions,
if monotonicity is not checked first.
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