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Abstract

The present paper studies a feedback regulation problem that arises in at least two di/erent biological applications. The
feedback regulation problem under consideration may be interpreted as an adaptive control problem for tuning bifurcation
parameters, and it has not been studied in the control literature. The goal of the paper is to formulate this problem and to
present some preliminary results.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The feedback regulation problem we consider is
concerned with a forced dynamical system

ẋ = f�(x; u(t)) (1)
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which depends on a parameter �. The input u(t) in Eq.
(1) represents an external stimulus; it is not a control
variable for the problem under consideration. We are
interested in the input-to-state properties of Eq. (1). In
general, the input-to-state properties of Eq. (1) depend
on the parameter �. In particular, the input-to-state
properties may change drastically as a function of �
when the unforced dynamics exhibit a bifurcation, be-
cause of the linear resonance phenomena that arise
when poles are located on the imaginary axis. In this
case, quite interesting and remarkable ampli;cation
properties may result from operating in the proximity
of the bifurcation point. We illustrate this with two
biological examples from the literature.
The ;rst example is concerned with the auditory

system. In order to detect the sounds of the outside
world, hair cells in the cochlea operate as nanosensors
which transform acoustic stimuli into electric signals.
In a series of recent papers [4–7], the hair cells in the
cochlea are modeled as active, almost self-oscillating
systems. Ions such as Ca++ are believed to contribute
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to the hair cell’s tendency to exhibit spontaneous os-
cillations. For low concentrations of the ions, the vis-
cous damping forces of the Muid that surrounds the
hair cells dominate and the hair cell oscillations are
damped. As the concentration increases the system
undergoes a Hopf bifurcation, the dynamics become
unstable and the hair cells exhibit spontaneous oscilla-
tions. It is argued in these papers that the hair cells op-
erate in the proximity of this bifurcation point, where
the activity of the ions neutralizes the damping e/ects.
In this case, even a weak sound stimulus can cause a
detectable oscillation. (This follows from the generic
properties of a forced dynamical system exhibiting a
Hopf bifurcation). This mechanism thus provides an
explanation for the experimentally observed ultrahigh
sensitivity of the ear. This is very similar to the am-
pli;cation properties of the one-dimensional system

ẋ = �x − x3 + u(t): (2)

The unforced dynamics exhibit a bifurcation at � =
0. For �¡ 0 the system (2) is input-to-state stable
with linear gain 1=|�|. When � = 0; that is, at the bi-
furcation point, the system can still be shown to be
input-to-state stable, but the input-to-state gain is nec-
essarily nonlinear and nondi/erentiable at zero. This
nondi/erentiability follows easily from the behavior
of system (2) under inMuence of constant input sig-
nals. Indeed, for a given constant input u(t) = uc, the
state x will converge to the corresponding equilib-
rium value xeq = (uc)1=3. Notice that the ampli;cation
xeq=uc = (uc)−2=3 grows unbounded as uc → 0. This
shows that any input-to-state gain for system (2) with
�=0 is necessarily nondi/erentiable at the origin and
it illustrates the remarkable ampli;cation properties of
system (2) at its bifurcation point. In spite of its sim-
plicity, the one-dimensional model (2) captures some
of the essential features of the postulated ampli;cation
processes in the auditory system. We refer to the liter-
ature for more details; see [5,7]. In the present paper,
we are interested in mechanisms that guarantee prox-
imity of the bifurcation parameter to its critical value.
The second example arises in the study of persistent

neural activity [3,16–18]. Neural activity of a single
neuron has a natural tendency to decay with a relax-
ation time of about 5–100 ms. This natural tendency
to decay can be opposed by positive synaptic feed-
back loops. If this feedback is weak, then the natural
tendency to decay dominates and neural activity still

decreases. As the feedback gain is increased, the neu-
ral dynamics undergo a bifurcation and the dynamics
become unstable. When the feedback is tuned to ex-
actly balance the decay, then neural activity neither
increases nor decreases but persists without change.
According to a long-standing hypothesis (see [18]
and references therein), this is the mechanism that
so-called neural integrators use to maintain persistent
neural activity. A transient stimulus of a neural inte-
grator can then cause a persistent change in neural ac-
tivity. This mechanism forms the basis for short-term
analogue memory and plays a central role in the ocu-
lomotor control system.
Both examples illustrate the interesting input-to-

state properties of a dynamical system poised at a bi-
furcation. It is clear, however, that operating in the
proximity of a bifurcation point requires a ;ne-tuning
of parameters. And thus the question arises as to how
a (biological) system can be tuned with high preci-
sion to its critical bifurcation point. In both exam-
ples it has been suggested that feedback regulation of
the bifurcation parameter may provide a robust mech-
anism to ensure the required ;ne-tuning of parame-
ters [4,6,3,21]. In the literature on hearing this has
given rise to the terminology of “self-tuned Hopf bi-
furcation”. Quite remarkably both studies have been
pursued independently of each other in spite of their
strong similarities which are obvious from a control
engineering perspective.
The present paper aims to initiate a mathematical

study of this feedback regulation problem. The prob-
lem may be formulated as follows. Find an adaptation
law which steers the bifurcation parameter � to its crit-
ical value �0 without prior knowledge of this critical
value �0. In other words, we want to ;nd an adaptation
law for � such that the system (1) exhibits the inter-
esting input-to-state properties that are characteristic
of operating at the bifurcation point. The adaptation
mechanism may depend on x but should, of course,
be independent of �0 as this critical value is assumed
to be unknown (or known with little precision). In the
present paper we approach this problem by construct-
ing a dynamic adaptation law �̇=h(x; �) which steers
� towards �0 for the autonomous system ẋ=f�(x; 0);
that is, for Eq. (1) with input u identically equal to
zero. In this approach, special attention should be paid
to the interpretation of the obtained results in terms of
the original system (1) with nonzero input u.
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Our main motivation for studying this problem
stems from the fact that the precise biophysical nature
of the feedback mechanisms involved in the above
biological applications is still unknown. A theoretical
study of this problem may guide the search for possi-
ble biophysical mechanisms. Even when the precise
biophysical adaptation mechanisms will have been
discovered, it is to be expected that a profound un-
derstanding of the mechanisms involved can only be
achieved when insight has been gained in the funda-
mental trade-o/s and limitations that may be inherent
to this problem. This is very similar in spirit to the
internal model principle which has turned out to be
central to the understanding of adaptation in bacterial
chemotaxis [22], and it may be seen as an illustration
of the important role that control engineering may
play in the emerging ;eld of systems biology.
A second motivation for the present study is of a

more fundamental nature. In view of the quite remark-
able input-to-state properties that arise when operating
in the proximity of a bifurcation point, the problem
under consideration may turn out to be of independent
interest. Despite its mathematical appeal, it has not at-
tracted attention before in the control community. The
present paper brings together several well-established
techniques from nonlinear and adaptive control to de-
rive some ;rst results for this problem.
We end this introduction with some references to re-

lated work. The present research bears some similarity
with the problem of experimental instability detection
[2], where an operating parameter is adapted online
in order to eAciently locate bifurcations through ex-
periments. A di/erent problem which is related to the
present study concerns the detection and prediction
of instabilities via closed-loop monitoring techniques
[9,13]. Also, a method for estimating the proximity of
a bifurcation parameter to its critical value using pe-
riodic forcing signals is discussed in [10]. The possi-
ble implications of the present work for the problems
studied in these papers remains a topic for further re-
search.

2. Self-tuning of a �rst-order system

The one-dimensional system

ẋ = (� − �0)x + u(t) (3)

captures some of the essential features of the neural
integrator. In this interpretation �0 represents the nat-
ural decay rate of neural activity and � corresponds
to the synaptic feedback gain. We view � as an ad-
justable parameter and �0 as an unknown constant.
Clearly this system exhibits a bifurcation. If � = �0
then Eq. (3) behaves as a perfect integrator, if �¡�0
(respectively, �¿�0) then Eq. (3) is referred to as a
leaky (respectively unstable) integrator. We ask the
question as to how proximity to the bifurcation point
may be ensured.
We study this question from an engineering per-

spective. In a ;rst approach we ignore the presence of
the input and ask the following simpler question. Find
an adaptation law for the parameter � which steers �
to its bifurcation value �0 for the system

ẋ = (� − �0)x: (4)

This adaptation lawmay depend on x and �, but should
be independent of �0, as this value is not known (pre-
cisely). Let us ;rst discuss the feasibility of this prob-
lem. It is easy to see that if x=0 at some time instant
then x = 0 for all times and in this case it is clearly
impossible to steer � to �0 without prior knowledge of
�0. We therefore restrict attention to the set of strictly
positive values for x, which is invariant under the dy-
namics (4). Considering only strictly positive values
for x is physically relevant, as this variable repre-
sents a level of neural activity (rate of action potential
;ring).
The following theorem provides suAcient condi-

tions for the adaptation law

�̇ = f(x)− g(�) (5)

to steer � to its bifurcation value �0 for the system (4).

Theorem 1. Let �0 ∈R and consider continuously
di<erentiable functions f :R¿0 → R and g :R→ R.
Assume that f is strictly decreasing, g is strictly
increasing, and g(�0) is in the image of f. Then the
nonlinear system (4)–(5) with x∈R¿0 and �∈R has
a unique equilibrium point (f−1(g(�0)); �0), which
is globally asymptotically stable (and locally expo-
nentially stable if df=dx takes only strictly negative
values and dg=d� only strictly positive values).

The proof relies on a coordinate transforma-
tion which converts (4)–(5) into a nonlinear
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mass-spring-damper system. Global asymptotic sta-
bility follows readily from LaSalle’s theorem. Local
exponential stability is shown by means of the lin-
earization principle.

Proof. We introduce new coordinates q = ln(x) −
ln(f−1(g(�0))) and p= � − �0. This transformation
from (x; �) to (q; p) is a global C∞-di/eomorphism
from R¿0 ×R to R2. Expressed in these new coordi-
nates (4)–(5) becomes

q̇= p; (6)

ṗ= f(exp(q)f−1(g(�0)))− g(p+ �0): (7)

The system of equations (6)–(7) has a unique equilib-
rium point at the origin. This equilibrium corresponds
to the equilibrium (f−1(g(�0)); �0) in original coor-
dinates.
First we prove that the null-solution of (6)–(7)

is globally asymptotically stable. We rewrite
(6)–(7) as

q̇= p; (8)

ṗ=−f̃(q)− g̃(p); (9)

with f̃(q) = −f(exp(q)f−1(g(�0))) + g(�0) and
g̃(p) = g(p + �0) − g(�0). Clearly f̃ and g̃ are
both strictly increasing, continuously di/erentiable
functions from R to R which are zero at zero. The
candidate Lyapunov function

V :R2 → R : (q; p) �→
∫ q

0
f̃(�) d�+

p2

2
(10)

is twice continuously di/erentiable, positive de;nite
and radially unbounded. Its time derivative along the
solutions of (8)–(9) satis;es

V̇ (q; p) =−pg̃(p)

{
¡ 0 if p �= 0;

=0 if p= 0:
(11)

Since the null-solution is the only solution of (8)–(9)
along which p vanishes identically, global asymptotic
stability of the origin follows from LaSalle’s theorem
[8, Corollary 3.2].
Next we prove that the equilibrium of (4)–(5) is lo-

cally exponentially stable if df=dx takes only strictly
negative values and dg=d� only strictly positive val-
ues. Since the transformation from (x; �) to (q; p)

is a C∞-di/eomorphism it suAces to prove that the
null-solution of (6)–(7) is locally exponentially stable.
This follows readily from the linearization principle.
The linearization of (6)–(7) around the origin is given
by

q̇= p; (12)

ṗ=
df
dx

(f−1(g(�0)))f−1(g(�0))q− dg
d�

(�0)p:

(13)

If df=dx takes only strictly negative values and dg=d�
only strictly positive values then the linearization
(12)–(13) is exponentially stable, as required.

2.1. Discussion of Theorem 1

1. A mathematically appealing adaptation law which
satis;es the assumptions of Theorem 1 for all pos-
sible values of �0 is given by

�̇ =−a ln(x)− b� (14)

with a; b¿ 0. This adaptation law ensures conver-
gence to the bifurcation point for any possible value
of �0. It has the interesting property that the co-
ordinate transformation introduced in the proof of
Theorem 1 converts (4), (14) into the linear system

q̇= p; (15)

ṗ=−aq− bp: (16)

A di/erent adaptation law which satis;es the as-
sumptions of Theorem 1 for all possible values of
�0 is given by

�̇ = 1=(1 + x2)− 1=(1 + exp(−�)): (17)

This adaptation law also ensures convergence to
the bifurcation point for any possible value of �0.

2. We brieMy discuss some of the implications of
Theorem 1 for the original case of interest where
an input u is acting on the system. We consider
Eq. (3) together with the adaptation law

�̇ =−a ln (x)− b� + c

with a, b and c real parameters (a; b¿ 0), and
study the linearization of this system around its
equilibrium point ( Sx; S�) = (exp ((c − b�0)=a); �0).
The transfer function from u to x− Sx in this linear
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approximation is given by

H (s) =
s+ b

s2 + bs+ a
:

In order to quantify how well this linearization be-
haves as an ideal integrator (Eq. (3) with �= �0),
we calculate∣∣∣∣∣
H (j!)− 1

j!
1
j!

∣∣∣∣∣= 1

|1− !2

a + bj!
a |

6min

{
1

|!2

a − 1|
;

1
b!=a

}
;

where j denotes the imaginary unit. We may thus
conclude that sinusoidal signals are integrated with
great precision if the frequency ! is much larger
than min {√a; a=b}. It is instructive to notice that,
when upper and lower bounds are known for �0,
then we may assign any strictly positive value to
the equilibrium value Sx with arbitrary precision
by choosing 0¡b�a—this follows from the ex-
pression Sx = exp ((c − b�0)=a). At the same time,
we may also control the frequency range [!0;∞)
with !0 ¿ 0 where integration will be performed
with great precision by choosing 0¡

√
a�!0. The

combination of these two observations suggests the
choice 0¡b�a�!2

0. We refer to the paper [12]
for a simulation study in the context of neural inte-
gration where the proposed adaptation law indeed
has these qualitative properties.

3. There is a subtle relationship between self-tuning
of bifurcations and ideas from robust control the-
ory. This relation is made explicit by Eq. (6), which
represents an integrator and corresponds to integral
action studied in robust control theory. Although
perhaps surprising at ;rst sight, this relation may
be understood by regarding the constant �0 as an
unknown perturbation acting on the system. It is
well-known from robust control theory that (under
appropriate conditions) rejecting or tracking an
unknown, constant disturbance requires integral
action. (This is a special case of the internal model
principle—see [22,19] for a discussion of the
internal model principle from a systems biology
perspective.) The present manifestation of integral
action, however, di/ers from traditional robust
control situations because the integral action is not

generated by the adaptation law but is inherent to
the dynamics of system (4) itself.

4. If an additional perturbation term �p(x; �; t) is con-
sidered

ẋ = (� − �0)x + �p(x; �; t); (18)

we may conclude that the adaptation law (5) steers
� approximately to �0 under the conditions of The-
orem 1 provided the perturbation is small enough.
More precisely, we state the following result (with-
out proof). Let �0 ∈R and consider continuously
di/erentiable functions f :R¿0 → R and g :R →
R. Assume that f is strictly decreasing, g is strictly
increasing, and g(�0) is in the image of f. Consider
a strictly positive parameter � and a continuous
function p :R¿0 × R2 → R : (x; �; t) → p(x; �; t)
and assume that p is bounded in t uniformly with
respect to (x; �) belonging to compact subsets of
R¿0×R. Then the unique equilibrium point for the
original system (4)–(5) is uniformly semiglobally
practically asymptotically stable for the perturbed
system (18), (5). (We refer to the Appendix for a
de;nition of uniform semiglobal practical asymp-
totic stability.) This result is a manifestation of the
robustness of asymptotic stability with respect to
small perturbations.

3. A second-order system

In a series of articles [4–7] it is argued that various
nonlinear phenomena in the auditory system (such as
ultrahigh sensitivity to weak signals) may be under-
stood in terms of the generic properties of a forced dy-
namical system exhibiting a Hopf bifurcation. In [6]
this is illustrated by means of a standard model for
nonlinear oscillations which (with the notation of the
present paper) takes the form

Ux + (�0 − �)ẋ + �ẋ3 + !2x = u(t): (19)

As before � is an adjustable parameter and �0 is an
unknown constant. In the absence of an external input
u, Eq. (19) describes damped oscillations if �¡�0. At
�=�0 the system undergoes a Hopf bifurcation and for
�¿�0 spontaneous oscillations are being generated.
Assuming that it is possible to tune �=�0 such a model
captures the biophysical nature of hair cell oscillations
within the cochlea where the hair cells are thought of
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as active, almost self-oscillating systems rather than
passive oscillators. In [4–7] it is shown how such a
dynamical system operating at a Hopf bifurcation in-
deed may account for several of the observed nonlin-
ear phenomena in hearing. Again the question arises
as to how proximity to the bifurcation point may be
ensured. In [4,6] it is suggested that a feedback mech-
anism is responsible for this self-tuning and numerical
simulations are provided to support this claim.
Here we want to contribute to a mathematical anal-

ysis of self-tuning of an oscillator. In a ;rst approach
we ignore the cubic damping term and the external
input and we study the following question. Find an
adaptation law for the parameter � which does not de-
pend on �0 and which steers � to its bifurcation value
�0 for the system

Ux + (�0 − �)ẋ + !2x = 0: (20)

As before let us ;rst discuss the feasibility of this
problem. It is easy to see that if x = ẋ = 0 at some
time instant then x = ẋ = 0 for all times and in this
case it is clearly impossible to steer � to �0 without
prior knowledge of �0. We therefore restrict attention
to the set where x and ẋ are not both zero—this set is
invariant under the dynamics (20).
The following theorem proves that the adaptation

law

�̇ =−a ln(r)− b� (21)

with

r =
√

x2 + (ẋ=!)2 (22)

steers � to its bifurcation value �0 for system (20)
if 0¡a6 b2 and b¿ 0. (Notice that r characterizes
the magnitude of the oscillations that are exhibited by
(20) when � = �0.)

Theorem 2. Let �0 ∈R and a; b; !∈R¿0. Assume
that a6 b2. The nonlinear system (20)–(22) with
(x; ẋ)∈R2 \ {(0; 0)} and �∈R has a unique periodic
orbit 4 which is globally asymptotically stable and
locally exponentially stable. On this periodic orbit
� = �0.

The proof of global asymptotic stability is based
on passivity techniques. We interpret (20)–(22) (in a

4 A periodic orbit is a subset of the state-space which is the
image of a periodic solution.

di/erent coordinate system) as a feedback intercon-
nection of a linear system with a dynamic feedback
which satis;es a sector condition. Via the Kalman–
Yakubovich–Popov lemma we obtain a proper, non-
increasing Lyapunov function. Global asymptotic
stability of the periodic orbit then follows from
LaSalle’s invariance principle.

Proof. First we introduce new coordinates r and �
according to x = r cos(�) and ẋ =−r! sin(�). (This
is in agreement with the notation introduced in equa-
tion (22).) The transformation from (x; ẋ) to (r; �)
is a global C∞-di/eomorphism from R2 \ {(0; 0)} to
R¿0×S1. Expressed in the coordinates (r; �; �), equa-
tions (20)–(22) become

ṙ = (� − �0)r sin
2(�); (23)

�̇= !+ (� − �0) sin(�) cos(�); (24)

�̇ =−a ln(r)− b�: (25)

Next we introduce new coordinates q=ln(r)+ b�0=a
andp=�−�0. The transformation from (r; �) to (q; p)
is a global C∞-di/eomorphism from R¿0 ×R to R2.
Expressed in the coordinates (q; �; p), Eqs. (23)–(25)
become

q̇= p sin2(�); (26)

�̇= !+ p sin(�) cos(�); (27)

ṗ=−aq− bp: (28)

Clearly the system of equations (26)–(28) has a peri-
odic orbit {(q; �; p)∈R× S1 ×R: q=p=0} which
we denote by A. This periodic orbit corresponds to a
periodic orbit in original coordinates where �= �0. It
is clear from the following paragraph that this periodic
orbit is unique.
First we prove that the periodic orbit A of (26)–

(28) is globally asymptotically stable. We interpret
(26)–(28) as a feedback interconnection of a linear
control system

q̇=−u; (29)

ṗ=−aq− bp; (30)

with a negative, dynamic feedback u = −sin2(�)p
where � satis;es (27). The transfer function H (s) of
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(29)–(30) from u to p is given by

H (s) =
a

s(s+ b)
: (31)

Since a and b are strictly positive and a6 b2 the
transfer function H (s) + 1 is positive real. Hence by
(a modi;ed version of) the Kalman–Yakubovich–
Popov lemma (proven in [1] and described in [8, Ex-
ercise 10.2]) there exists a positive de;nite, quadratic
Lyapunov function (q; p) �→ V (q; p) whose time
derivative along the solutions of the control system
(29)–(30) satis;es

V̇ (q; p; u)6 up+ u2: (32)

In other words the control system (29)–(30) with input
u and output p is input feedforward passive with a
shortage of passivity [15]. Since the feedback satis;es

up+ u2 = (sin4(�)− sin2(�))p2

=−(sin(�) cos(�)p)2; (33)

it follows that the time-derivative of V along the so-
lutions of (26)–(28) satis;es

V̇ (q; �; p)

{
¡ 0 if sin(�) cos(�)p �= 0;

=0 if sin(�) cos(�)p= 0:
(34)

Since (q; �; p) �→ V (q; p) is positive de;nite with re-
spect to the periodic orbit A it follows that A is sta-
ble. In addition, since (q; �; p) �→ V (q; p) is radially
unbounded with respect toA and sinceA is compact
it follows that every solution of (26)–(28) is bounded.
Finally, since A is the largest invariant set of (26)–
(28) contained in {(q; �; p)∈R×S1×R: V̇ (q; �; p)=
0} it follows from LaSalle’s theorem that every solu-
tion of (26)–(28) converges to A.
It remains to be proven that the periodic orbit of

(20)–(22) is locally exponentially stable. This follows
directly from Theorem 3 which is stated and proven
below.

Although mathematically appealing, the adaptation
law (21) has a very particular structure. It would be
interesting to have a result available that applies to
more general adaptation laws

�̇ = f(r)− g(�) (35)

where r is as in Eq. (22). This is the subject of The-
orem 3. Unlike the previous results, Theorem 3 is a
local stability result.

Theorem 3. Let �0 ∈R and consider continu-
ously di<erentiable functions f :R¿0 → R and
g :R → R. Assume that g(�0) is in the im-
age of f. Consider r∗ ∈f−1(g(�0)) and assume
that 0¡ − (df=dr)(r∗)r∗6 ((dg=d�)(�0))2 and
(dg=d�)(�0)¿ 0. Then the system of equations (20),
(22) and (35) with (x; ẋ)∈R2 \ {(0; 0)} and �∈R
has a periodic orbit which is locally exponentially
stable and where � = �0.

Proof. We proceed along the lines of the proof
of Theorem 2. First we introduce new coordinates
(q; �; p) as in the proof of Theorem 2. The trans-
formation from (x; ẋ; �) to (q; �; p) is a global
C∞-di/eomorphism from (R2 \ {(0; 0)}) × R to
R × S1 × R. Expressed in the coordinates (q; �; p),
Eqs. (20), (22) and (35) become

q̇= p sin2(�); (36)

�̇= !+ p sin(�) cos(�); (37)

ṗ= f(exp(q)r∗)− g(p+ �0): (38)

Clearly the system of equations (36)–(38) has a peri-
odic orbit {(q; �; p)∈R× S1 ×R: q=p=0} which
we denote by A. This periodic orbit corresponds to a
periodic orbit in original coordinates where � = �0.
Since the transformation from (x; ẋ; �) to (q; �; p)

is a C∞-di/eomorphism it suAces to prove that the
periodic orbitA of (36)–(38) is locally exponentially
stable. First we ignore the “higher order” terms in
the right hand side of (37) and (38) and consider the
simpler system

q̇= p sin2(�); (39)

�̇= !; (40)

ṗ=−aq− bp; (41)

where we have introduced the notation a=−(df=dr)
(r∗)r∗ and b=(dg=d�)(�0). By the assumptions of the
theorem 0¡a6 b2 and b¿ 0. Next, because of the
special structure of Eq. (40) which suggests to inter-
pret � as a time variable, we consider the periodically
time-varying linear system

q̇= p sin2(!t); (42)

ṗ=−aq− bp: (43)
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Repeating the arguments of the proof of Theorem 2 it
is easy to see that the setA is a globally asymptotically
stable periodic orbit of (39)–(41) and, equivalently,
that the null-solution of (42)–(43) is uniformly glob-
ally asymptotically stable. Standard converse theo-
rems for periodically time-varying linear systems (see
for example [8, Theorem 3.10]) yield the existence of
strictly positive real numbers c1, c2 and c3 and a con-
tinuously di/erentiable Lyapunov function W :R3 →
R : (q; p; t) �→ W (q; p; t) which is quadratic in (q; p),
which is periodic in t with period 2�=! (this follows
for example from the proof of [8, Theorem 3.10]) and
which is such that

c1(q2 + p2)6W (q; p; t)

6 c2(q2 + p2) ∀(q; p; t) (44)

and such that the time derivative of W along the so-
lutions of (42)–(43) satis;es

Ẇ (q; p; t)6− c3(q2 + p2) ∀(q; p; t): (45)

The Lyapunov function W gives rise to a Ly-
panov function V :R × S1 × R → R : (q; �; p) �→
V (q; �; p) = W (q; p; �=!). It is easily veri;ed that
this Lyapunov function V is continuously di/eren-
tiable, is quadratic in (q; p), satis;es

c1(q2 + p2)6 V (q; �; p)

6 c2(q2 + p2) ∀(q; �; p) (46)

and is such that the time derivative of V along the
solutions of (39)–(41) satis;es

V̇ (q; �; p)6− c3(q2 + p2) ∀(q; �; p): (47)

(The last inequality (47) follows from (45) and the re-
lation V̇ (q; �; p)=Ẇ (q; p; �=!) which is readily ver-
i;ed.) With this Lyapunov function V we now prove
that the periodic orbitA of (36)–(38) is locally expo-
nentially stable. Indeed, for q and p suAciently close
to zero the time derivative of V evaluated along the
solutions of (36)–(38) satis;es

V̇ (q; �; p)6− c3
2
(q2 + p2) (48)

since the extra terms in the right hand side of (37)
and (38) give rise to extra terms in the Lyapunov
balance which are of order higher than two in (q; p).
This shows that the periodic orbit A of (36)–(38) is
locally exponentially stable.

3.1. Discussion of Theorems 2 and 3

1. The assumptions of Theorem 3 involve the un-
known critical value �0. If �0 is known to belong to
some interval, it is of interest to have an adaptation
law which satis;es the assumptions of the theorem
for all �0 in this interval. For example, it is easily
veri;ed that the adaptation law

�̇ = 1=(1 + ra)− b� (49)

with 0¡a6 4b2 and b¿ 0 and r given by
(22) satis;es all assumptions of the theorem if
0¡�0 ¡ 1=b.

2. The proposed adaptation laws (21) and (35) depend
not only on x and � but also on ẋ and !. Their
implementation requires that the state variable ẋ is
measured and the parameter ! is known. This may
be a disadvantage.

3. If an additional perturbation term �p(x; ẋ; �; t) is
considered

Ux + (�0 − �)ẋ + !2x = �p(x; ẋ; �; t); (50)

we may conclude that the adaptation law (21) or
(35) steers � approximately to �0 under the condi-
tions of Theorem 2 or 3 provided the perturbation is
small enough. More precisely, we state the follow-
ing result (without proof). Let �0 ∈R and consider
continuously di/erentiable functions f :R¿0 → R
and g :R → R. Assume that g(�0) is in the im-
age of f. Consider r∗ ∈f−1(g(�0)) and assume
that 0¡ − (df=dr)(r∗)r∗6 ((dg=d�)(�0))2 and
(dg=d�)(�0)¿ 0. Consider a strictly positive pa-
rameter � and a continuous function p : (R2\{0})×
R2 → R : (x; ẋ; �; t) → p(x; ẋ; �; t) and assume that
p is bounded in t uniformly with respect to (x; ẋ; �)
belonging to compact subsets of (R2 \ {0}) × R.
Then there is a subset of (R2 \ {0}) × R where
� = �0 and which is uniformly practically asymp-
totically stable for the perturbed system (50) and
(35). If f(r) and g(�) take the particular form
−a ln(r) respectively b�, then there is a subset of
(R2\{0})×R where �=�0 and which is uniformly
semiglobally practically asymptotically stable. (We
refer to the Appendix for a de;nition of the notion
of uniform (semiglobal) practical asymptotic sta-
bility.) This result is a manifestation of the robust-
ness of asymptotic (or exponential) stability with
respect to small perturbations. It provides some
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justi;cation for ignoring the cubic nonlinearity fea-
turing in Eq. (19).

4. Further comments

We start this section with the formulation of a prob-
lem which generalizes the two particular problems
considered in Sections 2 and 3. Results for this more
general problem have been announced, after the paper
was written, by Rodolphe Sepulchre [14].

Generalized problem statement 1. Consider the
n-dimensional (n∈N) linear system

ẋ = A(�)x; (51)

where � �→ A(�) is a continuously di<erentiable func-
tion from R to Rn×n. Consider �0 ∈R and "∈R¿0

and assume that (i) A(�) has all its eigenvalues in
the open left half plane for �0 − "¡�¡�0 and
(ii) A(�) has some eigenvalues in the open right half
plane for �0 ¡�¡�0+". Find a continuous function
f :Rn × R such that the combined set of equations
(51) and

�̇ = f(x; �) (52)

has a uniformly locally asymptotically stable for-
ward invariant set in the hyperplane {(x; �)∈Rn×R:
� = �0}.

It seems that generically and when the region of
attraction is not the primary concern, little is lost with
assuming that the matrix A(�) depends linearly on �;
that is A(�) = A0 + (� − �0)A1. The two problems
discussed in Sections 2 and 3 correspond to the cases
where the matrices A0 and A1 take the particular form

A0 = 0; A1 = 1 (53)

and

A0 =

(
0 1

−!2 0

)
; A1 =

(
0 0

0 1

)
; (54)

respectively. In the more general case considered
here, one can (generically) bring the matrix A0 into
block-diagonal form with a one- or two-dimensional
block (which contains the critical eigenvalues) corre-
sponding to the particular cases (53) or (54).
We end the paper with a note on static adaptation.

Throughout the paper, we have focused exclusively

on dynamic adaptation mechanisms. For some pur-
poses, however, it may also be useful to consider static
adaptation. For simplicity, we restrict attention to the
;rst-order case (3) and (4) and consider the static
adaptation law

� = h(x)

with h: R¿0 → R a continuous, strictly decreasing
function with �0 in its image. It is easy to see that this
static adaptation mechanism steers � to �0 for system
(4). This follows from the observation that, under the
hypotheses stated, the equation

ẋ = (h(x)− �0)x

with x∈R¿0 has a unique, globally asymptotically
stable equilibrium point given by h−1(�0). It is clear
that the equilibrium value for � is indeed given by
�0. In order to facilitate a comparison with dynamic
adaptation (cfr. Item 2 of Section 2.1), we restrict
attention to the adaptation law

� =
c − a ln (x)

b
:

with a; b¿ 0. We consider Eq. (3) together with this
static adaptation law, and study the linearization of
this system around its equilibrium point Sx=exp ((c−
b�0)=a). The transfer function from u to x − Sx in this
linear approximation is given by

H (s) =
1

s+ a=b
:

In order to quantify how well this linearization be-
haves as an ideal integrator (Eq. (3) with �= �0), we
calculate∣∣∣∣∣
H (j!)− 1

j!
1
j!

∣∣∣∣∣= 1

|1 + bj!
a |6

1
b!=a

;

where j denotes the imaginary unit. We may thus con-
clude that sinusoidal signals are integrated with great
precision if the frequency ! is much larger than a=b. It
is instructive to notice that (as already pointed out in
Item 2 of Section 2.1), when upper and lower bounds
are known for �0, then we may assign any strictly
positive value to the equilibrium value Sx with arbi-
trary precision by choosing 0¡b�a—this follows
from the expression Sx=exp ((c−b�0)=a). A combina-
tion of these two observations suggests a trade-o/ be-
tween the precision with which we may assign a value
to Sx and the frequency range where integration will
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be performed with great precision. This trade-o/ is
apparently not present in the dynamic case. Amore de-
tailed comparison between dynamic and static adapta-
tion mechanisms remains a topic for further research.
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Appendix A. Practical and semiglobal stability
de�nitions

Let # be an open subset of Rn (n∈N) and consider
a family of continuous functions f� :R×# → Rn, la-
beled by a parameter �¿ 0. We are interested in the
stability properties of the family of di/erential equa-
tions

ẋ = f�(t; x) (A.1)

for small values of �. LetA be a compact subset of #,
which need not necessarily be forward invariant for
(A.1).

De�nition 1. For the family of di/erential equations
(A.1), the set A is

1. Uniformly practically stable if for every open
neighborhood U2 ofA there is �∗ ¿ 0 and an open
neighborhood U1 of A such that for all �∈ (0; �∗]
every solution � of (A.1) satis;es: if �(t0)∈U1 for
some t0 in the domain of �, then �(t)∈U2 for all
t¿ t0 in the domain of �.

2. Uniformly practically asymptotically stable if it is
uniformly practically stable and, in addition, there
is an open neighborhood U1 of A such that for
every open neighborhood U2 of A there is T¿ 0
and �∗ ¿ 0 such that for all �∈ (0; �∗] every solution
� of (A.1) satis;es: if �(t0)∈U1 for some t0 in the
domain of �, then �(t)∈U2 for all t¿ t0+T in the
domain of �.

3. Uniformly semiglobally bounded if for every com-
pact subset K1 of # there is �∗ ¿ 0 and a compact
subset K2 of # such that for all �∈ (0; �∗] every so-
lution � of (A.1) satis;es: if �(t0)∈K1 for some t0

in the domain of �, then �(t)∈K2 for all t¿ t0 in
the domain of �.

4. Uniformly semiglobally practically asymptotically
stable if it is uniformly practically stable and uni-
formly semiglobally bounded and, in addition, for
every compact subset K of# and every open neigh-
borhood U of A there is T¿ 0 and �∗ ¿ 0 such
that for all �∈ (0; �∗] every solution � of (A.1) sat-
is;es: if �(t0)∈K for some t0 in the domain of �,
then �(t)∈U for all t¿ t0 +T in the domain of �.

SuAcient conditions for uniform semiglobal prac-
tical asymptotic stability are presented in the papers
[11,20].
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