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Abstract
Synthetic constructs in biotechnology, biocomputing, and modern gene therapy interven-

tions are often based on plasmids or transfected circuits which implement some form of “on-

off” switch. For example, the expression of a protein used for therapeutic purposes might be

triggered by the recognition of a specific combination of inducers (e.g., antigens), and mem-

ory of this event should be maintained across a cell population until a specific stimulus com-

mands a coordinated shut-off. The robustness of such a design is hampered by molecular

(“intrinsic”) or environmental (“extrinsic”) noise, which may lead to spontaneous changes of

state in a subset of the population and is reflected in the bimodality of protein expression, as

measured for example using flow cytometry. In this context, a “majority-vote” correction cir-

cuit, which brings deviant cells back into the required state, is highly desirable, and quorum-

sensing has been suggested as a way for cells to broadcast their states to the population as

a whole so as to facilitate consensus. In this paper, we propose what we believe is the first

such a design that has mathematically guaranteed properties of stability and auto-correc-

tion under certain conditions. Our approach is guided by concepts and theory from the field

of “monotone” dynamical systems developed by M. Hirsch, H. Smith, and others. We bench-

mark our design by comparing it to an existing design which has been the subject of experi-

mental and theoretical studies, illustrating its superiority in stability and self-correction of

synchronization errors. Our stability analysis, based on dynamical systems theory, guaran-

tees global convergence to steady states, ruling out unpredictable (“chaotic”) behaviors and

even sustained oscillations in the limit of convergence. These results are valid no matter

what are the values of parameters, and are based only on the wiring diagram. The theory is

complemented by extensive computational bifurcation analysis, performed for a biochemi-

cally-detailed and biologically-relevant model that we developed. Another novel feature of

our approach is that our theorems on exponential stability of steady states for homogeneous

or mixed populations are valid independently of the number N of cells in the population,

which is usually very large (N� 1) and unknown. We prove that the exponential stability

depends on relative proportions of each type of state only. While monotone systems theory

has been used previously for systems biology analysis, the current work illustrates its power
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for synthetic biology design, and thus has wider significance well beyond the application to

the important problem of coordination of toggle switches.

Author Summary

For the last decade, outstanding progress has been made, and considerable practical expe-
rience has accumulated, in the construction of elementary genetic circuits that perform
various tasks, such as memory storage and logical operations, in response to both exoge-
nous and endogenous stimuli. Using modern molecular “plug-and-play” technologies,
various (re-)programmable cellular populations can be engineered, and they can be com-
bined into more complex cellular systems. Among all engineered synthetic circuits, a tog-
gle, a robust bistable switch leading to a binary response dynamics, is the simplest basic
synthetic biology device, analogous to the “flip-flop” or latch in electronic design, and it
plays a key role in biotechnology, biocomputing, and proposed gene therapies. However,
despite many remarkable properties of the existing toggle designs, they must be tightly
controlled in order to avoid spontaneous switching between different expression states
(loss of long-term memory) or even the breakdown of stability through the generation of
stable oscillations. To address this concrete challenge, we have developed a new design for
quorum-sensing synthetic toggles, based on monotone dynamical systems theory. Our
design is endowed with strong theoretical guarantees that completely exclude unpredict-
able chaotic behaviors in the limit of convergence, as well as undesired stable oscillations,
and leads to robust consensus states.

Introduction
In the short period since the pioneering milestones in synthetic biology [1, 2], outstanding
progress has been made, and considerable practical experience has accumulated, in the con-
struction of genetic circuits that perform various tasks, such as memory storage and logical
operations, as well as support biomedical interventions and biotechnological manipulations
in response to both exogenous and endogenous stimuli [3–9]. These circuits often include
plasmids or transfected circuits which implement some form of “on-off” binary device, generi-
cally referred to as a toggle switch. For example, the expression of a protein used for gene ther-
apy could be triggered by the recognition of some combination of inducers such as antigens,
and memory of this event should be maintained across a cell population until a specific stimu-
lus commands a coordinated shut-off [1, 3, 4]. In this context, as well as in many others, it is
desirable for populations of cells to achieve coordinated static and/or dynamic functionalities.
However, this coordination is hampered by molecular (“intrinsic”) or environmental (“extrin-
sic”) noise, which may lead to spontaneous changes of state in a subset of the population and
is reflected in the bimodality of protein expression, as measured for example using flow
cytometry.

To achieve robustness across a population, one may implement a “majority-vote” correction
circuit that brings deviant cells back into the desired state. Much synthetic biology research
focuses on single-cell microorganisms, often bacteria [4, 6–9]. Bacterial populations are rela-
tively simple, and some aspects of their complex sociality can be rationally understood [10],
providing a foundation for building more complex cellular systems. For bacteria, quorum-
sensing (QS) has been suggested as a way for cells to broadcast their states to the population as
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a whole so as to facilitate consensus. QS signaling pathways [11] can, for example, regulate bac-
terial gene expression in response to fluctuations in cell-population density. Bacteria produce
and release various signaling molecules called autoinducers (AIs) [11–14]. The detection of a
minimal threshold stimulatory concentration of an AI leads to an alteration in the host’s gene
expression. Both Gram-positive and Gram-negative bacteria use QS communication to regu-
late a diverse array of physiological activities. Synthetic biology design has adopted QS commu-
nication in its toolbox [15], because natural and artificially engineered QS modules can be used
to interface synthetic circuits with exogenous and endogenous cues [4], and a systematic mod-
ular approach to standardize engineering toggle genetic circuits that would allow programmed
cells to be designed for various specific purposes and to communicate their states to other cells
was suggested as a bioengineering “plug-and-play”modular approach [4]. The design of such
QS-toggle combinations is the focus of this paper.

A Known Design and Its Drawbacks
We benchmark our design by comparing it to Toggle B2 [4], see Fig SI-1.1 in S1 Text. Despite
remarkable properties of design B2, observed experimentally in controllable experimental set-
tings [4], and studied theoretically [16, 17], the fact that their functional repertoire includes not
only a bistable long-term memory but also the generation of stable oscillations suggests that
the environment-toggle system must be tightly controlled in order to avoid spontaneous
switching, not merely between different expression states but even between different functions.

To address this challenge, we propose a novel design, which is endowed with mathemati-
cally guaranteed properties of stability and auto-correction. Our approach is closely guided by
concepts and theory from the powerful framework ofmonotone dynamical systems pioneered
by M. Hirsch and H. Smith [18–23].

We employ monotone theory to provide guarantees of global convergence to steady states,
thus ruling out unpredictable (“chaotic”) behaviors and sustained oscillations. These theorems
are valid no matter for all values of parameters and are based only on the network structure.
We also provide an extensive computational bifurcation analysis of the corresponding bio-
chemically-detailed and biologically-relevant mathematical models. Our results for homoge-
neous or mixed populations are valid independently of the number of cells in the population
(N� 1), and depend only on the relative proportions of each type of state.

The Components
As a basic design, we chose a genetic toggle switch consisting of two mutually repressing genes,
lacI and tetR [1]. We use two acylated homoserine lactones (Acyl-HSLs), (i) N-butanoyl-l-
homoserine lactone (C4-HSL) secreted by Pseudomonas aeruginosa [24], and (ii) N-
(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone (3-OH-C14-HSL) produced by Rhizo-
bium leguminosarum [13] as a means of coordinating toggle-host activity. Our design has two
QS arms built-in the toggle in such a way that each promoter-repressor pair is controlled by its
own QS signaling pathway symmetrically. Because of this “mirror-like” toggle symmetry, we
call our design a symmetric toggle or an “S” design.

To benchmark the new S toggle design and the monotone systems approach, we compare
the S design to the well-studied asymmetric B2-strain (Fig SI-1.1 in S1 Text) which has one QS
arm only [4, 16]. In this work, we call the asymmetric B2-strain the “A” design. Our S design
cannot be reduced to the A design by removing one QS arm, and, thus, the S design cannot be
viewed as a straightforward extension of the A design. From a theoretical standpoint, it is
worth remarking that the A design is non-monotone.

Quorum-Sensing Synchronization of Toggles
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Under certain experimentally controllable conditions (e.g, unsaturated levels of AAA+ pro-
teases ClpXP, etc.), the S vs. A toggle comparative results obtained in this work can be summa-
rized as follows:

• The S toggle design completely excludes any unpredictable chaotic behaviors, as well as stable
oscillations. Typical trajectories converge globally to stable equilibria. This conclusion is
valid for all parameter values, and provides a strong theoretical guarantee missing from other
synthetic biology designs.

• We refer to mixed states leading to bimodal distributions as spontaneous synchronization
errors. We find that the S toggle design is able to self-correct (or, auto-correct) synchroniza-
tion errors, while the non-monotone A toggle design is not.

• We show how monotone systems theory can predict not only the dynamics of an S toggle
population but it also explains certain monotonically increasing or decreasing parametric
dependencies of population steady states. Some of these predictions can facilitate self-syn-
chronization and, thereby, reduce the chance for synchronization errors to emerge
spontaneously.

Organization of Paper
In Models, the S toggle and A toggle mathematical models are introduced. The basic formalism
and fundamental mathematical results of monotone systems theory, including Strong Monoto-
nicity and Hirsch’s Theorem [18–21, 23] are as well reviewed. Reference values of dimension-
less parameters, scaling, and selection and interpretation of bifurcation parameters are
discussed. We also formalize a concept of spontaneous synchronization errors by considering
three types of equilibrium populations: One homogeneous population, and two heterogeneous
(mixed) populations (bimodal distributions) with both equally (1:1)-mixed and not-equally
(N1:N2)-mixed transcriptional signatures, N2 � N1, the latter giving rise to spontaneous syn-
chronization errors, where N = N1 + N2, and N is the number of cells in the given population.

In Results and Discussion, we proceed to a comparative theoretical and computational anal-
ysis of the S and A toggle designs. We begin this section with results on the application of
monotone systems theory to the S design, as these results constitute the main conceptual and
practical subject motivating this work (Application of Monotone Systems Theory to the S
Design). We then explain how monotone systems theory allows one to predict, based on quali-
tative knowledge only, that generically all solutions converge to equilibria, with no possible
oscillations [16] nor chaotic behavior [25], no matter what the kinetic parameters are. This is
in contrast to the A design, which may admit oscillations [16]. Next, we analyze single S and A
toggles decoupled from the environment (Bistability in Single S and A Toggles), and observe
that the S toggle remains bistable even if “redundant” repressor genes are removed from the
corresponding plasmids. To show how the S design is more robust than the A design, we carry
out a comparative bifurcation analysis of populations consisting of coupled S or A toggles. We
select a free (bifurcation) dimensionless parameter which can be interpreted in terms of experi-
mental interventions [6] leading to (a) changes in the membrane permeability, or (b) changes
in the half-lives of repressor proteins, or (c) changes in the specific growth rate of the host cell.
We finally test the toggle design capabilities to self-correct spontaneous synchronization errors
by sampling the basin of attractor of the corresponding equilibrium solutions. We find that the
S toggle design is able to self-correct synchronization errors far better than the A toggle design.

The paper also has Supplemental Information (SI) materials S1–S8 which can be found in
S1 text (the file S1-text.pdf).
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In SI-1 Toggle B2 (see S1 Text), we discuss the relationship between A design and its proto-
type, the E. coli strain “B2” developed by Kobayashi et al [4] who considered a number of
genetic toggle switches, interfaced with a QS signaling pathway.

In SI-2 Model Derivation (see S1 Text), we derive mathematical models and carry out a
nondimensionalization procedure, the conclusions of which are used in the main text
(Scaling).

In SI-3 Estimation of Parameter Values (see S1 Text), we discuss ranges of biologically
meaningful parameter values based on data available in the existing literature. Values of biolog-
ically meaningful parameters depend upon experimental conditions and other factors con-
trolled by an experimenter, as reviewed in [6]. Therefore, we provide an example of a concrete
estimation of the values of dimensionless parameters, which we interpret in terms of interven-
tions reviewed in [6].

In SI-4 Alternative Definitions of Monotone Systems and Order Preservation (see S1 Text),
balanced graphs, relation to graph partitions, and order presentation by flows are explained.

In SI-5 Symmetry (see S1 Text), we formalize symmetry of the S design and discuss inter-
pretation of symmetric results with respect to nonsymmetric perturbations typical for experi-
mental systems.

In SI-6 Exponential Stability of Cellular Populations (see S1 Text), we prove a number of
general theorems to analyze exponential stability [26] of both homogeneous and heterogeneous
(mixed) population equilibrium states, independently of the number N of cells in the given
population, which (i.e., the value of N� 2) can be a priori unknown.

In SI-7 Additional Figures (see S1 Text), we provide additional bifurcation diagrams.
In SI-8 Modification of the S and A Models to Describe Sequestration of AAA+ protease

ClpXP (see S1 Text), additional (modified) mathematical models describing competition of
ssrA-tagged protein molecules for AAA+ proteases ClpXP are described.

Models
Although our main objective in this paper is to present a conceptual and general organizing
principle for the construction of self-correcting “majority-vote”multistable synthetic systems,
we instantiate our ideas through a very concrete set of genes and protein products, all being
standard molecular parts in synthetic biology [1, 2, 4, 7–9, 27–31]. We do that in order to
emphasize the fact that our constructs can be realistically implemented with currently available
molecular components. However, replacing these components with others does not change the
basic mathematical framework.

To facilitate a conceptual and quantitative comparison of the S and A toggle designs, the
corresponding genetic circuits are assumed to be built from the same tightly controlled lac-tet
transcription entities [7–9, 32–37], which have been intensively used in a number of experi-
mental and theoretic-modeling studies in the context of synthetic biology [1, 2, 4, 7–9, 28–31].
Below, we briefly characterize relevant molecular details and then form the corresponding
mathematical models.

Toggle Designs
For the sake of completeness of our description, we begin our discussion of the S toggle and A
toggle designs (Fig 1) with two classical orthogonal repressors (Table 1):

1. LacI from E. coli which inhibits the transcription of the second repressor gene, tetR from
the tetracycline-resistance transposon Tn10;

2. TetR which represses the transcription of the first repressor gene lacI.
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Next, the communication network among all toggles (Fig 1) is built upon two quorum-sens-
ing (QS) signaling molecules (Table 1):

1. N-(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone (3-OH-C14-HSL);

2. N-butanoyl-l-homoserine lactone (C4-HSL).

Fig 1. Monotone-symmetric and nonmonotone-asymmetric toggle designs. S design (top panel): Activation of the expression of gene x (lacI) occurs by
binding of autoinducer G (C14-HSL) to promoter PG (Pcin). Inhibition of the expression of both genes x (lacI) and u (cinI) occurs by binding of the gene product
Y (TetR) of gene y (tetR) to a single promoter PY (Ptet). Symmetrically, activation of the expression of gene y (tetR) occurs by binding of autoinducer R (C4-
HSL) to promoter PR (Prhl), while inhibition of the transcription of both genes y (tetR) andw (rhlI) occurs by binding of X (LacI) to a single promoter PX (Plac). A
design (bottom panel): Activation of the expression of gene x (lacI) occurs by binding of autoinducer R (C4-HSL) to promoter PR (Prhl). Expression of genes y
(tetR) andw (rhlI) is driven by a common single promoter PX. Gene productsU andW are synthases CinI and Rhil, respectively. Gray horizontal strips
correspond to integration plasmids. Genes gfp and rfp correspond to green and red florescent proteins, GFP and RFP, respectively.

doi:10.1371/journal.pcbi.1004881.g001
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For the sake of brevity, the QS signaling molecules are called autoinducers G (C14-HSL)
and R (C4-HSL). Note that the G- and R-signals (acylated homoserine lactones) are natural
biological signals secreted by Gram-negative bacteria, including E. coli, as a means of coordi-
nating cellular activity [4, 11].

Finally, to drive the autoinducer concentrations, two synthases are used (Table 1):

1. CinI, the gene product of cinI, driving the concentration of C14-HSL;

2. RhlI, the gene product of rhlI, driving the concentration of C4-HSL.

Using the above molecular species, we implement and study two different toggle designs
called symmetric (S) and asymmetric (A) designs, respectively, (Fig 1):

1. In the S design, each of the two autoinducers activates symmetrically the transcription of
the corresponding repressor gene through a single promoter, that is, promoter Pcin (PG) for
gene lacI (x) and promoter Prhl (PR) for gene tetR (y);

2. In the A design, the same repressor genes (as used in the S design) antagonistically repress
one another directly, while there is only one autoinducer that asymmetrically facilitates
communication between all toggles.

The genetic circuit topology used in the A design (Fig 1) is taken from [16]. In order to keep
making a fair comparison with the S design, we have replace the luxR-luxI system considered
in [16] by the lacI-tetR system suggested in [1], see SI-1 Toggle B2 in S1 Text. Note that both
CinI and RhiI are homologous to LuxI [38].

To host the S and A toggles, we use E. coli, a bacterial cell which has been well-studied in a
huge number of relevant experimental and modeling works [32, 39–50], and which has been
widely used to implement and test various synthetic circuits [1, 2, 4, 7–9, 15]. A practical
modeling reason for this selection is narrowing-down our search for biologically-meaningful
parameters to values known from the E. coli studies. However, our conclusions do not depend
in any way on biological properties of the host.

As a readout of the toggle state in individual cells, we further assume that each E. coli cell
contains a gene encoding a spectrally distinct fluorescent reporter, GFP for gene lacI, and RFP
for gene tetR, driven by promoters that respond to the autoinducers C14-HSL and C4-HSL,
respectively. We do not simulate the processes of bio-synthesis and degradation of the fluores-
cent proteins explicitly, using appropriate cascade models, for two reasons: (i) the “reporter”
submodel does not affect the dynamics of the entire model, and (ii) the half-lives of the reporter
proteins can be made similar to the half-lives of the repressor proteins [2].

Table 1. A toggle molecular part catalog (explanations of variables are given in Smodel).

Name variable Function Description References

lacI – repressor gene lactose-inducible transcriptional repressor from E. coli [1, 2, 6, 33]

tetR – repressor gene from the tetracycline-resistance transposon Tn10 [1, 2, 33, 36]

cinI – autoinducer gene encodes protein CinI which synthesizes C14-HSL [11, 13, 14]

rhlI – autoinducer gene encodes protein RhlI which synthesizes C4-HSL [11, 12]

LacI xi lactose inhibitor a DNA-binding protein encoded by lacI [1, 2, 33, 37]

TetR yi repressor protein a basic element of tetracycline-controlled regulation [1, 2, 34, 36]

CinI synthase the gene product of gene cinI [11, 13, 14]

RhlI synthase the gene product of gene rhlI [11, 12]

C14-HSL gi, ge autoinducer N-(3-hydroxy-7-cis-tetradecenoyl)-L-Homoserine Lactone [13]

C4-HSL ri, re autoinducer N-butyryl-L-Homoserine Lactone [12, 24]

doi:10.1371/journal.pcbi.1004881.t001
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Finally, because each toggle can either be in a state where (a) LacI protein is abundant, while
TetR protein is scarce, or in a state where (b) TetR protein is abundant, while LacI protein is
scarce, we call state (a) a green state or, simply, a G-state and state (b) a red state or, simply, an
R-state, respectively.

S model. Amathematical model describing a population of identical S toggles is

dxi
dt

¼ gx þ a1
1þ ynYi

þ a3 g
nG
i

1þ gnGi
� xi; ð1Þ

dyi
dt

¼ gy þ a2
1þ xnXi

þ a4r
nR
i

1þ rnRi
� yi; ð2Þ

dgi
dt

¼ gg þ a5
1þ ynYi

þ d ge � gið Þ � dg gi; ð3Þ

dri
dt

¼ gr þ
a6

1þ xnXi
þ d re � rið Þ � dr ri; i ¼ 1; . . . ;N; ð4Þ

dge
dt

¼ r
N

XN

i¼1

d gi � geð Þ � de ge; 0 � r � 1; ð5Þ

dre
dt

¼ r
N

XN

i¼1

d ri � reð Þ � de re: ð6Þ

Here, all state variables and parameters are dimensionless, and are obtained from the corre-
sponding biologically meaningful state variables and parameters describing the lac-tet system
(Table 1) after an appropriate nondimensionalization, see SI-2 Model Derivation in S1 Text.

In the S model Eqs (1)–(6), t is dimensionless time; xi and yi are the dimensionless concen-
trations (levels) of intracellular repressor proteins LacI and TetR, respectively; gi and ri are the
dimensionless concentrations of intracellular autoinducers C14-HSL and C4-HSL, respectively;
ge and re are the dimensionless concentrations of extracellular autoinducers C14-HSL and
C4-HSL, respectively.

The dimensionless rate constants ai, i = 1, . . ., 6, depend on the copy numbers of the plas-
mids that bear the corresponding genes, see relationships Eqs (18) and (19) given in Scaling;
nX, nY, nG, and nR are the corresponding Hill coefficients; d is the dimensionless diffusion coef-
ficient; δg and δr are the dimensionless lumped dilution-degradation rates due to the exponen-
tial cell growth and degradation of the corresponding species; γx, γy, γg, and γr are the
corresponding leakiness coefficients [16, 17].

The degradation rate constants for repressor species xi and yi are scaled out to unity, as it is
done in [1, 2, 16, 17], see SI-3 Estimation of Parameter Values in S1 Text; δe is the dilution rate
due to flow in the medium; ρ is a population density; and N is the number of cells in the given
population.

Amodel. A dimensionless mathematical model describing a population of identical A tog-
gles is

dxi
dt

¼ gx þ a1
1þ ynYi

þ a4 r
nR
i

1þ rnRi
� xi; ð7Þ
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dyi
dt

¼ gy þ a2
1þ xnXi

� yi; ð8Þ

dri
dt

¼ gr þ
a6

1þ xnXi
þ d re � rið Þ � dr ri; i ¼ 1; . . . ;N; ð9Þ

dre
dt

¼ r
N

XN

i¼1

d ri � reð Þ � de re: ð10Þ

Here, all state variables and parameters are as defined for the S model Eqs (1)–(6). The A
model is mathematically identical to theminimal (simplified) model developed in [16] for the
E.coli strain (toggle) B2 [4], shown in Fig SI-1.1 in S1 Text.

Modeling assumptions. Since the intention of our work is to illustrate the application of
monotone dynamical systems theory to the S design and, also, to compare the S design with
other known designs, we have developed two simplified minimalmodels, described in S model
and A model, respectively. However, because a practical implementation of synthetic toggles is
still far from being a routine exercise [6], care should be taken to explain the assumptions used
to construct the models.

First of all, we compare the newmonotone S design with a well accepted non-monotone tog-
gle design, the E.coli strain B2 [4], which we call the A design, and for which a substantial
modeling work has been done [16, 17] (SI-1 Toggle B2 in S1 Text). Therefore, for a careful
comparison of these two different designs, we have accepted the corresponding modeling sim-
plifications and assumptions [16, 17]. We discuss them in SI-1 Toggle B2 and SI-2.1 Mass-Bal-
ance Equations in S1 Text.

Models always involve simplifications of reality. The impact of several such simplifications
and assumptions, particularly those impacting monotonicity properties and bistabiliy regions,
are: (i) a reduced promoter leakiness [2, 4, 51], (ii) unsaturated levels of AAA+ proteases
ClpXP [9], and (iii) small values of Hill coefficients [7–9, 16]. Because the impact of the varia-
tion in the values of the Hill coefficients and leakiness parameters on the bistability region in
the A model is carefully analyzed in [16], we validate variations in these parameters for the S
model only.

Other assumptions refer to the cells growth conditions, e.g., whether the cells are in solid cul-
ture, liquid culture, in a micro-chemostat, on plates, etc. To this end, the A model [16] corre-
sponds to the strain B [4] for which a detailed description of the growth conditions can be found
in the corresponding experimental protocol [4]. We can thus assume that both S and Amodels
correspond to the same growth condition, that is, the aerobic growth in LBmedium on plates [4].

In both S and A models, there is no time-dependence of dilution or degradation [16].
However, depending on the growth phase of the bacteria, the effects of dilution will not be
constant [40, 47–49, 52]. We use the stationary exponential growth assumption for the sake
of simplicity [16].

Model Parameters
Uncertainty about the values of parameters characterizing molecular components of synthetic
circuits always presents a significant difficulty in circuit design [2]. Here, we discuss reference
values of dimensionless parameters obtained using an appropriate scaling procedure. We also
explain how we select and interpret parameters for our bifurcation analysis.

Model parameters. Reference values of all parameters used in our modeling studies are
estimated in SI-3 Estimation of Parameter Values in S1 Text, and these correspond to half-lives
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of all proteins in the range 4–10 min., which are close to a typical mRNA half-life in E. coli [2].
Also, to avoid competition for ribosomes [43], only a few plasmids bearing four promoters PX,
PY, PG, and PR can be used, and we use 1–2 copies per cell, see SI-3 Estimation of Parameter
Values in S1 Text. The E. coli replication period is assumed to be around 25 min.

Despite the fact that much is known about E. coli [39–41, 45, 47, 48, 50], it is not possible to
model behavior in a quantitatively precise way, since not enough is yet known about molecular
interactions between the toggle and the host cell to make such a description realistic [6].
Instead, we hope to identify classes of toggle designs and dynamic behaviors to determine
which of the designs could lead to an improved self-synchronization reliability and an
improved capability for self-correction of spontaneous synchronization errors, when a small
fraction of cells flips to the opposite (undesirable) transcriptional signature state, see Spontane-
ous Synchronization Errors. We will also make some predictions that might help to facilitate
engineering toggles with desired robust traits.

In our computational analysis, the following set of reference parameter values is used:

gx ¼ gy ¼ gg ¼ gr ¼ 0; ð11Þ

a1 ¼ a2 ¼ 20; a3 ¼ a4 ¼ 10; a5 ¼ a6 ¼ 3; ð12Þ

nX ¼ nY ¼ nG ¼ nR ¼ 3; ð13Þ

dg ¼ dr ¼ 1:0; de ¼ 0:5; r ¼ 0:8: ð14Þ

Groups of parameters with identically the same values are used to introduce the toggle mir-
ror (involutive) symmetry into the S model as discussed in SI-5 Symmetry in S1 Text. We find
that the working values of parameters estimated in Eqs (11)–(14) are within the range of equiv-
alent parameters (rate constants, Hill coefficients, etc.) used earlier for genetic circuits built
from similar (e.g., homologous) molecular entities [1, 2, 4, 7–9, 16, 17, 28–31, 53].

However, there is a variability in the estimation of values for some important parameters in
the literature. Specifically, the values of the Hill coefficients (nG and nR) for the binding of
C4-HSL and C14-HSL to the corresponding promoters are equal to 4 (estimated ad hoc) in the
model developed in [9]. On the other hand side, the values of the Hill coefficients for C6-HSL
and C12-HSL are estimated in the range of values 1–2 in [7, 8]. Because it may be unlikely to
have high values of the Hill coefficients, and because the analytical and computational analyses
of the impact of the Hill coefficients on the bistability regions for the A model have been done
in great detail in [16], we have selected a compromising reference values of all Hill coefficients
equal to 3 [16].

Another important parameter (γ) is the promoter leakiness [2, 4, 51]. To this end, very
small dimensionless values of the corresponding leakiness parameters are used in the relevant
modeling studies [16, 17]. Because we compare our S model with the A model [16], and
because the zero reference value for the leakiness parameters is used in [16], we also use the
zero reference value for the leakiness parameters in both the S and A models. The tightness of
the promoter control has been reported in the literature, e.g., see [2, 4, 12, 51], and the reduc-
tion in the promoter leakiness is the subject of active ongoing research with the promise to
reduce this leakiness even further dramatically [51].

To probe the robustness of the developed theory in the cases when: (i) the Hill coefficients
can take on different values, (ii) the promoter leakiness can be allowed to take on nonzero val-
ues, and (iii) the S model can lose its “perfect”mirror symmetry property, we additionally ana-
lyze the S model with the following modified parameter values while all other parameter values
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are kept intact as in the reference set Eqs (11)–(14),

gx ¼ gy ¼ gg ¼ gr ¼ 0:01; ð15Þ

a1 ¼ a2 ¼ 100; ð16Þ

nX ¼ nY ¼ 2; nG ¼ 1; and nR ¼ 2: ð17Þ

Specifically, condition nG 6¼ nR removes the mirror symmetry from the S model. We will also
use the set of modified parameters in the case when the monotonicity property is violated by the
sequestration of AAA+ proteases ClpXP (Monotone Parametric Dependencies in the S Design).

Scaling. One of the goals of a model nondimensionalization and scaling is to reduce the
number of (correlated) parameters by lumping original parameters into a smaller parameter
set. In this case, interpretation of changes in the values of dimensionless parameters should be
done carefully, as the set of dimensionless parameters is usually not in one-to-one correspon-
dence with the set of original parameters. For example, mathematical models used for syntheti-
cally engineered systems often contain parameters representing multiple biological parts and,
so, tuning a dimensionless parameter in the corresponding mathematical model can be imple-
mented experimentally in a number of different ways [6].

The dimensional and dimensionless parameters used in the S and A toggle models are
related to one another by the following relationships (see SI-2 Model Derivation in S1 Text):

1. For the dimensionless rate parameters, we obtain:

a1 ¼
bx kx ½PY�
KX rd þ mð Þ ; a2 ¼ by ky ½PX�

KY rd þ mð Þ ; a3 ¼ bx kx ½PG�
KX rd þ mð Þ ; ð18Þ

a4 ¼
by ky ½PR�
KY rd þ mð Þ ; a5 ¼ bu ku kG ½PY�

KG rd þ mð Þ2 ; a6 ¼ bw kw kR½PX�
KR rd þ mð Þ2 : ð19Þ

2. For the dimensionless diffusion and degradation parameters, we obtain:

dg ¼
DG

rd þ m
; dr ¼ DR

rd þ m
; ð20Þ

dg ¼ rG þ m
rd þ m

; dr ¼ rR þ m
rd þ m

; de ¼ me

rd þ m
: ð21Þ

Let us briefly discuss Eqs (18), (19), (20) and (21). Here, the burst parameter bx for the pro-
tein X or, equivalently, LacI, depends on the efficiency of translation, controlled by strength of
ribosome-binding sites (RBS) [1, 6], and the mRNA half-life time [54]; [PX] is the number of
promoters per cell for gene x; kx is an average transcription rate for gene x (lacI); KX is the
number of LacI proteins required to half-maximally repress Plac; kG is the maximum produc-
tion rate of C14-HSL by CinI, DG is the export rate of C14-HSL; μ is the intracellular specific
dilution rate due to the host cell growth, μ = ln2/T, T is the division period. Parameters for
other proteins and QS signaling molecules are defined similarly, see SI-2 Model Derivation and
SI-3 Estimation of Parameter Values in S1 Text. Based on the fact that N-Acyl Homoserine
Lactone Lactonase (AHL-lactonase) hydrolyzes C4-HSL effectively [55], we also assume that
specific degradation rate constants for the signaling molecules, C14-HSL and C4-HSL, can be
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set experimentally [6], corresponding to the parameter values used in our models. We pick
these specific promoters and autoinducers in order to be concrete and to justify biologically
meaningful values of the model parameters. However, we wish to emphasize that our results
are generic for the architectures shown in Fig 1.

Bifurcation parameters. In our bifurcation analysis, we use almost all dimensionless
parameters given in Eqs (11)–(14) as free parameters allowed to be varied to detect changes in
stability of the corresponding solutions. Whenever a new bifurcation point is detected, we pro-
vide an appropriate interpretation in terms of interventions reviewed in [6], which can poten-
tially lead to the corresponding effect.

For example, suppose that d is the free parameter used in bifurcation analysis. Due to the
relationships Eqs (20)–(21), changes in the values of dmay correspond to different and inde-
pendent experimental interventions [6] leading to: (a) changes in the membrane permeability
(i.e., DG and DR), or (b) changes in the half-lives of repressor proteins, or (c) changes in the spe-
cific growth rate of the host cell. As such, both higher values of protein half-lives and diffusion
permeability as well as lower values of the specific growth rate (longer replication periods) cor-
respond to higher values of the parameter d. Recall that the value of the parameter d character-
izes the strength of the interaction between cells in the given population, which facilitates self-
synchronization [15–17, 25, 56].

More broadly, we can rely upon the fact that all dimensionless parameters are defined via
appropriate combinations of the original dimensional parameters Eqs (18), (19), (20) and (21)
in our interpretation of results obtained from bifurcation analysis as follows.

The values of dimensionless rate parameters (i.e., a-parameters) can be changed by decreasing
or increasing translational efficiency, which depends on the nucleotide sequence of the ribosome
binding sites (RBS) located within the upstream noncoding part of the mRNA [1, 50]. The values
of dimensionless rate parameters can also be changed by decreasing or increasing the lifetime val-
ues of appropriate proteins. Indeed, a carboxy-terminal tag, based on ClpX, the ATP-dependent
unfoldase/translocase of ClpXP recognizing specific protein substrates bearing ssrA tags [9, 57],
can be inserted at the 3W end of each repressor gene [2]. Proteases in E. coli recognize this tag
and target the attached protein for destruction. Such tags are used to reduce the half-life of the
proteins frommore than 60 min to around 4 min, which makes it possible and (also convenient)
to set the half-life times for all toggle proteins (approximately) equal to one another and close to
the half-lives of mRNAs [2, 15]. We assume that all ssrA tagged proteins do not compete for
AAA+ protease ClpXP [9], in which case the sequestration of AAA+ protease ClpXP is negligible
small and is not modeled. To this end, both RBS and carboxy-terminal tags are the principal tools
by which the parameters of an engineered gene network can be adjusted experimentally [1, 2, 6].

Stability and Bifurcation in Cellular Populations
A number of powerful concepts and software tools have been developed to efficiently analyze
bifurcations of equilibrium solutions in small-scale and medium-sized dynamical models [58–
61]. To this end, however, the analysis of bifurcations in the A and S models already becomes a
formidable task in terms of CPU loads at N = 10. For example, the S model describing 10 cou-
pled toggles includes 42 ODEs. Therefore, special conceptual and computational approaches
need to be developed to interpret results of modeling with A and S models for cellular popula-
tions consisting of thousands or even millions of cells.

Fortunately, due to the special structure of the Jacobian matrices for the corresponding lineari-
zations of the A and S models, the computation of the characteristic polynomials, which are used
to evaluate stability and bifurcation [26, 62], can first be conceptually and, then, numerically sim-
plified, by employing Schur’s formula [63]. As a result, (i) the stability and bifurcation analyses of
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homogeneous populations for any N� 2 can be rigorously reduced to the case of a population
consisting of only two toggles, (ii) the analysis of a (1:1)-mixed state for any evenN� 4 can be
rigorously reduced to the case of only three toggles, and (iii) the analysis of a (N1:N2)-mixed state
with any N1 6¼ N2 andN1 + N2 = N can be rigorously reduced to the case of only four toggles as
described in SI-6 Exponential Stability of Cellular Populations in S1 Text.

Schur’s formula [63] also helps to solve another important nontrivial specificity of the A-
and S-population models caused by multiplicity of eigenvalues due to the model’s symmetry
discussed in SI-6 Exponential Stability of Cellular Populations in S1 Text. Computationally, in
the case of multiple eigenvalues caused by symmetry, the standard tools [58–61] cannot be
used in a straightforward way, when a special care should be taken. Our theoretic developments
can aid in the analysis and interpretation of all such and similar cases arising in modeling of
cellular populations, see SI-6 Exponential Stability of Cellular Populations in S1 Text for more
rigorous definitions and results.

Indeed, the exact (very large) number of cells, N, in a cell culture is usually unknown, as
cells can die or even be washed out. In such cases, the population density parameter ρ is used,
and, therefore, stability of and bifurcation in populations with respect to the variability in their
densities is done. The corresponding changes in the integer parameter N that reflect changes in
ρ assume a formal study of stability with respect to changes in the number of differential equa-
tions in the corresponding models. This is an ill-defined perturbation in the number of equa-
tions, and we show how it can be avoided by using the stability approach developed in SI-6
Exponential Stability of Cellular Populations in S1 Text.

Spontaneous Synchronization Errors
Capabilities of toggles to fail and recover from spontaneous synchronization errors can be for-
malized in terms of amultistability concept, that is, as a co-existence of bistable homogeneous
populations and various heterogeneous populations (Fig 2), also calledmixed states, under the
same conditions. Recall that mixed states are known to lead to bistable distributions [4].

Following [4], we call a population heterogeneous or, equivalently, mixed if it comprises
toggles with different transcription signatures for the same genes: (i) the repressor gene lacI is
active (G-state), while tetR is repressed, and (ii) lacI is repressed, while the repressor gene tetR

Fig 2. Homogeneous and heterogeneous (mixed) populations. An example of a population consisting of 10 cells is shown. The left panel demonstrates a
homogeneous G-population. The center panel demonstrates a heterogeneous (1:1)-population, where the homogeneous G- and R-subpopulations have
equal number of cells. The right panel demonstrates a heterogeneous (9:1)-population formed of two unequal subpopulations which represent a
spontaneous synchronization error, when one or a few toggles spontaneously flip from green (G) to red (R) states.

doi:10.1371/journal.pcbi.1004881.g002
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is active (R-state), see Toggle Designs. In other words, a homogeneous population is fully char-
acterized by either transcription signature (i) or (ii), while a heterogeneous population is char-
acterized by mixed signatures (i) and (ii) simultaneously present in the population (Fig 2).

Different heterogeneous populations can be characterized by transcription signature “mix-
tures” with ratio (p:q), p + q = 1, describing the fraction of toggles in the G-state versus the frac-
tion of toggles in the R-state within the same population. For homogeneous populations, we,
therefore, have either (1:0) or (0:1) transcriptional signature (Fig 2).

With these concepts, we can formulate more precisely our objective: to find conditions
under which heterogeneous (mixed) population equilibrium solutions can loose their stability
or can even be eliminated completely.

As a proof of concept, an example of an (9:1)-heterogeneous population (Fig 2) will be used,
where the number of toggles in the first, Green-subpopulation (G) (tetR is suppressed) is 9
times bigger that the number of toggles in the second, Red-subpopulation (R) (lacI is sup-
pressed). In this simplest case, the G-subpopulation comprises 9 cells (p = 0.9 or 90%-fraction
of all cells), while the R-subpopulation comprises one cell (q = 0.1 or 10%-fraction of all cells).

Note that our analysis of (9:1)-mixed states does not depend on the number of cells N in the
entire population, which is usually unknown in experiments. In other words, our results hold
for any integers N, N1, and N2, such that N = N1 + N2, and N1: N2 = 9: 1, where the fractions of
cells with different transcription signatures are defined by the numbers p = N1/N and q = N2/N,
respectively, see SI-6 Exponential Stability of Cellular Populations in S1 Text.

Monotone Systems Formalism
The systems considered here are described by the evolution of states, which are time-dependent
vectors x(t) = (x1(t), . . ., xn(t)). The components xi represent concentrations of chemical spe-
cies (such as proteins, mRNA, metabolites, and so forth), the dynamics of which are given by a
system of ODE’s:

dx1
dt

ðtÞ ¼ f1ðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞÞ;
dx2
dt

ðtÞ ¼ f2ðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞÞ;

..

.

dxn
dt

ðtÞ ¼ fnðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞÞ :

We also write simply dx/dt = f(x), where f is a differentiable vector function with compo-
nents fi. The coordinates xi(t) are non-negative numbers. We write φ(t, x0) for the solution of
the initial value problem _xðtÞ ¼ f ðxðtÞÞ with x(0) = x0, or just x(t) if x0 is clear from the con-
text, and assume that this solution x(t) exists and remains bounded for all t� 0.

Definition of monotone systems. A system is said to bemonotone if there exists a parti-
tion of the set of indices of state variables:

f1; 2; . . . ; ng ¼ Sþ
[

S� ðSþ
\

S� ¼ ;Þ

with the following properties:
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1. for each pair of indices {i, j} 2 S+ (i 6¼ j) and each pair of indices {i, j} 2 S− (i 6¼ j),

@fi
@xj

ðxÞ � 0 8 x

2. and for each pair of indices {i, j} such that i 2 S+ and j 2 S− and each pair of indices {i, j}
such that i 2 S− and j 2 S+,

@fi
@xj

ðxÞ � 0 8 x :

Observe that the definition does not impose any constrains on diagonal entries @fi
@xi
ðxÞ. These

may have arbitrary signs, even depending on x.
Monotone systems [23, 64, 65] were introduced by Hirsch, and constitute a class of dynam-

ical systems for which a rich theory exists. (To be precise, we have only defined the subclass of
systems that are “monotone with respect to some orthant order” but the notion of monotone
dynamics can be defined with respect to more general orders.)

We assume from now on that our system satisfies the following property: for each pair of
distinct nodes i and j, one of these holds:

1. @fi
@xj

ðxÞ > 0 for all states x

2. @fi
@xj

ðxÞ < 0 for all states x

3. @fi
@xj

ðxÞ ¼ 0 for all states x.

Of course, there are many models for which partial derivatives may change sign depending
on the particular point x. With assumptions (1–3), however, the main results that we need
from monotone dynamical systems theory will be particularly easy to state.

Monotone systems cannot admit any stable oscillations [19, 21, 66]. Under a stronger prop-
erty, described next, only convergence to steady states is generically possible.

Strong monotonicity. The directed species influence graph G associated to a system with n
state variables is defined as follows. The graph G has n nodes (or “vertices”), which we denote
by v1, . . ., vn, one node for each species. If

@fi
@xj

> 0 ðactivationÞ;

we introduce an edge labeled “1” from vj into vi. If, instead,

@fi
@xj

< 0 ðinhibitionÞ;

we introduce an edge labeled “−1” (or just “−”) from vj into vi. Finally, no edge is drawn from

node vj into node vi if the partial derivative
@fi
@xj
ðxÞ vanishes identically (no direct effect of the

jth species upon the ith species). An alternative is to write a normal arrow “!” or a blunted
arrow “a” (or an arrow labeled “−”) respectively for the first two cases. The graph G is an
example of a signed graph [67], meaning that its edges are labeled by signs.

No self-edges (edges from a node vi to itself) are included in the graph G, whatever the
sign of the diagonal entry @fi/@xi of the Jacobian. The sign of this derivative may be positive,
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negative, or even be state-dependent. Results will not depend on signs of diagonals of the
Jacobian of f.

The graph G is said to be strongly connected if, given an arbitrary pair of different indices {i,
j}, there is a some, possibly indirect, effect of i on j. Formally, we ask that there is a sequence of
indices i = k0, k1, . . ., kr = j such that

@fksþ1

@xks
6¼ 0 for s ¼ 0; . . . ; r � 1 :

A system is said to be strongly monotone if it is monotone and, in addition, its species influ-
ence graph G is strongly connected. (As with the definition of monotonicity, one can extend
strong monotonicity to far more general classes of systems, but we use a more restrictive notion
that makes results less technical to state.) Even when there are multiple steady-states, the
Hirsch Generic Convergence Theorem [21, 23, 64, 65] is a fundamental result.

Hirsch’s Theorem. Even though they may have arbitrarily large dimensionality, mono-
tone systems behave in many ways like one-dimensional systems: Hirsch’s Theorem asserts
that generic bounded solutions of strongly monotone differential equation systems must con-
verge to the set of (stable) steady states. “Generic”means here “for every solution except for a
measure-zero set of initial conditions.” In particular, no nontrivial attractors arise. The generic-
ity qualifier is needed in order to exclude the unstable manifolds of saddles as well as behavior
on lower-dimensional sets [18].

The general theory of monotone systems applies to a class of differential equations some-
what larger than the one considered here. What we defined as monotone systems are, to be
more precise, “systems monotone with respect to an orthant order’’. It is possible to, more gen-
erally, define systems that are monotone with respect to orders induced by arbitrary convex
proper cones. However, the generality that one obtains in that fashion comes at the cost of con-
ditions which are typically very difficult to verify in examples and, in any event, this generality
is not needed for the purpose of analyzing the systems that are the focus of this paper.

Results and Discussion
To carry out computational bifurcation analysis, MatCont [59, 68] has been used. A technical
description of bifurcation points can be found in [58, 59, 62, 68].

Application of Monotone Systems Theory to the S Design
To apply monotone systems theory to the S toggle model Eqs (1)–(6), we first rewrite the
model in the following convenient general form with 4N + 2 variables:

dxi
dt

¼ hxðxi; yi; giÞ;
dyi
dt

¼ hyðxi; yi; riÞ;
dgi
dt

¼ hgðyi; gi; geÞ;
dri
dt

¼ hrðxi; ri; reÞ;
dge
dt

¼ Hgðge; g1; . . . ; gNÞ;
dre
dt

¼ Hrðre; r1; . . . ; rNÞ:
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Here, i = 1, . . ., N, all the functions in the right-hand side are differentiable, and the follow-
ing signs hold for partial derivatives, everywhere in the state space:

@hx

@xi
< 0;

@hx

@yi
< 0;

@hx

@gi
> 0;

@hx

@a1
> 0;

@hx

@a3
> 0; ð22Þ

@hy

@xi
< 0;

@hy

@yi
< 0;

@hy

@ri
> 0;

@hy

@a2
> 0;

@hy

@a6
> 0; ð23Þ

@hg

@yi
< 0;

@hg

@gi
< 0;

@hg

@ge
> 0;

@hg

@a5
> 0;

@hg

@d
< 0; ð24Þ

@hr

@xi
< 0;

@hr

@ri
< 0;

@hr

@re
> 0;

@hg

@a6
> 0;

@hr

@d
< 0; ð25Þ

@Hg

@gi
> 0;

@Hg

@ge
< 0;

@Hg

@de

< 0; ð26Þ

@Hr

@ri
> 0;

@Hr

@re
< 0;

@Hr

@de

< 0; i ¼ 1 . . . ;N: ð27Þ

Next we observe that the S system is monotone, because we may partition its state variables
as follows. One set consists of

xi; gi; ge; i ¼ 1; :::;N ; ð28Þ

and another set consists of

yi; ri; re; i ¼ 1; :::;N : ð29Þ

Moreover, the corresponding graph is strongly connected, as we have the following paths,
for each two indices i, j:

xj a rj ! re ! ri ! yi a gi ! ge ! gi ! xi ð30Þ

which shows that one can reach any node from any other node by means of a directed path.
Thus, the S model Eqs (1)–(6) is strongly monotone. We conclude as follows.

Theorem 1 Typical solutions of the S model Eqs (1)–(6) converge to steady states.
This fundamental result is robust to parameters as well as to the functional form of the

equations. It ensures that our proposed design has theoretically guaranteed global stability
properties. No stable oscillations [16] can exist, nor can other (for, example, “chaotic” [25])
solution regimes arise. In addition to these global properties, it is also possible to use the theory
of monotone systems in order to make qualitative predictions about bifurcation diagrams as
discussed in the next section.

The monotonicity property of the S system has important consequences regarding its
transient as well as asymptotic behavior. We discuss in an appendix how Kamke’s Theorem
characterizes order relations for monotone systems. We explain now what these mean,
explicitly, for the S system. Let zi(t) characterize the state of the i-th S toggle at time t� 0,
that is, zi(t) = (xi(t), yi(t), gi(t), ri(t)), i = 1, . . ., N. Let Z(t) characterize the state of the popula-
tion of cells, Z(t) = (z1(t), . . ., zN(t), ge(t), re(t)). Suppose that we have two initial sets, Z(0)
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and ~Zð0Þ, of values for the various expression levels of the repressor proteins, LacI and TetR,

and we consider the behavior of Z(t) and ~ZðtÞ for t> 0.
Now suppose that we wish to understand what is the effect of a perturbation in one of the

components of the initial state zi(0) for S toggle i with some fixed i, 1� i� N. (A similar argu-
ment can be applied to perturbations in other components of the initial state, or even simulta-
neous perturbations in all the components.) Suppose, for example, that we are interested in
understanding the behavior starting from a state in which ~x3ð0Þ � x3ð0Þ in the 3rd toggle z3.

This gives rise to a new population-wide solution ~ZðtÞ, and we use a tilde to denote its coordi-
nates, that is, ~ZðtÞ ¼ ð~z1ðtÞ; . . . ; ~zNðtÞ; ~g eðtÞ;~reðtÞÞ, where ~ziðtÞ ¼ ðxiðtÞ; yiðtÞ; giðtÞ; riðtÞÞ,
i = 1, . . ., N. Then, using the information provided by the partition shown in Eqs (28) and (29),
we can predict that, for all t> 0: ~xiðtÞ � xiðtÞ, ~yiðtÞ � yiðtÞ, ~g iðtÞ � giðtÞ, ~r iðtÞ � riðtÞ,
~g eðtÞ � geðtÞ, and ~reðtÞ � reðtÞ for all i = 1, . . ., N. As we will see shortly below, a similar con-
clusion can also be made with respect to perturbations in parameters, not merely initial states.

Monotone Parametric Dependencies in the S Design
As a first step, we can include the eight parameters, ai (i = 1, . . ., 6), δg, and δr, as constant state
variables by formally adding the corresponding equations dai/dt = 0 (i = 1, . . ., 6), and dδg/dt =
dδr/dt = 0 to the S-model Eqs (1)–(6). The extended S-model is a monotone system. However,
this extended model has no strong monotonicity property, because the nodes corresponding to
the parameters cannot be reached from other nodes, as the parametric extension violates the
strong connectivity relationships Eq (30). However, this is not of any consequence, as the
global stability properties of the S system are determined by constant values of the parameters.
We only introduced the extended model in the context of bifurcation analysis. One might add
additional constant variables to represent other parameters, such as the d’s. These other param-
eters do not lead to monotonicity, and this lack of monotonicity will have important conse-
quences in bifurcation analysis, as we discuss later.

Dependencies between the S-model state variables and parameters Eqs (22)–(27) are shown
in Fig 3 (Top Panel). Here, the set of all molecular entities in the S design is partitioned into
two “orthogonal” subsets, S− and S+ (Definition of monotone systems). Solid arrows and lines
highlighted in light brown color correspond to S−, while solid arrows and lines highlighted in
cyan color correspond to S+. Although interactions within each subset contribute to its activate
state, the orthogonal subsets repress one another. Here, ClpXP is a pool of AAA+ proteases
ClpXP that use the energy of ATP binding and hydrolysis to perform mechanical work during
targeted protein degradation within the cell. The corresponding inhibitory (degradation) inter-
actions are shown, using dashed gray lines. If the circuit operates near the saturation condition
for the pool of AAA+ proteases ClpXP, the S design may loss its monotone properties.

However, there is a substantial body of literature that gives theorems to the effect that
“small” perturbations of monotone systems retain the properties of monotone systems, for
example, a smooth regular perturbation of a strongly monotone system also has generic con-
vergence properties [65]. A similar result as well holds for singular perturbations [69].

An example of three identical S toggles interacting via common autoinducers and operating
far from the saturation of AAA+ proteases ClpXP is shown in Fig 3 (Bottom Panel).

The monotonicity of the extended model implies that stable loci in bifurcation diagrams
depend monotonically on parameter variations. They will increase when the parameter being
varied belongs to the component as the variable being analyzed, and will decrease if they are in
different components. This property is a consequence of the general order preserving proper-
ties of monotone systems, as we explain now.
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Suppose that �x0 is a steady state corresponding to a parameter value p0, that is to say,
f ð�x0; p0Þ ¼ 0. Suppose that we now consider p1 that is very close to p0 and larger than p0, p1 >
p0. Suppose in addition that �x1 is a steady state for the parameter value p1, f ð�x1; p1Þ ¼ 0, and
that �x1 is stable. Now pick the solution x1(t) of _x ¼ f ðx; p1Þ that has initial condition
x1ð0Þ ¼ �x0. Suppose that the extended system _x ¼ f ðx; pÞ and _p ¼ 0 is monotone. Now, we
may consider the following two initial states for the extended system: ð�x0; p0Þ and ð�x0; p1Þ.
Since the second state is larger (in the sense of Kamke’s Theorem as earlier explained) in the
monotone order, it follows that the solutions satisfy x1ðtÞ � �x0 for all t> 0, and therefore, tak-
ing limits, we conclude that �x1 > �x0, as desired.

Using Fig 3 in conjunction with the dimension analysis in terms of the relationships Eqs
(18), (19), (20) and (21), certain qualitative predictions can be made about the parametric

Fig 3. Application of Monotone Systems Theory to the S design. The top panel presents a monotonicity
diagram for a single-cell S design, while the bottom panel represents an example of three identical S toggles
interacting via common autoinducers, see the main text for details. In all cases, solid arrows and lines
highlighted in red color correspond to monotone parameter dependencies. In the bifurcation analysis, the
values of all monotone parameters are varied for all cells simultaneously.

doi:10.1371/journal.pcbi.1004881.g003
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dependencies based on monotone systems theory. To benchmark the approach, we have
selected, as an example, a subset of dependencies shown in Fig 3, presented in Fig 4A and 4B.
Fig 4C and 4D correspond to the case when the S toggle operates under the saturation condi-
tion for the pool of AAA+ proteases ClpXP (SI-8 Modification of the S and AModels to
Describe Sequestration 617 of AAA+ protease ClpXP in S1 Text.)

In Fig 4, three different stable populations are chosen: (1) an G-homogeneous population;
(2) an (1:1)-mixed population; here, the levels of LacI and C14-HSL from one subpopulation
(within which LacI is over-expressed) are shown; and (3) a (9:1)-mixed population (a spontane-
ous synchronization error); here, again, the levels of LacI and C14-HSL from the largest subpop-
ulation (within which LacI is over-expressed) are shown. Because the stable mixed populations
do not exist for large values of the parameter d in the cases shown in Fig 4A and 4B, we use both

Fig 4. Examples of monotone parametric dependencies. Panels (A) and (B) correspond to the
unsaturated S design, while Panels (C) and (D) correspond to the saturated S design. Panels (A) and (B).
The following color coding schema is used: (i) black plots are used for G-homogeneous solutions at d = 0.1;
(ii) red plots are used for G-homogeneous solutions at d = 10; (iii) blue plots are used for (1:1)-mixed states at
d = 0.1; and (iv) green plots are used for (9:1)-mixed states at d = 0.1. Red filled circles in panel (B), labeled
with LP1 and LP2, correspond to Limit Point (LP) (or, equivalently, Saddle-Node) bifurcation points. Here, the
blue curve connecting the origin (0, 0) and the LP1-point corresponds to the stable branch of the (1:1)-mixed
state. The green curve connecting the origin (0, 0) with the LP2-point corresponds to the stable branch of the
(9:1)-mixed state. Because the green curve was plotted after plotting the blue curve, a part of the blue curve is
hidden beneath the green curve. Projections of the corresponding plots on 2D-planes often overlap, mixing
different colors, which should not lead to any difficulty in recognizing similar monotone (“overlapping”)
dependencies. Panels (C) and (D). The following color coding schema is used: (i) red plots correspond to
stable homogeneous G-states, (ii) violet plots correspond to stable (1:1)-mixed states, and (iii) green plots
correspond to stable (9:1)-mixed states. In all cases, blue plots correspond to unstable states. All red filled
circles correspond to the LP bifurcations. In the panel (D), the unstable branches for both (1:1) and (9:1)-
mixed states are not shown because they overlap with the stable ones.

doi:10.1371/journal.pcbi.1004881.g004
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d = 0.1 (weak coupling) for all populations and, additionally, we use d = 10 (strong coupling) for
the G-homogeneous population only. In the cases shown in Fig 4C and 4D, the mixed popula-
tions turn out to be more robust and exist at d = 10.

Using the S-model Eqs (1)–(6) and its sequestration version (SI-8.1) (see SI-8.1 Modifica-
tion of the S Model in S1 Text) with the values of fixed parameters given in Eqs (11)–(14) and
(15)–(17), respectively, we find that Fig 3 predicts monotonically increasing dependencies.

The loss of stability and disappearance of the mixed states shown in Fig 4B and 4D as a5
increases can be interpreted intuitively by the fact that an increase in a5 leads to an increase in
the intracellular levels of the corresponding QS signaling molecules, which, in turn, lead to an
increase of extracellular levels of the QS molecules via diffusion, thereby facilitating self-syn-
chronization of the given population of all toggles under conditions corresponding to a stron-
ger interaction among all toggles. In particular, the strong interaction and coupling condition
eliminates spontaneous synchronization errors in terms of suppressing the emergence of unde-
sired (9:1)-mixed states.

This result is similar to a well-known fact for oscillators coupled via a common medium
that a transition from an unsynchronized to a synchronized regime emerges as the strength of
coupling increases [15–17, 25, 56]. Indeed, many microbial species accomplish this via quorum
sensing, which entails the secretion and detection of diffusible molecules (autoinducers), whose
concentration serves as a proxy for population density [10].

Using the expression for the dimensionless parameter a5 given in Eqs (18) and (19), see
Scaling, we can conclude that the increase in the values of the parameter a5 leading to the bifur-
cation point LP2 (Fig 4) can be achieved by the following experimental interventions:

• stabilization of cell division with lower values of the specific growth rate μ (or, equivalently,
higher division periods T);

• stabilization of relevant proteins, using lower values of rd (or, equivalently, higher half-lives);

• an increase in the maximum production rate (kG) of C14-HSL by enzyme CinI, see SI-3 Esti-
mation of Parameter Values in S1 Text;

• an increase in the sensitivity (KG) of promoter Pcin with respect to the number of molecules
C14-HSL to half-activate Pcin, see Table SI-3.2 given in SI-3 Estimation of Parameter Values
in S1 Text.

We have used bifurcation analysis with respect to changes in the values of the parameter a5
as a way to illustrate predictions from monotone systems theory, and in the process we obtained
conclusions regarding improvements of S toggle self-synchronization properties by eliminating
the (9:1)-mixed state. To this end, we note that there is no need to further increase values of a5
to move the system to the bifurcation point LP1 at which the (1:1)-mixed state loses it stability
and disappears, because we do not interpret the (1:1)-mixed state as a spontaneous synchroniza-
tion error, see Spontaneous Synchronization Errors. Additional parametric dependencies with
respect to changes in other parameters are shown in Figs SI-7.1 and SI-7.1 in S1 Text.

We then repeat the analysis of the same parametric dependencies for a (1:1)-mixed state,
illustrated in Fig 5 and Fig SI-7.3 in S1 Text. Like in the previous case, we observe that all
dependencies are in line with the predictions suggested by Fig 3. To this end, we will not pro-
vide here reproduced similar results for the saturated S design (SI-8.1 Modification of the S
Model in S1 Text), because in all computationally investigated cases, the parameter monotone
dependencies are predicted by the theory and Fig 3.

The LP-bifurcation point (Fig 5) can be interpreted as follows. Decreasing values of both
parameters δg and δr leads to an increase in the intracellular and extracellular levels of the
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corresponding QS signaling molecules, which, in turn, leads to stronger interactions among all
toggles. Indeed, it follows from Eqs (20) and (21) (see Scaling) that the described changes in
the values of dimensionless parameters δg and δr can be achieved by increasing half-lives of the
corresponding QS signaling molecules.

To this end and similarly to the interpretation provided earlier, as the values of the parame-
ters δg and δr decrease, the (1:1)-mixed state loses its stability and disappear via an LP-bifurca-
tion (Fig 5), the effect which is similar to the well-known fact that oscillators coupled via
common medium synchronize as the strength of coupling increases [15, 25, 56].

We note that the parametric dependencies for unstable solutions are not described by Fig 3.
To explain this observation, we recall that our proof of monotone dependence on parameters
applies to stable solutions only, see above.

Finally, the monotone parametric dependencies for (9:1)-mixed states corresponding to
spontaneous synchronization errors are illustrated in Figs SI-7.4 and SI-7.5 in S1 Text. In this
case, by increasing the strength of interactions between the toggles from the large subpopula-
tion, the spontaneous error can also be eliminated, corresponding to the existence of the LP-
points in panels (A) and (B) of Figs SI-7.4 and SI-7.5 in S1 Text. At the same time, increasing
the strength of interactions between the toggles from the small population, the corresponding
spontaneous error cannot be eliminated.

Fig 5. Examples of monotone parametric dependencies for a (1:1)-mixed state. Panels (A) and (B)
correspond to dependencies of LacI and TetR levels on parameter δg, respectively. Panels (C) and (D)
correspond to dependencies of LacI and TetR levels on parameter δr, respectively. The dependencies for the
G-subpopulation are shown only, within which LacI is activated, while TetR is repressed. Green and red solid
curves correspond to stable branches of (1:1)-equilibrium solutions, while all blue curves correspond to
unstable branches of the solutions. Red filled circles correspond to an LP-bifurcation point. In panel (A),
projections of stable and unstable branches coincide and, so, only the stable branch is shown.

doi:10.1371/journal.pcbi.1004881.g005
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Bistability in Single S and A Toggles
Before comparing population properties of our S design to those of the A design, we remark
that, even for isolated cells (when the diffusion constant d is zero), there is a larger range of
bistability for the S design compared to the A design. Specifically, a bistability region for a sin-
gle A toggle in the plane (a1, a2) at d = 0 is shown in Fig 6(top panel). Similar regions were
found in [1, 16]. We also observe that the entire quadrant, a1 � 0 and a2 � 0, spans a bistability
region for the S-model at the fixed parameter values given in Eqs (11)–(14). We have computed
the bistablility regions for the S design for three different nonzero values of the promoter leaki-
ness parameter γ = 0.01, 0.1, 1.0, respectively, while all other parameter values were kept fixed
as in the reference set Eqs (11)–(14), and found that in all the three cases, the entire quadrant,
a1 � 0 and a2 � 0, belongs to the computed regions. In contrast, the bistability region for the A

Fig 6. Bistability regions for S and A toggles (top), and a reduced SR toggle design discovered from
the bistability region (bottom). (Top panel). The region between two blue color coded LP-bifurcation loci
corresponds to a bistability region for the A toggle model Eqs (9) and (10) at d = 0. A red filled circle
corresponds to a cusp point (CP). For the S toggle model, bistability exists for all parameter values a1� 0 and
a2� 0 at d = 0. Other fixed parameter values are given in Eqs (11)–(14). (Bottom panel). The reduced SR

toggle is obtained from the original S toggle (Fig 1) after removal of genes lacI and tetR from the
corresponding plasmids bearing promoters PY and PX, respectively. This reduction procedure corresponds to
setting zero values a1 = a2 = 0 as discussed in the main text.

doi:10.1371/journal.pcbi.1004881.g006
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design depends on the promoter leakiness parameter significantly [16], and we also observed
computationally that the bistability region was leaving the domain shown in Fig 6 (top panel)
as soon as γ was allowed to take on values larger than 0.5, that is, when γ> 0.5.

Another important observation that follows immediately from Fig 6 (top panel) is that in
the case of the S toggle, bistability persists at the origin of the non-negative quadrant in the
plane (a1, a2), that is, at a1 = a2 = 0. The observation remains true even for the nonzero values
of the leakiness parameters as discussed earlier. Additionally, the property persists for the satu-
rated S design (SI-8.1 Modification of the S Model in S1 Text) with the updated parameter set
Eqs (15)–(17). This simply means that the genes lacI and tetR can be removed from the corre-
sponding plasmids bearing promoters PY and PX, respectively (Fig 1). In this case (Fig 6) (bot-
tom panel), it is enough to keep the genes on the plasmids bearing the corresponding
promoters PG and PR (Fig 1). We view the reduced S toggle as a minimal design that could be
implemented experimentally. The fuller construct S is interesting too, in so far as it is based on
the well-characterized and studied Cantor-Collins switch, coupled to quorum-sensing compo-
nents [4]. We find that the full and reduced designs do not differ much in performance, and,
so, we do not consider the minimal design in the rest of the paper.

Bistable Homogeneous Populations of S and A Toggles
Bistable homogeneous populations of S toggles persist within large ranges of the model param-
eters. For example, panels (A) and (B) in Fig SI-7.6 in S1 Text show scaled levels of LacI and
C14-HSL, respectively, for a homogeneous population of S toggle in the G-state, depending on
the values of the diffusion (membrane permeability) parameter d.

Panels (C)—(F) in Fig SI-7.6 in S1 Text show two stable homogeneous populations of A tog-
gle which coexist while the parameter d is allowed to vary. Because the A toggle design does
not have any intrinsic symmetry, the levels of the activated repressor proteins, LacI for the G-
homogeneous population shown in panels (C) and (E), and TetR for the R-homogeneous pop-
ulation shown panels (D) and (F), differ significantly from one another. Recall that the levels of
LacI and TetR in the corresponding G- and R-homogeneous populations consisting of S toggles
are identically the same due to mirror symmetry.

Our intensive computational studies confirm that the discussed results on the stable homo-
geneous populations of S and A toggles, as well as their dependencies on the diffusion parame-
ter d, are robust with respect to perturbations in the model parameters, including various
combinations in the values of the Hill coefficients, promoter leakiness, and the saturation con-
ditions (SI-8 Modification of the S and A Models to Describe Sequestration of AAA+ protease
ClpXP in S1 Text).

The combination of the analyses discussed here can be summarized by saying that under
each one of the two designs, S and A, including biological variability in the Hill coefficients,
promoter leakiness, and the degradation sequestration conditions, bistable homogeneous stable
populations are possible, in either “Red” or “Green” consensus states, and with the same order
of magnitude of expression. The difference between these designs, including the sequestration
effect for AAA+ proteases ClpXP, become evident, when we study heterogeneous (mixed) pop-
ulations, as discussed next.

Elimination of (1:1)-Mixed Populations of S Toggles
Fig 7 shows richness of dynamic effects (bifurcations) for a (1:1)-mixed population of S toggles.
We see that as soon as the parameter d takes on larger values, the (1:1)-mixed state loses its sta-
bility via a Branch Point (BP) bifurcation [62] (alternatively called “pitchfork” or “symmetry-
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breaking” bifurcation [70, 71]), giving rise to two stable (1:1)-mixed non-symmetric states at
d� 1.43. The general symmetry-breaking phenomenon is rigorously studied in [72, 73].

The symmetry-breaking scenario can be described intuitively as follows. Suppose that we
start with a mixed population in which 50% of the cells are in “green” state and 50% of the cells
are in “red” state, and the nondimensional diffusion coefficient d (which, as we saw, in fact
incorporates many of the kinetic parameters in the original system) has a low value. Suppose
that we now slowly increase the value of d, and ask what happens to the (1:1)-mixed state. The
first event that is observed, at d� 1.43 corresponding to the BP points in all panels of Fig 7, is
that this “pure 50–50 mixed state” loses its stability. A new mixed state arises (Fig 8), in which
there are two subpopulations, one in which green gene-expression dominates (but with differ-
ent expression levels of LacI in each of them), and another one which red gene-expression
dominates (also with different TetR levels). These two mixed states correspond to the solution
branches connecting points marked with labels BP and upper LP, and BP and lower LP, respec-
tively, shown in all panels of Fig 7.

Furthermore, as d is increased a bit more (past d� 2.07 corresponding to the two points
labeled with LP in all panels of Fig 7, respectively), even these mixed states disappear (Fig 7).
Thus, even with moderate diffusion, heterogeneous populations cannot be sustained, empha-
sizing the consensus-forming character of the S design. This is in marked contrast to the A
design, as shown next. The loss of stability by the (1:1)-mixed state increases the robustness of
the S toggle design towards its self-synchronization by reducing the number of alternative sta-
ble states to which the toggle state can settle.

Robustness of (1:1)-Mixed Populations of A Toggles and Saturated S
toggles
In contrast to (1:1)-mixed populations of (unsaturated) S toggles described by the S model Eqs
(1)–(6), we observe from Fig SI-7.7 in S1 Text that the original (1:1)-mixed A-population can-
not be eliminated (made unstable) by increasing the values of the parameter d within a very
large parameter interval. In other words, increasing the strength of interactions between the
cells does not help to establish synchronization across the given population of identical A tog-
gles. This is in a total agreement with a similar observation reported in [16], where the A model

Fig 7. Symmetry breaking in a (1:1)-mixed population of S toggles. Panels (A) and (B) show the
dependencies of LacI and TetR levels for the G-subpopulation of a (1:1)-population of S toggles, respectively.
Blue color-coded plots correspond to all unstable equilibrium solution branches, while green and red color-
coded plots correspond to all stable equilibrium solution branches. All blue filled BP-labeled points
correspond to d� 1.43. All red filled LP-labeled points correspond to d� 2.07.

doi:10.1371/journal.pcbi.1004881.g007
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is studied in great detail. Specifically, it is found that a strong interaction between A toggles
(e.g., high permeability of the membrane to the autoinducer similar to higher values of d)
results in the suppression of synchronous oscillations, leading to a transition of the population
to a stable heterogeneous state, where individual A toggles are locked in different equilibrium
states.

Our computational experiments with (1:1)-mixed populations of (saturated) Sm toggles
described by the Sm model (SI-8.1) (see SI-8.1 Modification of the S Model in S1 Text) led to
dependencies qualitatively indistinguishable from those shown in Fig SI-7.7 in S1 Text. There-
fore, we can conclude that the degradation saturation (sequestration) effect may prevent the
elimination of the undesired mixed states and synchronization.

(9:1)-Mixed Population of S Toggles
Next, we consider bistable (9:1)-mixed populations of S Toggles, which as discussed in the
introduction, we think of as arising from random synchronization errors. We observe that
(9:1)-populations of S toggles become quickly extinct as soon as the values of the nondimen-
sional diffusion parameter d are slightly increased (Fig 9).

Fig 8. An interpretation of symmetry breaking in a (1:1)-mixed population of S toggles. A new (1:1)-asymmetric mixed state arises, in which there are
two subpopulations, one in which green gene-expression dominates (but with different expression levels of LacI in each of them), and another one which red
gene-expression dominates (also with different TetR levels).

doi:10.1371/journal.pcbi.1004881.g008
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Robustness of (9:1)- and (1:9)-Mixed Populations of A Toggles and
Saturated S Toggles
In contrast to the S design, in the A design, the mixed (9:1)- and (1:9)-heterogeneous popula-
tions that might arise from random state switching cannot be eliminated by changes in the val-
ues of the parameter d (Fig SI-7.8 in S1 Text). This is again in a total agreement with a similar
observation reported in [16].

Using simulations carried out with the Sm model (SI-8.1 Modification of the S Model in S1
Text), we also observed that the sequestration effect results in stable (9:1)-mixed states for the S
design existing for large ranges of the diffusion parameter d.

Probing Capabilities of the S Toggle Design for Self-Correction of
Spontaneous Synchronization Errors
To probe and compare capabilities of the S toggle and A toggle designs to correct “spontaneous
synchronization errors” caused by a random flip of one toggle (or a small fraction of toggles)
from a homogeneous population to the state opposite to the transcription signature adopted by
the majority of the cells, we have performed simple random tests. In mathematical and compu-
tational terms, these random tests can be interpreted as an elementary numerical procedure to
evaluate the size of the basin of attraction for the corresponding equilibrium solutions by sam-
pling the corresponding small neighborhoods of the solutions, using random initial conditions,
for each parameter value d 2 {0.01, 10, 100} as follows, (1) find stable G- and R-homogeneous
states (for any population size!), (2) flip 10% of population, and (3) explore initial conditions in
neighborhood of this state value for the corresponding state variable (for the S design, since
symmetric, only the G-homogeneous state needs to be explored).

We can conclude from Fig SI-7.9 in S1 Text that the A toggle does not have any capability for
self-correction of spontaneous errors for all tested values of the parameter d (Fig SI-7.9 in S1
Text). The S toggle can self-correct spontaneous synchronization errors for the medium and
large values of the parameter d (Fig 10) for all parameters values for which the mixed state
becomes unstable, see Fig 9 ((9:1)-Mixed Population of S Toggles.) The rate of the error correc-
tion can be to some extend characterized by the observation that the error is corrected within the

Fig 9. (9:1)-mixed population of S toggles. Panels (A) and (B) correspond to large and small
subpopulations of a (9:1)-population of S toggles. All notations and color-coding schemes are as in Fig 7. Red
filled circles correspond to the same LP-bifurcation point. In panel (A), projections of stable and unstable
solution branches overlap. Because TetR is totally suppressed in the large (90%) subpopulation, the levels of
TetR are not shown. Contrarily to panel (A), both TetR and LacI levels are plotted in panel (B) since LacI is
only moderately suppressed in the small (10%) R-subpopulation.

doi:10.1371/journal.pcbi.1004881.g009
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first 10 minutes counted from its onset (Fig 10). Unfortunately, theory does not preclude damped
oscillations. Thus, all we can do is to make computational estimates in realistic parameter ranges.

To check how the limited availability of AAA+ proteases ClpXP may negatively impact the
self-correctness property by the S design, we have developed an additional Sm model describing
saturation (sequestration) of the AAA+ proteases ClpXP (SI-8.1 Modification of the S Model
in S1 Text.) We then conducted additional computations to show that the sequestration, while
preserving monotonicity and bistability properties, can lead to the loss of the self-correction of
spontaneous errors by the S design. Thus, high levels of these proteases are required to imple-
ment successfully the S design.

Finally, we note that the reported results on the (9:1)-mixed states for both S and A designs
are independent of the number N of cells in the given population with density ρ and can be
applied to any population consisting of thousands or even millions of cells, split into two sub-
populations comprising 90% and 10% fractions of all cells with different transcription signa-
tures, respectively (Stability and Bifurcation in Cellular Populations.) Specifically, if the given
(9:1)-mixed state is unstable for the S design in the model of 10 (identical) cells, it will be unsta-
ble in the model describing a larger population of (identical) cells because its stability is deter-
mined form an auxiliary system of four cells only (SI-6 Exponential Stability of Cellular
Populations in S1 Text.) The same is true for the stable (9:1)-mixed state for the A design.

Fig 10. Self-correction of spontaneous errors by S toggles. Panel (A) shows the S toggle which cannot
self-correct a (9:1)-spontaneous synchronization error for a small value of the diffusion parameter d = 0.01 (a
weak coupling between all cells). Panels (B) and (C) show the S toggle which can self-correct a (9:1)-
spontaneous synchronization error for a medium (d = 10) and large (d = 100) values of parameter d (a
medium and strong coupling between all cells, respectively). For the values of parameter d used in Panels (B)
and (C), the mixed states become unstable, see Fig 9.

doi:10.1371/journal.pcbi.1004881.g010
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Conclusion
In this study, we have shown how synthetic bistable circuits (toggles), and hosting them, pro-
grammable cellular populations, can be designed so as to solve a robust molecular task, the
maintenance of a coordinated state, and a “majority-vote” auto-correction of deviations, of a
binary switch. Our design was guided by concepts from monotone systems theory [18–23].
Specifically, we have shown how this concept can be used for the design of a new class of
monotone synthetic biological toggles, including predictive capabilities describing both
dynamic state variables and monotone parametric tendencies caused by parameter
perturbations.

To benchmark the new toggle design, termed the S design, and the monotone systems
approach, we have compared the S design with the known (and non-monotone) B2-strain
from [4], termed the asymmetric or A design in this work. The B2-strain has been previously
studied both experimentally [4] and theoretically [16, 17]. Despite a number of remarkable
properties of the B2-strain (A design), the A toggle multifunctionality suggests that the design
must be tightly controlled to avoid spontaneous switching not only between different expres-
sion states, but, as well, between different functions such as a bistable memory and an oscil-
latory phenotype.

In this respect, modern gene therapy interventions are currently limited to transfected genes
to be either in an “on” or “off” state, when the expression of the transfected gene needs to be
regulated tightly for the effective treatment of many diseases. To address this challenge, the
monotone S toggle design completely excludes any unpredictable chaotic behaviors, as well as
undesired stable oscillations. This conclusion is valid (of course, under certain experimentally
controllable conditions pointed out in this work) for all parameter values, and provides a
strong theoretical guarantee missing from other synthetic biology designs. Some of conditions
include: (i) a reduced promoter leakiness [51], and (ii) unsaturated levels of AAA+ proteases
ClpXP.

To achieve an in-depth understanding of dynamic properties of the S toggle design, we have
developed biochemically-detailed and biologically-relevant mathematical models to test pre-
dictions of monotone systems theory by employing computational bifurcation analysis. To
have all results biologically grounded, concrete molecular entities have been used, though the
results are general and independent of any specific details.

To investigate the effect of a spontaneous toggle switching within cellular populations, lead-
ing to bimodal distributions, we have formalized a concept of spontaneous synchronization
errors and tested the toggle design capabilities to self-correct spontaneous synchronization
errors by sampling the basin of attraction of the corresponding equilibrium solutions. We
found that the S toggle design was able to self-correct (or, auto-correct) synchronization errors,
while the non-monotone A toggle design was not.

Because the number of cells in populations is a priori unknown, all the above results and
conclusions can make sense only if they are made independently of the population size. To jus-
tify the above assertion, we have proved a few general theorems on the exponential stability of
the equilibrium solutions corresponding to both homogeneous and mixed populations. The
simple exponential stability results are independent of the number of cells in the populations
and are based on basic first principles of stability analysis resulting from the Schur’s formula
[63], allowing the characteristic polynomials for the corresponding model linearizations to be
computed explicitly.

Using an additional model describing saturation (and sequestration) of AAA+ proteases
ClpXP (SI-8 Modification of the S and AModels to Describe Sequestration of AAA+ protease
ClpXP in S1 Text), we have observed computationally that even when the above-mentioned
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conditions (i) and (ii) are violated, the S toggle still demonstrates the monotonicity properties.
If proteases are in limited supply, however, the conclusions break down, because of the non-
monotonicity arising from resource competition. Thus, an important consideration when prac-
tically implementing our design is to express these proteases at a high enough level.

We remark that our design is based on a bistable design based on deterministic models.
This approach is normally used in synthetic biology design of toggle switches, and our goal was
to employ ready technology. On the other hand, in gene regulatory networks bistability, or, to
be more precise, multi-modality of steady state distributions, may arise in deterministically
monostable systems due to low molecule number effects. Intuitively, a slow switch between
two promoter states (modeled in simplest terms by a two-state Markov chain) gives rise to a
“bimodal” distribution of gene activation (gene is “on” or “off”); this process then may drive a
large-molecule number mRNA and protein process, in effect creating a bimodal protein distri-
bution, though this bimodality would be “averaged out” in a deterministic model that considers
a large population. In this context, one may mention the work by Thomas et al. [74] which pro-
vides a system with two mutually repressing promoters using noncooperative transcriptional
regulation but supplemented by a translational control component in which the protein prod-
uct of one gene binds and degrades the mRNA of the other gene. Because we use cooperative
binding (Hill coefficients 2 and larger), our design is specifically geared to bistability even in
low noise situations, and the engineered consensus mechanism is designed to correct for noise-
induced transitions. It would be interesting in further work to study consensus designs for tog-
gles based on stochastic bimodality.

Supporting Information
S1 Text. Supplemental Information (SI) materials S1–S8. SI-1 Toggle B2. SI-2 Model Deriva-
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and Order Preservation. SI-5 Symmetry. SI-6 Exponential Stability of Cellular Populations. SI-
7 Additional Figures. SI-8 Modification of the S and AModels to Describe Sequestration of
AAA+ Protease ClpXP.
(PDF)
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Supporting Information

SI-1 Toggle B2

Kobayashi et al [1] consider a number of genetic toggle switches, interfaced with a QS signaling
pathway. Specifically, their E. coli strain “B2” (Fig. SI-1.1) detects as well as produces (through
the synthetase encoded by the expressed gene luxI, which converts common precursor metabolites)
acyl-homoserine lactone (AHL) signaling molecules. AHL is a QS signaling pathway from Vibrio
fischeri. Functionally, toggle B2 enables an E. coli population to measure population density
through AHL, because AHL signaling can be reversibly transported to the medium via diffusion,
contributing to the AHL density in the culture [1]. To achieve an in-depth understanding
of dynamic properties of coupled QS and toggle constructs, Kuznetsov et al. [2] developed
and studied a mechanistic mathematical model of a population (or, equivalently, an ensemble)
comprising N toggles, see Fig. 1 (bottom panel), corresponding to Toggle B2. Their study
revealed important multiple functions, namely bistability as well as stable oscillations, that an
ensemble of Toggles B2 was capable of exhibiting. Analytical conditions for bistability were
found, and a time separation was introduced to obtain a stable limit cycle for a population of
interacting cells.

In bistable circuits (toggles), transitions such as those caused by fluctuations due to low copy
numbers of species per cell, or due to local environmental “noise” can force individual cells
to change expression state at random [1]. This noise effect can spontaneously lead to the
emergence of heterogeneous (mixed) populations consisting of cells in different expression states,
which appear as bimodal population distributions when the corresponding protein levels are
measured [1]. To investigate the effect of a spontaneous toggle switching in single and coupled
cellular systems, leading to bimodal population distributions, Wang et al. [3] developed models
for a single cell and a multi-cellular toggle system comprising N cells, respectively. In their
models, the dynamics of the repressor proteins LacI and λ CI is described by the two ODE
equations developed in [4]. The AI-interfacing employed in the population model [3] corresponds
to a signaling pathway which is slightly different from the signaling pathway in Toggle B2
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Figure SI-1.1. Toggle B2: Density-Dependent Gene Activation. Notations and abbreviations.
Plasmids: pTSMb2, pCIRb and pAHLa; genes: gfp, cI857, lacI, luxR, and luxI ; promoters: Ptrc, PL∗ ,
and Plux; AHL, acyl-homoserine lactone. Figure adapted from Fig. 6(A) in [1].

(Fig. SI-1.1) as suggested in [1] and described earlier. The main difference is in the description
of the expression of the gene that encodes LuxI, see [3] for more details.

SI-2 Model Derivation

Here, we describe the main assumptions and steps used to derive mass-balance equations for the
S- and A-models formulated in the main text.

SI-2.1 SI-2.1 Mass-Balance Equations

The derivation of the S- and A-models includes the development of two modules:

I. A transcription-translation module describing biosyntheis of repressor proteins.

II. A metabolic module describing biosynthesis of autoinducers.

A general and systematic discussion of both modules can be found in [5, 6]. The derivation
of the first module for the A-model, relevant to our work, is given in [2]. Because one of our
modeling objectives is to ultimately describe how the analysis of the mathematical models can
be mechanistically interpreted in terms of tuning synthetic toggle “dials” by implementable
experimental interventions as reviewed in [7], including modifications of ribosome-binding sites
(RBS), carboxy-terminal tags, etc., [4, 8, 9], we will derive mass-balance equations at the level of
molecular detail sufficient to suggest plausible modeling predictions.
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A transcription-translation module can be described by a basic two-stage model [2, 5, 6],

dnx
dt

= nAkx − rxnx, (SI-2.1a)

dnX
dt

= kXnx − rXnX. (SI-2.1b)

Here, nx is the number of mRNA transcripts per cell for gene x, and nX is the number of protein
molecules per cell; nA is the number of active promoters from which the mRNA of gene x is
transcribed at an average rate kx; kX is the averaged translation rate; rx and rX are the effective
first-order rate constants associated with degradation of the mRNA and proteins, respectively.

Since mRNA molecules are usually degraded rapidly compared to other cellular processes, a
quasi-steady state for the equation (SI-2.1a) can often be assumed [2], yielding

nx =
nAkx
rx

. (SI-2.2)

Using (SI-2.2) in the right-hand side of the equation (SI-2.1b), we obtain

dnX
dt

= kX
kx nA
rx

− rX nX. (SI-2.3)

The ratio bx = kX/rx in equation (SI-2.3) is called a burst parameter of the protein X [2]. Using
bx in (SI-2.3) yields

dnX
dt

= bxkxnA − rXnX. (SI-2.4)

Assuming log-phase growth of E. coli, the volume V (t) of the growing bacterium can be
approximated by the expression V (t) = V0 exp(λt), and equation (SI-2.4) can be rewritten in a
concentration form,

d[X]

dt
= bxkx[PA] − (rX + µ) [X]. (SI-2.5)

Here, [X](t) = nX(t)/V (t) and [PA](t) = nA(t)/V (t).

The concentration of activate promoters, [PA], can be computed, using an appropriate Hill
function [6]. For example, we use

[PYA] =
[PY]

1 + ([Y]/KY)nY
(SI-2.6)

for the repressor protein Y binding to the promoter PY with the dissociation constant KnY
Y . In

(SI-2.6), [PY] is the total concentration of all promoters PY, while [PYA] is the concentration
of active promoters not bound with the repressor protein Y. Recall that the cooperativity
described by the Hill exponent nY can arise from [4–6]:

(i). Multimerization of represssor proteins;

(ii). Cooperative binding of repressor multimers to multiple operator sites in the promoter.

Analogously, we use a Hill-function

[PGA] = [PG]
([G]/KG)nG

1 + ([G]/KG)nG
(SI-2.7)
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for the autoinducer G binding to the promoter PG with the dissociation constant KnG
G and the

Hill exponent nG. The concentration of all active promoters PA can now be obtained from
(SI-2.6) and (SI-2.7) as

PA = PYA + PGA. (SI-2.8)

Using expression (SI-2.8), the equation (SI-2.5) can finally be updated as

d[X]

dt
=

bxkx[PY]

1 + ([Y]/KY)nY
+ bxkx[PG]

([G]/KG)nG

1 + ([G]/KG)nG
− (rX + µ) [X]. (SI-2.9)

Here, all parameters are described below in Table SI-3.2.

Similar mass balanced equations can be derived for the repressor protein Y, and synthases U
and W. For example, the mass balance equation for the synthase U is

d[U]

dt
=

buku[PY]

1 + ([Y]/KY)nY
− (rU + µ) [U]. (SI-2.10)

Analogously, we can write down a mass balance equation for the autoinducer concentration [G],
that is, [C14-HSL], governed by the synthase U (CinI),

d[G]

dt
= kG [U] + DG (Ge −G) − (rG + µ) [G]. (SI-2.11)

Here, kG is the maximum production rate of C14-HSL by CinI (Table SI-3.4), DG is the export
rate of C14-HSL (Table SI-3.4), and [Ge] is the extracellular concentration of C14-HSL.

Assuming that the concentration of the enzyme U reaches its quasi-steady state rapidly [10],
one can obtain from (SI-2.10) that

[U] =
buku
rU + µ

× [PY]

1 + ([Y]/KY)nY
. (SI-2.12)

Using (SI-2.12) in the equation (SI-2.11) yields

d[G]

dt
=

bu ku kG
rU + µ

× [PY]

1 + ([Y]/KY)nY
− (rG + µ) [G]. (SI-2.13)

Here, the definitions and the values of all parameters are given in Table SI-3.4. A similar mass
balanced equation can be derived for the second autoinducer R (C4-HSL), and we omit the
details.

SI-2.2 SI-2.2 Nondimensionalization

To nondimensionalize mass balance equations, as for example, the mass balance equations
(SI-2.9) and (SI-2.13), we use the following dimensionless state variables, which are similar to
those introduced in [2],

t′ = (rd + µ) t, x =
[X]

KX
, y =

[Y]

KY
, g =

[G]

KG
, ge =

[Ge]

KG
, r =

[R]

KR
, re =

[Re]

KR
.

(SI-2.14)
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Here, we assume that all protein degradation rates can be set experimentally so that the following
equalities can be obtained approximately [8],

rX = rX = rU = rW = rd =
ln 2

τ1/2
, τ1/2 = 4 min. (SI-2.15)

The procedure of setting all protein degradation rates or, equivalently, all protein half-lives
approximately equal to a prescribed value close to mRNA half-lives [8] is required to balance
the toggle [4]. We discuss the balancing procedure and relevant experimental interventions in
Sect. SI-2.2.

Using the dimensionless variables (SI-2.14), all original modeling mass balances can be nondi-
mensionalized, yielding the S- and A-models formulated in the main text, where the prime is
dropped from dimensionless time t′. In this case, dimensional and dimensionless parameters are
related to one another as:

1. For the dimensionless rates, we obtain:

a1 =
bx kx [PY]

KX (rd + µ)
, a2 =

by ky [PX]

KY (rd + µ)
, a3 =

bx kx [PG]

KX (rd + µ)
, (SI-2.16a)

a4 =
by ky [PR]

KY (rd + µ)
, a5 =

bu ku kG [PY]

KG (rd + µ)2
, a6 =

bw kw kR[PX]

KR (rd + µ)2
. (SI-2.16b)

2. For dimensionless diffusion and degradation parameters, we obtain:

dg =
DG

rd + µ
, dr =

DR

rd + µ
, δg =

rG + µ

rd + µ
, δr =

rR + µ

rd + µ
, δe =

µe
rd + µ

,

(SI-2.17a)

Molecular and biophysical parameter values used in the expressions (5) - (6) will be estimated
in Sect. SI-2.2, while dimensionless parameters will be estimated in Sect. SI-2.2 In this section,
we only mention that due to [8], we can set

KX = KY = 40 monomers per cell. (SI-2.18)

We could not find any estimation of values for the two parameters KG for C14-HSL and KR for
C4-HSL in the literature despite the fact that more and more precise measurements of kinetic
parameters become available [11]. We estimate the order of magnitude of KG and KR as follows.

In the detailed experimental results on the C4-HSL-mediated quorum sensing regulatory system
of the opportunistic Gram-negative bacterium Aeromonas hydrophila, the concentration of
C4-HSL was found to be of order of magnitude equal to 10µM [12]. In E.coli biology, it is
convenient to use nM units [13], because relative to the effective E. coli volume [14], the value
of 1 nM corresponds to one molecule per cell. This fact is widely used in the literature [8].
Therefore, the above estimate of 10µM corresponds to 104 C4-HSL signaling molecules per cell.

Another ad-hoc rule of E.coli biology used in a number of studies with the Cornell E.coli computer
model [15–18], resulting in a number of relevant predictions such as ribosomal-protein limitations,
lac-control, plasmid stability, and etc. [14, 19–24], is that, the coarse-grained estimation for the
dissociation equilibrium constant to be used in the Hill function can be calculated as 25% of the
intracellular modifier (reference) concentration. In our case, this yields a coarse-grade estimate
of 0.25× 104 C4-HSL signaling molecules per cell,

KG = KR = 2.5× 103 molecules per cell. (SI-2.19)

The values for other parameters will be estimated below.
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SI-2.3 Toggle Balancing (Symmetrization)

As it was observed experimentally [4,8], synthetic circuits can operate and deliver the engineered
traits only if special molecular constrains are fulfilled,

(i) repressor protein half-lives are close to mRNA halflifes [8];

(ii) repressor protein half-lives are approximately equal [4, 8].

Constrain (ii) is required for “balancing” the given circuit [4]. Moreover, both works suggest
experimental interventions to fulfill the above constraints [4, 8]. Such and similar interventions
are termed a “tuning dials” in the review [7].

It is mathematically convenient for us to generalize the above balancing procedure by the
procedure of “symmetrization” of two antagonistic, mutually repressing toggle subsystems
by selecting synthetic (tuned) parameter values that would make two antagonist subsystems
symmetric to one another. In other words, we assume that an ideal S toggle has mirror symmetry
corresponding to permutations between the two antagonistic subsystems. Symmetry usually
helps with analytical analysis of nonlinear mathematical models.

Specifically, we “symmetrize” (balance) biosynthesis kinetic rates, using constraints

a1 = a2, a3 = a4 and a5 = a6. (SI-2.20)

Appropriate molecular interventions, which can be used to set the relationships (SI-2.20) ap-
proximately under certain experimental conditions, are reviewed in [7]. Similarly, we symmertize
“diffusion” parameters,

dg = dr = d, (SI-2.21)

and the autoinducer “degradation” or “utilization” (“load”) parameters,

δg = δr = δe = δ. (SI-2.22)
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SI-3 Estimation of Parameter Values

SI-3.1 Toggle Parameters

In our estimations, we use general biochemical calculations [25, 26]. First, we collect generic
prokaryotic and specific E.coli parameter values in Table SI-3.1.

Table SI-3.1. Generic prokaryotic and E. coli specific values of model parameters

Name Description Value Unit Reference

rmRNA Rate of transcription by RNA polymerase in prokaryotes 80 bp/sec [27]
τmRNA Typical half-life time for 80% of genes in E. coli 3 - 8 min [28]
raa Rate of translation by the ribosome in prokaryotes 20 aa/sec [27]a

kP Rate of translation by the ribosome in prokaryotes 1.71 sec−1 estimated in (SI-3.3)
T E. coli replication period under specific nutrition conditions 25 min [14]
µ Intracellular specific dilution rate due to E. coli cell growth ln 2/T min−1 [14]
µe Extracellular dilution rate due to flow 0.1 min−1 [29]
ρ Total volume fraction of cells in chamber 0.8 − [30]
N Number of E. coli cells in an overnight population culture 109 (OD600 = 1) cells/ml [14]

aThis estimate is smaller than the estimate 33 aa/sec used in [11].

A general rate of translation of protein P in prokaryotes (kP). Suppose that an mRNA
transcript of protein P contains naa amino acids. Then, for one ribosome to transcribe P from
its mRNA transcript, assuming a translation rate of 20 amino acids per second (Table SI-3.1), it
will take time

tP =
naa
20

. (SI-3.1)

The above estimates yields the rate per ribosome which is

1 molecule

tP
=

20

naa
sec−1. (SI-3.2)

Given that the coding region of protein P is naa × 3 nucleotides long, and that a ribosome can
attach every 35 nucleotides, we can estimate that naa × 3/35 ribosomes can be attached per
mRNA molecule. We, thus, obtain

kP =
20

naa
× naa × 3

35
= 1.71 protein molecules sec−1. (SI-3.3)

To illustrate our parameter estimation procedure, we derive parameter values for the Lac-repressor
subsystem only. Parameter values for all other subsystems can be derived similarly.

kx : Fully induced strength of promoters PY (Ptet) and PG. One lacI mRNA transcript
is 1204 bases long (Table SI-3.2). To transcribe one molecule of lacI mRNA from one gene with
a rate of 80 bases per second (Table SI-3.2) takes

1204 bases

80 bases/sec
= 15.05 sec. (SI-3.4)
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Table SI-3.2. Parameter values of the LacI-repressor subsystem.

Name Description Value Unit Reference

Transcription:
LlacI Size of lacI gene 1204 bp [31]
Γx Repressed strength of promoter Ptet 5.0× 10−4 molecules/cell/sec [8]
kx Fully induced transcription ratea 6.65× 10−2 species/cell/sec estimated in (SI-3.5)
KY The number of TetR to repressb Ptet 40 monomers/cell estimated in (SI-2.18)
KG The number of C14-HSL to activatec Pcin 2.5× 103 molecules/cell estimated in (SI-2.19)
τ1/2,lacI Half-life of lacI mRNA 3.8 min [32]
rx Rate of lacI mRNA degradation 3.04× 10−3 sec−1 estimated in (SI-3.7)
nY The number of subunits in TetR 2 [33]
nG Hill coefficient of C14-HSL 3 a reference valued

Translation:
LLacI Size of one subunit in tetrameric LacI 360 aa/subunit [34]
kX Rate of LacI translation 1.71 molecules/cell/sec estimated in (SI-3.3)
τ1/2,LacI Half-life of LacI protein 4 min [8]
rX Rate of LacI degradation 1.16× 10−3 sec−1 estimated in (SI-3.7)

aFully induced strength of promoters Ptet and Pcin,
bFor the sake of brevity, “to repress” means “to half-maximally repress.”
cFor the sake of brevity, “to activate” means “to half-maximally activate.”
d The Hill coefficients for C6-HSL and C12-HSL are estimated in the range of values 1 - 2 in [35,36], while
these are estimated to be equal to 4 for C4-HSL and C14-HSL in [37]. We use a compromising reference value
equal to 3 and also explore other values in our computational studies.

Then, per gene the estimate (SI-3.4) yields

kx =
1

15.05 sec
= 6.65× 10−2 lacI mRNA (molecules/cell/sec). (SI-3.5)

The estimate (SI-3.4) is one order of magnitude less than the estimate 0.5 lacI mRNA (molecules/cell/sec)
provided in [8].

rx : Rate of lacI mRNA degradation. The calculation of degradation rates for proteins is
based on the known protein half-lives,

rx =
ln 2

t1/2
. (SI-3.6)

We obtain (Table SI-3.2),

rx =
ln 2

3.8× 60 sec
= 3.04× 10−3 sec−1. (SI-3.7)

rX : Rate of LacI (X) degradation. We obtain (Table SI-3.2),

rd = rX =
ln 2

4× 60 sec
= 2.89× 10−3 sec−1. (SI-3.8)

We use the estimate (SI-3.8) for all proteins in the model.
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Table SI-3.3. Parameter values of the TetA-repressor subsystem.

Name Description Value Unit Reference

Transcription:
LtetR Size of tetR gene 905 bp [38]
Γy Repressed strength of promoter Plac 5× 10−4 molecules/cell/sec estimated in Table SI-3.2
ky Fully induced transcription ratea 8.87× 10−2 molecules/cell/sec estimated
KX The number of LacI to repressb Plac 40 monomers/cell estimated in Table SI-3.2d

KR The number of C4-HSL to activatec Prhl 5× 104 monomers/cell estimated in Table SI-3.2
τ1/2,tetR Half-life of tetR mRNA 0.5 min [39]
ry Rate of tetR mRNA degradation 2.31× 10−2 sec−1 estimated
nX The number of subunits in LacI 2 [33]
nR Hill coefficient of C4-HSL 4 estimated in Table SI-3.2
Translation:
LTetR Size of one subunit in tetrameric TetR 207 aa/subunit [38]
kY Rate of TetR translation 1.71 molecules/cell/sec estimated in (SI-3.3)
τ1/2,TetR Half-life of TetR protein 4 min estimated Table SI-3.2
rY Rate of TetR degradation 1.16× 10−3 sec−1 estimated

aFully induced strength of promoters Plac and Ptet,
bFor the sake of brevity, “to repress” means “to half-maximally repress.”
cFor the sake of brevity, “to activate” means “to half-maximally activate.”
d Equilibrium dissociation constant for LacI is 7.7× 10−8 M [40].

Table SI-3.4. Parameter values of the 3-OH-C14-HSL/CinI-signaling subsystem.

Name Description Value Unit Reference

Transcription:
LcinI Size of cinI genea 663 bp estimated
Γu Repressed strength of promoter Plac 5× 10−4 molecules/cell/sec estimated in Table SI-3.2
ku Fully induced strength of promoter Ptet 13.27× 10−2 molecules/cell/sec estimated
τ1/2,cinI Half-life of cinI mRNA 6.6 min arbitraryb

ru Rate of cinI mRNA degradation 1.75× 10−3 sec−1 estimated
Translation:
LCinI Size of CinI aa-sequence 221 aa http://string-db.org
kU Rate of CinI translation 1.71 molecules/cell/sec estimated in Table SI-3.2
τ1/2,CinI Half-lifea of CinI protein 4 min [8]
rU Rate of protein CinI degradation 1.16× 10−3 sec−1 estimated in Table SI-3.2
Signaling:
kG Maximal production rate of CinI 2 min−1 [41]
rG Degradation rate of C14-HSL 0.002 hr−1 [42]c

DG Export rate of C14-HSL 2.1 min−1 [43]

aThe coding region of the gene has been estimated from its protein sequence size provided in the same table
as 221× 3 = 663.
bThis estimate corresponds to a general (or typical) pattern for mRNA half-lives in E. coli [44]. Note that [8]
use a generic half-life parameter value of 2 min.
cData for 3-OH-C12-HSL is used.
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Table SI-3.5. Parameter values of the C4-HSL/RhlI-signaling subsystem.

Name Description Value Unit Reference

Transcription:
LrhlI Length of rhlI gene 603 bp [45]
Γw Repressed strength of promoter Plac 5× 10−4 molecules/cell/sec estimated in Table SI-3.2
kw Fully induced strength of promoter Plac 13.27× 10−2 molecules/cell/sec estimated
τ1/2,rhII Half-life of rhlI mRNA 6.6 min [46]a

rw Rate of lacI mRNA degradation 1.75× 10−3 sec−1 estimated
Translation:
LLacI Length of RhlI protein aa-sequence 196 aa [47]
kW Rate of RhlI translation 1.71 molecules/cell/sec estimated in Table SI-3.2
τ1/2,RhlI Half-life of RhlI protein 4 min estimated in Table SI-3.2
rX Rate of LacI degradation 1.16× 10−3 sec−1 estimated
Signaling:
kR Maximal production rate of C4-HSL by RhlI 16 min−1 [41]
rR Degradation rate of C4-HSL 0.02 hr−1 [42]
DR Export rate of C4-HSL 3.0 min−1 [43]

aThe half-life data for lasI mRNA is used because the degradation of rhlI is positively regulated by LasI [46]
and, so, could have a longer half-life. This estimate is in line with a general (or typical) pattern for mRNA
half-lives in E. coli [44]. Note that [8] use a genetic half-life parameter value of 2 min (Table SI-3.4).

SI-3.2 Dimensionless parameter values

Using data from Table SI-3.1 and the estimate (SI-3.8), we obtain

µ =
ln 2

25× 60
= 0.46× 10−3 sec−1, rd + µ = 3.35× 10−3 sec−1. (SI-3.9)

To estimate rates ai, i = 1 . . . 6, defined in (5), we assume that the equalities bx = by = bu = bw =
10 can be approximately set by using RBS-related interventions [7]. Also, to avoid competition
for ribosomes, only a few plasmids bearing promoters PX, PY, PG, and PR can be used. By
selecting [PX] = [PY] = [PG] = [PR] = 1 copies per cell, we obtain

a1 = a3 =
10×

(
6.65× 10−2

)
× 1

40× (3.35× 10−3)
= 4.96 ≈ 5, (SI-3.10a)

a2 = a4 =
10×

(
8.87× 10−2

)
× 2

40× (3.35× 10−3)
= 6.61 ≈ 7, (SI-3.10b)

a5 = a6 =
10×

(
13.27× 10−2

)
× (2/60)× 2

(2.5× 103)× (3.35× 10−3)2
= 3.15 ≈ 3. (SI-3.10c)

Next, from (6), we obtain

dg =
2.1/60

3.35× 10−3
= 10.44, (SI-3.11a)

dr =
3/60

3.35× 10−3
= 14.40, (SI-3.11b)

δg = δr ≈
µ

rd + µ
=

0.46× 10−3

3.35× 10−3
= 0.14, (SI-3.11c)

δe =
0.1/60

3.35× 10−3
= 0.50. (SI-3.11d)
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We find the estimated values of the parameters to be of the same order of magnitude as the
corresponding parameter values estimated and used in [2–4,8, 35–37]. Not enough is yet known
about molecular interactions inside host cells to obtain highly precise descriptions [7]; it is
common to computationally evaluate the effect of different values for rate parameters and even
for Hill exponents [2–4,8]. Following [2, 4, 8], where genetic circuits built from similar elements
have been studied, we have explored sets of parameter values which are close to the estimates
given in (SI-3.10) and (SI-3.11), which ensure bistability in both S- and A-models, see the main
text.
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SI-4 Alternative Definitions of Monotone Systems and Order
Preservation

We defined monotonicity using graph partitions because this is the easiest way to present the
concept. However, the usual definition found in textbooks is not phrased in that form. We
explain here how our definition is equivalent to the usual one as well as to another property. For
further remarks on these equivalences, see [48]. A signed graph (such as the species influence
graph obtained by looking at signs of Jacobain entries) G is said to be balanced (see Harary [49])
if every undirected closed loop in the graph G has a net positive sign, that is to say, an even
number, possibly zero, of negative arrows. Equivalently, any two (undirected) paths between
two nodes must have the same net sign. By undirected loops or paths, we mean that one is
allowed to transverse an edge either forward or backward. A spin assignment Σ for the graph G
is an assignment, to each node vi, of a number σi equal to “+1” or “−1” (a “spin,” to borrow
from statistical mechanics terminology). If there is an edge from node vj to node vi, with label
Jij ∈ {±1}, we say that this edge is consistent with the spin assignment Σ provided that:

Jijσiσj = 1

which is the same as saying that Jij = σiσj , or that σi = Jijσj . An equivalent formalism is that
in which edges are labeled by “0” or “1,” instead of 1 and −1 respectively, and edge labels Jij
belong to the set {0, 1}, in which case consistency is the property that Jij ⊕ σi ⊕ σj = 0 (sum
modulo two). One says that Σ is a consistent spin assignment for the graph G (or simply that
G is consistent) if every edge of G is consistent with Σ. In other words, for any pair of vertices
vi and vj , if there is a positive edge from node vj to node vi, then vj and vi must have the same
spin, and if there is a negative edge connecting vj to vi, then vj and vi must have opposite spins.
(If there is no edge from vj to vi, this requirement imposes no restriction on their spins.) It
is easy to see that if there is a consistent spin assignment for G, then the graph is balanced.
Conversely, if G is balanced then there is a consistent spin assignment for G: to see this, simply
label one node arbitrarily, and follow paths to label other nodes consistently. (If the graph is
not connected, repeat the procedure in each connected component.)

For any spin assignment Σ, let A1 be the subset of nodes labeled +1, and let A−1 be the subset
of nodes labeled −1. The set of all nodes is partitioned into A1 and A−1. Conversely, any
partition of the set of nodes into two subsets can be thought of as a spin assignment. With this
interpretation, a consistent spin assignment is the same as a partition of the node set into two
subsets A1 and A−1 in such a manner that all edges between elements of A1 are positive, all
edges between elements of A−1 are positive, and all edges between a node in A1 and a node in
A−1 are negative. In summary, our definition of monotonicity, given in terms of partitions of
state variables, amounts to the same as the requirement that there exist at least one consistent
spin assignment for its associated graph G, or equivalently, that its graph G is balanced.

Supposing that a system is monotone, with a consistent spin assignment Σ = {σi, i = 1, . . . , n},
we introduce following the relation among vectors x ∈ Rn≥0:

x � y

means that
σixi ≤ σiyi i = 1, . . . , n .
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This is a componentwise inequality that requires xi ≤ yi if node i has been assigned a positive
spin, and xi ≥ yi if instead node i has been assigned a negative spin. Let y(t) and z(t) be
any two solutions of the system dx/dt = f(x), and suppose that σiyi(0) ≤ σizi(0) for each
i = 1, . . . , n. Then, Kamke’s Theorem states that σiyi(t) ≤ σizi(t) for all t ≥ 0 and coordinate
i = 1, . . . , n. This is the usual definition of monotonicity: if states start at time zero in a certain
order, then they must remain forever in the same order. Conversely, a flow that preserves an
order of this type must be monotone in the sense that we have defined the concept. See the
textbook [50] for a proof, and [51] for extensions with systems with external inputs.

The order preservation property has a variety of important implications for our model. For
parameters viewed as constant states, it allows us to conclude the monotonicity of stable
branches in bifurcation diagrams, as illustrated by the results described in Monotone Parametric
Dependencies in the S design. A different implication concerns the domain of attraction of
equilibria. Suppose that we consider an initial state x(0) that is coordinate-wise less, in the
monotone order, than a given equilibrium E (in a possibly multistable system). Comparing to
E the solution x(t) starting from this initial state x(0), we know that x(t) must remain less
than E for all times. Thus, an equilibrium to which x(t) converges must be upper bounded by
E. In particular, if the equilibrium E is minimal (with respect to the coordinate-wise order), it
follows that this trajectory converges to E. Similar conclusions apply to maximal equilibria E
and initial states x(0) that are coordinate-wise larger than E. One obtains in this manner a
rich amount of information about the basin of attraction of equilibria in monotone systems.
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SI-5 Symmetry

In this section, we formalize the symmetry of

• a single S toggle embedded into an environment (N = 1),

• a population of N -identical S toggles interacting via a common environment (N ≥ 2).

SI-5.1 Symmetry of the S Model

As is routine in physics and engineering, symmetry-based simplifications often lead to important
insights into complex phenomena [52], and we also use symmetry to discuss bifurcations in S
toggle populations. We observe that under a special condition imposed on the parameter values,

a1 = a2, a3 = a4, a5 = a6, dg = dr, δg = δr, (SI-5.1)

a single S toggle embedded into an external environment is described by the S model (1) with
N = 1 which has a Z2-symmetry group generated by involution I [52–54],

I : (x, y, g, r, ge, re) −→ (y, x, r, g, re, ge). (SI-5.2)

Consider the fixed-point subspace Fix (Z2) ∈ R6 of the group Z2, see [52],

Fix (Z2) = {z = (x, y, g, r, ge, re) ∈ R6 | Iz ≡ z}. (SI-5.3)

We ignore the trivial equilibria that belong to Fix (Z2), that is, equilibria of the S model (1)
for which the following equalities hold, x = y, g = r, and ge = re, corresponding to identically
the same levels of LacI and TetR, and C14-HSL and C4-HSL, respectively. Let us denote the
equilibrium of the S model (1) by z0, and let us assume that z0 /∈ Fix (Z2). Now, because
the S model is invariant with respect to the involution (SI-5.2), and because z0 /∈ Fix (Z2), we
obtain that both z0 and I z0, I z0 6= z0, are different equilibria of the S model (1), see [52,53].
The equilibria z0 and I z0 are called relative equilibria [55]. All bifurcations for the relative
equilibria occur simultaneously at the same values of free parameters. We generalize G- and
R-homogeneous populations states as relative equilibria, which means that as soon as the S
toggle has a G-state, it will also have the corresponding R-state, implying bistability.

The general case of N ≥ 2 is slightly more complicated as a population of identical S toggles
has a symmetry group obtained after combinations of permutations among all cells in the given
population and the toggle involution (SI-5.2), which we denote G = Z2 × SN for brevity. Here,
SN is a symmetric group of order N ≥ 1, and Z2 is the toggle involution (SI-5.2) applied to all
toggles simultaneously. For example, for N = 2, we will have one permutation,

P : (x1, y1, g1, r1, x2, y2, g2, r2, ge, re) −→ (x2, y2, g2, r2, x1, y1, g1, r1, ge, re), (SI-5.4)

and the involution,

I : (x1, y1, g1, r1, x2, y2, g2, r2, ge, re) −→ (y1, x1, r1, g1, y2, x2, r2, g2, re, ge). (SI-5.5)
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SI-5.2 Symmetry Breaking

The symmetry-breaking (pitchfork) bifurcation discussed around Fig. 7 in the main text has
co-dimension one for all typical systems with Z2-symmetry [52,53]. To understand the symmetry-
breaking occurring at the BP-point shown in Fig. 7, we need first to define the symmetry of the
original symmetric (1:1)-mixed state. We observe that the original symmetric (1:1)-mixed state
is invariant with respect to transformation g,

g = P ◦ I = I ◦ P, g ◦ g = id (SI-5.6)

where id is the identity. Here, P and I are as defined in (SI-5.4) and (SI-5.5), respectively. The
transformation (SI-5.6) forms subgroup Σ(1:1) of the group Z2 × S2, see SI-5.1 Symmetry of the
S Model, which consists of two elements, that is, Σ(1:1) = {id, g}. The subgroup Σ(1:1) is called
the isotropy subgroup [52] of the original (1:1)-mixed state. We further observe that the two
(1:1)-states bifurcating from the original Σ(1:1)-symmetric (1:1)-state at the BP-point (Fig. 7)
are not invariant with respect to the isotropy subgroup Σ(1:1). Indeed, they are mapped one to
one another by the transformation (SI-5.6). This observation motivates using the “symmetry-
breaking” terminology [52] with respect to the loss of the isotropy subgroup symmetry by the
(1:1)-mixed state at the BP-point. Due to the isotropy subgroup Σ(1:1) of the original (1:1)-mixed
state, involution g defined in (SI-5.6) maps panel (A) to panel (D), and panel (B) to panel (C)
within Fig. 7 of the main text. That is, g : LP1 → LP2, g : LP2 → LP1, and g : BP → BP,
see the coordinates of the three critical points, BP, LP1, and LP2, at the end of the caption of
Fig. 7.

SI-5.3 A Remark on Bifurcations in Symmetric vs. Non-Symmetric Models

Mathematical models are idealizations of complex phenomena, based on certain assumptions,
and there is a long established tradition to use symmetries in mathematical physics to clarify
and explain complex phenomena. We use symmetry as another mathematical simplification
alternative to simplifications arising from biological assumptions.

For our modeling studies with the S model, it may be difficult and even impossible to construct
identical promoters which would correspond to identical values of parameters, that is, for
example, a3 6= a4. Therefore, it is required to discuss an appropriate interpretation of bifurcation
diagrams computed for the S model.

First of all, we note that all LP-points will typically persist under small non-symmetric pertur-
bations. However, all BP-points corresponding to pitchfork bifurcations will typically disappear
under non-symmetric perturbations. They will typically be replaced by LP-bifurcation points.
In such cases, in the small vicinity of the original BP point after a non-symmetric perturbation,
we will typically have three branches of solutions, one branch of solutions which do not change
their stability, and other two branches of solutions, stable and unstable, which will emanate
from or collide with one another at the LP bifurcation point. Outside of the small vicinity of the
perturbed BP-point, the bifurcation diagrams for both symmetric and non-symmetric models
will be typically qualitatively the same. Such situations are mathematically very well studied
and are described in the corresponding literature [52,53].
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SI-6 Exponential Stability of Cellular Populations

A systematic analysis of dynamical mathematical models begins with finding equilibrium
solutions followed by the analysis of their exponential stability [56]. The next step is often to
carry out (local) bifurcation analysis of the equilibrium solutions, allowing for the exploration of
“stability boundaries” in the parameter space [53]. Both stability and bifurcation analyses rely
on the computation of the eigenvalues from the corresponding model linearizations [53].

A nontrivial specificity of the computation of eigenvalues for the stability and bifurcation analyses
of the A- and S-population models is that both models with N > 1 are invariant with respect to
the action or the given linear representation of the symmetric group SN of permutations among
N -cells [52]. It is known that irreducible representations of groups enforce multiple eigenvalues
of matrices that commute with their linear representations, a well-known fact following from
Schur’s Lemma in the representation theory of Lie groups [52].

To take into account the necessity to deal with multiple eigenvalues in the situations when
the value of N is a priori unknown, we have developed a general approach to the analysis of
exponential stability [56] in arbitrary populations of identical cells, independently of N , as
described below.

A conceptually similar reduction approach (without any discussion of the multiplicity problem)
on the exponential orbital stability of periodic solutions in systems of identical and slightly
different oscillators coupled via a medium was developed by E. E. Shnol [57]. In his work, an
averaging technique over the entire cellular population was used in both cases of homogeneous and
mixed populations. Later, G. Katriel [58] has rediscovered the reduction result for homogeneous
populations only, using Floquet Theory [59]. We note that the Schur’s formula [60] can also be
used to compute multipliers of periodic solutions in systems of coupled oscillators, using the
linearizations of the corresponding Poincaré maps, in the very similar way as it is done for the
case of equilibrium solutions in this work.

SI-6.1 A General Population Model of Identical Cells

In this SI, we use Schur’s formula [60] to compute explicitly the characteristic polynomials for
the corresponding model linearizations. The most important implication of Schur’s formula is
that it can be easily seen that the values of the eigenvalues are independent of N ≥ 2.

To describe the general exponential stability analysis, we first introduce an appropriate notation
as follows. Let S and z be “generalized” global (extracellular) and local (intracellular) state
variables, respectively, dimS = m ≥ 1 and dim z = k ≥ 2. Using the generalized variables, both
the S-model (1) and the A-model (2) can then be rewritten in the following general form, which
we call a G-model,

dS

dt
= H0(S) +

ρ

N

N∑
i=1

H(S, zi), 0 ≤ ρ ≤ 1, (SI-6.1a)

dzi
dt

= h(S, zi), i = 1, . . . N. (SI-6.1b)

The G-model (SI-6.1) includes m+Nk equations.
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SI-6.2 A Homogeneous Population

In the case of a homogeneous population of identical cells, we have zi(t) ≡ z(t). As a result, the
G-model (SI-6.1) reduces to a system of (m+ k)-differential equations,

dS

dt
= H0(S) + ρH(S, z), 0 ≤ ρ ≤ 1, (SI-6.2a)

dz

dt
= h(S, z). (SI-6.2b)

Observe that the model (SI-6.2) describes a single cell placed in a “free”, non-constant medium.

Definition 1. Let (S0, z0) be an equilibrium solution of the model (SI-6.2). Then, (S0, z0)
corresponds to a homogeneous population equilibrium solution,

(S0, z0, . . . , z0) = (S0, N×z0) , (SI-6.3)

of the full G-model (SI-6.1) for any N ≥ 2. Notation N×z0 means that z0 is repeated N -times
in (S0, z0, . . . , z0).

Although the model (SI-6.2) is sufficient to study the existence of homogeneous population
equilibrium solutions (SI-6.3), it is not enough to establish the exponential stability of the
corresponding solutions (SI-6.3). Let (S0, Nz0) be a homogeneous population equilibrium
solution of the G-model (SI-6.1) with any fixed N ≥ 2. To analyze the exponential stability
of (S0, N×z0) in the “full” G-model (SI-6.1), we need to compute the eigenvalues of the
corresponding Jacobian matrix JN ,

JN =


A ρ

NB ρ
NB . . . ρ

NB
C D O . . . O
C O D . . . O
...

...
...

. . .
...

C O O . . . D

 . (SI-6.4)

In (SI-6.4), each of three matrices, B, C, and D, is repeated N -times; A and D are square
matrices of sizes m and k, respectively; B and C are rectangular matrices of sizes m× k and
k ×m, respectively,

A =
∂H0

∂S
+ ρ

∂H

∂S
, B =

∂H

∂z
, C =

∂h

∂S
, D =

∂h

∂z
. (SI-6.5)

All partial derivatives in the expressions (SI-6.5) are evaluated at (S0, z0) which depends on all
G-model parameters with the one important exception that they are independent of N because
(S0, z0) is obtained using (SI-6.2). Notation O corresponds to zero submatrices of appropriate
sizes.

We call a square matrix stable if all its eigenvalues have strictly negative real parts. The following
theorem holds for JN .

Theorem 1. (I). Statements (a), (b), and (c) are equivalent.

(a). The matrix JN is stable for all N ≥ 2.
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(b). The matrix J1 and its submatrix D are both stable.

(c). The matrix J2 is stable.

(II). The matrix JN has typically k different eigenvalues, each of multiplicity N − 1 in the
following sense. Let {λ1, . . . , λm+k} be the set of eigenvalues of matrix J1, and let {µ1, . . . , µk}
be the set of eigenvalues of its submatrix D, Then,

{λ1, . . . , λm+k, (N − 1)(µ1, . . . , µk)} (SI-6.6)

is the set of all eigenvalues of matrix JN for any N ≥ 2, where {µ1, . . . , µk} is repeated
(N − 1)-times.

Proof. Let λ be a complex number, λ ∈ C. Consider a new matrix Mλ = JN − λIm+Nk, where
Im+Nk is the identity matrix of size m+ nk. To find eigenvalues of JN , we need to write down
the corresponding characteristic equation P (λ) = 0, P (λ) = detMλ. Let us represent matrix
Mλ in the form

Mλ =

(
Aλ B
C Dλ

)
. (SI-6.7)

Here, matrices Aλ = A−λIm, B = 1
N (B, . . . ,B), C = (C, . . . ,C)T, and Dλ = diag (Dλ, . . . ,Dλ)

with Dλ = D− λIk. Next, assume for a moment that D−1λ exists. Then, Schur’s formula can be
used to compute detMλ [60],

detMλ = detDλ · det
(
Aλ − BD−1λ C

)
. (SI-6.8)

Next, we compute

BD−1λ C = B
(
D−1λ C

)
=

1

N
(B, . . . ,B)


D−1λ C

D−1λ C
. . .

D−1λ C

 = BDλ
−1C. (SI-6.9)

For the determinant of the block diagonal Dλ, we obtain detDλ = (detDλ)N . Substituting
(SI-6.9) into (SI-6.8) yields

detMλ = (detD)n · det
(
Aλ −BD−1λ C

)
. (SI-6.10)

Using the Schur’s formula for the product detD·det
(
Aλ −BD−1λ C

)
in the “backward” direction,

we can rewrite (SI-6.10) in the following equivalent form

detMλ = (detDλ)N−1 · det

(
Aλ B
C Dλ

)
. (SI-6.11)

The expression (SI-6.11) can now be rewritten simply as

P (λ) = (detD− λIk)N−1 · det (J1 − λIm+k) . (SI-6.12)

Recall that the expression (SI-6.12) has been proven under a restrictive condition detDλ 6= 0,
see above, which means that λ is not an eigenvalue of the matrix D. This restriction can be
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removed, for example, as follows. Let λ0 be an eigenvalue of the matrix D. Then, we obtain for
the polynomial P (λ) by continuity

P (λ0) = lim
λ→λ0

P (λ) = lim
λ→λ0

(detD− λIk)N−1 · det (J1 − λIm+k) = 0. (SI-6.13)

It follows from (SI-6.13) that (SI-6.12) holds for all λ ∈ C.

Finally, we observe from (SI-6.12) that to compute all eigenvalues of the Jacobian matrix JN for
any N ≥ 2, it is sufficient to compute the eigenvalues of either two smaller matrices, D and J1,
or one matrix J2 . The latter may be practically slightly easier than computing the eigenvalues
for D and J1 separately. The proof of the theorem follows.

Consider a differential equation
dz

dt
= h(S0, z), (SI-6.14)

where S0 is a fixed parameter corresponding to the equilibrium (S0, N × z0) of the full G-model
(SI-6.1). In contrast to equation (SI-6.2), equation (SI-6.14) describes a single cell placed into
a constant environment, which can be interpreted as an environment shaped by the large
population of cells and which does not “sense” any changes in a single cell. Additionally,
consider a cascade model

dS

dt
= H0(S) + ρH(S, z1), 0 ≤ ρ ≤ 1, (SI-6.15a)

dzj
dt

= h(S, zj), j = 1, 2. (SI-6.15b)

Observe that the variable z2 is absent from the first equation (SI-6.15a) and, hence, (SI-6.15)
cannot be obtained from (SI-6.1) by simply setting N = 2.

Then, using the definition of exponential stability [56], the first statement of Theorem 1 can be
reformulated as the following corollary which admits an intuitive interpretation of the fact why
the case of N = 2 is sufficient to study the exponential stability of homogeneous population
solutions.

Corollary 1. Let (S0, N × z0) be an equilibrium solution of the G-model (SI-6.1). Then,
statements (a) - (d) are equivalent.

(a). (S0, N × z0) is exponentially stable in the G-model (SI-6.1) for any N ≥ 2.

(b). (S0, z0) is exponentially stable in the reduced model (SI-6.2), and z0 is exponentially stable
in the single-cell model (SI-6.14).

(c). (S0, z0, z0) is exponentially stable in the G-model (SI-6.1) at N = 2.

(d). (S0, z0, z0) is exponentially stable in the cascade model (SI-6.15).

A comparison of Statements (a) and (b) of Corollary 1 leads to a conclusion that the given
population consisting of identical cells is stable with respect to any small perturbation if and
only if (i) the population is stable with respect to any small uniform perturbation of the entire
population described by system (SI-6.1) and, simultaneously, (ii) a majority of unperturbed cells
forces a single slightly perturbed cell to re-join back the unperturbed majority.
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Indeed, system (SI-6.14) used in Statement (b) means that the entire population does not sense
small perturbations in a single cell because S0 is fixed in (SI-6.14).

Note that both conditions in Statement (b) can be reformulated, using the cascade model
(SI-6.15) from statement (d). Finally, because the stability property is independent of the
number N of identical cells in the population, the simple case of N = 2 can be used as given by
statement (c).

SI-6.3 A Mixed Population Split into Two Subpopulations

Suppose now that the given population consisting of N , N ≥ 4, identical cells is split into two
different subpopulations of sizes N1 ≥ 2 and N2 ≥ 2, respectively, where N = N1 + N2. We
always assume that each subpopulation consists of at least two cells. Then, the two different
homogeneous subpopulations can be described by two state variables z1 and z2, respectively,
where z1 6= z2, that is, zip(t) ≡ z1(t) for some subset of indexes ip, p = 1, . . . , N1, and
ziq(t) ≡ z2(t), for another subset of indexes iq, q = 1, . . . , N2. It follows that the equation
(SI-6.1a) from the G-model (SI-6.1) simplifies as follows

dS

dt
= H0(S) +

ρ

N

N∑
i=1

H(S, zi) = ρ
(
β1H(S, z1) + β2H(S, z2)

)
. (SI-6.16)

In (SI-6.16), βj is the fraction of the j-th subpopulation, βj = Nj/N , j = 1, 2, β1 + β2 = 1. In
this case, the entire G-model (SI-6.1) reduces to the following three equations

Ṡ = H0(S) + ρ
(
β1H(S, z1) + β2H(S, z2)

)
, βj ∈ Q, β1 + β2 = 1, (SI-6.17a)

żj = h(S, zj), j = 1, 2. (SI-6.17b)

Definition 2. Let (S0, z10, z20), z10 6= z20, be a non-uniform equilibrium solution of the reduced
system (SI-6.17). Then, (S0, z10, z20), z10 6= z20 corresponds to a mixed population equilibrium
solution,

(S0, z10, . . . , z10, z20, . . . , z20) = (S0, N1z10, N2z20) , (SI-6.18)

of the full G-model (SI-6.1). The solution (SI-6.18) describes a mixed population of N identical
cells, split into two (non-identical) subpopulations of sizes N1 > 0 and N2 > 0, respectively, N1 +
N2 = N . Notation Njzj0 means that zj0 is repeated Nj-times in (S0, z10, . . . , z10, z20, . . . , z20),
j = 1, 2.

Due to the condition β1+β2 = 1 used in (SI-6.17a), there formally exists a continuum of different
fractions β1 : β2, β1 ∈ R and β2 ∈ R. Of course, in the biological sense, only rational values
β1 ∈ Q and β2 ∈ Q are allowable, leading to infinitely many fractional (β1 : β2)-configurations
in the subdivision of the original population into two different subpopulations. Simple examples
of such situations can be easily presented (Fig. SI-6.1).

For the sake simplicity of the exponential stability analysis, we will always assume that both β1
and β2 are real numbers, that is, βj ∈ R, j = 1, 2.

Let (S0, N1z10, N2z20) be a mixed population equilibrium solution of the G-model (SI-6.1) with
any fixed N ≥ 4, see (SI-6.3). To analyze the exponential stability of (S0, N1z10, N2z20), we
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Figure SI-6.1. Examples of (p : q)-populations. The left panel corresponds to the case of a
(10:0)-homogeneous population; the middle panel corresponds to the case of a (5:5)- or, equivalently,
(1:1)-mixed population, and the right panel corresponds to a (9:1)-mixed population.

need to compute the eigenvalues of the corresponding Jacobian matrix JN obtained from the
G-model (SI-6.1),

JN =



A ρ
NB1 . . . ρ

NB1
ρ
NB2 . . . ρ

NB2

C1 D1 . . . D1 O . . . O
... . . .

. . . . . .
...

. . .
...

C1 O . . . D1 O . . . O
C2 O . . . O D2 . . . O
...

...
...

...
...

. . .
...

C2 O . . . O O D2


. (SI-6.19)

In the matrix (SI-6.19), submatrices Bi, Ci, and Di, are repeated Nj-times; A and Di are
square matrices of sizes m, and k, respectively; Bi and Ci are rectangular matrices of sizes
m× k and k ×m, respectively, and

A =
∂H0

∂S
+

2∑
j=1

ρj
∂H(S0, zj0)

∂S
, (SI-6.20a)

Bj =
∂H(S0, zj0)

∂z
, Cj =

∂h(S0, zj0)

∂S
, Dj =

∂h(S0, zj0)

∂z
, j = 1, 2. (SI-6.20b)

Consider the Jacobian matrix Q2 of size m + 2k for the system (SI-6.17), computed at
(S0, z10, z20),

Q2 =

 A ρ1B1 ρ2B2

C1 D1 O
C2 O D2

 (SI-6.21)

Theorem 2. (I). Statements (a) and (b) are equivalent.

(a). The matrix JN is stable for all N ≥ 4, and with any N1 ≥ 2 and N2 ≥ 2 such that
N1 +N2 = N .

(b). Matrix Q2, and its two submatrices, D1 and D2, are stable.

(II). Matrix JN has typically 2k different multiple eigenvalues in the following sense. Let
{λ1, . . . , λm+2k} be the set of eigenvalues of Q2, let {µ1, . . . , µk} be the set of eigenvalues of D1,
and let {σ1, . . . , σk} be the set of eigenvalues of D2. Then,

{λ1, . . . , λm+k, (N1 − 1) (µ1, . . . , µk) , (N2 − 1) (σ1, . . . , σk)} , (SI-6.22)
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is the set of all eigenvalues of the matrix JN for any N ≥ 4. In (SI-6.22), the set {µ1, . . . , µk} is
repeated (N1 − 1)-times, and the set {σ1, . . . , σk} is repeated (N2 − 1)-times. To have a nonzero
value of multiplicity Nj − 1 in (SI-6.22), condition Nj ≥ 2 and, hence, N ≥ 4, are natural
requirements, j = 1, 2. In other words, the latter two conditions guarantee that both matrices D1

and D2 exist. Otherwise, Theorem 2 does not make any sense.

Proof. The proof Theorem 2 can be carried out, using a simple modification of the proof of
Theorem 1. For this reason, we only provide a brief sketch of the proof for Theorem 2. Similarly
to the proof of Theorem 1, we need to write down a characteristic equation P (λ) = 0 Here
P (λ) = detMλ, and matrix Mλ can be defined as in (SI-6.7), using appropriate submatrices,

Aλ = A− λIm, (SI-6.23a)

B =
1

N
(B1, . . . ,B1,B2, . . . ,B2) , (SI-6.23b)

C = (C1, . . . ,C1,C2, . . . ,C2)
T , (SI-6.23c)

Dλ = diag (Dλ1, . . . ,D1λ,D2λ, . . . ,D2λ) , Diλ = Di − λIk. (SI-6.23d)

In the above submatrix definitions, the matrices with index j are repeated Nj-times, i, j = 1, 2.

In this case, detMλ can also be computed using Schur’s formula, see (SI-6.8). However, (SI-6.9)
should be replaced by

BD−1λ C = ρ1B1D
−1
1λC1 + ρ2B2D

−1
2λC2. (SI-6.24)

For the block diagonal matrix Dλ, we obtain detDλ = (detD1λ)N1 · (detD2λ)N2 . Now, similarly
to (SI-6.10), we will have

detMλ = (detD1)
N1 · (detD2)

N2 · det
(
Aλ − ρ1B1D

−1
1λC1 − ρ2B2D

−1
2λC2

)
. (SI-6.25)

Using the Schur’s formula in the “backward” direction, we will then have

P (λ) = (detD1 − λIk)N1−1 · (detD2 − λIk)N2−1 · detQ2. (SI-6.26)

The rest can be proved as in the proof for Theorem 1. The proof of Theorem 2 follows.

Consider the following cascade model

dS

dt
= H0(S) + ρ

(
β1H(S, z1) + β2H(S, z3)

)
, β1 + β2 = 1, (SI-6.27a)

dzj
dt

= h(S, zj), j = 1, . . . , 4. (SI-6.27b)

Variables z2 and z4 are absent from the first equation (SI-6.27a) and, hence, the cascade
system (SI-6.27) cannot be obtained from the G-model (SI-6.1) by simply setting N = 4. Now,
Theorem 2 can be reformulated in terms its Corollary 2 as follows.

Corollary 2. Let (S0, N1 × z10, N2 × z20) be a mixed population equilibrium solution of the
G-model (SI-6.1). Then, Statements (a) - (c) are equivalent.

(a). (S0, N1 × z10, N2 × z20) is exponentially stable in the G-model (SI-6.1) for any N ≥ 4,
and with any N1 ≥ 2 and N2 ≥ 2 such that N1 +N2 = N .

(b). (S0, z10, z20) is exponentially stable in the reduced model (SI-6.17), and each zj0 is expo-
nentially stable in the single-cell model (SI-6.14), j = 1, 2.

(c). (S0, z10, z10, z20, z20) is exponentially stable in the cascade model (SI-6.27).
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SI-6.4 A Mixed Population Split into Several Subpopulations

The case of a mixed population split into two subpopulations with densities ρ1 = β1ρ and
ρ2 = β2ρ can be generalized to the case of a mixed population split into L-different subpopulations
with densities ρ1, . . . , ρL, where ρ1 + . . .+ ρL = ρ, L ≥ 3 as follows.

Let subpopulation j consist of Nj cells, and let subpopulation j correspond to variable zj , that
is, we have zj′(t) ≡ zj(t), where j′ ∈ {i1, i2, . . . , iNj} ⊂ {1, 2, . . . N}, j = 1, . . . , L. In this case,
the G-model (SI-6.1) reduces to the following equations

Ṡ = H0(S) +
L∑
j=1

ρjH(S, zj),
L∑
j=1

ρj = ρ, (SI-6.28a)

żj = h(S, zj), ρj = βjρ, βj =
Nj

N
, j = 1, . . . , L. (SI-6.28b)

Definition 3. Let (S0, z10, . . . , zL0) be a non-uniform equilibrium solution of the system (SI-6.28),
where zj0 6= zj′0 for all j 6= j′. Then, (S0, z10, . . . , zL0), corresponds to a mixed population equi-
librium solution,

(S0, N1z10, . . . , NLzL0) , (SI-6.29)

of the full G-model (SI-6.1). The solution (SI-6.29) describes a mixed population of N identical
cells, which is split into L subpopulations of the corresponding sizes Nj ≥ 2, N1 + . . .+NL = N .
Notation Njzj0 means that zj0 is repeated Nj-times in the vector-form solution of the the full
G-model (SI-6.1), Nj ≥ 2, j = 1, . . . , L.

Consider the Jacobian matrix QL for the reduced system (SI-6.28), computed at (S0, z10, . . . , zL0),

QL =


A ρ1B1 . . . ρLBL

C1 D1 . . . O
...

...
. . .

...
CL O . . . DL

 . (SI-6.30)

In (SI-6.30), all submatrices are defined as in (SI-6.20), where j = 1, 2 should be replaced by
j = 1, . . . , L. Below, we formulate Theorem 3 and Corollary 3 without any proof because they
are similar to Theorem 2 and Corollary 1, respectively.

Theorem 3. (I). Statements (a) and (b) are equivalent.

(a). The Jacobian JN computed for the G-model at the given equilibrium (SI-6.29) is stable for
all N ≥ 2L, and with any Nj ≥ 2, j = 1, . . . , L, such that N1 + . . . NL = N .

(b). Matrix QL and its submatrices Dj, j = 1, . . . , L, are stable.

(II). Matrix JN has typically kL different multiple eigenvalues in the following sense. Let

{λ1, . . . , λm+kL} be the set of eigenvalues of QL, and let {µ(j)1 , . . . , µ
(j)
k } be the set of eigenvalues

of Dj, j = 1, . . . , L. Then,{
λ1, . . . , λm+k, (N1 − 1)

(
µ
(1)
1 , . . . , µ

(1)
k

)
, . . . , (NL − 1)

(
µ
(NL)
1 , . . . , µ

(NL)
k

)}
(SI-6.31)

is the set of all eigenvalues of the matrix JN for any N ≥ 2L. In (SI-6.31), each set

{µ(j)1 , . . . , µ
(j)
k } is repeated (Nj − 1)-times with all Nj ≥ 2, j = 1, . . . ,K.
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Consider the following cascade model

dS

dt
= H0(S) +

L∑
j=1

ρjH(S, z2j−1),

L∑
j=1

ρj = ρ, (SI-6.32a)

dzj
dt

= h(S, zj), j = 1, . . . , 2L. (SI-6.32b)

State variables z2j with even indeces are absent from the first equation (SI-6.32a) of the cascade
model (SI-6.32).

Corollary 3. Let (S0, N1z10, . . . , NLzL0) be a mixed equilibrium solution of the G-model (SI-6.1),
where Nj0 6= Nj′0 for all j 6= j′. Then, Statements (a) - (c) are equivalent.

(a). (S0, N1z10, . . . , NLzL0) is exponentially stable in the G-model (SI-6.1) for any N ≥ 2L,
and with any Nj ≥ 2, j = 1, . . . , L, such that N1 + . . . NL = N .

(b). (S0, z10, . . . , zL0) is exponentially stable in the reduced model (SI-6.28), and each zj0 is
exponentially stable in the single-cell model (SI-6.14), j = 1, . . . , L.

(c). (S0, z10, z10, z20, z20, . . . , zL0, zL0) is exponentially stable in the cascade model (SI-6.32).
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SI-7 Additional Figures

Figure SI-7.1

In accordance with predictions from Fig. 3, we observe that an increase in the values of δg lead
to suppressed levels in x1 (LacI) as well as to elevated levels in y1 (TetR). This is illustrated in
Fig. SI-7.1. The almost constant dependencies in Fig. SI-7.1 (C) and (D) can be explained by
suppressed levels of TetR and C4-HSL in the G-population.

Figure SI-7.1. Examples of monotone parametric dependencies for the repressor-protein
levels in the G-homogeneous state. Red solid curves correspond to a weak coupling among all
toggles (d = 0.1), while black solid curves correspond to a strong coupling among all toggles (d = 10).

Analogously (Fig. SI-7.1), an increase in the values of δg should also lead to suppressed levels in
g1 (C14-HSL) as well as to elevated levels in r1 (C4-HSL), while an increase in the values of
δr should lead to elevated levels in g1 (C14-HSL) and, simultaneously, to decreased levels in r1
(C4-HSL). This is illustrated in Fig. SI-7.2. Constant dependencies in Fig. SI-7.2 (C) can be
explained by suppressed levels of TetR and C4-HSL in the G-population.
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Figure SI-7.2

Figure SI-7.2. Examples of monotone parametric dependencies for the signaling species
levels in the G-homogeneous state. Red solid curves correspond to a weak coupling among all
toggles (d = 0.1), while black solid curves correspond to a strong coupling among all toggles (d = 10).
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Figure SI-7.3

Figure SI-7.3. Examples of monotone parametric dependencies for the signaling species
levels in the (1:1)-mixed state. All explanations are as in Fig. 5.
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Figure SI-7.4

Figure SI-7.4. Examples of monotone parametric dependencies for the repressor-protein
levels in the (9:1)-mixed state (a 90% large G-subpopulation.) Green and red solid curves
correspond to stable solution branches, while all blue curves correspond to unstable solution branches.
Red filled circles correspond to an LP-bifurcation point. In panels (A) and (B), projections of stable and
unstable solution branches coincide and, so, only the stable solution branches are shown.

The monotone parametric dependencies for a (9:1)-mixed state corresponding to a spontaneous
synchronization error are illustrated in Fig. SI-7.4 for a large G-subpopulation comprising 90%
of all cells, and in Fig. SI-7.5 for a small R-subpopulation comprising 10% of all cells in the
given (9:1)-mixed state.

We observe that LP-bifurcation points are present in both panels (A) and (B), and are absent
from both panels (C) and (D) in Fig. SI-7.4 and Fig. SI-7.5. To explain this observation we
have to recall the difference between parameters δg and δr. As discussed earlier, a decrease in
the values of δg can be interpreted in terms of the improved communication between the toggles
within the large subpopulation, while a decrease in the values of δr can be interpreted in terms
of the improved communication between the toggles within the small subpopulation.
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Figure SI-7.5

Figure SI-7.5. Examples of monotone parametric dependencies for the repressor-protein
levels in the (9:1)-mixed state (a 10% small R-subpopulation.) Green and red solid curves
correspond to stable solution branches, while all blue curves correspond to unstable solution branches.
In panel (D), projections of stable and unstable solution branches coincide. Red filled circles in panels
(A) and (B) correspond to an LP-bifurcation point.
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Figure SI-7.6

Figure SI-7.6. Homogeneous populations of S and A toggles. Dependencies of G-homogeneous
populations on the values of the parameter d are shown. Top panels (A) and (B) correspond to a
G-homogeneous population of S toggles. Panel (A) presents (dimensionless) levels of the activated LacI,
while levels of the repressed TetR are of order of magnitude about 10−3 and are not shown. Panel (B)
presents levels of C14-HSL. The green curve corresponds to the intracellular levels, while the black plot
corresponds to extracellular levels of C14-HSL, respectively. Panels (C) and (E) present levels of the
activated LacI and C4-HSL obtained for the A toggle settled at the G-state (LacI > TetR). Panels (D)
and (F) present levels of the activated TetR and C4-HSL obtained for the A toggle settled at the
R-state (TetR > LacI).
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We observe from Fig. SI-7.6 that the intracellular and extracellular levels of the QS signaling
molecule C14-HSL become asymptotically indistinguishable from one another as d→∞. The
asymptotic behavior of the S toggle for large values of d can be analytically understood after
introducing a small parameter ε = d−1 into the S-model (1) which becomes a singularly-perturbed
problem [61]. Setting formally ε = 0 in the singularly-perturbed problem as required by the
theory of singular perturbations [61], the differential equations (SI-8.1c) and (SI-8.1d) can be
reduced to elementary algebraic equations g = ge and r = re, respectively.
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Figure SI-7.7

Figure SI-7.7. A (1:1)-mixed population of A toggles. Green and red color coded curves in
panels (A) and (B) correspond to the intracellular concentrations of LacI and TetR, respectively, while a
black color-coded curve in panel (C) corresponds to the extracellular concentration of C4-HSL. In panel
(C), the green color-coded curve corresponds to the concentration of C4-HSL within the
G-subpopulation, that is, LacI > TetR as in panel (A), while the red color-coded curve corresponds to
the R-subpopulation, that is, TetR > LacI as in panel (B).

PLOS 32/39



Figure SI-7.8

Figure SI-7.8. A (9:1)- and (1:9)-mixed population of A toggles. Here, all notations and
color-coding schemes are as in Fig. 9. Panels (A) and (B) correspond to the (9:1)-mixed population,
within which the transcription signature LacI � TetR dominates in proportion 9:1 (i.e., with 90% of
green cells and 10% of red cells), while panels (C) and (D) correspond to the (1:9)-mixed population,
within which the opposite transcription signature TetR � LacI as well dominates in proportion 9:1 (i.e.,
with 90% of red cells and 10% of green cells.)
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Figure SI-7.9

Figure SI-7.9. Lack of any self-correction capability for spontaneous errors by A toggles.
The left panels correspond to the reference (10:0)-state (G-state), while the right panels correspond to
the reference (0:10)-state (R-state). The initial conditions in the left panels correspond to nine “green”
cells and one “red” cell. The initial conditions in the right panels correspond to one “green” cell and
nine “red” cells.
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SI-8 Modification of the S and A Models to Describe Sequestra-
tion of AAA+ protease ClpXP

To probe competition and sequestration effects for AAA+ proteases ClpXP in the context of
our monotone theory-based modeling studies described in the main text, we have modified S
and A models by adding the corresponding Michaelis-Menten type degradation [37]. Because all
scaling procedures used for this case are similar to the scaling procedures described in detail
earlier, we omit laborious technical details.

SI-8.1 Modification of the S Model

A dimensionless modified Sm model is

dxi
dt

= γx +
a1

1 + ynY
i

+
a3 g

nG
i

1 + gnG
i

− δ xi −
kssrA xi
1 + Zi

, (SI-8.1a)

dyi
dt

= γy +
a2

1 + xnX
i

+
a4r

nR
i

1 + rnR
i

− δ yi −
kssrA yi
1 + Zi

, (SI-8.1b)

dgi
dt

= γg +
a5

1 + ynY
i

+ d
(
ge − gi

)
− δg gi, (SI-8.1c)

dri
dt

= γr +
a6

1 + xnX
i

+ d
(
re − ri

)
− δr ri, i = 1, . . . , N, (SI-8.1d)

dge
dt

=
ρ

N

N∑
i=1

d
(
gi − ge

)
− δe ge, 0 ≤ ρ ≤ 1, (SI-8.1e)

dre
dt

=
ρ

N

N∑
i=1

d
(
ri − re

)
− δe re. (SI-8.1f)

Here, all state variables are as defined for the original (non-modified) S model (1), see the main
text. New parameters in (SI-8.1b) and (SI-8.1b) include: kssrA, a maximal degradation rate for
ssrA tagged proteins, δ is an intracellular dilution rate due to cell growth. A new term Zi used
in (SI-8.1b) and (SI-8.1b) is

Zi = xi/KMX + yi/KMY . (SI-8.2)

(SI-8.2) assumes that the degradation kinetics of all ssrA-tagged proteins via ClpXP is the same
and, hence, can be described with the same Michaelis-Menten equation [37]. Parameters, KMY

and KMY , used in (SI-8.2) are scaled Michaelis constants. All other parameters in (SI-8.1a) -
(SI-8.1f) are as defined for the original (non-modified) S model (1).
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SI-8.2 Modification of the A Model

A dimensionless modified Am model is

dxi
dt

= γx +
a1

1 + ynY
i

+
a4 r

nR
i

1 + rnR
i

− δ xi −
kssrA xi
1 + Zi

, (SI-8.3a)

dyi
dt

= γy +
a2

1 + xnX
i

− δ yi −
kssrA yi
1 + Zi

, (SI-8.3b)

dri
dt

= γr +
a6

1 + xnX
i

+ d
(
re − ri

)
− δr ri, i = 1, . . . , N, (SI-8.3c)

dre
dt

=
ρ

N

N∑
i=1

d
(
ri − re

)
− δe re. (SI-8.3d)

Here, all state variables and parameters are as defined for the Sm model (SI-8.1).

SI-8.3 Reference parameter values

For the sake of simplicity and as an important extreme situation, we assume that the reference
number of AAA+ protease ClpXP molecules per cell is of the same order of magnitude as the
reference number of ssrA-tagged protein molecules, i.e., LacI and TetR (SI-2.2 Nondimension-
alization). In other words, we assume that the number of AAA+ protease ClpXP molecules
per cell is about 40 monomers per cell, that is, ssrA-tagged LacI and TetR should compete for
AAA+ protease ClpXP. A set of all dimensionless parameter values used in the modified models
can be found in Table SI-8.1, and is computed based on the data obtained from [37].

Table SI-8.1. Dimensionless parameter values used in the computational modeling.

Name Description of dimensionless parameters Value

kssrA a maximal degradation rate for ssrA tagged proteins 10.0
KMX a parameter reciprocal to the non-monotonicity degree for LacI 33.0
KMY a parameter reciprocal to the non-monotonicity degree for TetR 33.0
δ an intracellular dilution rate due to cell growth 0.7
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C. A bottom-up characterization of transfer functions for synthetic biology designs:
lessons from enzymology. Nucleic acids research. 2014;42(22):14060–14069.
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