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Control of Systems Without Drift
via Generic Loops

Eduardo D. Sontag

Abstract— This paper proposes a simple numerical tech-
nique for the steering of arbitrary analytic systems with no
drift. It is based on the generation of “nonsingular loops”
which allow linearized controllability along suitable trajeto-
ries. Once such loops are available, it is possible to employ
standard Newton or steepest descent methods, as classically
done in numerical control. The theoretical justification of
the approach relies on recent results establishing the gener-
icity of nonsingular controls, as well as a simple convergence
lemma.

Keywords—steering of nonholonomic systems, nonsingular
controls, mechanical systems, nonlinear control, nonlinear
feedback

I. Introduction

This paper deals with the problem of numerically finding
controls that achieve a desired state transfer. That is, for
any given initial and target states ξ0 and ξF in IRn, one
wishes to find a time T > 0 and a control u defined on the
interval [0, T ], so that u steers ξ0 to ξF , for the system

ẋ = f(x, u) . (1)

More precisely, the question of approximate controllability
(for any ε > 0, find a control that brings the state to within
ε distance of ξF ) will be considered.

A number of preliminary results will be developed for
general analytic systems of the type (1), but the controlla-
bility application is restricted to the case of systems without
drift :

ẋ = G(x)u , (2)

i.e., the right-hand side f(x, u) is linear in u. For such
systems it is relatively straightforward to decide control-
lability, but the design of explicit control strategies has
attracted considerable attention lately.

Problems of steering systems without drift are in part
motivated by the study of nonholonomic mechanical sys-
tems. Many sophisticated control strategies have been pro-
posed, based on a nontrivial analysis of the structure of
the Lie algebra of vector fields generated by the columns
of G; see for instance [1], [11], [12], and [9]. The approach
presented in this paper is of an entirely different nature.
It represents a simple-minded algorithm, in the style of
classical numerical approaches, and it requires no symbolic
computation to implement. In fact, a short piece of code
in any numerical package such as MATLAB is all that is
needed in order to obtain solutions. Obviously, as with any
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general procedure, it can be expected to be extremely inef-
ficient, and to result in poor performance, when compared
with techniques that use nontrivial information about the
system being controlled. Perhaps it will be useful mainly in
conjunction with other techniques, allowing gross control
actions that help bring the system into regions of the state
space where the asumptions required for the more refined
techniques hold.

Mathematically, the main contribution of this paper is
in the formulation of the “generic loop” approach and the
justification of the algorithm. The latter relies on a new
result proving the existence of such loops with good con-
trollability properties. This approach was motivated to a
great extent by related work on time varying feedback laws;
see especially [5] and [13]. The last section of the paper
makes some remarks regarding connections with that work.
The technique described in this paper was presented at the
March 1992 Princeton Conference on Information Sciences
and Systems, the February 1993 IMA Robotics Control
Workshop, and the 1993 IEEE Conference on Decision and
Control. Independently, Sussmann ([21]) proposed a nu-
merical approach based on homotopy-continuation ideas;
such an approach may be expected to be numerically more
useful, but it requires strong assumptions on the system in
order to apply. Also related is the work by Brockett ([3]),
who proposed a method which relies on randomization and
system inversion.

A. Classical Iterative Techniques

It is assumed from now on that in (1) the states x(t)
evolve in IRn. (Systems on manifolds can also be consid-
ered, but doing so only complicates notations and adds in
this case little insight.) Controls u(t) take values in IRm,
and are measurable and essentially bounded as a function
of time. Further, f is continuously differentiable (later re-
sults will impose analyticity). Given a state ξ0 ∈ IRn and
a control

u : [0, T ]→ IRm

so that the solution x : [0, T ]→ IRn of the equation (1) with
this control and the initial condition x(0) = ξ0 is defined on
the entire interval [0, T ] —that is, u is admissible for x,—
the state x(t) at time t ∈ [0, T ] is denoted by φ(t, ξ0, u).
As discussed above, the objective, for any given initial and
target states ξ0 and ξF in IRn, is to find a time T > 0 and
a control u defined on the interval [0, T ], so that u steers
ξ0 to ξF , that is, so that φ(T, ξ0, u) = ξF , at least in an
approximate sense. After a change of coordinates, one may
assume without loss of generality that ξF = 0.

Classical numerical techniques for this problem are based
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on variations of steepest descent; see for instance [4], or [7]
for a recent reference. The basic idea is to start with a
guess of a control, say u : [0, T ] → IRm, and to improve
iteratively on this initial guess. More precisely, let x =
φ(·, ξ0, u). If the obtained final state x(T ) is already zero,
or is sufficiently near zero, the problem has been solved.
Otherwise, we look for a perturbation ∆u so that the new
control

u+ ∆u

brings us closer to our goal of steering ξ0 to the origin. The
various techniques differ on the choice of the perturbation;
in particular, two possibilities are discussed next, later to
be analized.

The first is basically Newton’s method, and proceeds as
follows. Denote, for any fixed initial state ξ0,

α(u) := φ(T, ξ0, u)

thought of as a partially defined map from Lm∞(0, T ) into
IRn. This is a continuously differentiable map (see e.g. [18],
Theorem 1), so expanding to first order there results

α(u+ v) = α(u) + α∗[u](v) + o(v)

for any other control v so that α(u + v) is defined, where
we use “∗” as a subscript to denote differentials. If we can
now pick v so that

α∗[u](v) = −α(u) (3)

then for small enough h > 0 real,

α(u+ hv) = (1− h)α(u) + o(h) (4)

will be smaller than the state α(u) reached with the initial
guess control u. In other words, the choice of perturbation
is ∆u := hv, 0 < h� 1.

It remains to solve equation (3) for v. The operator

L : v 7→ α∗[u](v) (5)

is the one corresponding to the solution of the variational
equation

ż = A(t)z +B(t)v z(0) = 0, (6)

where A(t) := ∂f
∂x (x(t), u(t)) and B(t) := ∂f

∂u (x(t), u(t)) for
each t, that is,

Lv =
∫ T

0

Φ(T, s)B(s)v(s) ds ,

where Φ denotes the fundamental solution associated to
Ẋ = A(t)X.

The operator L maps Lm∞(0, T ) into IRn, and it is onto
when (6) is a controllable linear system on the interval
[0, T ], that is, when u is a control nonsingular for ξ0 relative
to the system (1). In other words, ontoness of L = α∗[u] is
equivalent to first-order controllability of the original non-
linear system along the trajectory corresponding to the ini-
tial state ξ0 and the control u. The main point of this paper

will lie in showing that it is not difficult to generate useful
nonsingular controls for systems with no drift.

Assuming nonsingularity, there exist then many solu-
tions to (3). Because of its use in (4) where a small v
is desirable, and in any case because it is the most natural
choice, it is reasonable to pick the least squares solution,
that is the unique solution of minimum norm,

v := −L#α(u) (7)

where L# denotes the pseudoinverse operator (see e.g. [18],
Section 3.5, for details; we are using the canonical inner
product on IRn, and L2 norm in Lm∞(0, T ), and induced
norms for elements and operators).

The technique sketched above is well-known in numerical
control. For instance, the derivation in pages 222-223 of [4],
when applied to solving the optimal control problem having
the trivial cost criterion J(u) = 0 and subject to the final
state constraints x = ψ(x) = 0, results in formula (7), and
is derived in the same manner as here.

Alternatively, instead of solving (3) for v via (7), one
might use the steepest descent choice

v := −L∗α(u) (8)

where L∗ is the adjoint of L. Formula (8) also results from
the above derivation in [4], now when applied using the
quadratic cost J(u) = ‖α(u)‖2 but relaxing the terminal
constraints (ψ ≡ 0). In place of (4), now one has

α(u+ hv) = (I − hLL∗)α(u) + o(h), (9)

where I is the identity operator. If again L is onto, that is,
if the control u is nonsingular for ξ0, then the symmetric
operator LL∗ is positive definite, so 0 < h � 1 will give a
contraction as earlier. An advantage in using L∗ instead of
L# is that no matrix inversion is required in this case.

It is also possible to combine these techniques with line
searches over the scalar parameter h or, even more effi-
ciently in practice, with conjugate gradient approches (see
for instance [10]). Line search corresponds to leaving v
fixed and optimizing on the step size h, only recomputing
a variation v when no further improvement on h can be
found. (The control applied at this stage is then the one
for the “best” stepsize, not the intermediate ones calculated
during the search.)

Of course, in general there are many reasons for which
the above classical techniques may fail to be useful in a
given application: the initial guess u may be singular for
ξ0, the iteration may fail to converge, and so forth. The
main point of this paper is to show that, for a suitable
class of systems, a procedure along the above lines can
be guaranteed to work. The systems with which we will
deal here are often called “systems without drift” and are
those expressed as in Equation (2). A result given below
shows that for such systems (assuming analytic G) rather
arbitrary controls provide the desired nonsingularity, and
can hence be used as the basis of the approach sketched
above.
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The next section establishes the basic iterative procedure
and proves a convergence result assuming that nonsingular
controls exist. After that, we state the existence theorem
for nonsingular controls in the analytic case (a proof is
given in an Appendix), and explain the application to sys-
tems without drift. Several remarks are also provided in
the last section, and relationships to time-varying feedback
design are briefly discussed.

II. Justification of the Iterative Method

We now prove the convergence of the algorithm consist-
ing of repeatedly applying a control to obtain a nonsin-
gular trajectory, and at each step perturbing this control
by means of a linear technique. As a preliminary step, we
establish a few results in somewhat more generality; these
are fairly obvious remarks about iterative methods, but we
have not found them in the literature in the form needed
here.

Lemma II.1: Let B be a compact subset of IRn, and let
H > 0. Assume given

F : B × [0,H]→ IRn

and a continuous matrix function

D : B → IRn×n

so that D(x) is symmetric and positive definite for each x.
Assume further that the function

g(x, h) := F (x, h) + hD(x)x− x

is o(h) uniformly on x, that is, for each ε > 0 there is a
δ > 0 so that

h < δ ⇒ ‖g(x, h)‖ < εh for all x ∈ B . (10)

Then the following conclusion holds, for some constant λ >
0: For each ε > 0 there is some δ > 0 so that, for each
h ∈ (0, δ) and each x ∈ B,

‖F (x, h)‖ < max
{

(1− λh)‖x‖, ε
}
. (11)

Proof: Note that since D(x) is continuous on x, its
singular values also depend continuously on x (see e.g. [18],
Corollary A.4.4). Let 2λ > 0 be a lower bound and let λ be
an upper bound for the eigenvalues of D(x). Pick a k > 2
so that kλ > 2λ.

Now fix any ε > 0. There is then some 0 < δ < 1/λ such
that, for each 0 < h < δ,

‖g(x, h)‖ < λεh

k
<

ε

k
(12)

for all x ∈ B and all the eigenvalues of hD(x) are in the
interval (0, 1).

Pick any h ∈ (0, δ) and any x ∈ B. As the eigenvalues of
the symmetric matrix I−hD(x) are all again in (0, 1), this
matrix must be positive definite and so its norm equals its
largest eigenvalue; thus:

‖I − hD(x)‖ ≤ 1− 2λh .

Therefore, for ‖x‖ > ε/2 it holds that:

‖F (x, h)‖ ≤ ‖(I − hD(x))x‖+ ‖g(x, h)‖
≤ (1− 2λh)‖x‖+ λεh/k

=
(

1− 2λh+
λεh

k‖x‖

)
‖x‖

< (1− λh)‖x‖ ,

which implies the desired conclusion. If instead ‖x‖ < ε/2,
then

‖F (x, h)‖ ≤ ‖I−hD(x)‖‖x‖+‖g(x, h)‖ < ε/2+ε/k < ε ,

so the conclusion holds in that case as well.
Observe that continuity of D(x) is only used in guar-

anteeing that the singular values are bounded above and
away from zero.

Lemma II.2: Let B be a closed ball in IRn, centered at
the origin, and let H > 0. Assume given a map

F : B × [0,H]→ IRn ,

with F (x, 0) = x for all x, so that F is continuously differ-
entiable with respect to h ∈ [0,H], with ∂F

∂h continuous on
(x, h), and

∂F

∂h
(x, 0) = −D(x)x ,

where D : B → IRn×n is a continuous matrix function
satisfying that D(x) is symmetric positive definite for each
x. Denote Fh := F (·, h). Then the following property
holds: For each ε > 0, there is some δ > 0 so that, for each
0 < h < δ there is some positive integer N = N(h) so that

‖FNh (B)‖ < ε ,

where FNh denotes the Nth iterate of Fh.
Proof: In order to apply Lemma II.1, we only need to

check that in the expansion

F (x, h) = x− hD(x)x+ g(x, h)

the last term is o(h) uniformly on x. But (Lagrange for-
mula):

g(x, h) = F (x, h)−F (x, 0)−∂F
∂h

(x, 0)h =
∫ 1

0

G(x, h, t)h dt

where

G(x, h, t) :=
∂F

∂h
(x, th) − ∂F

∂h
(x, 0)

and ∂F
∂h (x, h) is continuous by hypothesis. On the compact

set B × [0,H], this function is uniformly continuous; in
particular it is so at the points of the form (x, 0). Thus for
each ε > 0 there is some δ > 0 so that whenever h < δ then
‖G(x, h, t)‖ < ε for all x ∈ B and all t ∈ [0, 1]. Therefore
also ‖g(x, h)‖ < εh holds, and Lemma II.1 can indeed be
applied.
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As B is a ball, the iterates remain in B. So, for each l
and each x ∈ B,

‖F lh(x)‖ < max
{

(1− λh)l‖x‖, ε
}
.

This gives the desired result.
For each ξ ∈ IRn and each control u ∈ Lm∞(0, T ) admissi-

ble for ξ, we let Lξ,u be the linear operator Lm∞(0, T )→ IRn

defined as in (5), that is, the reachability map for the time-
varying linear system (6) that results along the ensuing
trajectory. Introducing the matrix functions

A = A(x, u) =
∂f

∂x
(x, u) and B = B(x, u) =

∂f

∂u
(x, u) ,

we may consider the following new system (the “prolonga-
tion” of the original one):

ẋ = f(x, u) (13)
ż = A(x, u)z +B(x, u)v (14)

seen as a system of dimension 2n and control (u, v) of di-
mension 2m. Observe that Lξ,u(v) is the value of the z-
coordinate of the solution that results at time T when ap-
plying controls u, v and starting at the initial state (ξ, 0).
If we add the equation

Q̇ = AQ+QA+BB∗ (15)

(superscript ∗ indicates transpose) to the prolonged sys-
tem, the solution with the above controls and initial state
(ξ, 0, 0) has

Q(t) =
∫ t

0

Φ(t, s)B(s)B∗(s)Φ(t, s)∗ ds

so that (see e.g. [18], Section 3.5) ontoness of Lξ,u is equiv-
alent to the Grammian W = Q(T ) being positive definite.
Note that, by continuous dependence on initial conditions
and controls, W depends continuously on ξ, u. Similar
arguments show that other objects associated to the lin-
earization also depend continuously on ξ, u, and any state
q: application to q of the adjoint, L∗ξ,uq, which is the same
as the function B(t)∗Φ(T, t)∗q, and of the pseudoinverse,
L#
ξ,uq = L∗W−1q.
Fix now a control u and a closed ball B ⊆ IRn so that u is

admissible for all ξ ∈ B, and denote Lξ,u just as Lξ. (This
is the zero-initial-state reachability map of the linearized
system when applying u and starting at the state ξ; thus
for each ξ, Lξ is a map from controls into states of the
linearized system.) In the next result, the map Nξ plays
the role of a one-sided “approximate inverse” of Lξ (for
each state ξ, Nξ is a map from states into controls).

Corollary II.3: Assume that the control u is so that

φ(T, ξ, u) = ξ for all ξ ∈ B .

Assume given, for each ξ ∈ B, a map Nξ : IRn → Lm∞(0, T )
so that Nξ(ξ) depends continuously on ξ and so that the
operator

D(ξ) := LξNξ

is linear, and in the standard basis is symmetric positive
definite and depends continuously on ξ. Pick an H > 0 so
that u−hNξ(ξ) is admissible for each ξ ∈ B and h ∈ [0,H],
and let

F (ξ, h) := φ(T, ξ, u− hNξ(ξ)) .
Then, for each ε > 0, there is some δ > 0 so that, for each
0 < h < δ there is some positive integer N = N(h) so that

‖FNh (B)‖ < ε ,

where Fh := F (·, h).
Proof: Observe that, since ∂φ(T,ξ,u)

∂u

∣∣∣
u=u

is the same
as Lξ, we have that, in general,

∂φ (T, ξ, u− hNξ(q))
∂h

∣∣∣
h=0

= −D(ξ)q ,

so in particular ∂F
∂h (ξ, 0) = −D(ξ)ξ, as needed in order to

apply Lemma II.2. Note that ∂F
∂h (ξ, h) is continuous, as it

equals
−Lξ,u−hNξ(ξ)Nξ(ξ)

and each of L and N are continuous on all arguments.
Note that an H > 0 as needed in the statement always

exists, by continuity of solutions on initial conditions and
controls.

III. Application to Systems with no Drift

The application to systems without drift, those that are
as in Equation (2), is as follows. As discussed in the next
subsection, rescaling if necessary, we may assume that the
system is complete. In order to apply the numerical tech-
niques just developed, one needs to find a control u which
leads to nonsingular loops:
• u is nonsingular for every state x in a given ball B, and
• φ(T, x, u) = x for all such x.

It is shown later that for analytic systems that have the
strong accessibility property, controls which are generic –
in a sense to be made precise– are nonsingular for all states.
(For analytic systems without drift, Chow’s Theorem states
that the strong accessibility property is equivalent to com-
plete controllability.) Starting from such a control ω, de-
fined on an interval [0, T/2], one may now consider the
control u on [0, T ] which equals ω on [0, T/2] and is then
followed by the antisymmetric extension:

u(t) = −ω(T − t) , t ∈ (T/2, T ] . (16)

This u is as needed: nonsingularity is due to the fact that
if the restriction of a control to an initial subinterval is
nonsingular for the initial state, the whole control is, and
the loop property is an easy consequence of the special form
(2) in which the control appears linearly.

In practice, one might try using a randomization tech-
nique in order to obtain ω, and from there u. More directly,
one might use instead a finite Fourier series with random
coefficients:

u(t) =
l∑

k=1

ak sin kt , (17)
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which automatically satisfies the antisymmetry property
(16) on the time interval [0, 2π]. There is no theoretical
guarantee that such a series will provide nonsingularity,
but in any case, experimentally, one may always proceed
assuming that indeed all properties hold. (It has been
pointed out by a referee that the results in [5] imply that,
on any fixed compact, such finite Fourier series will pro-
vide nonsingularity, at least if the coefficients are picked
small enough, and as long as the total number of terms l is
larger than a certain integer l(n,m, r) computable from n,
m, and the number r of Lie brackets sufficient to provide
the accessibility property on the given compact. This is a
topic worthy of further detailed research.)

The first application is with Nx = L#
x , the pseudoin-

verse discussed earlier. Here D(x) = I is certainly positive
definite and continuous on x.

The second application is with Nx = L∗x, the adjoint
operator, in which case D(x) = W = Q(T ), as obtained
for the composite system (13)-(15), and as remarked earlier
this is also continuous on x (and positive definite for each
x, by nonsingularity).

We may summarize the procedure as follows. The objec-
tive is to transfer ξ0 to a neighborhood of ξF .

Step 1. Find an u that generates nonsingular loops, in
the above sense. Let ξ := ξ0.

Step 2. Calculate the effect of applying u, starting at ξ,
and compute the linearization along the correspond-
ing trajectory, using this in turn in order to obtain
the variation that allows modifying u by hNξ(ξ), as
described earlier.

Step 3. The original control u is not applied to the sys-
tem (from state ξ), but the perturbed one is. Apply
this new control to the system and compute the final
state ξ′ that results.

Step 4. If ξ′ is not close enough to ξF , let ξ := ξ′, and
go to Step 2.

There is then guaranteed convergence in finite time to
any arbitrary neighborhood of the origin, for small enough
stepsize. One may also combine this approach with line
searches, or even conjugate gradient algorithms, as dis-
cussed earlier.

Such techniques are classical in nonlinear control; see for
instance [4], [10]. What appears to be new is the observa-
tion that, for analytic systems without drift, generic loops
provide nonsingularity. The techniques are also related to
the material in [16], which relied on control based on pole-
shifting along nonsingular trajectories.

A. Rescaling: Obstacles and Completeness

For systems with no drift, a simple rescaling of the equa-
tions may be an extremely powerful tool that allows (a)
dealing with workspace obstacles and (b) the reduction to
systems that are complete (no explosion times). The basic
idea, which is very straightforward and rather well-known,
is as follows.

Assume that β : IRn → IR is any smooth mapping, and
consider the new system without drift

ẋ = β(x)G(x)u . (18)

Suppose that one has found a control u, defined on an in-
terval [0, T ], so that the state ξ0 is transferred into the
state ξF using this control, for the system (18). Let x(·)
be the corresponding trajectory. Then, the new control
v(t) := β(x(t))u(t), when applied to the original system
(2), also produces the desired transfer. In other words,
solving a controllability problem for (18) provides imme-
diately a solution to the corresponding problem for the
original system. (If one is interested in feedback design,
as opposed to open-loop control as in this paper, the same
situation holds: a feedback law u = k(x) for (18) can be
re-interpreted as a feedback law u = β(x)k(x) for (2).)

If β never vanishes, the controllability properties of the
original and the transformed systems are the same. This
is clear from the above argument. Alternatively, one may
see this from the fact that, for any two vector fields g1, g2

and any two smooth scalar functions β1, β2,

[β1g1, β2g2] = β1β2[g1, g2] + β1g1(β2)g2 − β2g2(β1)g1 .

This implies inductively that the Lie algebra generated by
the columns of β(x)G(x) is included in the C∞-module
generated by the Lie algebra corresponding to the columns
of G(x), so the accessibility rank condition for the former
implies the same for the latter (and viceversa, by reversing
the roles of β(x)G(x) and G(x)).

This construction is of interest in two ways. First of
all, one is often interested in control of systems in such a
manner that trajectories avoid a certain subset Q of the
state-space (which may correspond to “obstacles” in the
workspace of a robot, for instance). If β vanishes exactly
on Q, then control design on the complement of Q can be
done for the new system (18), and controls can then be
reinterpreted in terms of the original system, a discussed
above. Since β vanishes on Q, no trajectories starting out-
side Q ever pass through Q (uniqueness of solutions). Of
course, in planning motions in the presence of obstacles,
the control variations should be chosen so as to move in
state space directions which do not lead to collisions. One
possible approach is to first design a polyhedral path to
be tracked, and then to apply the numerical technique ex-
plained in order to closely follow this path.

Reparameterization also helps in dealing with possible
explosion times in the original system, a fact that had been
previously observed in [9], page 2542. In this case, one
might use an β(x) so that β(x)G(x) has all entries bounded;
for instance, β(x) could be the chosen as (1+

∑
i,j g

2
ij(x))−1.

This means that the new system has no finite escape times,
for any bounded control.

B. Some Implementation Questions

Next are derived explicit formulas for the use of the above
technique, in the case of systems without drift and when
steepest descent variations are used. As just discussed, one
may assume that the system is complete.

Assume that u(t), t ∈ [0, T ] satisfies the antisymmetry
condition

u(T − t) = −u(t) . (19)
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If x(·) satisfies ẋ = G(x)u then z(t) := x(T − t) satisfies
the same equation; thus from the equality z(T/2) = x(T/2)
and uniqueness of solutions it follows that z = x. In other
words,

x(T − t) = x(t) (20)

for t ∈ [0, T ]. To distinguish the objects which depend
explicitely on time from those that depend on the current
values of states and controls, use the notation

A(x, u) :=
m∑
i=1

∂gi
∂x

(x)ui

where gi is the ith column of G, ui is the ith entry of the
vector u ∈ IRm, and the partial with respect to x indicates
Jacobian. Note that A can be calcuted once and for all as
a function of the variables x, u, before any numerical com-
putations take place. For each u, and the trajectory x(·)
corresponding to this control and initial state ξ0, denote

A(t) := A(x(t), u(t)) , B(t) := G(x(t)) .

Note that if (19), and hence also (20), hold then

A(T − t) = −A(t) , B(T − t) = B(t) (21)

hold as well. Consider next Ψ(t) := Φ(T, t), where Φ is the
fundamental solution as before, corresponding to a given u
and x(·) as above. Thus, Ψ satisfies the matrix differential
equation

Ψ̇(t) = −Ψ(t)A(t) , Ψ(T ) = I .

Consider the function Ψ̃(t) := Ψ(T−t). If u satisfies the an-
tisymmetry condition, then Ψ̃ satisfies the same differential
equation as Ψ, from which the equality Ψ̃(T/2) = Ψ(T/2)
implies Ψ̃ = Ψ. Hence also

Ψ(T − t) = Ψ(t) (22)

and so Ψ(0) = Ψ(T ) = I. The perturbed control to be ap-
plied is u+hv = u−hL∗α(u) where α(u) = x(T ) = x(0) =
ξ0 if u satisfies the antisymmetry condition. The adjoint
operator is (L∗ξ0)(t) = B(t)∗Ψ(t)∗ξ0. Summarizing, the
control to be applied, which for small h should result in a
state closer to the origin than ξ0, is

u(t)− hG(x(t))∗Ψ(t)∗ξ0 t ∈ [0, T ]

where

ẋ(t) = G(x(t))u(t) , x(0) = ξ0

Ψ̇(t) = −A(x(t), u(t)) Ψ(t) , Ψ(0) = I .

The equations for the system evolution are as follows (the
state variable is now denoted by z in order to avoid confu-
sion with the reference trajectory x):

ż(t) = G(z(t)) [u(t)− hG(x(t))∗Ψ(t)∗ξ0]

for t ∈ [0, T ], with initial condition z(0) = ξ0. In a line-
search implementation, one would first compute z(T ) for

various choices of h; the control is only applied once that
an optimal h has been found. Then the procedure can be
repeated, using z(T ) as the new initial state ξ0.

Remark. Regarding the number of steps that are
needed in order to converge to an ε-neighborhood of the
desired target state, an estimate is as follows. For a fixed
ball around the origin, and sufficient smoothness, one can
see that h = O(ε) provides the inequality in (10), as re-
quired for (12). Thus, the number of iterations N needed,
using such a stepsize, is obtained from (11):

(1− cε)N < ε

where c is a constant. Taking logarithms and using log(1−
x) = x+ o(x) there results the rough estimate

N = O

(
1
ε

log
(

1
ε

))
.

Remark. The method introduced in this paper could
also potentially be used in an adaptive control context,
when the precise plant model is not known. In that case,
it is of course not possible to find the necessary gradient or
Newton corrections of the nonsingular control u. However,
with an arbitrary choice of v, as long as this is not mapped
by the differential into a direction orthogonal to that to
the target, either small h < 0 or h > 0 will provide an
improvement. We leave this idea as a suggestion for further
work.

IV. Universal Inputs

In this Section, the systems considered will be of the type
(1) where x(t) ∈ X , u(t) ∈ U , and:
• X ⊆ IRn is open and connected, for some n ≥ 1;
• U ⊆ IRm is open and connected, for some m ≥ 1;
• f : X × U → IRn is real-analytic.
A control is a measurable essentially bounded map ω :

[0, T ]→ U ; it is said to be smooth (respectively, analytic) if
it is infinitely differentiable (respectively, real-analytic) as
a function of t ∈ [0, T ]. As before, we denote by φ(t, x, ω)
the solution of (1) at time t with initial condition x and
control ω. This is defined for all small t = t(x, ω) > 0;
when we write φ(·, x, ω), we mean the solution as defined
on the largest interval [0, τ) of existence.

Recall that the system (1) is said to be strongly accessible
if for each x ∈ X there is some T > 0 so that

intRT (x) 6= ∅ ,

where as usual RT (x) denotes the reachable set from x
in time exactly T . Equivalently, the system must satisfy
the strong accessibility rank condition: dimL0(x) = n for
all x, where L0 is the ideal generated by all the vector
fields of the type {f(·, u) − f(·, v), u, v ∈ U} in the Lie
algebra L generated by all the vector fields of the type
{f(·, u), u ∈ U}; see [22]. For systems affine in controls:

ẋ = f(x) +
m∑
i=1

uigi(x) (23)



SONTAG: CONTROL OF SYSTEMS WITHOUT DRIFT VIA GENERIC LOOPS 7

the algebra L0 is the Lie algebra generated by all vector
fields adkf (gi), k ≥ 0, i = 1, . . . ,m.

Given a state x, a control ω defined on [0, T ], and a
positive T0 ≤ T so that ξ(t) = φ(t, x, ω) is defined for
all t ∈ [0, T0], we may consider the linearization along the
trajectory (ξ, ω):

ż(t) = A(t)z(t) +B(t)u(t) (24)

where A(t) := ∂f
∂x (ξ(t), ω(t)) and B(t) := ∂f

∂u (ξ(t), ω(t)) for
each t. A control ω will be said to be nonsingular for x if
the linear time-varying system (24) is controllable on the
interval [0, T0], for some T0 > 0. When u is analytic, this
property is independent of the particular T0 chosen, and it
is equivalent to a Kalman-like rank condition (see e.g. [18],
Corollary 3.5.17). Nonsingularity is equivalent to a Fréchet
derivative of φ(T0, x, ·) having full rank at ω.

If ω is nonsingular for x ∈ X , and T0 is as above, then
RT0(x) has a nonempty interior. This is a trivial conse-
quence of the Implicit Function Theorem (see for instance
[18], Theorem 6). Thus, if for each state x there is some
control which is nonsingular for x, then (1) is strongly ac-
cessible. The converse of this fact is also true, that is, if a
system is strongly accessible then for each state x there is
some control which is nonsingular for x. This converse fact
was proved in [17] (the result in that reference is stated un-
der a controllability assumption, which is not needed in the
proof of this particular fact; in any case, we review below
the proof). The main purpose here is to point out that ω
can be chosen independently of the particular x, and more-
over, a generic ω has this property. We now give a precise
statement of these facts.

A control ω : [0, T ] → U will be said to be a universal
nonsingular control for the system (1) if it is nonsingular
for every x ∈ X .

Theorem 1: If (1) is strongly accessible, there is an ana-
lytic universal nonsingular control.

Let C∞([0, T ],U) denote the set of smooth controls
ω : [0, T ] → U , endowed with the C∞ topology (uni-
form convergence of all derivatives). A generic subset of
C∞([0, T ],U) is one that contains a countable intersection
of open dense sets.

Theorem 2: If (1) is strongly accessible, the set of
smooth universal nonsingular controls is generic in
C∞([0, T ],U), for any T > 0.

A proof of this fact was originally given [19]. A proof
is also given in an Appendix, in order to make this paper
self-contained. The proof is heavily based on the universal
input theorem for observability. (The theorem for observ-
ability is due to Sussmann, but the result had been suc-
cessively refined in the papers [8], [14], [20]; see also [23]
for a different proof as well as a generalization involving
inputs that are universal even over the class of all possible
analytic systems. There is also closely related recent work
of Coron ([6]) on generalizations of these theorems.)

V. Remarks

It is worth mentioning certain relations between the re-
sults in this paper and recent work on time-varying feed-

back laws for systems without drift, especially the results
in [5] and [13].

In [5], Coron proves, for controllable smooth systems
with no drift, that there is a smooth feedback law u =
k(t, x), periodic on t and with k(t, 0) ≡ 0, such that the
closed-loop system ẋ = G(x)k(t, x) is uniformly globally
asymptotically stable. The critical step in his proof is to
obtain a smooth family of controls {ux(·), x ∈ IRn}, where
each ux is defined for all t ∈ IR, so that the following prop-
erties are satisfied:

1. ux(t+ 1) = ux(t) ∀x, t,
2. ux(1− t) = −ux(t) ∀x, t,
3. ux(t) is C∞ jointly on (x, t),
4. for each x 6= 0, ux is nonsingular for x,
5. u0 ≡ 0, and
6. φ(t, x, ux) is defined for all t ≥ 0.

Observe that the second and last properties imply that
φ(1, x, ux) = x for all x. Thus, applying the control ux with
initial state x results in a periodic motion, φ(t+1, x, ux) =
φ(t, x, ux). These properties are used in deriving stabilizing
feedbacks in [5].

It is possible to obtain a family of controls as above —
at least in the analytic case— using Theorem 1. A sketch
follows. First note that one may take the system to be
complete, as discussed in Section III, so the last property
will be satisfied for any choice of ux.

Assume that ω is a control which is analytic and univer-
sal nonsingular, defined on the interval [0, 1]. As the system
being considered in this case has no drift, it follows that for
each nonzero constant c the control cω(ct), defined on the
interval [0, 1/c], is again universal nonsingular. (Indeed, if
ξ0 as any initial state and x(t) = φ(t, ξ0, ω) then x(ct) is
the trajectory corresponding to this new control, and the
linearization along this trajectory is controllable, because,
with the notations in [18], Corollary 3.5.17 and using super-
script c to denote the dependence on c, A(c)(t) = cA(ct)
and B

(c)
i (t) = ciB(ct) for i = 0, 1, 2, . . ..) Assume that

c < 1, so that cω(ct) is defined on [0, 1]. Since the system
and the control are both analytic, the restriction of cω(ct)
to the interval [0, 1/6] is again universal and nonsingular.
Observe that, by definition of analytic function on a closed
interval, this means that cω(ct) is in fact defined on some
larger interval of the form (−ε, 1), for some ε > 0. Let
β : IRn → IR be a smooth function which is positive for
x 6= 0, vanishes at the origin, and is bounded by 1.

Consider now, for each x 6= 0, the control ux(t) which is
defined on the interval [0, 1/2] as follows. On the subinter-
val [1/6, 1/3], this equals

β(x)ω(β(x)(t− 1/6)) .

Extend ux smoothly to [0, 1/6] in such a manner that all
derivatives vanish at 0. Similarly, extend in the other di-
rection, to [0, 1/2], so that all derivatives also vanish at
1/2. Note that ux is still a universal nonsingular control,
because its restriction to the subinterval [1/6, 1/3] is. Also,
these extensions can be done in such a manner that ux de-
pends smoothly on x and is bounded by a constant multiple
of β(x). Finally, it is trivial to extend by antisymmetry to
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[0, 1] and then periodically to all t ∈ IR, so that all the
desired properties hold.

VI. An Illustration

We now illustrate our technique with the simplest possi-
ble example of a system with no drift which is controllable
but for which no possible smooth stabilizer exists. This
example is due to Brockett ([2]) and appears in most text-
books in some variant or another (see e.g. [18], Example
4.8.14); it is closely related, under a coordinate change,
to the “unicycle” or “knife edge” example. The system in
question has dimension 3 and two controls; the equations
are as follows:

ẋ = u

ẏ = v

ż = xv

(we write x, y, z for the coordinates of the state and u, v
for the input coordinates, in order to avoid subscripts). A
short program was written in order to simulate the behav-
ior of the gradient descent algorithm based on the ideas
described in this paper.

As suggested earlier, periodic controls on intervals [0, 2π]
symmetric about π are natural. In this case, in particular,
the input u defined by u(t) ≡ 0, v(t) = sin(t) on this
interval is already a universal nonsingular control (as shown
next), so we use u. Nonsingularity is shown as follows.
Given any initial state ξ = (x0, y0, z0), the trajectory that
results is

x(t) = x0

y(t) = y0 − cos t
z(t) = z0 + x0t .

Along this trajectory, the linearized system has matrices

A(t) =

 0 0 0
0 0 0

sin t 0 0

 and B(t) =

 1 0
0 1
0 x0

 .

Let B0 := B and B1 := AB0 − B′0 (= AB since B is
constant). Since

(B0B1) =

 1 0 0 0
0 1 0 0
0 x0 sin t 0


has rank 3 generically, this shows that the linearized system
is controllable (see e.g. [18], Corollary 3.5.17).

We simulated the gradient descent algorithm, using a
simple line search consisting of optimizing the choice of
the stepsize h after computing the gradient, and simulat-
ing 25 steps of the procedure for several different initial
conditions.

Table 1 provides two initial conditions (namely, ξ1 =
(20, 10,−10) and ξ2 = (50, 10,−20)) and the stepsizes (first
4 decimal digits) that resulted for each of them (the zero

entry is rounded-off). Choice of stepsize is critical for per-
formance; a one-dimensional optimization over h must be
performed to obtain the best h at each step. The plots
in Figures 1-2 show the respective trajectories (note that
for this simple example, it is also possible to compute the
end points in closed form). Observe the oscillations: the
y variable, in particular, is driven by a sinusoidal nominal
control subject to a nonlinear correction. Oscillations can
be expected in general techniques dealing with nonholo-
nomic control problems, since in one way or another, Lie
brackets of vector fields are being approximated (the ma-
noeuvres necessary in order to take an automobile out of a
tight parking space are a classical illustration of this fact).

ξ1
0.0004

0.2041

0.0044

0.0374

0.0089

0.0460

0.0250

0.0559

0.1458

0.0702

0.1415

0.0980

0.1657

0.1021

0.1639

0.1034

0.1630

0.1041

0.1627

0.1044

0.1625

0.1046

0.1624

0.1046

0.1623

ξ2
0.0000

0.0324

0.0001

0.1925

0.0021

0.0502

0.0050

0.0582

0.0155

0.0643

0.0756

0.0689

0.1447

0.0699

0.1591

0.1034

0.1654

0.1034

0.1654

0.1034

0.1654

0.1034

0.1654

0.1034

0.1654

Table: Columns provide stepsize schedules for each example

Newton’s method leads to even better results in this case
(using the above nonsingular control). Indeed, since the
first two equations are linear in controls, and the system
over all is quadratic in a suitable sense, Newton’s method
results in exact convergence to zero in just two passes.
We prove this fact next. With the above control u, the
pseudoinverse of the reachability map is as follows (letting
(x0, y0, z0) be the coordinates of the initial state):

L# = (1/π)

(
1/2 + cos(t) −x0 cos(t) cos(t)

0 1/2 0

)
,

so the net control applied is −
h

π

(x0

2
+ x0 cos(t)− x0 cos(t)y0 + cos(t)z0

)
sin(t)− hy0

2π

 .
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Fig. 1. Simulation starting from ξ1
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Fig. 2. Simulation starting from ξ2

A Newton step is obtained by solving the correspond-
ing differential equations with step size h; this gives the
new states: xh = x0 − x0h, yh = y0 − hy0, and zh =
(h/2)(−2x0y0 + hx0y0 − 2z0) + z0. The stepsize h = 1
gives zero values for the first two coordinates after one step,
while the last coordinate becomes, under this choice of h,
−x0y0/2. But any state of the form (0, 0, z) gets mapped
to the origin in one step under the same iteration. In sum-
mary, all states are mapped in two iterations to the origin.
Figures 3-4 plot solutions using Newton’s method, for the
same initial conditions as those used to illustrate gradi-
ent descent; note that convergence is achieved in two steps
(total time 4π), but very large oscillations take place.
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Fig. 3. Newton, starting from ξ1
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Fig. 4. Newton, starting from ξ2

Appendix

I. Appendix: Proof of Nonsingularity Result

We first recall the fact, mentioned above, that for each x
there is a control nonsingular for x. This can be proved as
follows. Pick x, and assume that the system (1) is strongly
accessible. Let y be in the interior of RT (x), for some
T > 0. It follows from [15], Lemma 2.2 and Proposition
2.3, that there exists some real number δ > 0 and some
positive integer k so that y is in the interior of the image
of

F : Uk → X , (u1, . . . , uk) 7→ exp (δfu1) . . . exp (δfuk)(x) ,

where we are using the notation exp (δfu)(z) = φ(δ, z, ω)
for the control ω ≡ u on [0, δ]. This map F is smooth, so
by Sard’s Theorem it must have full-rank Jacobian at some
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point (u0
1, . . . , u

0
k). This implies that the piecewise-constant

control ω, defined on [0, kδ] and equal to the values u0
i

on consecutive intervals of length δ, is nonsingular for the
given state x, as desired.

We next need what is basically a restatement of the main
results in [20]:

Proposition A.1: Consider the (analytic) system (1) and
assume that h : X → IR is a real-analytic function. Let G
be the set of states x so that, for some control ω = ω(x),
h(φ(·, x, ω)) is not identically zero. Then, there exists an
analytic control ω∗ so that, for every x ∈ G, h(φ(·, x, ω∗))
is not identically zero; moreover, for each T > 0, the set of
smooth such controls is generic in C∞([0, T ],U).

Proof: We consider the extended system (with state
space X × IR):

ẋ = f(x, u)
ż = 0
y = zh(x) ,

which is an analytic system with outputs. Consider two
states of the form (x, 0) and (x, 1), with x ∈ X . A control
ω distinguishes these states if and only if h(φ(·, x, ω)) is not
identically zero.

Let ω∗ be a control for the extended system which is
universal with respect to observability. There are analytic
such controls, and the desired genericity holds, by Theo-
rems 2.1 and 2.2 in [20]. Now pick any x in the set G.
Then (x, 0) and (x, 1) are distinguishable, and hence ω∗

distinguishes among them. This means that h(φ(·, x, ω∗))
is not identically zero, as desired.

We now prove Theorems 1 and 2. Let (1) be given, and
take the composite system consisting of (13) and (15) with
output h(x,Q) = detQ, This is seen as a system with state
space X ×IRn×n. For an initial state of the form z = (x, 0),
and a control ω, the solution φ̂ of the larger system at time
t, if defined, is so that

h(φ̂(t, z, ω)) = det
(∫ t

0

Φ(t, s)B(s)B∗(s)Φ(t, s)∗ ds
)

(where Φ denotes the fundamental solution of the lin-
earized equation), so ω is nonsingular for x precisely when
h(φ̂(t, (x, I, 0), ω)) is not identically zero.

By the remarks made earlier, strong accessibility guar-
antees that every state of the form (x, I, 0) is in the set G
defined in Proposition A.1 (for the enlarged system); thus
our Theorems follow from the Proposition.
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