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Abstract 

The notion of input-to-state stability (ISS) has proved to be useful in nonlinear systems analysis. This paper discusses 
a dual notion, output-to-state stability (OSS). A characterization is provided in terms of a dissipation inequality involving 
storage (Lyapunov) functions. Combining ISS and OSS there results the notion of input/output-to-state stability (IOSS), 
which is also studied and related to the notion of detectability, the existence of observers, and output injection. 
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1. Introduction 

The concept of  "input to state stability" (ISS), 
introduced in [16], has proved to be a very useful 
paradigm in the study of  nonlinear stability for systems 
subject to external effects (see e.g. [2,3,5-7,9,10,25]).  
In contrast with more classical operator-theoretic 
approaches, the notion o f  ISS takes into account the 
effect of  initial states in a manner fully compatible 
with Lyapunov stability, and incorporates naturally 
the idea of  "nonlinear gain" functions; the reader 
may wish to consult [19] for an exposition - as well 
as [23] for several new characterizations obtained 
after that exposition was written. In very informal 
terms, the ISS property translates into the statement 
that "no matter what is the initial state, if the inputs 
are small, then the state must eventually be small". 

Given the central role often played in control theory 
by the duality between input/state and state/output 
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behavior, one may reasonably ask what concept 
obtains if outputs are used instead of  inputs in the ISS 
definition. This corresponds roughly to asking that 
"no matter the initial state, if the observed outputs 
are small, then the state must be eventually small". 
For linear systems, the notion that arises is that o f  
detectability. Thus, it would appear that this dual 
property, which we will call output to state stability 
(OSS), is a natural candidate as a concept of  nonlinear 
(zero-)detectability. 

One of  the main contributions of  [21 ] was to show 
that the ISS property is equivalent to an "infinitesi- 
mal" description, namely the existence o f  a "storage" 
function V such that, along all possible trajectories, V 
decreases if  the current inputs are not too large com- 
pared to the current states. This property can be ex- 
pressed in the language of  dissipative systems which is 
now quite standard in nonlinear control theory. Again 
using a naive dualization, one could ask what is the 
notion that emerges when we ask that there be some 
function V so that, along all possible trajectories, V 
decreases if the outputs are not too large compared 
to the present states. For linear systems, one obtains 
again detectability. For nonlinear systems, variations 
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of this property have very often been suggested as a 
notion of detectability as well (cf. Remark 5). It is not 
difficult to see that this dissipation property, once rig- 
orously formulated, implies OSS, and this is proved 
here. The converse implication, i.e. that both concepts 
are equivalent, is harder to show but also true. We 
state precisely that fact, but the proof is too lengthy to 
be included in this short note so we refer the reader 
to a conference paper for the details. 

The paper also discusses the corresponding notion 
that arises when both inputs and outputs are consid- 
ered, which we call input~output to state stability 
(IOSS). In this case, we have only proved the easy im- 
plication (dissipation property implies IOSS) but we 
conjecture that the converse holds as well. The notion 
of IOSS is closely connected to the possibility of  sta- 
bilizing a partially observed system using only output 
measurements and is implied by the existence of ob- 
servers. The IOSS property is also related to the strict 
passivity property (see Section 3 for more details). 
Various remarks concerning these issues are made in 
the paper. (The terminology "IOSS" should not be 
confused with the totally different concept called IOS 
in [16], refined and further developed in [24], which 
refers instead to input/output stability as opposed to 
detectability.) 

The rest of this paper is organized as follows. Sec- 
tion 2 provides the precise definition of OSS and the 
formulation of the main equivalence result. Section 3 
presents the definition of lOSS and shows its connec- 
tions to the existence of a dynamical system which 
estimates the norm of the state. Section 4 discusses a 
simple example (dimension o~ae), with the purpose of 
illustrating the concepts and hlso in order to provide 
a counterexample needed later. Finally, Section 5 in- 
cludes several remarks about observers, "incremental" 
or "Lipschitz" lOSS, and output injection. 

2. Output to state stability 

We first consider autonomous systems, i.e., systems 
with no inputs: 

fc = f ( x ) ,  y = h(x), ( 1 ) 

where f : X ~ X is locally Lipschitz continuous and 
h : X ~ R p is continuously differentiable, and where 
the state space X -- R n for some n. We assume that 
x = 0 is an equilibrium state, that is, f ( 0 )  = 0. We 
also assume that h (0 )=  0. In what follows, we always 
use x(t,  ~) to denote the trajectory of (1) with initial 

state ~, and write 

y(t ,  ~) = h(x( t ,  ~)) 

and denote the function y¢ := y(., ~) also as y when 
is clear from the context. The trajectory x(t,  ~), and 

consequently also y(t ,  ~), are defined on some maxi- 
mal interval [0, tmax), where trnax : trnax(~) ~< q- c~. 

In general, we use I~1 to indicate Euclidean norm, 
and i fz  is a function defined on a real interval which 
contains [0, t], I[z[[0,t] I[ is the sup-norm of the restric- 
tion o f z  to [0, t], that is supts[0,tl ]z(t)[. (Later, when 
dealing with input functions, which are arbitrary lo- 
cally essentially bounded functions, I lzll is understood 
as essential supremum, that is, supremum except for 
a set of  measure zero.) 

Recall that ~ is the class of functions [0,c~) 
[0, cx~) which are zero at zero, strictly increasing, and 
continuous, ~ffo~ is the subset of o,U functions that 
are unbounded, and ~(5¢ is the class of functions 
[0, o¢) 2 --+ [0, c~) which are decreasing to zero on the 
second argument and of class ~ on the first argument 
(see e.g. [1]). 

Definition 1. The system (1) is output-to-state stable 
(OSS) if there exist some fl E o~ff5¢ and some 7 E 
such that 

Ix(t, ~)l ~< max {fl(l¢l, t),7 (llyel[0,,]ll) } (2) 

for all ~ E X and all t E [0, tmax). 

Definition 2. An OSS-Lyapunov function for system 
(1) is any function V with the following properties: 

(i) There exist ~ - f u n c t i o n s  ~1 and ~2 such that 

~1(1~1) < v(¢) ~< ~2(I~1), v ~ c x .  (3) 

(ii) V is differentiable along trajectories, that is, for 
every trajectory x(t,  ~) of (1), V(x(t ,  ~)) is differen- 
tiable in t. Furthermore, there exist JU~-functions 
and a such that for every trajectory x(t,  ~), and all 
t E [0, tmax ), 

d 
d-~V(x(t,~)) <~ -~(Ix(t,~)l)+a(ly(t,~)l). (4) 

A special type of OSS-Lyapunov function is some- 
times useful, in which the estimate (4) is replaced by 
the estimate: 

d v ( x ( t , ¢ ) )  <~ - V ( x ( t , ~ ) ) +  o'(ly(t,()l ). (5) 
dt 

This is the "dual" of the analogous dissipation char- 
acterization for the ISS larolaertv oroved in [14]. If V 
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satisfies (3), is differentiable along trajectories, and 
for all trajectories satisfies (5) for all t, we call it an 
exponential-decay OSS-L yapunov function. 

The main equivalence result is as follows. 

Theorem 3. The following properties are equivalent 
for any system (1): 

The ,system is OSS. 
The system admits an OSS-Lyapunov function. 
The system admits an exponential-decay OSS- 
L yapunov function. 

The two simpler parts of  the theorem, namely that 
the existence of  an OSS-Lyapunov function implies 
the existence of  an exponential decay one, and that this 
in turn implies that the system is OSS, are both partic- 
ular cases of  the more general facts to be shown below 
for the " lOSS" property. The most interesting implica- 
tion, establishing the existence of  an OSS-Lyapunov 
function, is too technical and long to be included in 
this note; the complete proof  can be found in [22], 
available as a conference proceedings paper and also 
electronically as a technical report. 

Remark  4. The statement of  Theorem 3 is formally 
dual to a known characterization of  the ISS property. 
Recall that an ISS system 2 = f (x ,  u) (with controls 
but not considering an output function) is one whose 
trajectories satisfy an estimate of  the form 

Ix(t,~,u)l ~ max {/3(l~l,t),~(llulto, tlll)} (6) 

for all t E [0, t m a x ) ,  where x(t, ~, u) denotes the trajec- 
tory that results from initial state ~ and control u and 
tmax = tma×(~, U) ~< +C~. It is shown in [21] that a sys- 
tem is ISS if and only if it admits an ISS-Lyapunov 
function V, that is a V which satisfies (3) and an es- 
timate of  the form 

d 
dtV(x( t ,~ ,u))  ~ - ~(Ix(t, ~)1) + o(lu(t)l) 

along all trajectories. The formal analogy notwith- 
standing, we have not been able to obtain the proof  by 
means of  a duality argument. Superficially, it would 
appear that it is enough to replace u by y in the ISS 
definition and hence obtain OSS, but the roles of  con- 
trols and outputs are very different: it is not possible 
to concatenate pieces of  output trajectories and obtain 
a valid output, as it is the case with inputs, and this 
fact is essential in the proof  in [21]. As a matter of  
fact, a proof  along the lines in [21 ] would provide an 

infinitely differentiable function V ofx.  We do not yet 
know if this can always be insured for OSS systems. 

R e m a r k  5. As discussed in the introduction, the OSS 
property can be thought of  as a definition of  detectabil- 
ity. Indeed, variations of  this notion can be found at 
various places in the literature. The definition involv- 
ing comparison functions implies in particular that the 
system is "zero detectable" in the sense of  [15]. This 
means that under zero inputs, states whose outputs are 
identically zero should form an asymptotically stable 
subsystem (that is, y - 0 implies x -~ 0, plus a local 
stability condition). That definition relates to the cur- 
rent definition (which says in addition that y --~ 0 
implies x --* 0 and that y small implies x small) in 
exactly the same way that global asymptotic stabil- 
ity of  an unperturbed system 2 = f (x ,  0) relates to 
the ISS property. The definition which involves Lya- 
punov functions had also appeared in restricted forms. 
As an example, in [10, Eq. 15], one finds detectabil- 
ity defined by the requirement that there should ex- 
ist a (differentiable) storage function V satisfying our 
Eqs. (3) and (4), but with the special choice a ( y )  := 
]y]2. A variation of  this is to weaken (4) to require 
merely 

x ¢ 0 ~ d v ( x ( t , ~ ) )  < a ( [y ( t ,¢ ) l )  

as done, for instance, in the definition of  detectability 
given in [ 11 ]. The next sections discuss other literature 
citations for related concepts. 

R e m a r k  6. There is another type of  relationship be- 
tween the notions of  OSS and ISS, different from 
duality. Consider a system in cascade form 

Xl = f(Xl,X2), -~2 = g(X2), 

where n = nl q- n2 and the variables xi have sizes nl 
and n2, respectively. Assume that the output is y =x2. 
I f  we interpret the n2-dimensional subsystem ~ = g(z) 
as a generator of  input signals ("exosystem")  for the 
n 1-dimensional system 2 = f (x ,  u), then the OSS prop- 
erty amounts to a version of  the input to state stability 
property for this first subsystem, but only with respect 
to the signals so generated. This is weaker than ask- 
ing that the first subsystem be ISS. We illustrate this 
gap with an example which also serves to connect the 
current topic to a standard example found in the the- 
ory of  t ime-varying systems. We start by considering 
the following two-dimensional parameterized family 
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of linear time-invariant systems: 

=A(2)x,  x E R  2, 2 E R ,  (7) 

where for each 2 E R, 

- 1  + a c o s 2 2  1 - a s i n 2 c o s 2 " ~  
A(2) = - 1 - a s i n 2 c o s 2  - l + a s i n 2 2  J 

and a =  3 (the same argument works for any a E (1,2)). 
It is not hard to see that there is a constant c > 0 so 
that (using induced matrix norm) 

IleA()')tll ~< ce -t/4 

holds for any 2 and any t >i 0. Consider now the 
three-dimensional system 

.~ = A(x3  )X, 3C3 = O, 

where y = x 3 is taken to be the (scalar) output. Con- 
sider any initial state ~ = (41,42, 43) and the ensuing 
trajectory x(.). From the above bound, we have that 

Ix( t )[  ~< c e - t / 4  1(4,,~2)1 + l~3l 

from which we conclude that the three-dimensional 
composite system is OSS (using fl(s, t) = ce-t/4s and 
a(r) = r). On the other hand, the system 2 = A(u)x  
is not ISS, since when applying the periodic input 
u(t)  = t modulo 2n the solution that results is 

x ( t )  = e t/2 ( COS t 
\ - s i n t )  

and therefore a bounded input produces an unbounded 
trajectory. 

3. Input/output to state stability 

We now turn to the study of the general case of 
systems having both inputs and outputs: 

= f ( x ,  u), y = h(x) .  (8) 

We assume standard hypotheses (see e.g. [18]): 
f ( x ,  u) is continuous jointly on (x, u ) E R n x R m and lo- 
cally Lipschitz on x uniformly on bounded u, and still 
take h : X ~ R p continuously differentiable, h(0) = 
0. In this context, it is natural to study when it is true 
that "small inputs and small outputs mean (eventu- 
ally) small state trajectories". This property, which 
blends the definitions of OSS and ISS, may be for- 
mulated precisely as follows. 

Definition7. The system (8) is input/output-to- 
state stable (lOSS) if there exist some fl E 3ff~ and 

1, "~2 E ~ such that 

Ix(t ,~,u)l  

~< max{/~(l¢l, t), ~)1 (llult0,'111), W2 (llY¢,ult0,'l II) } 
(9) 

for every initial state ~ and control u and all 
t E [0, tmax), tmax = tmax(~, U). Here x(t,  4,u) denotes 
the trajectory that results from initial state 4 and input 
u, and y¢,u(t) = y(t ,  4, u) = h(x(t, ~, u)). 

Remark 8. The lOSS property has appeared before in 
the literature. It represents a natural combination of the 
notions of"strong" observability (cf. [16]) and ISS. It 
was called "detectability" in [17] (where it is phrased 
in input/output, as opposed to state space, terms) and 
it was called "strong unboundedness observability" 
in [5] (more precisely, this last notion allows an ad- 
ditive nonnegative constant on the right-hand side of 
the estimate). 

We can also define the obvious generalization of 
Definition 2: 

Definition 9. An IOSS-Lyapunov function for sys- 
tem (8) is any function V so that Property (3) in 
Definition 2 holds, V is absolutely continuous along 
trajectories, for all initial states and controls, and there 
exist W~-functions ~, al, and a2 such that for every 
trajectory x(t,  4, u), and almost all t E [0, tmax), 

d 
dt V(x(t, 4, u)) 

~< - ~([x(t, 4,u)l) + al(lU(t)[) + a2(ly( t ,~,u)l) .  

(10) 

It is again interesting to consider the variation sug- 
gested by the characterization of the ISS property 
in [14], as discussed in relation to Eq. (5), namely, to 
replace (10) by an estimate 

d V(x(t, 4, u)) 
dt 

~< - V(x(t, 4, u)) + al(lU(t)[) + a2(ly(t, 4, u)[). 

(11) 

If V satisfies (3), is absolutely continuous along tra- 
jectories, and for all trajectories satisfies (11) for 
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almost all t E [0, tmaX), .we call it an exponential-decay while if instead V@(t)) d e2m(l4t)l)+ 
IOSS-Lvapunov function. 24v(t)l)>, then 

Lemma 10. A system admits an IOSS-Lyapunov 

function if and only if it admits an exponential-decal 
IO%+Lvapunov function. 

Proof. Obviously, the: existence of an exponential- 
decay IOSS-Lyapunov function implies the existence 
of an IOSS-Lyapunov function. The converse is 
proved using ideas from [ 141, as follows. Assume that 
system (8) admits an IOSS-Lyapunov function with 
ai (i = 1,2) as in (3) and with 1,01,02 as in (10). 
Replacing a by CI o XT’, we have 

for almost all t E [0, t,,,(& u)). According to 
Lemma 4 in [ 141, there exists some function p E XX 
which can be extended as a C’ function to a neigh- 
borhood of [O,oo) such that p’(r)icr(r) > p(r) for 
all r > 0. Consider the function W(l) := p( V(t)). 
Observe that W is again proper and positive definite. 
Along any trajectory x(t) := x(t, 5,~) (with y(t) :== 

y (t, 5, u)), at any point where ( 10) holds, one has that 

(d/dt)W(x(t)) = p’( V(x(t)))(d/dt)V(x(t)) is upper 
bounded by 

a(V(x(t))) -P’( ww))~- + P’( V@(t))) 

X ( 4 V(x(t>)) 
2 + w(lu(t)l) + az(lv(t)l) 

) 

which in turn is bounded by 

-P( V(x(t>> + d(V(x(t))) 

x - ( ay))) m(lu(t>l> + oz(lv(t)l> 
> 

. (13) 

Observe that when V(x(t)) > rx-‘(201(Iu(t)l)+ 
2oz(lY(t)l)) it holds that 

x - ( 4V(x(t))) 
2 + a(lu(t)l) + az(lY(t)O 

1 
d 0, 

(14) 

P’(V(x(t)))(al(lu(t)l) + oz(lY(t)l)) 

G ~.l(lu(t)l) + ~2(lv(t)l) (15) 

for some XX-functions 81 and 62 (using here the fact 
that p’(s) is a continuous function). Combining (14) 
and (15), one concludes from the estimate (13) on 

(d/dt)W(x(t)) that 

$(x(t)) G - W@(t)) + &(lu(t>l> + ~2(lY(t)l) 

for almost all t E [0, tmax). Y 

Lemma 11. IJ’ the system (8) udmits an IOSS- 

Lyapunov,function, then it is IOSS. 

We prove this below. 

Remark 12. In feedback control, the concept of pas- 
sivity has been widely used. System (8) with m = p 
is said to be strictly passive if there exist a continuous 
nonnegative function V: R” + R>o, called a storage 
function, and a positive-definite function X, called 
the dissipation rate, such that for any [ E R” and any 
input U, 

J’ 
I 

V(x(t,&u)) - V(S) d - 4x(s, t, u)l) ds 
0 

J’ 
f + Y(s>~, ~14s) ds (16) 

0 

for all t 3 0 (cf. [7, Definition D.21). Note here that 
if, as in [7, Lemma D.31, V is differentiable, positive 
definite, and proper, and if tl in (16) is also proper, 
then V is an IOSS-Lyapunov function because (16) 
implies 

d - x(lx(t,5,u)l)+ Y(fr,u)u(t) 

G - X(IX(t,E,u)l) + [Y(t>w12 + w2 

for all t 3 0, all 5 E R” and all inputs U. By Lemma 11, 
this implies that the system is IOSS. (If V(x(t)) does 
not have a derivative along trajectories, one obtains 
an integral equation version of (10); it is possible to 
show that the existence of a V with such a property 
also implies that the system is IOSS.) 0 

Proof of Lemma 11. Let %(I, a2 be as in (3), and let 
r~, CT! and (r2 be as in (10). Pick any initial state 4 and 
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any input u. Denote the trajectory x ( t , ( ,u )  by x(t), 
and the output y(t ,~,u)  by y(t) .  We then have, for 
almost all t E [0, tmax), 

d v ( x ( t ) )  <<, - ~(Ix(t)l) + O'l([u(t)l) + a2(ly(t)l). 

This implies that 

~ V(x( t ) ' )  <<. - ~ ( Ix ( t ) l ) /2  (17) 

whenever ½~(Ix(t)l) i> ~rl(lu(t)l) + ~r2(ly(t)l). That 
is, (17) holds whenever 

Ix(t)l/> ~-1 (2al(lU(t)l) + 2a2(ly(t)l)). 

Fix Te(0 ,  tmax), and let v* = (~2 o ~-1)(2~1(11u11) 
+2~2(llylt0, rill )). It then follows that 

V(x(t))  >1 v* ~ d v ( x ( t ) )  <~ - ~(V(x(t))),  

a.e. t E [0, T], 

where 02(r) = ½~ o ~2 1. We now cite an easy com- 
parison principle (cf. [22, Lemma 2.2]): 

Lemma 13. For each continuous and positive deft- 
nite function ~ : [0,co) ~ R~>0, there exists a ~ff~q~- 
function fl~ with the following property: for any ab- 
solutely continuous function w : [0, T] ~ R~o and 
any number v* ~ 0, i f  for all t E [0, T] it holds that 

w(t)  >>. v* ~ ~ ( t )  <. - ~(w(t))  a.e, 

then w(T)  <. max{fl(w(0), T),v*}. 

We now apply this lemma to obtain a ~¢~Z,e-function 
fl~ as there. Thus, along any trajectory, by the conclu- 
sion of the lemma for w(t)  = V(x(t)),  

V(x(t))  <~ max{fl~(V(x(O)), t), v*} ,Vt E [0, T], 

and in particular, 

V ( x ( T ) )  

~< max{fl~(V(x(O)), T), 

(~2 o ~-1)(2~(llull) + 2~2(llyho, Tll[))}. 

Hence, one gets, by replacing T by t, 

Ix(t)[ 

~< max{~-l(fl~(ct2([~l), t)),  

(@11 0 @2 0 @--1)(2o'1(11u11) + 2o2(llylto,,] l[ )) } 

for all t E [0, tm~x). From this we obtain (9), with 

fl(s, r) = ~Zll (fl~(~z2(s), r)) 

and 

~i(S)  = (~11 O ~ 2 0  ~-- l ) (40"i (S))  

for/---- 1,2. [] 

Note that for systems with no controls (that is, when 
the right-hand side f ( x , u )  in (8) is independent of 
u), lOSS is the same as OSS and an IOSS-Lyapunov 
function is the same as an OSS-Lyapunov function. So 
it is natural to make the following conjecture, which 
generalizes Theorem 3. 

C o n j e c t u r e .  The following properties are equivalent 
for any system (8): 

(i) The system is lOSS. 
(ii) The system admits an IOSS-Lyapunov 

function. 
(iii) The system admits an exponential-decay 

IOSS-L yapunov function. 

Lemmas 11 and 10 established that 1 ~ 2 ¢* 3. 
What remains to be proved is the implication 1 ~ 2. 

3.1. Norm-observers 

We discuss 2 here relationships between the lOSS 
property and the possibility of estimating the norms 
of states "on-line". It is often the case (cf. [14]) that 
obtaining such estimates suffices for control applica- 
tions. This is also strongly related to Assumption UEC 
(73) in [4]. 

D e f i n i t i o n  1 4 .  A (one-sided) state-norm estimator for 
system (8) is a system 

---- g(z,u,y) (18) 

whose inputs are pairs ( u (t), y (t)) consisting of inputs 
and outputs of (8), such that the following properties 
hold: 
- The system (18) is ISS (with inputs (u,y)).  
- There are a function p of class 3ff and a function fl 

of class ~ZP so that, for each initial states ~ and 
for (8) and (18), respectively, and each input u(.), 

Ix( t ,~,u)l  <<. ~ ( l ~ l + l ( l , t ) +  p([z ( t , ( ,u ,y¢ ,u) l )  (19) 

for all t E [0, tm~). 

2 The material in this section was in large part suggested to the 
authors by Laurent Praly. 
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The above definition is interpreted as follows: the z 
equation provides an upper bound p(z(t)) on the true 
state x( t ) ,  with an error which is initially small if  
and ff are small, and which in any case decays to zero 
as t ~ ec. In addition, this "norm detector" equation 
is stable in the ISS sense. 

Proposition 15. Consider the following properties 
for any system (8): 

The system admits an exponential-decay 10SS- 
L yapunov function. 
There is a norm-estimator for the system. 

- The system is lOSS. 
Then each statement implies the following one, and 
in the case of systems with no inputs, they are all 
equivalent. 

Proof.  Assume that V is an exponential-decay IOSS- 
Lyapunov function, so (11 ) holds along all trajecto- 
ries. We assume, without loss of  generality, that the 
function c~2 in Eq. (3) satisfies r ~< ~2(r) for all r ~> 0. 
Consider the system (18) given by the equations 

= - z  + 6,( lul)  + a2( lyl ) .  (20) 

This is an ISS system, since it can be seen as an 
asymptotically stable linear system driven by the in- 
put 61(lul) + ~2(lyl). Pick any initial states 3, ff o f  (8) 
and (18), respectively, and any input u(.). Consider 
the ensuing trajectory (x (t), z ( t ) )  of  the compo site sys- 
tem. Property (11 ) implies that 

d ( v ( x ( t ) ) - z ( t ) )  <~ - ( V ( x ( t ) ) - z ( t ) )  

for almost all t E [0, tmax(X(0), U)). Thus, 

V(x(t))  <~ z(t) + e - t ( V( ~ )  - if) 

~< ]z(t)l + 2e-'~x2(l~] + I~l) 

(using r <<. c~2(r)). This can be written as (19) with 
p := ~11(2(.))  and fl(s,t)  := ~ l l (4e - /~2( s ) ) .  As- 
sume now that there is some norm-estimator (18). 
Choose any initial state ~ for (8), any input u, and the 
special initial state ff = 0 for the norm-estimator. Since 
the latter is an ISS system, there holds an estimate 

Iz(t,O,u, y¢,u)l 
~< max {'7~ (llult0,,l II) 5,72 (llyeMt0,,j II) } (21) 

for all t E [0, tn~ax), for some c l a s s - ~  functions 7i (the 
"fl"  term vanishes because ~ -- 0). On the other hand, 

the estimation equation (19) becomes 

Ix(t,~,u)l ~ ~(f~l ,t) + p(lz(t,O,u,y~,.)l). (22) 

The conjunction of  Eqs. (21 ) and (22) implies that the 
original system is IOSS. 

Finally, if  there are no controls, we know by 
Theorem 3 that the first and the last properties are 
equivalent. [] 

Of  course, if  the conjecture stated earlier is true, 
then the last part o f  this result also holds in general 
(for systems with controls). 

4. Remarks on stabilization by measurement 
feedback 

The IOSS property plays a role when attempting 
to generalize the linear systems theorem "stabiliz- 
able plus detectable equals stabilizable by dynamic 
feedback" to a general nonlinear context. We first 
make some informal remarks concerning that issue, 
which needs considerable fiarther research. Then, we 
develop in some more detail a very special case (one- 
dimensional systems), with two purposes: to illustrate 
in a very concrete manner the general fact that the 
IOSS property is relevant to the issue of  stabilizing 
a system using only information provided by partial 
measurements, and to introduce a counterexample to 
be used later. In addition, the construction provides 
an interesting connection between the IOSS notion 
and some ideas which originate in the literature on 
adaptive control. 

Remark 16 (In general, lOSS and state stabiliz- 
ability imply dynamic output stabilizability). It is a 
general fact that for any IOSS system (8), at least un- 
der reasonable structural assumptions, the existence of  
a state-feedback u = k(x) that drives the internal states 
to the origin implies the existence of  a dynamic con- 
troller which achieves the same goal using output in- 
formation only. More precisely, for any system defined 
by analytic f and h, "state stabilizability plus lOSS" 
indeed implies the possibility, at least at an abstract 
existence level, o f  driving the internal state to zero 
based only on information provided by input/output 
measurements; see [22]. The proof  uses in an essential 
manner the results on existence of  "universal inputs" 
for analytic systems developed in the early 1980s. At 
this time, however, the existence of  such a dynamic 
stabilizer is established in a very nonconstructive 
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,[ ~=i(=,,,) V Recall that, in general, a function h : R n --~ R is 
proper (or "radially unbounded") if {x s.t. [h(x)[ ~< A } 
is compact for each A > 0. The function h will be 
said here to be kernel-free i fh(x)  # 0 for each x # 0. 

Lemma 18. A system with no drift is an l O S S  sys- 
tem i f  and only i f  the map h is proper and kernel-free. 

Fig. 1. System, controller cg, signals. 

fashion, as an abstract "hybrid" system. This is quite 
analogous to the general theory developed in [15]. 

Remark 17 (Dynamic  stabilization in ilo sense im- 
plies l O S S ) .  Consider a system diagram as in Fig 1. 
In this diagram, Ud and Yd denote external "distur- 
bance" signals (control and measurement noises, 
respectively); u and y are, respectively, the input and 
output of  the system to be controlled, and ue and Ye 
are the signals that the controller ~ works with. A 
controller is an initialized system, which is said to 
stabilize the system (8) in the i/o sense if for each 
locally essentially bounded disturbances Ud, Yd and 
each initial state of  (8), solutions of  the closed-loop 
system exist for all t >~ 0 and are unique, and the 
closed-loop system is an ISS system with respect to 
the external "noises" Ud, Yd- Further, we assume that 
if ye - 0 then the controller produces Ue - 0. (We 
omit a precise technical definition because of space 
limitations, and because the remark that we make 
is basically tautological.) The existence of such a 
controller implies that the system is IOSS. Indeed, 
for any initial state 4 of  the system (8), and any 
control u applied to it, we may consider the distur- 
bances Ud := u and Yd := - Y¢,u. This results in "error 
signals" ue------y~ = 0  for the controller, and the i/o 
stability property becomes simply the lOSS estimate. 

In the rest of  this section, we develop a very special 
case of  output stabilization, as an example where the 
constructions can be made explicit. 

4.1. Sys tems  without drift 

As a preliminary step, we restrict attention to sys- 
tems (8) having the property that f ( x ,  0) = 0 for all 
states x. Such systems are called systems without drift 
(because in the absence of extemal inputs they do 
not "move"). There is a trivial characterization of the 
lOSS property for such systems. 

Proof. Pick any state ~ and consider the trajectory 
corresponding to the control u --- 0. Because the sys- 
tem has no drift, x(t ,  4, 0) - 4. Thus, the estimate (9) 
gives in this case, 

141 

for all tE  [0, tm~x) : [0, co). Letting t --* cx~ we con- 
clude that 

141 72(Ih( )1) v4 n'. (23) 

Conversely, if  there is some 72 of class o f  such 
that (23) holds then the system is IOSS (any fl and 
71 can be used). To conclude the proof, observe that 
a function h : R n ----+ R which is continuous and sat- 
isfies h(0) = 0 (as assumed for measurement maps) 
is proper and kernel-free if and only if there is some 
7 E o f  such that Ill ~< ~([h(4)l) for all 4 (sufficiency 
is obvious, and necessity can be proved by taking 
~(r) := infl£1~>r Ih(~)l, and 7 := Ctl 1 where ~1 is any 
Off function with the property that ~l(S) ~< ~(s) for 
all s ~> 0). [] 

4.1.1. A one-dimensional example 
Next, we specialize even further, to the case of  a 

one-dimensional system 

= u, y = h(x) .  (24) 

We wish to show by means of an explicit construc- 
tion that there is a dynamic feedback controller which 
drives the state to zero while only using information 
about the state available via the output map h. We as- 
sume that the system is IOSS, which means equiva- 
lently that the map h(x) := Ih(x)l is proper and posi- 
tive definite. (In general, it is clear from the definitions 
that any system (8) is lOSS if and only if the sys- 
tem with same dynamics but new output h is lOSS.) 
A controller that uses only the information provided 
by h(x) is in particular one that uses the information 
h(x). Thus, we assume from now on without loss of  
generality that h : R ~ R>~0 and this map is proper 
and positive definite. As a matter of  fact, we will only 
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assume these two somewhat weaker properties of  the 
function h : R --~ R~>0: 

(a) h is locally Lipschitz. 
(b) For each s > 0 there is some fi > 0 such that 

h(r) < 6 implies r < e. 
Note that the last property says that "h(r)  ---+ 0 implies 
r --, 0". We still assume that h(0) = 0. 

Let Q : R ~ R be any function which is twice con- 
tinuously differentiable and so that the following two 
properties hold: 

lim sup Q(z)  = +cx~ (25) 

and 

lim inf Q(z)  = - o c .  (26) 
Z ~ -~- CX3 

(For example, Q(z)  = :r sin z.) We apply the feedback 

u = Q ' ( z ) h ( x )  

to the system (24), where z is the solution o f  
= h(x). This is motivated by the entirely analogous 

adaptive-control construction in [12]. Observe that 
the x-equation under closed-loop has right-hand side 
which is (locally) Lipschitz on x , z  because Q is of  
class C 2. 

Proposition 19. Let  (4, ~) E R 2 and consider the 
max imal  solution (x(. ), z(. ) ) o f  the following initial 
value problem: 

= Q ' ( z ) h ( x ) ,  ~ = hIx ) ,  x (O)  = ~, z (O)  = ~. 

Then, the solution exists f o r  all t >~ O, and there exists 
some ~* E R such that 

lim ( x ( t ) , z ( t ) )  ~ (0,~*).  
I ~ C  

Proof.  Since d(x - Q(z) ) /d t  = Q ' ( z )h (x )  - Q ' ( z )h (x )  
= 0, for each t in the maximal interval of  existence 
[0, tma×), we have that 

Q(z( t ) )  = Q(~) - ~ + x( t ) .  (27) 

If  ~ = 0 there is nothing to prove, since in that 
case ( x , z ) - ( O , ~ ) .  So we assume ¢ ¢ 0 .  Note that 
s ignx( t )  = sign~ for all t E [ 0 ,  tmax), because the 
points of  the form (0,a)  are equilibria. I f  ~ > 0 then 
x ( t )  >>-0 for all t, so (27) implies that Q(z( t ) )  
Q(~) - ~  and hence 

Q(z( t ) )  is bounded below. (28) 

Observe that i = h(x) >1 O, so z is nondecreasing. 
Thus, Eqs. (28) and (26) imply that z is bounded. 

I f  instead ~ < 0 then x (t) ~< 0 for all t, so (27) implies 
that Q(z( t ) )  <~ Q(~) - ~ and therefore 

Q(z( t ) )  is bounded above. (29) 

Eqs. (29) and (25) imply that again z is bounded. In 
either case, we know then that Q(z( t ) )  is bounded, 
and applying (27) yet again we conclude that x is 
also bounded. Therefore, the trajectory (x, z) remains 
bounded, which implies tmax = oc. In addition, since 
z is nondecreasing, there is some ~* so that z( t )  ~ ~* 
as t --, ~ .  

Consider now the function y (t) = h(x (t)).  We have 
that 

/0' z( t )  - ~, = y ( s ) d s  

and so f o Y ( S ) d s  = ~* - ~ < o c .  On the other 
hand, y is globally Lipschitz on [0, oc). Indeed, if  cl 
is a Lipschitz constant for h on the bounded set 
{x ( t ) , t  >~ 0}, then for each tl ~ t2 we have that 

l y ( t z )  - y(t,)l 
<~ c l l x ( t 2 )  - x ( h  )1 [,2 
<~ cl h ( x ( s ) )  IQ ' ( z ( s ) ) l  a s  <<. c le2( t2  - t l )  

' I I  

for some c2, since x and z are bounded and h, Q~ 
are continuous. Thus, y is in L 1 and globally 
Lipschitz, which implies ("Barbalat 's Lemma", see 
e.g. [6, p.192]) that y ( t )  ~ 0 as t --, oc. Now as- 
sumption (b) on the function h implies that x ( t )  --~ O, 
as needed. [] 

5. Remarks on observers and output injection 

The previous sections discussed the facts that the 
IOSS property is connected with the possibility o f  
stabilization by output feedback, and also to the ex- 
istence o f  (one-sided) estimators of  the norm of  the 
state. These are essentially properties connected with 
"zero-detectability", meaning being able to asymptoti- 
cally distinguish any given state ~from the zero state. 
For linear systems, this 0-detectability property is 
equivalent to detectability, being able to asymptoti- 
cally distinguish every pair of  states. But for general, 
nonlinear, systems, these properties are very differ- 
ent. Estimates of  arbitrary states are not necessarily 
required if  the objective is merely to drive the state to 
the special state "zero"; see [15] for more discussion 
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"d(t) 

1 
i observer 

/ 

yd(t) 

Fig. 2. Observer with noise ud and Yd. 

of this matter. Nonetheless, since there is a substan- 
tial literature dealing with the subject of observers 
for nonlinear systems, it seems worthwhile to explore 
some of the relations between the IOSS (or OSS) 
property and observers. It turns out that the appro- 
priate notion to consider is that of  "incremental" or 
"Lipschitz" lOSS. In this section, we make several 
elementary remarks concerning these questions. 

One possible definition of "observer" for (8) is 
that of  a dynamical system which processes inputs 
and outputs of  (8) and produces an estimate ~(t) of  
the state x(t).  The estimation condition would be that 
x( t )  - "~(t) ~ 0 as t ~ ~ and that this difference 
(the estimation error) should be small if it starts small 
(see [18, Ch. 6], and also the very early work [26]). 

However, it is far more natural in the context of  
ISS-type notions to require that the estimation error 
x ( t ) -  ~(t) be small even if the measurements of  
inputs and outputs taken by the observer are "noisy". 
Writing Ud and Yd for the input and output measure- 
ment noises, we have the situation in Fig. 2, which 
we next formalize in the special case of  full state ob- 
servers. 

Definition 20. A (full-order state) observer for the 
system (8) is a system defined by equations ~ =  
g(z, v, w) evolving in the same space R n as (8), driven 
by inputs v and w of dimensions equal to the dimen- 
sion of the input and output value spaces of  (8), re- 
spectively, and so that the following properties hold. 
There exist functions fl E o~ffZa and 71,72 E .3/{" such 
that, for each initial states 4 and ( of  the composite 
system consisting of (8) and 

= g(z, U -~- Ud, y + Yd) (30) 

and each (measurable locally essentially bounded) in- 
puts u, Ud, Yd, if [0, tmax) is the maximal interval of ex- 
istence ofx( t )=x( t ,  4, u) then the solution z(t) of(30) 
with z(0) = (, y ( t )  = h(x(t)), and the same U, Ud, Yd 
is also defined on [0, tmax) and there holds on [0, tmax) 

the estimate 

Ix( t )  - z( t) l  

~< m a x { f l ( [ ¢  - ( [ ,  t),7~(lludlto, ol[),72(llYdlto, ol[)}. 
(31) 

Note that how this definition insures that the error 
x( t )  - z ( t )  converges to zero when there is no noise in 
the measurements taken by the observer, and in gen- 
eral degrades gracefully as a function of the magni- 
tude of such disturbances. 

Assume now that an observer is given. Apply the 
definition for the particular case 4 = ( (for any fixed 
state 4) and Ud = Yd = 0. The observer property im- 
plies that x( t )  = z(t) for all t E [0, tmax), from which 
it follows that f ( x ( t ) , u ( t ) ) =  9(x(t) ,u( t) ,h(x(t)))  
for all such t. In particular, this holds for all con- 
stant controls, from which we conclude that f (x ,  u) = 
O(x, u, h(x)) for all state and input values x, u. We con- 
elude from here the following "folk" fact: 

Lemma 21. The equations of  any observer (30) must 
have the ("output injection") form 

~= f ( z , u + u d ) + L ( z , u + u d ,  y - - h ( z ) +  ya), (32) 

where the vector fieM L satisfies that L(a, b, O) = 0 
for all a, b. 

Definition 22. The system (8) is incrementally input/ 
output-to-state stable (i-IOSS) if there exists some 
fl E o¢('~ and 71,72 C ~ such that, for every two ini- 
tial states 41 and 42, and any two controls ul and u2, 

Ix(t, 41, Ul) -- x( t ,  42, U2)I 

~< max{3(141 - ~21,t), 

7a (ll(ul - u2)lt0,0 II), 72 (ll(ye,,u, - y~2,u2)l[0,tlll) } 

(33) 

for all t in the common domain of definition. 

Assume from now on that the original system 
satisfies f (0 ,  0) = 0. Thus x - 0 is a trajectory of 
the system (8) for the input u - 0 and having output 
y = 0. Comparing any solution with this zero solu- 
tion, it follows that if  a system is i-IOSS then it is 
also IOSS. 

Proposition 23. I f  an observer for (8) exists, the sys- 
tem is i-lOSS. 
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Proof .  Consider  any ~ and ui as in Defini t ion 22. Let 
X i = X ( ' , ~ i ,  bli). Since L ( . , . , 0 )  = 0 in the form (32)  
for the observer,  we ma y  view x2 as the state o f  the 
observer  when  starting at z (0)  = ¢2, x (0)  = ¢l, the 
input  to the system is u = ul ,  and the dis turbances  

are Ud : =  u2--u l  and Yd : =  h ( x 2 ) - h ( x l  ). Then the de- 
sired inequal i ty  (33)  is jus t  the observer  estimate (31 ). 

[] 

R e m a r k  24. In general,, the IOSS property does not  
guarantee the existence of  an observer. To see this, it 
suffices to give an example  o f  a system that is lOSS 
but  not  i - lOSS.  Consider  the one-d imens iona l  system 
£ = u, y = x 2.  This is an lOSS system by  L e m m a  18 

(and we constructed a dynamic  system which drives 
the state to zero us ing  only output  measurements  in 
Proposi t ion 19). But  it is not  i-IOSS, as shown by 

taking ul = u2 = 0 and ~1 = 1, ¢2 = - 1 ;  otherwise, 
the estimate (33)  would give 

2 <~ fl(2, t ) + 7 ~ ( O ) + ~ , 2 ( O  ) -+ O, 

a contradiction.  

We refer the reader to [13, 9] for more  on relations 
be tween  observers (with a weaker  definit ion not  in- 
volv ing  Ud and Yd) and the ISS property, as well  as 
the closely related topic of  parameterizat ions of  sta- 
bilizers. F rom the output- in ject ion form (32)  and the 

special ca sex  -= 0, u -= 0, and y d = y  we also conclude 
that the system 2 = f ( x , u )  + L ( x , u , - h ( x ) )  is ISS, 
which general izes the classical not ion  o f  output  injec- 
t ion for l inear  systems. For the case u = 0 (asymp-  
totic stabili ty),  such issues are discussed in [2], which 
also discusses other more  restrictive not ions  o f  output 
inject ion and necessary condi t ions  for detectabil i ty in 
this sense. 

R e m a r k  25, The concept  defined in Defini t ion 20 is 
not the most  general  vers ion o f  observers. More nat- 
ural, and the point  o f  view taken in [17], is s imply to 
ask for the observer  to be an i /o mapping  rather than 

a system, requir ing that the ass ignment  (ud, Yd) 
x -- ~ should be " input  to output  stable" (un i formly  
on ( u , y ) )  in the sense used in the paper [16]. This 
means,  essentially,  that small  dis turbances Ud and Yd 
do not affect too much  the quali ty of  the estimate. Full-  
order observers as in 20 are observers for which  the 
estimate ~ is the state of  the observer  itself, instead of  
a funct ion of  the state of  the observer.  In the context  o f  
arbitrary nonl inear  systems, such estimators are prob- 
ably not very natural,  but  full-state observers are those 

most  often considered in the literature ("Luenberger  
observers" or "determinist ic  Ka lman  filters"). 
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