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On the Relation Between Stable Matrix
Fraction Factorizations and Regulable
Realizations of Linear Systems
Over Rings

PRAMOD P. KHARGONEKAR anp EDUARDO D. SONTAG

Abstract — Various types of transfer matrix factorizations are of interest
when designing regulators for generalized types of linear systems (delay
differential. 2-D, and families of systems). This paper studies the existence
of stable and of stable proper factorizations. in the context of the theory of
systems over rings. Factorability is related to stabilizability and detectabil-
ity properties of realizations of the transfer matrix.

I. INTRODUCTION

HIS paper is motivated by recent research on the
Tregulation (““servo problem™) of certain classes of con-
trol systems which are “finite dimensional” and ““linear” in
a generalized sense. In contrast to the more standard linear
finite dimensional case, linearity enters here in a more
abstract sense, via the action of rings of operators or in
terms of constraints on the quantities involved. For exam-
ple. take a controlled delay equation like

(dx/di)(r)=x(e)+3x(r—1)—u(t—=2) (1.1)

whose natural state space is an infinite dimensional func-
tion space. This equation can be seen as a “finite dimen-
sional” object if one introduces a ring of delay operators
R[#]. where (8x)(7) = x(¢ —1), and then writes

(dx/di)(1)=(1+30)x(0)+(—8)u(r).  (1.2)

This point of view suggests the use of methods from the
usual theory in which coefficients of x(z) and u(t) are
constant, but generalized to polynomial coefficients. In
another example, when dealing with a discrete time system

x(t+1)=Fx{(t)+ Gu(r), (1.3)

one may want to restrict all control u(¢) and state values
x(1), as well as the entries of F and G 10 be integers: it is
natural to model such restricted linear systems as systems
over the ring of integers. In a variation of this last example,
all quantities may be evaluated only modulo a fixed num-
ber r; for instance, r =2/, [= word length of a given
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computer. In this case one uses the ring of integers mod r
to study a class of systems which are, in a sense. nonlinear.
Yet another example of these generalized classes of systems
is the situation in which one is interested in the study of
parameterized classes of linear systems: this may be ap-
proached through the study of systems whose coefficients
are functions of the parameters. with these functions hav-
ing a specific structure (polynomial. analytic); the solution
to a synthesis problem over the ring will provide a para-
meterized family of solutions to the corresponding problem
for each system in the family. The literature on “systems
over rings” is by now rather wide. and the reader is
referred to the surveys Kamen [15] and Sontag [26]. [28].
and to the various papers on the subject in Byrnes and
Martin [4]. [5] for further motivations and examples.

Some of the generalized kinds of linear systems have
been traditionally treated by other methods. This is espe-
cially so of various types of distributed systems, which can
be studied via functional-analytic techniques or through
the use of “frequency domain” (transfer matrix) design
tools (see, e.g.. Callier and Desoer [6]). We are interested
here in the comparison to these latter methods, which
involve an input/output approach in terms of various
factorizations of transfer matrices (see, for instance, Youla
et al [31] and Desoer et al. [7]). The systems over rings
approach is based on generalizations of state space tech-
niques and in relation to the corresponding I /O maps. The
main objective of this paper is to clarify the relationships
between, on the one hand, the type of factorability assump-
tions made in the frequency domain approach, and on the
other hand, properties of realizations and 1 /0 maps over
rings. It is not our purpose here to study problems of
optimality, nor to characterize the class of all regulators
achieving stability for a given plant; we concentrate solely
on existence questions. The characterizations to be given in
terms of stabilizability and detectability of realizations
permit an intuitive understanding of many of the factoriza-
tions which employ rings of stable transfer functions. These
factorizations can, in turn, be used in the study of other
control-theoretic problems (output regulation, tracking, and
disturbance rejection). Furthermore, some of the criteria
given are useful in checking whether or not a given transfer
matrix admits a factorization of the type needed, while
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other results exhibit the relations between existence of
factorizations of different kinds.

It is important to note two major differences between
our approach here and that in recent transfer matrix design
methods. The first is that factorization and realization
questions are considered here always in the context of a
particular ring. For example, assume that one studies delay
differential systems modeled over a ring R(#,,- - -, 6 ], where
0, is an a,-second delay, for some rationally independent
numbers a,. Then all realizations, regulators, etc., are auto-
matically systems over the same ring, ie., delay systems
whose delays are all integer combinations of the same basic
length a,’s. In order to study more general realizations or
regulators, one changes the base ring (for example, enlarges
it to include more general operators from a suitable distri-
bution ring as in Kamen [16]). Another major difference
here 1s that causality is explicitly considered via a special
role for a delay (in discrete-time) or differentiation (in
continuous-time) operator z in the transfer matrices. This
allows the realization of systems via difference or differen-
tial operators, depending on the interpretation of z.

II.  SYSTEMS AND TRANSFER MATRICES

The results in this paper cannot be established without
employing certain abstract concepts and results from com-
mutative algebra. However, all of the results can be trans-
lated into “concrete’” matrix theoretic terms for most base
rings of system-theoretic interest, like a polynomial ring
K|[8,,---.8,] of polynomials in r variables with real (K = R)
or complex (K =C) coefficients, or the ring of integers.
Developing the theory only for such rings would be unnat-
ural, since proofs would still be basically the same, but
would have to be complemented with repeated use of the
equivalences, e.g., “projective = free” (see below), which
hold over these special rings. Furthermore, some rings for
which the full “abstract” statements are needed are them-
selves of interest in system theory, e.g., certain residue
rings. We shall therefore proceed in the following way. If
the translation of an abstract concept does not follow—for
the above-mentioned rings— from previously given transla-
tions, it will be given enclosed in slashes (/- -+ /) after the
concept is introduced. Further, at various points the even
more particular case of a one-variable polynomial ring
R[€] will be used as an illustration, and in the last section
an example is given which is also based on this ring,

In all that follows, R is an arbitrary, but fixed commuta-
tive ring (with identity). /Let R = integers or R = real or
complex r-variable polynomial ring./ For the undefined
algebraic terms, the reader should consult Bourbaki [1].
Examples of rings of system-theoretic interest are given in
the references already mentioned; the last section will
further restrict R. The term “module” will always mean
finitely generated module over R or another ring if clear
from the context, and linear will always mean linear with
respect to the ring and modules in question. Composition
of linear maps A4, B will be denoted just by their juxtaposi-
tion AB. When modules are free, linear maps will be
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identified with their matrices in any fixed basis. with the
same notation used for a map and its matrix. The integer
n{ X) will denote the minimal possible cardinality of a set
of generators for the module X. /All “modules” X of
interest in defimtions and statements can be assumed to be
free, i.e., sets of column vectors X = R”. where n( X)=n.
endowed with the coordinatewise operations./ Two arbi-
trary integers m, p will be used to indicate number of input
and output channels. respectively. When discussing any
given system or transfer matrix, both the input- and out-
put-value sets U:=R™ and Y:=R” will be assumed
fixed.

A system 2=(X, F.G,H,J) is given by a projective
module X (the stare space) and linear maps F: X — X, G:
U—- X, H: X—-Y, and J: U—-Y. When J=0, one has a
strictly causal system; for such systems one drops J from
the description.

Most rings that have appeared in the system theory
literature are projective-free. i.e., projective modules over R
are free. This includes polynomial rings in any number of
variables with coefficients in a field, rings of continuous
functions on contractible spaces, and principal ideal do-
mains. Over such rings a system can then be thought of as
a collection of matrices of appropriate sizes. Projective
modules must still be used in developing the theory, how-
ever, since most constructions result in these.

/A system (R", F.G, H, J)is given by matrices F, G. H.
J of sizes nXn, nXm, pxXn, and p X m, respectively,
strictly causal if J = 0. For instance, over R =R[6] a “sys-
tem” is really a family of classical linear systems
(F(8), G(8), H(8). J(8)). parameterized by 8. These
matrices can be seen as representing a discrete or continu-
ous time linear system. In order to fix ideas, we shall follow
this example through the paper as applied to continuous-
time systems. /

It is useful to introduce the discrete-time interpretation of
a system. This corresponds to thinking of £ as determining
a set of equations

x(e+1)=Fx(t)+ Gu(t),
y(t)=Hx{(t)+ Ju(1)

(2.1a)
(2.1b)

where u(¢), x(1), and y(r) denote input, state, and output
values at integer times ¢. The use of (2.1) permits us to give
many of the definitions, and to interpret the results in an
intuitive way even if one is interested in other interpreta-
tions of the notion of system (e.g., delay-differential).
Whatever definitions are given using the discrete time
interpretation car be translated into algebraic properties of
the maps defining a system, and in that sense they apply to
all possible interpretations.

For example, it is natural to define a state to be reacha-
ble (from the origin) if it can be obtained as x(7) for some
T >0 when starting from x(1) = 0 and solving (2.1a) with
some sequence of inputs u(1),- - -, u(7—1). Let e, be the ith
element of the standard basisin U, g;: = Ge,, and n = n( X).
Then reachable states are precisely those in

span{F'g,.j=0,---.n—1,i=1,--.m}. (2.2)
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A system is reachable if every state is reachable, i.e.. if the
span in (2.2) is all of X. Since reachable states are them-
selves controllable to zero (see below), reachability is
equivalent to the complete controllability (any state can be
driven to any other state) of the discrete time interpreta-
tion. One defines observability by the requirement that any
two states be distinguishable by their input /output behav-
ior; this corresponds with n=n( X) to

n—1

(M ker HF' = {0}. (2.3)

i=0

(When R is an integral domain and X is free, (2.3) can be
expressed as the usual Kalman observability condition.) A
canonical system is one that is both reachable and observa-
ble. The dual of = is the system Z: =(X', F'. H',G", J')
where X' is the linear dual of X and F’, etc. indicate
transpose (adjoint) maps. Note that m, p are reversed for
the dual system. A coreachable (or “strongly observable™)
system is one whose dual is reachable; this concept may be
interpreted in terms of reachability of “observables™ of the
system. A splir system is one that is both reachable and
coreachable. The concepts discussed in this paragraph are
by now relatively well-known; the references given before
should be consulted for more details.

/Reachability means that block matrix g(Z) =
[G. FG,--.F"~'G] has a right inverse over the ring R;
coreachability means that [H', F'H',--- (F)" 'H'] has a
right inverse over R; split if both hold. Obsercability corre-
sponds to this last matrix being full-rank. Over R = R[6].
reachability is equivalent to the ged of the minors of g(Z)
being a unit, or to the matrix g(2)(#) being full-rank when
evaluated at each complex number 6./

For purposes of regulation one needs much less than
reachability and/or coreachability of a given system. In
order to define the more general conditions. we first need
some notion of stability and/or convergence. A purely
algebraic way of introducing these is to postulate a set of
“stable” polynomials to be fixed throughout the construc-
tion. This idea was used by Morse [24]. Our approach here
follows Hautus and Sontag [14]. but is generalized to the
nonintegral domain case. A Hurwitz set S will be a multi-
plicative subset of admissible polynomials in R[z] which
contains at least one polynomial z — « of degree one, and
which is closed under associates. (A polynomial p(z}) is
called admissible in Khargonekar [20] if there exists another
polynomial b(z) such that the product pb has a monic
leading coefficient; for integral domains this means just
that the leading coefficient of p is a unit in R. Closed under
associates means that a(z)p(z) belongs to S whenever p(Z)
isin S and a(z)is a unit in R[z]: for integral domains such
an a(z) is necessarily a constant.) The definitions and
results to follow will always assume a Hurwitz set has been
given.

/As a running example, for R =R[#]. let S be the set of
polynomials p(6. z) in R[z] which are monic in = and such
that p(v, s) is not zero for any v real and s with nonnega-
tive real part. “Monic” can be taken to mean with leading
coefficient in z equal to one. or simply a nonzero constant:

this will not make any difference in what follows. Thus a
polynomial in S represents a family of polynomials in
R[z), parameterized by a scalar parameter 6, all of the
same degree, and all Hurwitz in the usual (continuous-time)
sense. The same type of example could, of course, be given
for families parameterized by r # 1 variables. /

Consider the ring R((z ")) of (formal) Laurent series
over R. This is the set consisting of all formal sums

a,=0 fort=<1,. (2.4a)

where the ring operation is the usual multiplication. This
ring was shown to be very useful in realization over rings
by Wyman [30]. and can be considered itself as a module
over the subring R[z] consisting of polynomials on non-
negative powers of z. Another subring of interest is the ring
R[(z)] of rational power series; this is the ring of fractions
T 'R[z]. where T is the set of polynomials in = which are
admissible in the sense explained above. This ring of
fractions will be identified with the subring (and R{z]-sub-
module) of R((:z ')) obtained by long division into nega-
tive powers of z. For a Hurwitz set S one may consider the
ring of fractions S~ 'R[z]. which can also be seen as a
subring of the Laurent series ring. The elements of this
fraction ring will be called stable rational functions. For
the discrete time interpretation it is useful to think of
elements (2.4a) just as time functions

a(r)=a, (2.4b)

with support bounded to the left. The stable ones now will
be interpreted as “(asymptotically) stable™ sequences, and
the notation

a(t) =0 (ast— ) (2.5)

will be used for these. (The quotation marks in the notation
are included in order to emphasize that. for a particular
Hurwitz set. these sequences may not converge in any
reasonable sense. The “‘convergence” interpretation is very
useful in guiding the proofs. as will be seen below. and the
interest in applications is, of course, that in which either of
these sequences indeed converge or they represent the
coefficients of an expansion of a transform of a function
which converges in the sense represented by the choice of
S.) A proper (respectively. strictly proper) sequence (or
series) will be one with a(r) = 0 for negative ¢ (respectively.
nonpositive 1), i.¢., power series in z ! (respectively. with
no constant term). For rational series and integral domains
R properness corresponds to having a representation
p(z)/q(z) with deg( p)=<deg(q) (* < for strictly proper).
The subring of proper stable series will be denoted by
pr(R.S). The same notations will also be used for the set
of Laurent series M({(z ")) over a module M. This is a
module over R((z ")) in the obvious way; the stable ele-
ments here are the elements of S 'M[z]=(S 'R[z})OM.
and these form a module over S 'R[z]. For example. in
the case M= R". S 'R"[z] is the set of all n vectors of
stable series.

/For our running example of continuous-time scalar-
parameter families. a series in p(R. ) represents a family
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of transfer functions p(8,:z)/q(6.:) each of which is
Hurwitz stable. The coefficients a, = a,(8) give, then, for
each 8 the expansion of the Laplace transform of the
corresponding stable transfer function. /

An (asymptotically) stable system is one for which the
characteristic polynomial det(z/ — F) is in S. (Since state
spaces are projective, characteristic polynomials are well-
defined up to associates, by the method in Khargonekar
[20]) /In our example, a stable system is, in fact, a family
of continuous-time systems as before, such that each sys-
tem in the family is stable. /

A state x” is (null-) asymprotically controllable (a.c.) if
there exists an (infinite) input sequence {u(r), 1 =1} with
u(t) — 0 and such that the solution of (2.1a) with x(1)=
x” also satisfies x(r)' — 0. Asymptotically controllable
states form a submodule of X. A system is asycontrollable if
every state is a.c. A system is detectable if its dual is
asycontrollable. Note again that in the abstract setup there
is no reason that these controllability concepts really should
correspond to any such concrete notion, although of course
this will be the case in the applications of interest (i.e.,
choice of Hurwitz set).

/For our example, a system (i.e., family of continuous-
time systems) is asycontrollable (respectively, detectable)
iff each member of the family is asycontrollable (*stabiliz-
able” in the usual literature) (respectively, detectable); this
is discussed in detail in Section VI. For nonscalar (real)
parameters it is still an open problem whether or not
asycontrollability of the family is equivalent to each system
being stabilizable, but the above definition is still equiva-
lent to a number of “spectral” types of conditions (and for
complex parameters the equivalence always holds); this is
discussed in Hautus and Sontag [14]./

A rational matrix or transfer matrix (with m inputs and p
outputs) W=W/(z) is a p X m matrix whose entries are in
R[(z)). A [strictly) proper transfer matrix is one whose
entires are all (strictly) proper. Any system I gives rise to a
corresponding proper transfer matrix W= W(Z) defined
by

W(z)=H(zi—F) 'G+J. (2.6)

When J =0, W is strictly proper. Conversely, a (strictly)
proper W always admits a realization, i.e., a (strictly causal)
Z satisfying (2.6). In fact, it is known from the realization
theory over rings how to construct for any given W a
canonical realization; this realization does not appear to be
that useful for regulation questions, however, because the
corresponding state space is, in general, not projective
(except for special rings, like those in the last section).
Finally, we define a transfer matrix to be stable if each of
its entries is stable.

As remarked in the introduction, there has been interest
lately in various types of factorizations of transfer matrices.
One considers a

right factorization

W=pQ ' (2.7)
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or a
left factorization

W=0'p, (2.8)

with P and Q either polynomial or rational matrices. (For
the factorizations to be well-defined, we assume in the
polynomial case that Q is admissible, i.e., that detQ is
admissible in the sense defined before; in the rational case
we assume that Q can be written as ¢ 'Q . with the
polynomial ¢ monic and the polynomial matrix Q" admis-
sible.) We are interested here in factorizations that satisfy a
Be:zout condition: for P and Q as in (2.7), this means that
there exist matrices 4 and B such that

AP+ BQ=1; (2.9)
for P and Q as in (2.8) one wants A and B with
PA+ BQ=1. (2.10)

(In (2.9), B is square m by m, and 4 is m by p; dually for
(2.10).) Depending on the type of matrices 4 and B al-
lowed in the above, as well as on the allowed P and Q. one
may then classify factorizations as: 1) polynomial. 2) stable.
and 3) proper stable, meaning that a// the matrices appear-
ing— A, B, P, Q —must be of the corresponding type.

The main goal of this paper is to relate the various types
of factorizations with the existence of realizations of differ-
ent kinds. One of these relations is already known as
follows.

Theorem 2.11 [20]: The following statements are equiv-
alent for any strictly proper transfer matrix W:

1) W admits a polynomial right factorization;

2) W admits a polynomial left factorization;

3) W admits a split realization;

4) the canonical realization Z(W) is (projective) and
split.

/In 4), read * the canonical realization exists and is split.” /

In Emre and Khargonekar [11] it is proved that a (free)
split system can be regulated in much the same way as in
the classical (linear finite-dimensional) case. Roughly.
1t is possible to achieve arbitrary dynamics both for the
regulated input/output behavior and for the remaining
(observer) modes of the closed-loop (plant /regulator) dy-
namics. Moreover, the split condition can be checked in
various ways directly from W (see Sontag [26]. [27] and
Khargonekar [20]). If the system is just reachable and
detectable, the same paper shows how essentially arbitrary
dynamics can be achieved for the regulated I/0 behavior
while keeping the observer modes stable. Finally, Emre {10]
proved that if the system is (only) asycontrollable and
detectable, then it admits a stabilizing compensator. These
results provide a strong motivation for the study of the
existence of split, reachable /detectable, and asycontrolla-
ble /detectable realizations.

The existence of Bezout factorizations would appear to
be rather restrictive when working over rings. A recent
result of Lee and Olbrot [22], however, established the
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genericity of reachability, over R = polynomial ring in r
vartables, when the number of inputs m exceeds r. This
result could be, in principle, extended to one about generic-
ity of the split condition, although the form that the precise
statement would take is not yet clear. This result would
imply—via (2.4) and the results below—the genericity of
the various types of Bezout factorability when dealing with
systems with enough input and output channels. For *“few”
channels, the split condition—i.e., polynomial factorabil-
ity—is. of course, too strong. For instance, the (scalar)
transfer function p(6,:z2)/q(8,z) defined over R=R[#]
splits 1f and only if the plane complex curves determined
by p.q do not intersect. The other Bezout conditions are
not, in general, as strong however.

/Take, for instance, the case of real scalar families of
systems mentioned in our example. There, stable factora-
bility is equivalent to p. ¢ having no common zeros with 8
real and Res > 0. 1.e.. no unstable pole /zero cancellations
for any member of the family of systems. /

III. POLYNOMIAL MATRIX INTERPRETATIONS

The definitions of reachability and asycontrolability
{and their duals) will be reformulated in a less intuitive,
but more useful way in this section. Note first that the
maps defining a system can be extended in the obvious
(pointwise) way to the spaces U((z ')). Y((z ')). and
X((z ')); these extensions are linear over R((z ') (and all
its subrings), and they will be denoted in the same way as
the original maps. Consider now a fixed system X and
Hurwitz set S.

A state x” is reachable iff there exist polynomials x(z)
and u(z) such that (z/ — F)x(z)+ Gu(z)= x". This is just
another way of saying that there is a finite input sequence
— u(t), zero for positive ¢, which drives the state O (at some
time ¢ <0) to x(1)=x". Let

[z1-F,G): X[z]8U[z] — X[:] (3.1)

denote the map that sends a pair of polynomials ( x, ©) into
(zI — F)x + Gu, thought of as an R{z]-module map. The
above then says that reachability 1s equivalent to X being
contained in the image of (3.1). Since X generates the
projective R[z]-module X[z], we have the following.

Lemma 3.2: The following statements are equivalent for
any system X:

1) 2 1s reachable;

2) [zI — F,G] 1s onto;

3) there exist linear maps M(z): X[z]— X{z] and N{z]:
X[z]-=UJ[z] with

M(z)

[zI—F,G][N(Z)

] =1 (in X[z]).
/Reachability is equivalent to right invertibility of [z] —
F,G] over R{z])./
Consider again the discrete time interpretation of 2. We
claim that any reachable state x" is controllable to zero in

finite time n = n( X'). More precisely, there exist sequences
x(r) and u(r) sausfying (2.1a) and such that x(1)=x",
x(t)=0 for t>n. and u(t)=0 if t<0 or t=n. This is
proved in the same way as for finite dimensional systems
over fields: by the Cayley-Hamilton theorem (which is
valid over any commutative ring), one can write

n -1

F'= 3 a,F', (3.3a)
i 0
so for x” in the span (2.2) one has that
F'x'= — ”il F"'7'Gu, (3.3b)
1=4
for suitable u, in U. Thus the sequence
u(t): =u,_|. 1<t<n (3.4)

(and O otherwise) results from x(1)=x" i x(¢+)=0 for
t > n. Equivalently, there exist polynomials x(z) and u(z)
of degree strictly less than n such that

(zI—F)z7"x(z2)+G(z7"u(z))=x". (3.5)

Here the map in (3.1) is seen as a map between rational or
Laurent series. We would like to conclude from here that
x" 1s a.c.; however, a finite sequence is not necessarily
stable (i.e., z may not be in the Hurwitz set S being
considered). But the following may be used. Let x~ be
reachable, and consider the new system defined over the
same state space but with 4: = F+ al instead of the ongi-
nal F (here a is such that z — ¢ is in S, and 7 is the identity
map in X). The state x" is still reachable in this new
system (just note that the generators of (2.2) using 4 are in
the span of the original ones and vice versa). So an
equation like (3.5) holds, with 4 in the place of F. Apply-
ing the substitution in R[(z)] (ring homomorphism) z — z
— a, there results an equation

(zI = F)x*(z)+ Gu*(z)=x" (3.6)
where x*(z)=x(z—a)/(z—a)" and u*(z)=u(z —a)/(z
—a)” are both stable and strictly proper. We conclude as
follows.

Lemma 3.7: Reachable states are asymptotically
controllable.
Let 4, B be (R-) modules. Elements of

S7'(Hom (A, B)){z] can be naturally seen as S™'R[z}-
module (or equivalently, R[z])-module) maps from 5™ '4{z]
into $™'B{z]; when B is finitely presented (e.g., if projec-
tive) every such map can be represented in this form (see
Bourbaki [1, sect. 11.2.7}). A (stricilly) proper map from
S™'4[z] into S 'B[z] will be, by definition, one which is a
(strictly) proper element of S~ (Homg( A, B))[z] under
this identification. A proper R[z]-map from S~ 'A[z] into .
S 'B[z] can also be identified with an R{[z}-map from
pr(R, S)®A into pr(R, S)®B. /For all modules consist-
ing of column vectors, identify matrices of rational func-
tions with (rational) series whose coefficients are matrices. /

Now we can obtain the following desired characteriza-
tions.
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Proposition 3.8: The following statements are equivalent
for any system Z:

1) Z is asycontrollable;

2) [z~ F.G): ST'X[z]®S 'U[z] - S 'X[z] is onto;

3) there exist linear maps M(z): S™'X[z]—S 'X][z]
and N(z): §'X[z] - S 'U[z] with

M(z)

[zI*F,G] N(z)

]:I (in S7'X[z]);

4) there exist M, N proper as above.

/Asycontrollability is equivalent to [z — F, G] having a
stable (proper stable) right inverse. /

Proof: Since X is projective, S”'X[z] is projective
over S”'R[z], so 2) and 3) are equivalent. Assume now
that 1) holds. Then any x" in X is in the image of the map
in 2). Since X spans this image, 2) holds. We shall prove
now that 4) implies 1) and that 3) implies 4).

Let M(z)and N(z)be as in 4), and pick any x" in X. Let
x*(z):= M(z)x", u*(z):= N(z)x". These are proper,
stable, and satisfy (3.6). Thus if x*(z)=x,+ x;z '+ -+,
uz)=u,+uz" I comparing powers of z in (3.6),
one concludes that x, =0 and that x, + Gu, = x". Since
stable sequences form a submodule, we conclude that
u*(z)— u, is also stable, and controls x, asymptotically to
zero. But Gu, is reachable, so by Lemma 3.7 it is also a.c.;
thus x” is a sum of a.c. states, and is a.c. itself. So 1) holds.

Finally, we prove that 3) implies 4). Consider the map

[(z=a) (21— F),G]:

pr(R,S)®(X+U)-pr(R,S)®X. (3.9)

We shall prove that this map is onto for the shown domain
and codomain. It is enough for this to check that (3.9) is
onto when reducing modulo every maximal ideal of
pr(R, §) (i.e., tensoring by the possible residue fields of the
latter). These evaluations are of two types: 1) those in
which (z —a)™' reduces to zero, and 2) those that extend
to the ring S™'R[z]. This is because the latter can also be
seen as the ring of fractions of pr(R, S) with respect to the
multiplicative set generated by (z —a)~'. The evaluations
of type 1) (intuitively, “at z = 00") give the identity for the
first block in (3.9), so the map is indeed onto at these ideals
(see Hautus and Sontag [14] for more details). The evalua-
tions of type 2) can be seen as reductions of those appear-
ing in the hypothesis 3), so they are also onto. Thus (3.9) is
indeed onto. There exist, then, proper M(z), N(z) such
that
(zI—F)M(z)+GN(z)=1 (3.10)
where M\(z)=(z—a)”'M(z) is also proper. (In fact, even
if only N(z) were known to be proper, the equation
M(z)=(z2I-F) '(1-GN(2)) (3.11)
shows that M, is proper.) #
The statements in Lemma 3.2 and Proposition 3.8 can all
be dualized into left invertibility conditions
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[M(z) Mnﬂ”_F}n (3.12)

H
for coreachability and detectability. This equation can be
again understood over the original spaces without dualizing
because all modules in the equations are projective and
thus also reflexive (double dual equal to the original mod-
ule).

The above results are especially interesting when X is a
free module. In that case, the conditions become just left or
right invertibility with respect to stable or proper stable
matrices. Note also that Proposition 3.8, statement 4) is the
definition of stabilizability given in Hautus and Sontag
[14], while Proposition 3.8, statement 3) is the one used by
Emre [10]. All these definitions are then equivalent to the
one given in Section I1.

The definitions given here allow one to prove a number
of facts in the “natural” way. Take for instance the lemma
after the following definition.

Definition 3.13: A regulator for the strictly causal sys-
tem 2= (X, F,G, H) is a system 27 =(X”, 4, B.C. D)
with input value set UDY and output value set U, such
that the map

F+GDH GC

. (r) _, (r)
B,H+BDH A+BC| X®X"—~X0X

(3.14)

is stable. (Here B: =(B|, B,), and D acts only on the Y
component.) The system 2 is regulable if it admits such a
regulator.

Lemma 3.15: The system X is regulable if and only if it
is asycontrollable and detectable.

Proof: For the sufficiency part; see Emre [10]. We
prove here only the (easier) necessary part. In terms of the
discrete-time interpretation, the map in (3.14) is just the
closed-loop dynamics of the interconnection of = and ="

x(t+1)= Fx(1)+Gu(t),  y(t)=Hx(t),
(3.16a)
x(e+1) = AxD(e)+ Bu(t)+ Byy(1),

u(1)=Cx'"(t)+ Dy(t). (3.16b)

Let x* be in X, and pick any x”* in Z. Since (3.14) is
stable, the sequence (x(z), x'”)(1)) obtained solving (3.16)
is stable. Thus the corresponding u(-) is a linear combina-
tion of stable sequences, and so is stable itself. It follaws
that x* is ac.; thus £ is asycontrollable, and a dual
argument establishes detectability. So Z is regulable. #

IV. STABLE FACTORIZATIONS

We study here right factorizations W= PQ ™! of a trans-
fer matrix into stable matrices P,Q which satisfy the
Bezout condition AP + BQ =1 with 4, B stable. If g is a
common stable denominator for the entries of P and Q,
then also W=YZ"' and CY+ DZ=1, where Y=gP,
Z=gB, C=q '4, and D=g¢ 'B. Thus, when studying




KHARGONEKAR AND SONTAG: FACTORIZATIONS AND REALIZATIONS OF LINEAR SYSTEMS

stable factorizations one may take P and Q to be poly-
nomial without loss of generality.

Assume that W =W/(Z) for a strictly causal detectable
Z. By the dual of Proposition 3.8, there exist stable linear
maps M. N as in (3.12). If G would be the identity. then

W=H(I—F) ' (4.1)

and (3.12) shows that (4.1) is a stable factorization of W. If
G is present, but = is reachable, one may expect to be able
to somehow eliminate G, since every state 1s reachable.
This intuitive idea motivates the main result in this section,
which generalizes the result in Hautus and Sontag [14,
Theorem 6.11] as follows.

Theorem 4.2: A strictly proper transfer matrix W ad-
mits a stable right factorization if and only if it admits a
reachable and detectable (strictly causal) realization.

Proof: Let £= (X, F,G, H) be reachable and detecta-
ble, with W =W(ZX). Since X is projective, there is for
n=n(X)a map

H:X—R" (4.3)
with
LH,=I=identity in X (4.4)

for some L: R" — X. The reverse composition H L is just
the projection on X, which will be thought of as a submod-
ule of R". Consider the transfer matrix induced by Z,: =
(X.F.G.H):

W,.=H(z~F) 'G. (4.5)

Since Z, 1s a split system, there exist by Theorem 2.11
polynomial matrices 7, @, C, and D, with @ admissible
and
W,=TQ .
CT+DQ=1.

(4.6)
(4.7)
Note that the image of W, (as a rational matrix) is included

in X((z ")) since H, has image in X. Thus the image of T is
also included in X((z ')), and so

T=H,LT. (4.8)
Since H,(zI — F)7'G=TQ" ', it follows by (4.4) that
(21— F) 'G=LTQ ', or GQ=(zI—F)LT. (4.9)
Let
P.=HLT. (4.10)
so that
W=HLW,=PQ . (4.11)

This will be the desired factorization (note that P and Q
are, in fact, polynomial). We will now show the Bezout
property. Since 2 is detectable, there are linear maps M, N
as in (3.12). Composing with CH, on the left and with LT
on the night, and applying (4.7), (4.8), and (4.9) gives
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CHM(zI— F)LT+CHNHLT=CH|LT, (4.12)
CHMGQ+CH NP=CH|LT, (4.13)
CHMGQ+CHNP=CT=1-D0Q.
(4.14)
So
AP+ BQ =1 (4.15)
where we denote
A:=CH/N and B:=CHMG+D. (4.16)

Both A4 and B are stable because C, D are polynomial and
M. N are stable.

Conversely. assume that W= PQ ' with P,Q poly-
nomial, and that (4.15) holds for some stable A.B.
Consider the *“Q realization” corresponding to this factori-
zation of W, as in Khargonekar [20, Theorem 4.4]. This is a
reachable realization £Z=( X, F.G, H), and all we need to
establish is that 2 is detectable. We again introduce H,.
etc., as in (4.3)-(4.5). and define

R:=W,Q=H(zI-F) 'GQ. (4.17)

Since the columns of Q are in the kernel (in fact, form a
basis) of the input-to-state map associated with Z,, it
follows that R is, in fact, a polynomial matrix. By reachabil-
ity of Z, there exist polynomial maps Y. Z with
(z1— F)Y+ GZ=1=identity in X. (4.18)

Thus
(zI—F) '6Z=(z1—F) '—Y. (4.19)

Composing (4.15) with R to the left and with Q! to the
right, and using (4.17) and (4.9) gives

RAPQ '+ RB=RQ ' (4.20)
RAW+ RB=W,, (4.21)
RAH(zI—F) 'GZ+RBZ=H(z1-F) 'GZ.
(4.22)
RAH[(z1 = F) ' = Y|+ RBZ=H,[(z1- F) '~ Y].

(4.23)

Thus
M(zI— F)+ N,H=H, (4.24)

where
M,:=RBZ+HY~RAHY. N,:=RAH. (4.25)

So M(z1— F)+ NH=1 with M:=LM, and N:=LN,.
Note that M. N are stable because R, Y, Z are polynomial
and A, B are stable. So Z is detectable. #
By duality one also has the following.
Theorem 4.26: A strictly proper transfer matrix W has a
stable left factorization if and only if it admits an
asycontrollable and coreachable realization.
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Neither Theorem 4.2 nor Theorem 4.26 s a priori self-
dual: W may satisfy Theorem 4.2, but not Theorem 4.26. It
is natural to ask about the existence of (only) regulable
realizations, which is a self-dual condition. If either left or
right factorizations exist for W, then Theorem 4.2 and
Theorem 4.26 show that there are regulable realizations of
W. The following result shows that (under weak exira
assumptions) the existence of a regulable realization in fact
implies that there are stable factorizations. The extra as-
sumptions are on R and on the number of input or output
channels. The (Krull) dimension of R (see. e.g.. Gilmer
[12}]) is denoted by dim R; note that for polynomial rings
or power series rings over a field. in r variables, one has
dim R = r. In Section VI it will be seen that for principal
ideal domains R no constraints are necessary and, in fact,
this holds for a shghtly larger class of rings (see Remark
4.40). For more general R, we do not know if the assump-
tions on the number of input and output channels are
really necessary. Our proof uses the fact that the module L
in (4.30) 1s free, and this will. in general, be false.

Theorem 4.27: Assume that either m =1 or that p=1,
or that R is Noetherian with dim R =r <= and
max{m, p}>r+1. Then the following properties are
equivalent for a strictly proper transfer matrix W.

1) W has a stable left factorization;

2) W has a stable right factorization;

3) W has a regulable realization.

Proof: Note that Theorem 4.2 and Theorem 4.26 give
that 1) and 2) imply 3). Since 3) is self-dual. it 1s then
enough to prove that 3) implies 2). Let 2: = (X, F,G. H)
be an asycontrollable and detectable realization of W. We
treat the case in which m satisfies the hypothesis; when p
satisfies the hypothesis, the theorem can be proved using
dual arguments. By asycontrollability, the map

[:/—F.—G]: S '(x8U)[:] - S 'X[z] (4.28)

is onto. Let L be its kernel, and denote 4: =S 'R[:]. Note
that § 'U[z]= A" Thus

LOS 'X[z]=A4"dS 'X[:]. (4.29)
Using projectivity, we may assume that S~ 'X[:z] is included

in A". n=n(X). and that there 1s some module Z with
S 'X[z]®Z=4". So

L@A":AH"N. (430)

i.e.. L has a free complement (is stably free) and has rank
m. If m=1, L is free (see Lam [21, Theorem 4.11]). If R is
Noetherian of finite dimension r, then dim R[z]=r +1
(see. e.g.. Gilmer [12, Theorem 30.5]) so m>r+1=
dim R[z]=dim A; thus one may apply Bass’ cancellation
theorem (see. e.g., Lam [21, Theorem 7.3}) to again con-
clude that L must be free. Let {v,.---.¢,,} be a basis of L.
Without loss of generality, one may take the v, polynomial
over R. Consider the one-to-one map
A" = A" e, =t

i 1

(4.31)

whose image is included in the submodule S~ '( X®U )| z].
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Let
(4.32a)

be its matrix. Note that

(z1- F)T-GQ=0 (4.32b)

since the v, are in L. As the image of (4.31) is a direct
summand of S '(X®U)[z], there exist stable maps Y, Z
giving a left inverse, 1.e., with [Y, Z][{v,,---,v,,]=1. or

YT+ZQ=1. (4.33)

We will now show that Q is admissible. Let p = det(z/ — F);
then (z1 — F)adj(zI — F)= pl,, so the columns of

[cof(zl—F)G}

ol (4.34)

are in L. It follows that the columns of (4.34) are in the
span of the v, so

OR = pl (4.35)

for some stable matrix R. Thus (detQ)-(det R)=p”"
monic, and Q is indeed admissible. Now let P: = HT (this
is well-defined because the image of T is included in
S7'X[z]). Then

W=H(zI—F) 'G=HTQ '=PQ"'. (4.36)

We claim that this 1s a stable factorization of W. Since the
original system 1s detectable, there exist stable maps M. ¥

such that
M(zI—F)+NH=1. (4.37)

Multiplying on the right by (z/ — F) 'GQ and on the left
by Y,

YMGQ+YNP=YT=1[-ZQ. (4.38)

$0
AP+ BQO =1 (4.39)
for the stable matrices A: = YN, B: =YMG + Z. #®

Remark 4.40: When R[z] is a Noethenan integral do-
main of global dimension at most two, the ring § 'R[z] is
projective-free, so that the module L in (4.30) is indeed
free. Thus for principal-ideal domains (pid’s) the above
abstract argument is valid with no restrictions on m. p. The
“concrete” constructions in Section VI also give the result.
but they cannot be extended to non-pid’s. We sketch here a
proof, provided by W. Vasconcelos, of the projective-free-
ness claimed above. Take any projective S~ 'R[z]-module P
and consider 1t as a direct summand of a suitable free
module (S 'R[z])". Let M be the intersection in the latter
of the sets ( R[z])" and P, so that in particular P=S ‘M.
Then M is a closed R[:]-submodule of ( R[z])" —because
P is closed 1n the larger module—and is therefore reflexive.
So M is a projective R[z]-module, by Bass’ dimension-2
theorem. It follows that T~ 'M = M[(z)] is projective over
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R[()). But the latter is a ring of dimension one, so T 'M
1s, 1n fact, free over R[(z)]. It follows that M itself is free
(Horrock’s affine theorem). and so P =S 'M is also free.
as required. *®

V. STRICTLY PROPER FACTORIZATIONS

In this section we give a result on proper stable factori-
zations. Intuitively, the argument explained before Theo-
rem 4.2 suggests that the existence of reachable and detec-
table realizations should imply that of proper stable fac-
torizations, since M and N may be assumed both proper by
(Proposition 3.8, statement 4). The problem is that one
should not introduce extra delays when “eliminating” G as
discussed in that argument. This difficulty can be over-
come 1if one first finds a suitable stable bicausal isomor-
phism to premultiply the transfer matrix. The existence of
such bicausal isomorphisms is known to be closely related
to problems of “constant” state feedback. as discussed in
the classical case by Hautus and Heymann [13). Construc-
tion of constant stabilizing feedback laws for systems over
rings 1s, in general, nontrivial (see, e.g.. Kamen [17], Byrnes
[3]. and Bumby et ¢l [2]). For principal ideal domains (see
Section VI) the result of Morse [23] ensures the existence of
stabilizing K as needed in the result given here. This result
connects our setup with the *“proper stable” case in Desoer
et al. [7]. We shall assume that R 1s an integral domain, and
later note why the results also hold in general. A technical
remark is needed first.

Lemma 5.1: Let X,Y be projective R-modules. Let the
linear maps 4: Y—-VY,. B: X—-Y, C: X—Y, and D: X—- X
satisfy AB=CD. Assume further that there exist linear
maps M, N, P, and Q such that

1) AM+ CN=1=identity in Y, and

2) PB+ QD =1=identity in X.

Then det A = r-det D, for some unit r.
Proof: Consider the linear maps

f:_[;i) M B

_g] and g::[N —D]: YOX-Y®DX.
(5.2)

Then fg is triangular with identity diagonal, so f is invert-
ible; say, det f = — r. The conclusion then follows from the
equality

(5.3)

#

Theorem 5.4: Let Z=(X, F,G, H) be reachable and
detectable. Assume that there is some K: X — U such that
(the characteristic polynomial of) F+ GK is stable. Then
W(Z) has a proper stable right factorization.

Proof: The first part of the proof repeats that of
Theorem 4.2, up to (4.11). We use the same notations as
are used there. Now let

0 :=0—KLT. (5.5)
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Using (4.9),

(21— F-GK)LT=(zI—F)LT - GKLT = GQ".
(5.6)

Since ( X, F+ GK.G, H) is again reachable, there is a right
Bezout equation as in Lemma 5.1-1), with 4. B, C, and D
there equal to -/ — F—GK. LT, G, and Q . respectively.
By (4.8) and (5.5) one also has an equation

(CH,+ K)LT+DQ=1. (5.7)
Thus Lemma 5.1 applies over R[z] to give det Q: =r-
det(z/— F—GK).raunitin R[z](soin R). Thus 0 ~'is
stable. Let

0,:=00 . (5.8)

Since Q is a polynomial and Q" ' is stable, it follows that

Q, 1s stable. Also.

0,=((Q—KLT)Q ') '=(1—KLTQ ')

G)

1

=(1-K(zI-F) (5.9)

so @, is also proper. Let

P.=PQ . (5.10)
Then P, is stable and W= P,Q;". Since P, =WQ,. P, is
also proper. It only remains to find a proper Bezout
condition on P, and Q,. By detectability, there are proper
stable M, N as in (3.12). Composing on the right by
(z1 — F)"'GQ and using (4.8), we conclude that

MP+ NGQ=LT. {5.11)
Thus
Q0 =0—KLT=0—K(MP+ NGQ)
=(1—KNG)Q — KMP. (5.12)
Write A: = — KM and B: = I — KNG, these are stable and
proper. #

The same result is valid over nonintegral domains, but
the above proof has to be modified slightly. This is because
the determinants in Lemma 5.1 may not be a priori defined,
for arbitrary projective X, Y over a ring with nonconnected
spectrum. But the proof of (5.2) uses only the case A=a
characteristic polynomial and D =a map between free
modules, so that these are all well-defined up to associates.

The dual of Theorem 5.4 relates asycontrollable and
coreachable realizations to the existence of proper stable
lefr factorizations.

VI. THE CASE R = PRINCIPAL-IDEAL DOMAIN

The case in which R is a principal ideal domain is of
special interest from a system-theoretic viewpoint. in par-
ticular, the ring R[#] of real coefficient polynomials is used
in applications to delay differential systems, “2-D”—or
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“image processing”—systems (note: transfer matrices are
now rational in the two variables 6. z.) and single-parame-
ter families of systems. Rings of rational functions with no
real poles are used also for some of these applications. as
well as rings of rational functions R[(#)]. More generally.
other rings of functions in one variable also appear some-
times, e.g.. the ring of real-analytic functions in 8; such
more general rings. although not necessarily pid’s. still
share many of the properties to be shown below. More
precisely. for “elementary divisor rings” one can generalize
the results in this section; see Bumby er al. [2] for the
needed pole shifting results. Another pid of interest. the
ring of integers, appears naturally in modeling fixed point
digital implementations of systems,

In this section, R denotes a pid. Most statements can be
considerably simplified in this case, and since the canonical
realization Z(W') of a transfer function is necessarily pro-
Jective (in fact, free), factorability properties can be checked
directly on Z(W). We shall give first an elementary proof
of Theorem 4.27 which does not involve any restrictions on
m. The intuitive idea is straightforward: given a regulable
system, restrict to its reachable subsystem. The nontrivial
part is proving that this subsystem is indeed detectable. An
easy lemma 1s needed.

Lemma 6.1 Let £, =(F,.G, H)) be a factor system of
Z2=(F.G.H). ie, X=X®X,, and

ot o)
A B C

If X is asycontrollable (respectively, detectable), then Z s
also asycontrollable (respectively, detectable).

Proof: 1If 2 is asycontrollable, take stable rational
M. N with

H=(H,.D). (62)

(2l = F)M+GN=1 (=identityin X).  (6.3)
Let M, be the projection of M on X,. Then
(2= F))M,+GN=1 (=identityin X,)  (6.4)

and M, is again stable. This is similarly the case for
detectability. #*

Theorem 6.5: Let 2 be regulable. Then there is a system
Z,. which is reachable and detectable, such that W(Z)=
W(Z)).

Proof: We may assume that Z=(R" F.G.H) is
weakly reachable, i.e., that the rank 7 of the span in (2.2) is
equal to n. (This is because a weakly reachable subsystem
is always a factor of the original system: take X,: = kernel
of any map T of rank n~—r which is zero on reachable
states. and apply Lemma 6.1. Consider

g(2): =[G, FG,--- . F" 'G] (6.6)

and let D: = diag(d,,- - -,d,) be the Smith canonical form
of g(Z), where d |d,, |, fori=1,---,n~1. Call d;=d/d,
if 1> j. By weak reachability, all d, are nonzero. Using an
appropriate T in GL(R, n), we may assume that
the columns of D span the reachable states.  (6.7)

Let F:(f,j). We claim that
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d,lf, wheni>j (6.8)
To establish the claim, just apply F to diag(0, - - d, - --.0).
This must be again reachable, i.e., in the span of the
columns of D. Comparing ith rows gives that f d =
multiple of d,. from which (6.8) follows.

Consider the system Z, obtained by restriction to the
reachable subset and a choice of basis for this subset. A
concrete representation is 2, =(R", A, B,C), with A=
D 'FD. B=D"'G. and C = HD. Let F, (respectively. A,)
denote the submatrix obtained from the last i rows and
columns of F (respectively, 4). Since D is diagonal,

det(z/ — F)=det(z]— A4,) foralli. (6.9)

We claim that X, 1s detectable. Assume not. Then there is
maximal ideal M of $™'R{z} such that

2¥[ — A*

o (6.10)

rank[ ] <n

where the “*’ i1s used to denote reduction modulo M. Thus
there is a vector v over the residue field mod M such that
C*v=(z*1 — A*)v = 0. Since C*= H*D*, also H*(D*v)
= 0. Since the original system is detectable, it follows that
either

(z*1 — F*)D*v # 0 (6.11)

or

D*v=0. (6.12)

But (6.11) cannot hold because D*(z*I — A*)o=(z*]—
F*)D*v. Thus (6.12) must hold. Let r be the smallest
nonnegative integer such that d*=0 for all i>r. (Note
that d*=0 implies that d¥=0 for j>i) Let s be the
largest integer such that ¢, =0 for i<s. Since D*v =0,
necessarily r <s. Since dr#0 for j<r, but d*=0 for
i>r, 1t follows that d,;. =0 for these (i, j). By (6.8), the
corresponding f} also vanish. So the submatrix formed
from the last n — r rows and first r columns of F* is zero.
Stmilarly, the last # — r rows of G* are zero. By stabilizabil-
ity of X,
rank[z*/ — F* ,G*] =n, (6.13)
so det(z*1,_,— F,_,.)# 0. By (6.9) this holds also for
A, .. But
(z*1, . — A, . )w=0 (6.14)
where w is nonzero and consists of the last n — r rows of v.
This contradicts the nonzero determinant. Thus (6.12) can-
not hold, and the theorem is established. #
The following summarizes all the results for the pid case.
Theorem 6.15: The following statements are equivalent
for a strictly proper transfer matrix W:
1) W has a regulable realization;
2) W has a reachable and detectable realization;
3) the canonical realization (W) is detectable;
4) W has an asycontrollable and coreachable realiza-
tion;
5) W has a stable right factorization;
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6) W has a stable left factorization;

7y W has a stable proper right factorization;

8) W has a stable proper left factorization.

Proof: By Theorem 6.5 and its dual, 1) is equivalent to

2) and to 4). Since Z(W) is a factor of any reachable
realization of W, Lemma 6.1 gives that 2) implies 3), which
clearly implies 1). The equivalence of 2) and 5) [respec-
tively, 4) and 6)] follows from Theorem 4.2 (respectively,
Theorem 4.26). Finally, the equivalences of 7) and 8) with
S) and 6), respectively, follow from Theorem 5.4 and its
dual. #

This theorem shows that factorability can be checked by
first constructing a canonical realization and then checking
detectability of this. For pid’s there are various algorithms
for canonical realization; see, for instance, Rouchaleau and
Sontag [25] and Eising and Hautus [9]. Checking detecta-
bility is of varying difficulty, depending on the Hurwitz set
considered. Two very simple examples are that of poly-
nomial families of continuous-time systems, and that of
delay-differential systems with arbitrary delay lengths. The
latter studies existence of regulators for delay systems
which are also described by delay systems and such that,
for each value of the delay length, stabilization i1s achieved.
We are grateful to E. W. Kamen for suggesting this exam-
ple to us: as he conjectured, it 1s much easier to treat than
the usual one (see a discussion in Hautus and Sontag [14]
for detectability for a fixed delay length). In these exam-
ples, R =R[f].

In the delay case then, take the Hurwitz set

S:={p(8.z)| p monic in : and p has no zeroes in L}
(6.16)

where L 15 the set of complex pairs (s, v) with Re(s5)=0
and |c| <1 (see Kamen [18], [19]).

Lemma 6.17: For § as in (6.16), X is asycontrollable if
and only if rank [s/ — F(r),G(v)]=n for all (s.v)in L.

Proof: In the terminology of Hautus and Sontag [14].

we want to show that S is perfect, i.e.. that the only
maximal ideals of pr(R.S) are the obvious ones (evalua-
tions at points of L). For this it is enough to prove that,
given any pair (s*. v*) notin L, thereis a p in S having 1t
as a root.

If Re(s)<<0, the polynomial (z — s*)(z — 5*) (bar indi-
cates conjugation) achieves the above purpose. If |v*| > 1,
then there i1s some integer n such that

ki=(v*) "(s*+1)

(and its conjugate) has magnitude less than 1. Let

(6.18)

p(z.8):=(z+1) +|k|*6>" —2Re(k)(z+1)8"
(6.19a)
=(z+1—k8")z+1—k8"). (6.19b)

By construction, p(s*, ¢*)=0 (first factor in (6.19b)
vanishes), while (6.19a) shows p has real coefficients. As-
sume p has a zero (s, v) in L. Then

s+ 1=k |e"]. (6.20)

Since [t <1, Re(s) =<0, a contradiction. =

For the family of systems example, we take S’ as in
(6.16), but we now use L’: = set of pairs (s, v) with v real
and with Re(s)=0.

Lemma 6.21: For §" as above, Z is asycontrollable if
and only if the condition in Lemma 6.17 holds over L.

Proof: Again it suffices to find a suitable p passing
through a given (s*, v*) not in L’. If Re(s) <0, we take the
same polynomial as before. If v i1s not real, consider the
real polynomial

b(x):=(x—ov*)(x—*). (6.22)

Note that there is a positive lower bound to the values of b
on reals. Thus there is a real k with kb(x)> Re(s*) for all
real x. This implies that

Re(s*— kb(x)) <0 and Re(5*—kb(x))<0 (6.23)
for all real x. Let
p(z,.0): =(z+kb(8)—s*)(z+kb(8)—5*). (6.24)

It is easy to see that this i1s a real polynomial having
(s*,v*)as a root and [by (6.23)] without roots in L". #*

The above lemma says simply that asycontrollability
(detectability) of the family 2(6) is equivalent to
asycontrollability (detectability) for each individual system.
The results on systems over rings then imply that construc-
tions of compensators can be done polynomially in 8. This
means that when the general structure of a system is
known except for the precise value of the parameter, one
may be able to design (off line) a compensator such that
only tuning the parameter is needed when the original
plant is completely identified.

We construct over this ring a very simple example in
order to illustrate the various factorability conditions. Let
a, b, ¢ be three fixed real constants such that either ¢ 0 or
ab# 0. Consider with m= p =2 the transfer matrix W
over R[#] with entries

w,=(a+c8?)/(s—1) (
W =(s+1—8)/[s>—8s+(8—c8>—1-b)].
(
(

[T L] »

We use the Laplace variable “s” instead of “z” in order to
emphasize here that we are viewing (6.25) as a family of
continuous-time transfer matrices, parameterized by . The
canonical realization has dimension 3 and is given up to
1somorphism by the system

Xy =t (6.26a)
Xy =Xy +(h+c8)x;+ u, (6.26b)
xy=x, (0~ 1)x, (6.26¢)
v, =(a+c8?)x, (6.26d)
vy = X5 (6.26¢)

This is indeed canonical: the determinant of

[G. Fg,] (6.27)
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1s always =1 (so the system is reachable). while the de-
terminant of

[#H'.Fh] (6.28)
15 (u+(-03)(h+(-03). which 1s nonzero as a polynomial
(giving observability).

To check the different factorability conditions for W. it
is enough to study (6.26). Assume first that ab = 0. but
¢=10. Then the determinant in (6.28) is a nonzero constant.
S0 (6.26) is coreachable. Thus W sphits for these values.
Consider now the matrix

[sl - F]

uo |
Assume that ¢=1. b=0. and o is positive. The rows
(4.5.2) of (6.29) give the minor — 6°(a + 87). The svstems
(6.26) are then all observable unless # = 0. But for ¢ = 0 the
system 1s nonetheless detectable. since rows (4.5.3) give a
minor a(s + 1). which only has a root at s = — 1. (Intui-
tively, from (6.26) it is clear that § =0 destroys observa-
bility of x; from x,. but in that case the x, coordinate
asymptotically tracks x,.) Thus the family is detectable as
a system over the ring R[6} and the given Hurwitz set. One
concludes that the original W has proper stable left and
right factorizations. (Note that since we chose W symmet-
ric. itis trivial in this case to obtain an asycontrollable and
coreachable realization as claimed by the equivalence of 3)
and 4) in Theorem 6.15: it is enough to take the transpose
(dualy of the given realization.

Assume finally that the constants are ¢ =1, b= 0. and
that a is nonpositive. Then the family is not detectable.
Indeed. for some 6. the first column of (6.29) vanishes at
s =1 (ie.. x, is unstable and unobservable). So W has no
possible Bezout factorizations of the types studied in this
paper. and no realization of W can be made internally
stable using a polynomially parameterized family of regula-
tors.

(6.29)
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