
Theoretical Computer Science 262 (2001) 161–189
www.elsevier.com/locate/tcs

A polynomial-time algorithm for checking equivalence
under certain semiring congruences motivated by the
state-space isomorphism problem for hybrid systems�

Bhaskar DasGuptaa ;∗;1, Eduardo D. Sontagb ; 2

aDepartment of Computer Science, Rutgers University, Camden, NJ 08102, USA
bDepartment of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Received 6 July 1999; revised 23 February 2000; accepted 27 April 2000
Communicated by M. Nivat

Abstract

This paper presents a polynomial-time algorithm for equivalence under certain semiring con-
gruences. These congruences arise when studying the isomorphism of state spaces for a class of
hybrid systems. The area of hybrid systems concerns issues of modeling, computation, and con-
trol for systems which combine discrete and continuous components. The subclass of piecewise
linear (PL) systems provides one systematic approach to discrete-time hybrid systems, naturally
blending switching mechanisms with classical linear components. PL systems model arbitrary
interconnections of 7nite automata and linear systems. Tools from automata theory, logic, and
related areas of computer science and 7nite mathematics are used in the study of PL systems, in
conjunction with linear algebra techniques, all in the context of a “PL algebra” formalism. PL
systems are of interest as controllers as well as identi7cation models. Basic questions for any
class of systems are those of equivalence, and, in particular, whether state spaces are equivalent
under a change of variables. This paper studies this state-space equivalence problem for PL sys-
tems. The problem was known to be decidable, but its computational complexity was potentially
exponential; here it is shown to be solvable in polynomial time. c© 2001 Elsevier Science B.V.
All rights reserved.

Keywords: Hybrid systems; Piecewise-linear systems; State-space equivalence; Semiring
congruences; Polynomial-time algorithms

� An Extended Abstract of these results without most proofs appeared under the title A Polynomial-Time
Algorithm for an Equivalence Problem which Arises in Hybrid Systems Theory in proceedings of the 37th
IEEE Conference on Decision and Control, December 1998, IEEE Publications, pp. 1629–1634

∗ Corresponding author.
E-mail addresses: bhaskar@crab.rutgers.edu (B. DasGupta), sontag@control.rutgers.edu (E.D. Sontag).
1 Supported in part by US Air Force Grant AFOSR-97-0159 and by NSF Grant CCR-9800086.
2 Supported in part by US Air Force Grant AFOSR-97-0159.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00188 -2

162 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

1. Introduction

Let S=N[x; y] denote the collection of all polynomials in two commuting variables
with non-negative integer coeIcients. This set can be seen as a semiring, that is, sums
and products obey all the usual rules, except that elements do not have additive inverses,
i.e. one cannot “subtract”.
Let �= {�1; �2; �3} denote the following set of three equalities:

�1: x = 2x + 1;

�2: y2 = 2y2 + y;

�3: y = x + y + 1:

Let �i and �i denote the left-side and right-side, respectively, of the equality �i ∈ �
(i.e., �1 is x, �1 is 2x+ 1, etc.). We let =� be the semiring congruence generated by
these equalities. Explicitly, this is de7ned as follows.

De�nition 1.1. Given two polynomials P(x; y) and Q(x; y) in S; of same degree n;
we say that P(x; y) is equivalent to Q(x; y) modulo the equalities in �, or just that P
is equivalent to Q modulo �, provided that there is some sequence of polynomials

P(x; y) = R0(x; y); R1(x; y); R2(x; y); : : : ; Rt(x; y) = Q(x; y)

with each Ri(x; y)∈S, such that for every i ¿ 0, there are decompositions

Ri(x; y) = A(x; y)C(x; y) + T (x; y) and Ri−1(x; y) = B(x; y)C(x; y) + T (x; y);

where C(x; y); T (x; y)∈S, with the property that B(x; y) is obtained from A(x; y) by
applying one of the equalities in � in either direction (i.e., either B(x; y)= �i and
A(x; y)= �i for some i, or B(x; y)= �i and A(x; y)= �i for some i).

We use the notation P(x; y)=� Q(x; y) to denote two polynomials equivalent as per
De7nition 1.1, and let �=� denote the negation of the relation =� .

Example. 2x2 + 2y2 + y=� 5x2 + 2y2 + 4x + y + 1, since

2x2 + 2y2 + y= x2 + x2 + 2y2 + y =� x2 + (2x + 1)2 + 2y2 + y

= �5x2 + 2y2 + 4x + y + 1:

On the other hand, clearly y2 + y �=� x2.
Notice that P(x; y)=� Q(x; y) if and only if Q(x; y)=� P(x; y), since each equality

in � can be applied in either direction, and hence =� is an equivalence relation
on S.
An alternative way of stating the equivalence in De7nition 1.1 is directly from the

de7nition of semiring congruence and is as follows:

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 163

De�nition 1.2 (Equivalent to De4nition 1:1). Let � be the smallest equivalence rela-
tion so that
• A(x; y)�A(x; y) for all A(x; y)∈S,
• x� 2x + 1,
• y2 � 2y2 + y,
• y� x + y + 1,
• A(x; y)B(x; y)�C(x; y)D(x; y) if A(x; y)�C(s; y) and B(x; y)�D(x; y),
• A(x; y) + B(x; y)�C(x; y) + D(x; y) if A(x; y)�C(s; y) and B(x; y)�D(x; y).
Then, P is equivalent to Q modulo � if and only if P and Q are in the same equivalence
class of the equivalence relation �.

Our goal is to develop an eIcient algorithm for deciding the following question:
Given P and Q, is P=� Q?. It was shown in [17] that this question is algorithmically
decidable. Two alternative proofs were sketched there, which were based, respectively,
on the algorithms given for related semiring problems in the papers [6, 8]. However,
no eIcient algorithm was known for this procedure, nor was there a proof that the
problem is intrinsically hard, i.e. NP-hard. The purpose of this paper is to give a
polynomial-time algorithm to decide if P(x; y)=� Q(x; y). Moreover, we provide an
equivalence test based on the existence of canonical forms for elements on each class,
which should be of independent interest.
Regarding the precise meaning of “polynomial-time computation”, one should recall

here that this term can be understood in two diMerent ways. The 7rst, the unit cost
model, is intended to capture the algebraic complexity of a problem [5]; in that model,
each arithmetic and comparison operation on two real numbers is assumed to take unit
time. An alternative, the logarithmic cost model, is closer to the notion of computa-
tion in the usual Turing machine sense (e.g. see [7]); in this case one assumes that
each coeIcient of the two given polynomials is an integer with at most B bits, each
arithmetic and comparison operation on two B bit integers takes O(B) time, and the
time involved in the decision procedure is required to be polynomial on B as well. For
convenience, we will just write O(�) time to denote a running time of O(�) in the
unit-cost model or a running time of O(�B) in the logarithmic-cost model (where B is
the maximum number of bits needed to represent any integer involved in the arithmetic
operations in the logarithmic-cost model).
The main theorem of this paper is the following.

Main Theorem. Given any two polynomials P;Q∈S, each of degree at most n,
whether P=� Q or not can be decided in O(n2) time. Moreover, if P=� Q, then a
sequence of applications of the equalities from � (in either direction) transforming P
to Q can be computed in O(n2) time.

The proof of the main theorem extends over the following few sections. Notice that
the time taken by our algorithm for the unit-cost model is optimal within a constant
factor in the worst case, since the polynomials have O(n2) coeIcients. Similarly, the

164 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

time for the logarithmic-cost model is also optimal within a constant factor in the worst
case.
We assume that both given polynomials have the same degree, since application

of any equality in � preserves the degree of the polynomial. Unless otherwise stated
explicitly, the following notations and conventions will be used throughout the rest of
the paper. We will omit the indices in any summation

∑
i; j¿0;i+j6n, and denote such a

sum simply by
∑

. In general, P(x; y)=
∑

pi; jxiy j ∈S and Q(x; y)=
∑

qi; jxiy j ∈S

will denote the two degree n polynomials involved in the decision procedure (with the
condition that there exists some i′; i′′; j′; j′′, i′+j′ = i′′+j′′ = n such that pi′ ; j′ ; qi′′ ; j′′ ¿
0). We also assume, without loss of generality, that n¿1; otherwise one cannot apply
any rule from � to a given polynomial of degree 0, and hence two degree 0 polynomials
are transformable to each other if and only if they are identical. Sometimes we will
omit the variables for clarity and simply refer to the two polynomials as P and Q. For
the logarithmic cost model, we will also assume that each pi; j and qi; j is at most B
bits long for some B ¿ 0.

The following conventions are used throughout the paper in writing the algorithm for
the proof of the Main Theorem. We write the algorithms in pseudo-code (which can
be directly implemented in a standard programming language such as C or PASCAL).
Comments are enclosed between /* and */ to explain the rationale behind various steps.
A for loop of the form

for i= x; x + 1; : : : ; y do
...

endfor

gets executed y − x + 1 times (for i= x; x + 1; x + 2; : : : ; y, in that order) if y¿x,
and does not get executed at all if y ¡ x (this is the same way for loops work in a
language such as C). Similarly, a for loop of the form

for i= x; x − 1; : : : ; y do
...

endfor

gets executed y− x+ 1 times (for i= x; x− 1; x− 2; : : : ; y, in that order) if y6x, and
does not get executed at all if y ¿ x.
The rest of the paper is organized as follows. In Section 2 we discuss the general

connection of the results in this paper with the area of hybrid systems; this entire sec-
tion contains no new material, and is included for motivational reasons only. The class
of PL systems is de7ned in Section 2.1, and it is explained why it is precisely the
problem mentioned in Section 1 that needs to be solved in order to solve a state-space
equivalence problem. In Section 3 we discuss some preliminary results and show that
an alternative way of looking at the given problem is via valid operations. In Sec-
tion 4, we discuss some techniques to adjust the coeIcients via valid operations. In
Section 5, we give a necessary and suIcient condition under which a polynomial

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 165

can be transformed to another via valid operations. In Section 6, we provide solu-
tion for the transformability problem for the simpler case when both the polynomials
are in one variable x. Section 7 discusses the general case of two-variable polyno-
mials and proves the main theorem. We conclude in Section 8 with some closing
remarks.

2. Motivations from hybrid systems

The research works reported in this paper lie in the area of hybrid systems, which
concerns itself with issues of modeling, computation and control for systems which
combine discrete and continuous components. There are two main motivations for the
study of hybrid systems. The 7rst is the need to model and control devices whose
description includes logical as well as continuous variables, as found routinely in con-
sumer electronics. The second is the need for switching mechanisms when controlling
even simple purely continuous systems (see for instance [19, Section 5:9]). These mo-
tivations have given rise to a large amount of research dealing with diMerent aspects
of hybrid theory. See, for instance, the many papers in the volumes [3, 12], and papers
such as [4] for current control research.
This paper deals exclusively with computational complexity questions related to hy-

brid systems, in the style of the papers [1, 2, 9–11, 13, 14], and more speci7cally, in
the context of the class of discrete-time PL systems.
In [16], the second author introduced an approach to hybrid systems modeling, via

the class of piecewise linear (PL) systems. This class of systems allows the blend-
ing of switching mechanisms with classical linear components, and models arbitrary
interconnections of 7nite automata and linear systems. Tools from automata theory,
logic, and related areas of computer science and 7nite mathematics are used in the
study of PL systems, in conjunction with linear algebra techniques, and combined into
the logic formalism of the “PL algebra” introduced and developed in [17]. Besides
being mathematically natural, being the smallest class which is closed under intercon-
nections and which contains both linear systems and 7nite automata, PL systems may
be used as identi7cation models (by means of piecewise linear, e.g. linear spline, ap-
proximations), or as controllers for more general systems (the paper [16] established
the theoretical possibility of stabilizing rather arbitrary systems using PL controllers in
sample-and-hold mode).
Among the most basic questions which can be asked about any class of systems are

those regarding equivalence, such as: given two systems, do they represent the same
dynamics under a change of variables? As a preliminary step in answering such a
question, one must determine if the state spaces of both systems are isomorphic in an
appropriate sense. That is, one needs to know if an invertible change of variables is at
all possible. Only later can one ask if the equations are the same. For classical, 7nite-
dimensional linear systems, this question is trivial, since only dimensions must match.
For 7nite automata, similarly, the question is also trivial, because the cardinality of the

166 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

state set is the only property that determines the existence of a relabeling of variables.
For other classes of systems, however, the question is not as trivial, and single numbers
such as dimensions or cardinalities may not suIce to settle the equivalence problem.
For example, if one is dealing with continuous time systems de7ned by smooth vector
7elds on manifolds, the natural changes of variables are smooth transformations, and
thus a system whose state space is a unit circle cannot be equivalent to a system whose
state space is the real line, even though both systems have “dimension” one. Another
illustration, more relevant to the present paper, is provided by systems whose variables
are required to remain bounded, for instance, because of saturation eMects; a state-space
like the unit interval [−1; 1] looks very diMerent from the unbounded state-space R,
even though both have dimension one.
In this paper, we study this state-space equivalence problem for the PL systems

studied in [16], under PL changes of variables. The main result provides a polynomial-
time algorithm for the checking of PL isomorphism, assuming that the state space is
represented in the speci7c normal form (“labels”) introduced in [16]. BriePy, the paper
[17] showed the decidability (recursive computability) of the equivalence problem,
but the algorithm that would result from the discussion given there has in principle
exponential time complexity (cf. [18] for some questions of quanti7er elimination raised
by that work). Obviously, having a polynomial-time algorithm should have a major
impact on future studies of PL systems.

2.1. PL systems

Piecewise linear (or more precisely, piecewise-aIne) systems, in the sense de7ned
in [16], are discrete-time systems described by equations x(t + 1)=P(x(t); u(t)) (we
write simply “x+ =P(x; u)”) for which the transition mapping P is a PL map, that is,
there is a decomposition of the state-space X and the input value set U into 7nitely
many pieces, such that, in each of these pieces, the mapping P is given by an aIne
function. The decomposition is required to be polyhedral, meaning that each piece is
described by a set of linear equalities and inequalities.
For example, linear systems arise in the particular case in which there is just one

region. But the PL system paradigm includes many more situations of interest, such as,
to take just a few examples, linear systems x+ =Ax + B sat (u) (sat (u1; : : : ; um) is the
vector whose ith component is ui if |ui|61 and sign (ui) otherwise) whose actuators
are subject to saturation, switched systems x+ =Aix+ Biu, where the choice of matrix
pair (Ai; Bi) depends on a set of linear constraints on current inputs and states, or
systems x+ = sat (Ax + Bu) for which underPows and overPows in state variables must
be taken into account.
As part of the speci7cation of a PL system, one includes explicit constraints on

controls and states. Thus, the state space and control-value sets are taken to be subsets
X and U of Rn and Rm, respectively, which indicate a priori restrictions on the allowed
ranges of variables. To make the theory stay “piecewise linear”, we ask that these sets
be de7nable in terms of a 7nite number of linear equalities and inequalities. Finite sets

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 167

are included (n independent linear equalities specify each point), and in this way all
7nite automata are included as well.
Arbitrary interconnections of linear systems and 7nite automata can be modeled by

PL systems, and vice versa. More precisely, given any 7nite automaton with state space
Q, input-value space T , and transition function � :Q×T →Q, we allow the state q of
the automaton to control switching among |Q| possible linear dynamics:

x+ = Aqx + Bqu+ cq;

q+ = �(q; h(x; u));

where A1; : : : ; A|Q| are matrices of size n× n, B1; : : : ; B|Q| are matrices of size n×m,
and c1; : : : ; c|Q| are n-vectors, and where h :Rn×Rm→T is a PL map (representing
quantized observations of the linear systems). For a proof of this equivalence between
PL systems and interconnections, as well as for precise de7nitions of PL systems and
more discussion and examples, see the second author’s paper in [3].
A more mathematically elegant de7nition of PL sets and maps can be given, as

follows. The PL subsets of Rn are those belonging to the smallest Boolean algebra
that contains all the open half-spaces of Rn. A map f :X →Y between two PL subsets
X and Y of Ra and Rb, respectively, is a PL map if its graph is a PL subset of Ra×Rb.
By a PL set one means a PL subset of some Rn. Finally, a PL system is a discrete-time
system x+ =P(x; u) with PL state and input value sets and PL transition P.
Two PL sets X and Y are PL isomorphic if there are PL maps f :X →Y and

g :Y →X such that f ◦ g and g ◦ f both equal the identity, that is, y=f(x) is a
bijective piecewise linear map.
A PL isomorphism is nothing else than an operation of the following type: make

a 7nite number of cuts along a set of lines (or segments), apply an aIne (linear
plus translation) transformation to each piece (not dropping any lower-dimensional
pieces), and 7nally paste it all together. As an example, let us take the interior of
the triangle in R2 obtained as oc {(0; 0); (1; 1); (2; 0)}, where we are using “oc ” to
indicate the interior of the convex hull of the corresponding points. (We can also
de7ne this set, of course, as the intersection of the three hyperplanes x2 ¿ 0, x1 −
x2 ¿ 0, and x1 + x2 ¡ 2.) We now show that this triangle is PL isomorphic to the
interior of the open square with vertices (0; 0), (1; 1), (0; 1), and (1; 0). First, we cut
along the segment S1 = oc {(1; 0); (1; 1)}, obtaining the union of S1, S2, and S3, where
S2 = oc {(0; 0); (1; 0); (1; 1)} and S3 = oc {(1; 1); (1; 0); (2; 0)}. Next, we apply the aIne
transformation

Tx =

(
0 1

1 1

)
x −

(
0

1

)

to change S3 into S ′3 = oc {(1; 1); (0; 0); (0; 1)}. Finally, we apply the aIne transforma-
tion

Tx =

(
1 1

0 1

)
x −

(
1

0

)

168 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

Fig. 1. Example: triangle is PL isomorphic to square.

to change S1 into the missing diagonal S ′1 = oc {(0; 0); (1; 1)}, and we glue it all back,
see Fig. 1.
One of the main results in the paper [17] provided a classi7cation of PL sets under

isomorphism. The critical step in this classi7cation is to associate to each PL set X
a “label” with the property that two spaces X and Y are isomorphic if and only if
their labels are related in a certain manner. (By analogy, two 7nite-dimensional real
vector spaces are linearly isomorphic if and only if their dimensions are the same, i.e.,
letting the “label” be the dimension, if their labels coincide. But in the PL case, single
integers do not suIce as “labels”.)
Labels are, by de7nition, polynomials in two variables x; y with non-negative integer

coeIcients. We let S=N[x; y] denote the collection of all such polynomials. Examples
of labels are 1, x, y, x3, 1 + xy + x2, etc. We interpret the sum in S as union
of disjoint sets and the product as Cartesian product of sets, the unit 1 as a one-
element set, the variable x as the open interval (0; 1), and the variable y as the half-
line (0;+∞). Thus, x3 is an open cube, and 1 + xy + x2 is the union of a point, a
disjoint set (0; 1)× (0;+∞), and a unit square disjoint from both. One may decompose
any PL set into a 7nite union (algebraically, a sum) of objects each of which is
linearly isomorphic to a monomial in x and y. (Simplicial decompositions provide a
way to do this.) In this manner, a label (non-unique) can be associated to each PL
set.
Certain formal equalities are easy to establish. Splitting the interval x as

(0; 1) = (0; 12 ∪ { 1
2}) ∪ (12 ; 1);

and then using aIne maps (t �→ 2t and t→ 2t−1, respectively) to map the 7rst and last
interval to x, we obtain “x=2x+1”. On the other hand, the split y=(0;+∞)= (0; 1)∪
{1}∪ (1;+∞) (and t �→ t−1 applied to the last set) gives us the identity “y= x+1+y”.
Drawing a bisecting line through the 7rst quadrant in R2 gives “y2 =y2 + y + y2”
(using, e.g., the linear transformation (t1; t2) �→ (t1 − t2; t2) to send the lower triangle
{(t1; t2)|t1 ¿ 0; t1 ¿ t2} to y2), see Fig. 2. It was shown in [17] that these three
identities are enough, in the sense that two sets are isomorphic if and only if their
labels can be obtained from each other by using repeatedly these elementary identities.
In this paper, we take this result as a starting point.

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 169

Fig. 2. Elementary equivalences.

3. Some preliminary results

Let R=
∑

ri; jxiy j be an intermediate polynomial in a transformation from P to Q
(initially, R=P).

De�nition 3.1. A monomial application of an equality from � (in either direction) is
an application of an equality of the type C�i =C�i (in either direction) for some i
where C is a monomial (i.e., C = xjy k for some indices j and k).

It is easy to see that, without any loss of generality, it is suIcient to consider only
monomial application of equalities from � in any transformation of P to Q. Indeed,
consider any non-monomial application of equalities from � in the form C�i =C�i
where C is not a monomial. Let C =C1 + C2 + · · · + C‘ where C1; C2; : : : ; C‘ are
monomials. Then, this is equivalent to ‘ monomial applications of equalities from �
of the form: C1�i =C1�i, C2�i =C2�i; : : : ; C‘�i =C‘�i.
Hence, from now onwards we will consider only monomial applications of equalities

from � in our subsequent discussions whenever we apply an equality from � in either
direction.

De�nition 3.2. An elementary application of an equality from � is one application of
an equality from � (in either direction) that changes two coeIcients of R by exactly
1. A non-elementary application of an equality from � is one application of an equality
from � which is not an elementary application.

Observation 3.1. One elementary application of an equality from � changes the co-
e9cients of R in one of the following manners:
(a) Substituting x by 2x+1 (forward direction of rule �1). Assume that the substi-

tution involves the term ri; jxiy j (with i; ri; j �=0) and is of the form

ri; jxiy j =� (ri; j − 1)xiy j + xi−1yj(2x + 1) = (ri; j + 1)xiy j + xi−1yj:

This is equivalent to increasing both ri; j and ri−1; j by 1; as long as i; ri; j ¿ 0.

170 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

(b) Substituting 2x + 1 by x (backward direction of rule �1). Assume that the sub-
stitution involves the terms ri; jxiy j and ri−1; jxi−1yj and is of the form:

ri; jxiy j + ri−1;jxi−1yj = (ri; j − 2)xiy j + (ri−1;j − 1)xi−1yj + xi−1yj(2x + 1)

=� (ri; j − 2)xiy j + (ri−1;j − 1)xi−1yj + xiy j

= (ri; j − 1)xiy j + (ri−1;j − 1)xi−1yj:

This is equivalent to decreasing both ri; j and ri−1; j by 1, as long as ri; j ¿ 1,
ri−1; j ¿ 0, and i ¿ 0.

(c) Substituting y2 by 2y2+y (forward direction of rule �2). By a similar reasoning
as in (a), this is equivalent to increasing both ri; j and ri; j−1 by 1, as long as
j ¿ 1 and ri; j ¿ 0.

(d) Substituting 2y2 + y by y2 (backward direction of rule �2). By a similar rea-
soning as in (b), this is equivalent to decreasing both ri; j and ri; j−1 by 1, as
long as j ¿ 1, ri; j ¿ 1 and ri; j−1 ¿ 0.

(e) Substituting y by x+y+1 (forward direction of rule �3). By a similar reasoning
as in (a), this is equivalent to increasing both ri; j−1 and ri+1; j−1 by 1, as long
as j; ri; j ¿ 0 and i ¡ n.

(f) Substituting x + y + 1 by y (backward direction of rule �3). By a similar
reasoning as in (b), this is equivalent to decreasing both ri; j−1 and ri+1; j−1 by
1, as long as j; ri; j ; ri; j−1; ri+1; j−1 ¿ 0 and i ¡ n.

Lemma 3.1. A non-elementary application of an equality from � can be simulated
by a sequence of elementary applications of the same equality from �.

Proof. We show the simulation for the case when 2x+1 is substituted by x; the other
cases are analogous. Consider the following non-elementary application of the equality
(for some c; i ¿ 0, ri; j¿2c, ri−1; j¿c):

ri; jxiy j + ri−1;jxi−1yj = (ri; j − 2c)xiy j + (ri−1; j − c)xi−1yj + cxi−1yj(2x + 1)

=� (ri; j − 2c)xiy j + (ri−1; j − c)xi−1yj + cxiy j

= (ri; j − c)xiy j + (ri−1; j − c)xi−1yj:

This can be simulated by c elementary applications of the same equality in the following
manner:

ri; jxiy j + ri−1; jxi−1yj =� (ri; j − 1)xiy j + (ri−1; j − 1)xi−1yj

(7rst elementary application)

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 171

=� (ri; j − 2)xiy j + (ri−1;j − 2)xi−1yj

(second elementary application)

...

=� (ri; j − c)xiy j + (ri−1;j − c)xi−1yj

(last elementary application):

(Observe that only ri; j ¿ c and ri−1; j ¿ c − 1 are required when proceeding in this
way, applying the transformations repeatedly.)

By Lemma 3.1, it is suIcient to restrict our attention only to sequences of elemen-
tary (monomial) applications of the equalities from �.

For the purpose of proofs and descriptions of algorithms, it will be extremely con-
venient to describe the total eMect of a sequence of c ¿ 0 elementary applications of
the same equality from � on the same coeIcients.
Repeating Observation 3:1 c times on the same coeIcients gives rise to the following

observation.

Observation 3.2. A sequence of c ¿ 0 elementary application of the same equality
from � on the same coe9cients changes these coe9cients of R in one of the following
manners:
(a) Substituting x by 2x + 1 (forward direction of rule �1). This is equivalent to

increasing both ri; j and ri−1; j by c, as long as i; ri; j ¿ 0.
(b) Substituting 2x + 1 by x (backward direction of rule �1). This is equivalent to

decreasing ri; j and ri−1; j by c as long as ri; j ¿ c, ri−1; j ¿ c − 1 and i ¿ 0.
(c) Substituting y2 by 2y2 + y (forward direction of rule �2). This is equivalent to

increasing both ri; j and ri; j−1 by c, as long as j ¿ 1 and ri; j ¿ 0.
(d) Substituting 2y2+y by y2 (backward direction of rule �2). This is equivalent to

decreasing both ri; j and ri; j−1 by c, as long as j ¿ 1, ri; j ¿ c and ri; j−1 ¿ c−1.
(e) Substituting y by x+ y+1 (forward direction of rule �3). This is equivalent to

increasing both ri; j−1 and ri+1; j−1 by c, as long as j; ri; j ¿ 0 and i ¡ n.
(f) Substituting x+y+1 by y (backward direction of rule �3). This is equivalent to

decreasing both ri; j−1 and ri+1; j−1 by c, as long as j; ri; j ¿ 0, ri; j−1; ri+1; j−1¿c
and i ¡ n.

De�nition 3.3. A valid operation on the coeIcients of a polynomial R∈S is one of
the following operations:
• For some ri; j ¿ 0, do one of the following:
Move I(a): if i ¿ 0, increase both ri; j and ri−1; j by an arbitrary integer c ¿ 0.
Move I(b): if j ¿ 1, increase both ri; j and ri; j−1 by an arbitrary integer c ¿ 0.

172 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

Move I(c): if j ¿ 0, increase both ri; j−1 and ri+1; j−1 by an arbitrary integer c ¿ 0.
Move I(d): if j ¿ 0, ri; j−1; ri+1; j−1¿c for some arbitrary integer c ¿ 0, decrease

both ri; j−1 and ri+1; j−1 by c.
• For some ri; j ¿ c ¿ 0, do one of the following:
Move II(a): if i ¿ 0 and ri−1; j¿c, decrease both ri; j and ri−1; j by c.
Move II(b): if j ¿ 1 and ri; j−1¿c, decrease both ri; j and ri; j−1 by c.

Note that these rules correspond, respectively, to (a), (c), (e), (f), (b), and (d) in
Observation 3:2.
Hence, the problem to decide if P=� Q can be alternatively formulated in terms of

valid operations as follows.
Instance: Two polynomials P;Q∈S.
Question: Is there a sequence of zero or more valid operations that changes the

coeIcients of P such that at the end pi; j = qi; j for all i and j?

De�nition 3.4. For a coeIcient ri; j of a polynomial R∈S, the neighbors of ri; j, de-
noted by N (ri; j), is the set of (at most 4) coeIcients ri′ ; j′ such that |i−i′|+|j−j′|=1.

We will, from now on, interchangeably look at either the original problem or at
the above formulation of the problem through valid operations, whichever is more
convenient for our purpose.

4. Some techniques on modifying coe'cients

In this section, we discuss some results and techniques to modify the coeIcients
ri; j of R∈S by valid operations, where R is assumed to be a polynomial of degree n
obtained by performing zero or more valid operations on P.

Lemma 4.1. Let ri; j ¿ 0 for some indices i and j; K ¿ 0 be an arbitrary positive
integer and L ¡ ri; j be an arbitrary non-negative integer. Then; there is a sequence
of at most O(n) valid operations changing the coe9cients of R such that the 4nal
values of the coe9cients; r′i; j ; satisfy one or more of the following (coe9cients not
explicitly mentioned do not change their values):

(a) If i ¿ 0; then r′i′ ; j¿K for all i′′6i′¡i for any i′′¿0.
(b) If i ¿ 0; then r′i; j = ri; j − L and r′i′′ ; j is increased (if i′′ − i is even) or decreased

(if i′′ − i is odd) by L from its old value ri′′ ; j, for any i′′ satisfying 06i′′ ¡ i
and ri′′ ; j¿L.

(c) If i ¿ 0; then r′i; j = ri; j+K and r′i′′ ; j is increased or decreased by K from its old
value ri′′ ; j ; for any i′′ satisfying 06i′′¡i and ri′′ ; j¿K .

Proof. (a) Since ri; j ¿ 0, we can use the following sequence of valid operations, each
of type I(a): increase ri; j and ri−1; j by K ; then, increase ri−1; j and ri−2; j by K ; and

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 173

continue this way until we have increased the pair ri′′+1;j and ri′′ ; j by K . Obviously,
we need at most n valid operations.
(b) Assume L¿ 0, since otherwise there is nothing to do. Since ri; j ¿ 0, we can

use the following sequence of valid operations:

(i) If i′′¡i−1, we use a sequence of at most n valid operations (each of type I(a))
as described in part (a) (with K =L) to ensure that ri′ ; j ¿ L for all i′′¡i′6i.
Notice that, if i′′¡i − 1, then this step increases the values of the coeIcients
ri−1; j ; ri−2; j ; : : : ; ri′′−1; j by 2L and increases ri; j by L.

(ii) Use the following sequence of (at most n) alternately decreasing (type II(a))
and increasing (type I(a)) valid operations: decrease ri; j and ri−1; j by L; next,
increase ri−1; j and ri−2; j by L; next, decrease ri−2; j and ri−3; j by L; and so
forth, until we have performed valid operation on the pair ri′′−1; j and ri′′ ; j. Note
that this step restores the old value of ri; j, increases or decreases the value of
ri′′ ; j obtained after (i) by L, and leaves other coeIcients unchanged.

(iii) Finally, if i′′¡i − 1, we use the reverse sequence of valid operations as used
in (i) to decrease by 2L the coeIcients ri′ ; j for i′′¡i′¡i and decrease by
L the coeIcient ri; j. Notice that, if i′′¡i − 1, this step decreases the value
of ri; j obtained after (ii) by L (and, hence r′i; j = ri; j − L), and restores the
initial values of the coeIcients ri−1; j ; ri−2; j ; : : : ; ri′′−1; j (that is, r′i−1; j = ri−1; j,
r′i−2; j = ri−2; j ; : : : ; r′i′′−1; j = ri′′−1; j).

If i′′ = i′ − 1, then only step (ii) is performed, which produces the desired result.

(c) This is very similar to (b) above. We provide details of the steps below for the
sake of completeness:

(i) If i′′¡i − 1, we use a sequence of at most n valid operations (each of type
I(a)) as described in part (a) to ensure that ri′ ; j ¿ K for all i′′¡i′6i. No-
tice that, if i′′¡i − 1, then this step increases the values of the coeIcients
ri−1; j ; ri−2; j ; : : : ; ri′′−1; j by 2K and increases ri; j by K .

(ii) Use the following sequence of (at most n) alternately decreasing (type II(a))
and increasing (type I(a)) valid operations: increase ri; j and ri−1; j by K ; next,
decrease ri−1; j and ri−2; j by K ; next, increase ri−2; j and ri−3; j by K ; and so
forth, until we have performed valid operation on the pair ri′′−1; j and ri′′ ; j. Note
that this step increases the value of ri; j obtained after (i) by K , increases or
decreases the value of ri′′ ; j obtained after (i) by K , and leaves other coeIcients
unchanged.

(iii) Finally, if i′′¡i − 1, we use the reverse sequence of valid operations as used
in (i) to decrease by 2K the coeIcients ri′ ; j for i′′¡i′¡i and decrease by K
the coeIcient ri; j. Notice that, if i′′¡i− 1, this step decreases the value of ri; j
obtained after (ii) by K (and, hence r′i; j = ri; j+K), and restores the initial values
of the coeIcients ri−1; j ; ri−2; j ; : : : ; ri′′−1; j (that is, r′i−1; j = ri−1; j, r′i−2; j = ri−2; j,
: : :, r′i′′−1; j = ri′′−1; j).

If i′′ = i′ − 1, then only step (ii) is performed, which produces the desired result.

174 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

Fig. 3. Illustration of how +n(R) is calculated (for n=5) for a polynomial R∈Z[x; y]. The grid-point with
coordinates (i; j) stores the coeIcient ri; j . A “+” sign (resp., “−” sign) in the 7gure for the grid-point for
ri; j indicates that this element is added (resp., subtracted) in the summation of +n(R).

5. Necessary and su'cient conditions for transformability (and canonical forms)

In this section, we discuss some necessary (and, sometimes suIcient) conditions for
transforming the polynomial P to Q. First, we state an easy necessary condition.

Proposition 5.1. P=� Q implies
∑

i

∑
j pi; j =

∑
i

∑
j qi; j (mod 2).

Proof. Every valid operation on a polynomial increases or decreases the total sum of
all the coeIcients of the polynomial by an even integer.

The condition stated in Proposition 5.1 is obviously not suIcient, since, for example,
if P=y+1 and Q=2y+2, then

∑
i

∑
j pi; j =

∑
i

∑
j qi; j (mod 2), but P �=� Q. Hence,

we need to strengthen the condition.

De�nition 5.1. Let R=
∑

ri; jxiy j ∈S and n be the original degree of the given poly-
nomial P. De7ne the characteristic function +n :R �→ N to be the following function:

+n(R) =
n∑
i=0

n−i∑
j=0

(−1)n−j−iri; j :

Fig. 3 illustrates how +n(R) is calculated when n=5. Its idea is motivated by the
Euler characteristic 3 function of an abstract simplicial complex on a set (see [20]).
Notice that the sign of every coeIcient of R is exactly the opposite as that of any of

3 If fi is the number of faces of dimension i of an abstract simplicial complex ,, then the Euler charac-
teristic of , is

∑
i¿0

(−1)ifi

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 175

its (at most 4) neighbors. The number +n(R) can be computed trivially in O(n2) time.
Note that the Euler characteristic is intimately related to the de7nition of labels of PL
sets and the relations �; as a matter of fact, the paper [17], (p. 200, formula (3:28)
and following discussion) explains how the classical theorem on Euler characteristics
of polyhedra is a simple consequence of PL set theory.
Note that +n is a linear operator. From now on, for notational convenience, we will

drop the subscript n from +n with the understanding that the subscript is always the
degree of given polynomial P.

Lemma 5.1. Let P ∈S. Let P′ ∈S be any polynomial obtained by applying a valid
operation on P. Then; +(P′)=+(P).

Proof. De7nition 3.3 shows that a valid operation on the polynomial P either changes
both pi; j and pi−1; j by the same amount or it changes both pi; j and pi; j−1 by the same
amount, for some appropriate indices i and j. In the former case, since pi; j and pi−1; j

have opposite signs in the summation for +(P), the value of +(P) remains unchanged.
In the later case also, since pi; j and pi; j−1 have opposite signs in the summation for
+(P), the value of +(P) remains unchanged. Hence, +(P′)=+(P).

Lemma 5.2. Let P;Q∈S. Then; P=� Q implies +(P)=+(Q).

Proof. Suppose that P=� Q. We showed in Lemma 5.1 that if P is changed to P′ by
a single valid operation, then +(P)=+(P′). This proves (by induction on the length
of the transformation sequence) that the value of +(P) must be equal to +(Q).

Corollary 5.1. Let P and Q di=er in exactly one coe9cient. Then; P �=� Q.

Notice that +(P)=+(Q) implies
∑

i

∑
j pi; j =

∑
i

∑
j qi; j (mod 2). However, the

conditions stated in Lemma 5.2 is still not suIcient. For example, again if P=y + 1
and Q=2y+2, then +(P−Q)= 0, but P �=� Q. Hence, we need to further strengthen
the condition in Lemma 5.2.

De�nition 5.2. For any polynomial R=
∑

ri; jxiy j ∈S, de7ne R1 =
∑n

i= 0 ri;0 x
i and

R2 =R− R1 (notice that R1; R2 ∈S).

Now, we have the following lemma.

Lemma 5.3. If P=� Q; then +(P1)=+(Q1) and +(P2)=+(Q2).

Proof. There is no valid move that changes two coeIcients of P one of which is
in P1 and the other in P2. Hence, the result follows using a proof similar to that of
Lemma 5.2 separately on the polynomial pairs P1; Q1 and P2; Q2.

176 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

Notice that, by linearity of the function +, +(P1)=+(Q1) and +(P2)=+(Q2) also
implies +(P)=+(Q). Unfortunately, the condition stated in Lemma 5.3 is still not
a suIcient condition. For example, consider the two polynomials P= xy2 + x5 and
Q= x3y2 + x5, each of degree 5 (n=5). Hence, P1 =Q1 = x5, P2 = xy2, Q2 = x3y2

and +(P1)=+(P2)=+(Q1)=+(Q2)= 1. But, it can be easily veri7ed that P �=� Q,
since no sequences of valid operations on P can increase the coeIcient p3; 2 to a
non-zero value.
To develop a necessary as well as suIcient condition for transformability, we need

to state a few more de7nitions.

De�nition 5.3. Given a polynomial P ∈S, the transitive closure of P, denoted by
Trans(P), is the (in7nite) family of all polynomials in which each polynomial P′ =∑

i; j p
′
i; jx

iy j in the family is obtained by applying zero or more valid operations on
P such that the coeIcients of P′ satisfy the following condition: if p′

i; j =0 for some
indices i and j, then there is no sequence of zero or more valid operations that can
increase p′

i; j to a non-zero value.

For example, if P=y2+x5, then y2+y+xy+2x5+2x4+x3+x2+2x+1 is a member
of Trans(P). Although Trans(P) is an in7nite family of polynomials, for the purpose
of this paper it suIces to compute just one member of Trans(P) in polynomial time.
The following is a high-level description of an algorithm to compute one member of
Trans(P) in O(n2) time.

done=FALSE
while (done=FALSE) do

if there is a valid operation which can increase the value of some pi; j from zero to one
perform this valid operation

else done=TRUE
endwhile

The above high-level description can be implemented to run in O(n2) time in the
following way.

for j= n; n− 1; : : : ; 0 do
for i= n− j; n− j − 1; n− j − 2; : : : ; 0 do

if pi; j ¿ 0 then
if i ¿ 1 and pi−1; j =0 then increase pi; j and pi−1; j by 1 (move I(a))
if j ¿ 1 and pi; j−1 = 0 then increase pi; j and pi; j−1 by 1 (move I(b))
if j ¿ 0 and i ¡ n and pi+1; j−1 = 0 then increase pi; j−1 and pi+1; j−1 by 1 (move I(c))

endfor
endfor

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 177

De�nition 5.4. The support set of a polynomial P ∈S, denoted by Support(P), is
de7ned as

Support(P) = { (i; j) |pi; j ¿ 0}

For example, if P=y2 + x5, then Support(P) is the set {(5; 0); (0; 2)}. Notice that
if P′ and P′′ are two members of Trans(P), then Support(P′)=Support(P′′). Now,
we are ready to state the necessary and suIcient conditions for transformability.

Lemma 5.4. P=� Q if and only if all of the following conditions are satis4ed:
(a) Degree of P is the same as degree of Q.
(b) +(P1)=+(Q1).
(c) +(P2)=+(Q2).
(d) Support(P′)=Support(Q′); where P′ and Q′ are any members of Trans(P) and

Trans(Q); respectively.
(Notice that all these conditions can be checked in O(n2) time.)

Lemma 5.4, in fact, shows the following canonical forms for a given polynomial
P ∈S of degree n ¿ 0.

Corollary 5.2 (Canonical forms). Let P ∈S be of degree n ¿ 0 and let P′ =
∑

p′
i; jx

i

y j be any member of Trans(P). Let 06j16n be the largest index in P′ such that
there exists some i with p′

i; j1 ¿ 0. For each 06j6j1; let ij be the largest index
in P′ such that p′

ij ;j ¿ 0. Then; P can be transformed; in O(n2) time; to a unique
polynomial of the form A + B; where the polynomial A is one of the following two
forms:

+(P1)x n if +(P1) ¿ 0;

x n + (1− +(P1))x n−1 if +(P1)60

and the polynomial B is one of the following six forms:

0 if j1 = 0

p0;1y if j1 = 1; i1 = 0

|+(P2)|xi1y if j1 = 1; i1 ¿ 0;

+(P2) ¿ 0; (−1)n−i1−1 ¿ 0

or; if j1 = 1; i1 ¿ 0;

+(P2) ¡ 0; (−1)n−i1−1 ¡ 0;

178 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

xi
1
y + (1 + |+(P2)|)xi1−1y if j1 = 1; i1 ¿ 0;

+(P2) ¿ 0; (−1)n−i1−1 ¡ 0

or; if j1 = 1; i1 ¿ 0;

+(P2) ¡ 0; (−1)n−i1−1 ¿ 0

or; if j1 = 1; i1 ¿ 0;

+(P2) = 0;

(
j1−1∑
j=1

xijy j

)
+ (1 + |+(P2)−

j1∑
j=1

(−1)n−j−ij |)xij1yj1

if j1 ¿ 1; +(P2)¿
j1∑
j=1

(−1)n−j−ij

and (−1)n−j1−ij1 ¿ 0

or; if j1 ¿ 1; +(P2) ¡
j1∑
j=1

(−1)n−j−ij

and (−1)n−j1−ij1 ¡ 0;(
j1∑
j=1

xijy j

)
+ (|+(P2)−

j1∑
j=1

(−1)n−j−ij |)xij1yj1−1

if j1 ¿ 1; +(P2)¿
j1∑
j=1

(−1)n−j−ij

and (−1)n−j1−ij1 ¡ 0

or; if j1 ¿ 1; +(P2) ¡
j1∑
j=1

(−1)n−j−ij

and (−1)n−j1−ij1 ¿ 0:

Proof. It can checked that for each canonical form, conditions (a)–(d) of Lemma 5.4
are satis7ed. Moreover, given two diMerent canonical forms, it can also be easily seen
that at least one of conditions (a)–(c) or (d) of Lemma 5.4 is violated.

Hence, to check if two polynomials are equal, one just needs to transform each of
them to their respective canonical form (via Corollary 5.2) and then check if the two
canonical forms are identical.

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 179

The “only if” part of Lemma 5.4 follows immediately from Lemma 5.3 and the
following lemma.

Lemma 5.5. If Support(P′) �=Support(Q′); then P �=� Q.

Proof. Assume Support(P′) �=Support(Q′) and let X =Support(P′) ⊕ Support(Q′)
�= ∅, where ⊕ is the set symmetric diMerence operator. Let (i; j) ∈ X . Assume, without
loss of generality, that p′

i; j ∈ P′ and q′i; j ∈ Q′ are the two coeIcients with p′
i; j ¿ 0

and q′i; j =0. Since Q′ is a member of Trans(Q), q′i; j cannot be changed to a non-zero
value by any sequence of valid operations. Hence, P �=� Q.

The “if” part of Lemma 5.4 will follow by a careful inspection of the algorithm in
the proof of the Main Theorem to be discussed in the next few sections.

6. The one-variable case

In this section we consider the simpler case when both P and Q are polynomials in
only one variable x (i.e., pi; j = qi; j =0 for all j ¿ 0). This simpler case is important be-
cause a technique similar to the one employed for its solution will be applied repeatedly
(with appropriate modi7cations) to solve the original problem. For notational conve-
nience, let us denote pj;0 (resp. qj;0) simply by pj (resp. qj). Notice that pn; qn¿0
(since both P and Q are of degree n) and +(P2)=+(Q2)= 0 (since P2 =Q2 = 0).
Moreover, Support(P′)=Support(Q′)= {(0; 0); (1; 0); (2; 0); : : : ; (n; 0)} for any P′ ∈
Trans(P) and Q′ ∈Trans(Q).

Theorem 6.1. In the one-variable case; P =� Q if and only if +(P1)=+(Q1).
Moreover; if P =� Q; then a sequence of valid operations transforming P to Q can
be computed in O(n) time.

Proof. It turns out that if P =� Q, then P can be transformed to Q by using only the
equality �1. The proof will be constructive and will produce an O(n) time algorithm to
give a sequence of transformations from P to Q (or, report that P �=� Q). The algorithm
works in two steps:
Step 1: Transform P to another polynomial P′ using the equality �1 such that P′

diMers from P in at most one coeIcient.
Step 2: Use Corollary 5.1 and transitivity to conclude that P =� Q if and only if

P′ is the same as Q.
Since Step 2 is trivial, we concentrate on Step 1. We assume +(P1)=+(Q1) (since

otherwise P �=� Q). We specify how to modify p0; p1; p2; : : : ; pn−2, in that order,
using valid operations corresponding to the equality �1, such that at the end we
have p0 = q0; p1 = q1; : : : ; pn−2 = qn−2. First, since pn¿0, use Lemma 4.1 (part (a))

180 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

to increase pn; pn−1; : : : ; p0 by at least 1. This takes O(n) time. Notice that, af-
ter this step, pi¿0 for all indices i and the value of +(P1) remains the same as
before.
Inductively, assume that before the ith step of coeIcient-correction (i=0; 1; 2; : : : ;

n − 2), we have already corrected the coeIcients p0; p1; : : : ; pi−1 (i.e., have en-
sured p0 = q0; p1 = q1; : : : ; pi−1 = qi−1), possibly by modifying some of the coeIcients
pi; : : : ; pn, but maintaining the following invariant: pi; pi+1; : : : ; pn¿0 before, during
or after the correction step. We now show how to correct the current value of pi (i.e.,
to ensure pi = qi if pi �= qi) and maintain the invariant that pi+1; pi+2; : : : ; pn¿0. There
are three cases to consider:
Case 1. pi¡qi. Then, since pi+1¿0, increase both pi and pi+1 by qi − pi (move

I(a)).
Case 2. pi¿qi and pi+1¿(pi − qi). Then, decrease both pi and pi+1 by pi − qi

(move II(a)).
Case 3. pi¿qi and pi+16(pi − qi). Then, (since pi+2¿0) 7rst increase both pi+1

and pi+2 by (pi − qi) − pi+1 + 1 (move I(a)). Then, decrease both pi and pi+1 by
pi − qi (move II(a)).
Hence, after the (n − 2)th step of coeIcient-correction, we have changed the co-

eIcients such that all but at most the leading two coeIcients, pn and pn−1, diMer
from their corresponding coeIcients qn and qn−1 in the polynomial Q. Finally, since
+(P1)=+(Q1), and the value of +(P1) does not change by any sequence of valid
operations, we must have pn − qn=pn−1 − qn−1. Also, remember that qn¿0 and
qn−1¿0. If pn¡qn, we increase both pn−1 and pn by |pn− qn|, otherwise, if pn¿qn,
we decrease pn−1 and pn by pn−qn. This completes the transformation. Our complete
algorithm is as shown in the next page.
It is clear that the total time taken by the above algorithm is O(n). Notice

also P can always be transformed to Q provided +(P1)=+(Q1). This completes the
proof.

The proof has actually shown, as well, the following interesting facts:

Corollary 6.1. In the one-variable case; given any two polynomials P and Q of
the same degree n; it is always possible to transform P in O(n) time; using valid
operations; to a polynomial P′ which di=ers from Q in at most the two coe9cients
pn−1 and pn.

Corollary 6.2 (Special case of Corollary 5.2). In the one-variable case; any polyno-
mial P ∈S of degree n¿1 can be transformed using O(n) valid operations to the
following polynomial:
• +(P)xn; if +(P)¿0.
• xn + (1− +(P))xn−1; if +(P)60.

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 181

if +(P1) =+(Q1) then

for i= n; n− 1; n− 2; : : : ; 1 do
increase pi and pi−1 by 1 (move I(a))

endfor

for i=0; 1; 2; : : : ; n− 2 do
if pi¡qi , increase pi and pi+1 by qi − pi (move I(a))
if pi¿qi and pi+1¿(pi − qi), decrease pi and pi+1 by pi − qi (move II(a))
if pi¿qi and pi+16(pi − qi) then

increase pi+1 and pi+2 by (pi − qi)− pi+1 + 1 (move I(a))
decrease pi and pi+1 by pi − qi (move II(a))

endif
endfor

if pn¡qn, increase pn−1 and pn by |pn − qn| (move I(a))
if pn¿qn, decrease pn−1 and pn by pn − qn (move II(a))
Now P must be identical to Q, hence report P =� Q and exit

else P �=� Q.
endif

Algorithm for the one-variable case (Section 6).

7. The two-variable case (original problem)

Now, we consider the original problem when both of P and Q, each of the same
degree n, have non-zero coeIcients for terms involving positive powers of y (i.e.,
P2; Q2 �=0). The main result of this section is as follows.

Lemma 7.1. Assume that all of the following conditions are satis4ed:
(a) Degree of P is the same as degree of Q.
(b) +(P1)=+(Q1)
(c) +(P2)=+(Q2)
(d) Support(P′)=Support(Q′); where P′ and Q′ are any members of Trans(P) and

Trans(Q); respectively.
Then; P =� Q. Moreover; a transformation sequence from P to Q can be computed

in O(n2) time.

The rest of this section is devoted to a proof of Lemma 7.1. Notice that Lemma
7.1, together with Lemmas 5.3 and 5.5, prove Lemma 5.4 and the main theorem.
Assume that conditions (a)–(d) of Lemma 7.1 hold. Notice that these conditions

can be checked in O(n2) time. We will transform both P and Q, if necessary, until
they become identical.

182 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

First, in Step 1, we replace P and Q by two members P′ and Q′ of Trans(P) and
Trans(Q), respectively. From the discussion following De7nition 5.3, this can be done
in O(n2) time. The algorithm for this part was already given in Section 5 following
De7nition 5.3 and is repeated merely for completeness.

for j= n; n− 1; : : : ; 0 do
for i= n− j; n− j − 1; n− j − 2; : : : ; 0 do

if pi; j¿0 then
if i¿1 and pi−1; j =0 then increase pi; j and pi−1; j by 1 (move I(a))
if j¿1 and pi; j−1 = 0 then increase pi; j and pi; j−1 by 1 (move I(b))
if j¿0 and i¡n and pi+1; j−1 = 0 then increase pi; j−1 and pi+1; j−1 by 1
(move I(c))

if qi; j¿0 then
if i¿1 and qi−1; j =0 then increase qi; j and qi−1; j by 1 (move I(a))
if j¿1 and qi; j−1 = 0 then increase qi; j and qi; j−1 by 1 (move I(b))
if j¿0 and i¡n and qi+1; j−1 = 0 then increase qi; j−1 and qi+1; j−1 by 1
(move I(c))

endfor
endfor

Step 1: Computing Trans(P) and Trans(Q).

Lemma 7.2. After Step 1; pn;0; qn;0¿0.

Proof. Since both P and Q are of degree n, we know that there exists indices i′; j′;
i′′; j′′ such that i′ + j′ = i′′ + j′′ = n and pi′ ;j′ ; qi′′ ;j′′¿0. The computation of P′ ∈
Trans(P) increases by one (in the given sequence) the pairs of coeIcients
(pi′ ; j′−1; pi′+1; j′−1); (pi′+1; j′−2; pi′+2; j′−2); : : : ; (pn−1;0; pn;0), and similarly the compu-
tation of Q′ ∈ Trans(Q) increases by one (in the given sequence) the pairs of co-
eIcients (qi′′ ;j′′−1; qi′′+1; j′′−1); (qi′′+1; j′′−2; qi′′+2; j′′−2); : : : ; (qn−1;0; qn;0). Hence, 7nally,
pn;0; qn;0¿0.

Now, since +(P1)=+(Q1) (and pn;0; qn;0¿0), by using the algorithm of Section 6
for the one-variable case on the polynomials P1 and Q1, we can change the coeIcients
of P1 such that P1 becomes identical with the polynomial Q1. This part of our algorithm
(Step 2) is shown below, which clearly takes O(n) time.
After Step 2, we need to transform P2 such that P2 becomes identical with Q2.

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 183

for i=0; 1; 2; : : : ; n− 2 do
if pi;0¡qi;0, increase pi;0 and pi+1;0 by qi;0 − pi;0 (move I(a))
if pi;0¡qi;0 and pi+1;0¿(pi;0 − qi;0), decrease pi;0 and pi+1;0 by pi;0 − qi;0
(move II(a))
if pi;0¡qi;0 and pi+1;06(pi;0 − qi;0) then

increase pi+1;0 and pi+2;0 by (pi;0 − qi;0)− pi+1;0 + 1 (move I(a))
decrease pi;0 and pi+1;0 by pi;0 − qi;0 (move II(a))

endfor

if pn;0¡qn;0, increase pn−1;0 and pn;0 by pn;0 − qn;0 (move I(a))
if pn;0¿qn;0, decrease pn−1;0 and pn;0 by pn;0 − qn;0 (move II(a))

Step 2: Transforming P1 to Q1.

Let 0¡j16n be the largest index such that there exists some i with pi; j1¿0. For
each 0¡j6j1, let ij be the largest index such that pij; j¿0. Since Support(P′)=
Support(Q′) (where P′ ∈Trans(P) and Q′ ∈Trans(Q)), the following observations
hold.

Observation 7.1. After Step 2, the following statements hold:
(a) pi; j =0 if and only if qi; j =0.
(b) j1 is also the largest index such that that there exists some i with qi; j1¿0.
(c) pi; j = qi; j =0 for all j¿j1 and any i.
(d) For each 0¡j6j1, ij is also the largest index such that qij ; j¿0.
(e) ij+1¡ij for every 0¡j¡j1 (due to applications of move I(c) in Step 1)).

The following straightforward O(n2) time algorithm computes the above indices.

7nd the largest index j1¿0 such that there exists some i with pi; j1¿0.
for j=1; 2; : : : ; j1 do

7nd the largest index 06ij6n− j such that pij; j¿0.
endfor

Step 3: Computing j1 and indices ij for 0¡j6j1

The remaining part of our algorithm has at most j1 steps (Step 4.1, Step 4.2,: : : ;
Step 4:j1). Consider the polynomials P1; P2; : : : ; Pj1 and Q1; Q2; : : : ; Qj1 , where

Pj =
ij∑

k=0
pk;jxky j; 16j6j1;

Qj =
ij∑

k=0
qk;jxky j; 16j6j1:

184 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

During Step 4:j (16j6j1), our goal is the following:
Step 4.j(a): If ij¿1, then transform Pj such that pk; j = qk; j for all 06k6ij − 2

(i.e., all but at most two leading coeIcients of Pj are equal to the corresponding
coeIcients of Qj) using the algorithm for the one-variable case (via Corollary 6.1).
Step 4.j(a) will only change the coeIcients of the polynomial Pj (if necessary), and
will not change any other coeIcient.
Step 4.j(b): Now, if necessary, 7x the two remaining coeIcients pij−1; j and pij; j

if ij¿0, or 7x the remaining coeIcient p0; j if ij =0. Step 4.j(b) will only change,
if necessary, the coeIcients of Pj and Qj, and the coeIcients of Pj+1 and Qj+1 if
j + 16j1; it will not change any other coeIcients.
So, a high-level description of our Step 4 is as follows.

j = 1
while (j6j1) do

execute Step 4.j(a)
execute Step 4.j(b)
increase j by 1

endwhile

A high level description of Step 4

We 7rst describe Step 4.j(a), assuming ij¿1. Consider applying Corollary 6.1 on
the polynomials (in one variable)

∑ij
k=0 pk; jxk and

∑ij
k=0 qk; jx

k , remembering that it
is already true that pk; j; qk; j¿0 for k =0; 1; : : : ; ij. Notice that each valid operation
needed for Corollary 6.1, multiplied on both sides by yj, is also a valid operation for
the given instance of the two-variable case which modi7es the coeIcients such that
pk; j = qk; j for all 06k6ij−2. Hence, Step 4.j(a) is as shown in the next page. Clearly,
Step 4.j(a) takes O(ij)=O(n) time and it changes, if necessary, only the coeIcients
of Pj.

Now, we turn our attention to the details of Step 4.j(b). Remember that pij; j ; qij ; j¿0.
First, we consider a few simple special cases:
Case 1: ij =0. Then, by Observation 7:1(e) j= j1. Moreover, since +(P2)=+(Q2),

p0; j = q0; j and hence P is identical to Q, completing our transformation and terminating
our algorithm.
Case 2: ij¿0 and j= j1. Since +(P2)=+(Q2), pij; j − qij ; j =pij−1; j − qij−1; j. Let

c=pij; j − qij ; j. If c¡0, we increase pij; j and pij−1; j by |c| (move I(a)). If c¿0, we
decrease pij; j and pij−1; j by c (move II(a)). After this, P is identical to Q, completing
our transformation and terminating our algorithm.
Case 3: ij =1. If j= j1, then this case is the same as Case 2. Otherwise, let j¡j1.

Then, by Observation 7:1(e), j1 = j + 1 and ij1 = 0 (hence, ij+1 = ij − 1).

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 185

if ij¿1 then
for k =0; 1; 2; : : : ; ij − 2 do

if pk; j¡qk; j , increase pk; j and pk+1; j by qk; j − pk; j (move I(a))
if pk; j¡qk; j and pk+1; j¿(pk; j − qk; j), decrease pk; j and pk+1; j by pk; j − qk; j
(move II(a))
if pk; j¡qk; j and pk+1; j6(pk; j − qk; j) then

increase pk+1; j and pk+2; j by (pk; j − qk; j)− pk+1; j + 1 (move I(a))
decrease pk; j and pk+1; j by pk; j − qk; j (move II(a))

endif
endfor

endif
Step 4.j(a)

Let c1 =p0; j+1 − q0; j+1, c2 =p1; j − q1; j and c3 =p0; j − q0; j. Since +(P2)=+(Q2),
c1 + c2 = c3. Remember that p0; j+1; p1; j ; p0; j ; q0; j+1; q1; j ; q0; j¿0. Our valid operations
for this case are as follows:
• If c2¿0 then increase p0; j+1 and p0; j by |c2|+ 1 (move I(b)).
• If c2¡0, then increase p1; j and p0; j by |c2| (move I(a)). If c2¿0, then decrease
p1; j and p0; j by c2 (move II(a)).

• Let � and � be the (new) values of p0; j+1 − q0; j+1 and p0; j − q0; j, respectively.
+(P2)=+(Q2) implies that �= �.

• If �¡0, we increase p0; j and p0; j+1 by |�| (move I(b)).
• If �¿0, we decrease p0; j and p0; j+1 by � (move II(b)).
After these modi7cations, P is identical to Q and the algorithm terminates.
As seen above, the algorithm terminates successfully in either of the above three

cases. If either of Cases 1, 2 or Case 3 does not hold, then ij¿1 and j¡j1. Remember
that, by Observation 7:1(e), ij+16ij−1. There are two more cases to consider as shown
below.
Case 4: ij+1 = ij − 1. This case is essentially similar to Case 3 (after replacing

the indices 0 and 1 by ij − 1 and ij, respectively), except that the algorithm does
not terminate at the completion of this case. We repeat the details for the sake of
completeness.
Let c1 =pij−1; j+1 − qij−1; j+1, c2 =pij; j − qij ; j and c3 =pij−1; j − qij−1; j. Since +(P2)

=+(Q2), c1 + c2 = c3. Remember that pij−1; j+1; pij ; j ; pij−1; j ; qij−1; j+1; qij ; j ; qij−1; j¿0.
Our valid operations for this case are as follows:
• If c2¿0 then increase pij−1; j+1 and pij−1; j by |c2|+ 1 (move I(b)).
• If c2¡0, then increase pij; j and pij−1; j by |c2| (move I(a)). If c2¿0, then decrease
pij; j and pij−1; j by c2 (move II(a)).

• Let � and � be the (new) values of pij−1; j+1 − qij−1; j+1 and pij−1; j − qij−1; j, re-
spectively. +(P2)=+(Q2) implies that �= �.

• If �¡0, we increase pij−1; j and pij−1; j+1 by |�| (move I(b)).
• If �¿0, we decrease pij−1; j and pij−1; j+1 by � (move II(b)).

186 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

After these modi7cations, we have modi7ed the coeIcients pij; j and pij−1; j such
that they are equal to the coeIcients qij ; j and qij−1; j, respectively.
Case 5: ij+1¡ij − 1]. This case is more complicated. Remember that pij; j ; qij ; j ;

pij+1 ; j+1; qij+1 ; j+1¿0. The valid operation sequence for this case to 7x the coeIcients
pij; j and pij−1; j are described below.

• Let c1 =pij; j − qij ; j and c2 =pij−1; j − qij−1; j. Continue to next step only if |c1| +
|c2|¿0, otherwise this case ends. (|c1|+ |c2|=0 implies that the two coeIcients are
already correct).

• Increase pij+1 ; j+1 and pij+1 ; j by |c1|+ |c2|+1 (move I(b)). This increases the coeI-
cient pij+1 ; j to a suIciently large value such that two applications of Lemma 4.1(c)
or Lemma 4.1(b), described in the next two steps, can be carried out.

• Since pij+1 ;j¿|c1|+ |c2|+1¿|c1|, use Lemma 4.1(b) if c1¿0, or use Lemma 4.1(c)
if c1¡0, to ensure that pij; j = qij ; j, at the expense of changing the coeIcient pij+1 ;j

only. For the sake of completeness, we provide all the details of this step below.
– Increase, by |c1| + 1, the following pairs of coeIcients in the given order:
(pij; j ; pij−1; j), (pij−1; j ; pij−2; j); : : : ; (pij+1+2; j ; pij+1+1; j).
We need ij − ij+1 − 1=O(ij) moves, each of type I(a).

– If c1¡0 (resp. c1¿0), then use alternately increasing=decreasing valid opera-
tions in the following manner: increase (resp. decrease) pij; j and pij−1; j, de-
crease (resp. increase) pij−1; j and pij−2; j, and so forth until we have performed
valid operation on the pair pij+1+1; j and pij+1 ;j.
We need ij − ij+1 =O(ij) moves of type I(a) or type II(a).

– Decrease, by |c1| + 1, the following pairs of coeIcients in the given order:
(pij+1+1; j ; pij+1+2; j), (pij+1+2; j ; pij+1+3; j); : : : ; (pij−1; j ; pij ; j). We need ij − ij+1 −
1=O(ij) moves, each of type II(a).

Notice that after these steps, it is still true that pij+1 ; j¿|c2| (since the total eMect was
either to increase it, or decrease it by at most |c1|). Also, notice that the coeIcient
pij−1; j does not change its previous value after the completion of this step.
• Since pij; j¿|c2|, use Lemma 4.1(b) if c2¿0, or use Lemma 4.1(c) if c2¡0, to

ensure that pij−1; j = qij−1; j, again at the expense of changing the coeIcient pij+1 ;j

only. For the sake of completeness, we provide all the details of this step below.
– Increase, by |c2| + 1, the following pairs of coeIcients in the given order:
(pij−1; j ; pij−2; j); (pij−2; j ; pij−3; j); : : : ; (pij+1+2; j ; pij+1+1; j).
We need ij − ij+1 − 2=O(ij) moves, each of type I(a).

– If c2¡0 (resp. c2¿0), then use alternately increasing=decreasing valid oper-
ations in the following manner: increase (resp. decrease) pij−1; j and pij−2; j,
decrease (resp. increase) pij−2; j and pij−3; j, and so forth until we have per-
formed valid operation on the pair pij+1+1; j and pij+1 ;j.
We need ij − ij+1 − 1=O(ij) moves of type I(a) or type II(a).

– Decrease, by |c2| + 1, the following pairs of coeIcients in the given order:
(pij+1+1; j ; pij+1+2; j); (pij+1+2; j ; pij+1+3; j); : : : ; (pij−2; j ; pij−1; j). We need ij− ij+1−
2=O(ij) moves, each of type II(a).

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 187

Notice that now both pij; j and pij−1; j are 7xed (that is pij; j=qij ; j and pij−1; j

= qij−1; j), at the expense of changing the coeIcient pij+1 ; j only.
• Now, we 7x the coeIcient pij+1 ; j, if necessary. Let c3 = pij+1 ; j − qij+1 ; j. If c3 �= 0,
then we correct the coeIcient pij+1 ; j as follows.
– If ij+1 = 0, then we do the following. Since +(P2) = +(Q2), we must have
p0; j+1 − q0; j+1 = c3. If c3 ¡ 0, then we increase p0; j+1 and p0; j by |c3|
(move I(b)). If c3 ¿ 0, then we decrease p0; j+1 and p0; j by c3 (move II(b)).
After this, P is identical to Q and the algorithm terminates.

– If ij+1 ¿ 0, then we do the following. Increase pij+1 ; j+1 and pij+1−1; j+1 by
|c3| + 1 (move I(a)). If c3 ¡ 0, then we increase pij+1 ; j+1 and pij+1 ; j by |c3|
(move I(b)). If c3 ¿ 0, then we decrease pij+1 ; j+1 and pij+1 ; j by c3 (move II(b)).
After this, we have corrected the coeIcient pij+1 ; j.

If c3 = ij+1 = 0, then +(P2) = +(Q2) implies that P is identical to Q, hence the
algorithm terminates then.

The total time taken in Case 5 is therefore O(ij).
Hence, the total time taken by Step 4 is at most O(ij · j1) = O(n2) in the unit-

cost model. If we start with all numbers with at most B bits, then it is easily seen
that during any intermediate step in the algorithm we use numbers with O(B) bits.
Hence, we take O(n2) time in either the unit-cost or the logarithmic-cost model. This
completes the proof of Lemma 7.1.

if ij = 0 then algorithm terminates =∗ Case 1 ∗=
if ij ¿ 0 and j = j1 then =∗ Case 2 ∗=
let c = pij; j − qij ; j.
if c ¡ 0, we increase pij; j and pij−1; j by |c| (move I(a)).
if c ¿ 0, we decrease pij; j and pij−1; j by c (move II(a)).
algorithm terminates

endif =∗ end of Case 2 ∗=
if ij+1 = ij − 1 then =∗ Case 3 and Case 4 (combined) ∗=
let c2 = pij; j − qij ; j
if c2 ¿ 0, then increase pij−1; j+1 and pij−1; j by |c2|+ 1 (move I(b)).
if c2 ¡ 0, then increase pij; j and pij−1; j by |c2| (move I(a)).
if c2 ¿ 0, then decrease pij; j and pij−1; j by c2 (move II(a)).
let � = pij−1; j+1 − qij−1; j+1, � = pij−1; j − qij−1; j.
if � ¡ 0, we increase pij−1; j and pij−1; j+1 by |�| (move I(b)).
if � ¿ 0, we decrease pij−1; j and pij−1; j+1 by � (move II(b)).
if ij = 1 then the algorithm terminates =∗ terminate if Case 3 ∗=

endif =∗ end of Case 3 and Case 4 (combined) ∗=
Case 1 to Case 4 of Step 4.j(b)

188 B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189

if ij+1 ¡ ij − 1 then =∗ Case 5 ∗=
let c1 = pij ; j − qij ; j and c2 = pij−1; j − qij−1; j

if |c1| + |c2| ¿ 0 then
increase pij+1 ; j+1 and pij+1 ; j by |c1| + |c2| + 1 (move I(b)).
=∗ First, correct pij ; j using Lemma 4.1 ∗=
for k = ij ; ij − 1; : : : ; ij+1 + 2 do

increase pk; j and pk−1; j by |c1| + 1 (move I(a))
endfor
for k = ij ; ij − 1; ij − 2; : : : ; ij+1 + 1 do

if (c1 ¡ 0 and (ij − k is even)) or (c1 ¿ 0 and (ij − k is odd)) then
increase pk; j and pk−1; j by |c1| (move I(a))

endif
if (c1 ¿ 0 and (ij − k is even)) or (c1 ¡ 0 and (ij − k is odd)) then

decrease pk; j and pk−1; j by |c1| (move II(a))
endif

endfor
for k = ij+1 + 2; ij+1 + 1; : : : ; ij do

decrease pk; j and pk−1; j by |c1| + 1 (move II(a))
endfor
=∗ Next, correct pij−1; j using Lemma 4.1 ∗=
for k = ij − 1; ij − 2; : : : ; ij+1 + 2 do

increase pk; j and pk−1; j by |c2| + 1 (move I(a))
endfor
for k = ij − 1; ij − 2; ij − 3; : : : ; ij+1 + 1 do

if (c2 ¡ 0 and (ij − 1− k is even)) or (c2 ¿ 0 and (ij − 1− k is odd)) then
increase pk; j and pk−1; j by |c2| (move I(a))

endif
if (c2 ¿ 0 and (ij − 1− k is even)) or (c2 ¡ 0 and (ij − 1− k is odd)) then

decrease pk; j and pk−1; j by |c2| (move II(a))
endif

endfor
for k = ij+1 + 2; ij+1 + 1; : : : ; ij − 1 do

decrease pk; j and pk−1; j by |c2| + 1 (move II(a))
endfor
=∗ Now, 7x the coeIcient pij+1 ; j , if necessary

∗=
let c3 = pij+1 ; j − qij+1 ; j

if c3 �= 0 then
if ij+1 ¿ 0, then increase pij+1 ; j+1 and pij+1−1; j+1 by |c3| + 1 (move I(a)).
if c3 ¡ 0, then increase pij+1 ; j+1 and pij+1 ; j by |c3| (move I(b)).
if c3 ¿ 0, then decrease pij+1 ; j+1 and pij+1 ; j by c3 (move II(b)).

endif
if ij+1 = 0, then the algorithm terminates.

endif
endif =∗ end of Case 5 ∗=

Case 5 of Step 4.j(b)

8. Closing comments

Looking for eIcient algorithms for 7nding a label representation is itself a most
interesting problem for further research, which is not addressed in this paper. Similarly,

B. DasGupta, E.D. Sontag / Theoretical Computer Science 262 (2001) 161–189 189

the full equivalence problem: “are the equations of two given systems the same under
some change of variables?” is an obvious next question to tackle. We view this paper
as merely a 7rst step in the study of a long list of such questions.

References

[1] R. Alur, C. Coucoubetis, N. Halbwachs, T.A. Henzinger, P.H. Ho, X. Nicolin, A. Olivero, J. Sifakis,
S. Yovine, The algorithmic analysis of hybrid systems, Theoret. Comput. Sci. 138 (1995) 3–34.

[2] R. Alur, D.L. Dill, A theory of timed automata, Theoret. Comput. Sci. 126 (1994) 183–235.
[3] R. Alur, T.A. Henzinger, E.D. Sontag (Eds.), Hybrid Systems III. Veri7cation and Control, Springer,

Berlin, 1996.
[4] P.J. Antsaklis, J.A. Stiver, M. Lemmon, Hybrid system modeling and autonomous control systems, in:

R.L. Grossman, A. Nerode, A.P. Ravn, H. Rischel (Eds.), Hybrid Systems, Lecture Notes in Computer
Science, vol. 736, Springer, Berlin, 1993,, pp. 366–392.

[5] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers, Bull.
Amer. Math. Soc. 21 (1989) 1–46.

[6] S. Eilenberg, M.P. SchTuzenberger, Rational sets in commutative monoids, J. Algebra 13 (1969) 173–191.
[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W.H. Freeman, San Francisco, CA, 1979.
[8] S. Ginsburg, E.H. Spanier, Bounded Algol-like languages, Trans. Amer. Math. Soc. 113 (1964) 333–368.
[9] T.A. Henzinger, Hybrid automata with 7nite bisimulations, in: Z. Fulop, F. Gecseg (Eds.), ICALP 95:

Automata, Languages, and Programming, Springer, Berlin, 1995, pp. 324–335.
[10] T.A. Henzinger, P.W. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid automata? Proc. 27th

Ann. Symp. on Theory of Computing, ACM Press, New York, 1995; pp. 373–382.
[11] G. LaMerriere, G.J. Pappas, S. Sastry, Minimal hybrid systems, submitted.
[12] O. Maler (Ed.), Hybrid and Real-Time Systems, Springer, Berlin, 1997.
[13] A. Puri, P. Varaiya, Decidability of hybrid systems with rectangular diMerential inclusions, in: D.L. Dill

(Ed.), Computer Aided Veri7cation, Lecture Notes in Computer Science, vol. 818, Springer, Berlin,
1994, pp. 95–104.

[14] A. Puri, P. Varaiya, Decidable hybrid systems, Math. Comput. Modelling 23 (1996) 191–202.
[15] J-P. Quadrat, Max-plus algebra and applications to system theory and optimal control, Proc. Internat.

Congress of Mathematicians, ZTurich, 1994; BirkhTauser, Basel, 1995; pp. 1511–1522.
[16] E.D. Sontag, Nonlinear regulation: The piecewise linear approach, IEEE Trans. Automat. Control AC-26

(1981) 346–358.
[17] E.D. Sontag, Remarks on piecewise-linear algebra, Paci7c J. Math. 98 (1982) 183–201.
[18] E.D. Sontag, Real addition and the polynomial hierarchy, Inform. Process Lett. 20 (1985) 115–120.
[19] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd Edition,

Springer, New York, 1998.
[20] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

