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Abstract. This paper summarizes the definitions and several of the
main results of an approach to hybrid systems, which combines finite
automata and linear systems, developed by the author in the early 1980s.
Some related more recent results are briefly mentioned as well.

1 Introduction - The Need for Hybrid Systems

Linear control theory is well-developed and highly sophisticated, and is widely
applied in areas ranging from aerospace to automotive control. Linear systems
provide highly accurate models of many physical systems; furthermore, the use of
linear systems as “robust” controllers often allows the tolerance of even severe
model nonlinearities and uncertainties. However, it remains a fact that many
continuous physical processes cannot be satisfactorily modeled linearly, nor can
be adequately regulated by means of linear controllers alone.

It has long been recognized that the control of more complex systems than
those handled by the linear theory will require switching mechanisms (discon-
tinuities) of various types; an early discussion of when such discontinuities are
unavoidable can be found in [12]; see also the textbook [10], Section 4.8. Thus it is
necessary to study hybrid designs in which the controller incorporates switching
as well as linear elements.

As a parallel and independent development, the spread of consumer elec-
tronics has made relevant the control of devices which themselves include logical
elements; in this context, it is essential to understand the modeling of mixed
linear/switched mechanisms.

Automata theory and related areas of computer science provide a powerful
set of tools for studying logical operations. Thus it is natural to attempt to
develop a systems theory that combines aspects of automata and linear systems,
exploring the capabilities of interconnections of both classes of systems. Given
that each subclass in itself is already well-understood, it is interesting to ask how
much more powerful such interconnections can be expected to be, and whether
a systematic and elegant theoretical unifying framework can be developed.
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There are two dual aspects in which the power of hybrid systems may be
exhibited in this context:

• As models of systems to be controlled : one may expect that –via piecewise-
linear approximations– it will be possible to model fairly arbitrary dynamic
behavior with high precision.
• As candidates for controllers: the integration of logical and arithmetic capa-

bilities allows performing control operations which neither finite automata
nor finite-dimensional linear systems can carry out by themselves: finite au-
tomata cannot deal with all the information in continuous variables, while
linear systems cannot exhibit switching behavior.

In the early 1980s, the author wrote the paper [7], whose purpose was to propose
a theoretical foundation for such hybrid systems. This paper provided several
basic theorems on representation and control, based on the use of a certain logic
formalism together with elementary tools of “piecewise linear algebra” developed
in the companion paper [8].

Given the resurgence of interest in hybrid systems, it seems timely to present
an expository summary of a few of the main concepts and results in these papers,
as well as to mention briefly some later work by the author and collaborators
which dealt with the study of some particular subclasses. The presentation is
informal; in particular, no proofs are given, since they are readily available from
the cited literature. Since the audience for this conference –and surely for the
proceedings– is so heterogeneous, many of the explanations are of necessity to-
tally redundant for computer scientists, while many others are absolutely obvious
to control theorists –apologies to the respective audiences are offered in advance.

Time Scales
In the context of systems with discontinuities, several technical difficulties

arise when using continuous time models, including fundamental questions such
as the lack of existence theorems guaranteeing solvability of evolution equations.
These problems dissappear when using instead discrete time increments. As a
matter of fact, because of the use of digital devices, modern control design is
largely already turning to the latter. Through the device of sampling (measure
the plant at discrete intervals, apply a constant control during the next period),
continuous-time physical processes are seen by the regulator as a discrete-time
system. Thus we took in [7] the point of view of defining hybrid systems only in
discrete-time. Of course, the subject of interactions among components operating
at distinct time scales is a challenging and most important area of research, with
great practical consequences; on the other hand, the use of a common time scale
allows one to focus on system-theoretic and control issues which are somewhat
obscured when having to worry about additional technical problems.

Theory, Verification, Design
As already mentioned, the paper [7], as is the case with most papers in con-

trol theory, was by and large concerned with theory, as opposed to algorithm
design. In general, research in control theory includes three complementary ob-
jectives: theoretical analysis, verification, and design. The first aspect deals with



issues such as: (1) the analysis of potential capabilities of classes of systems,
both as models of systems to be controlled (representational power) and as con-
trollers, (2) the derivation of necessary and sufficient conditions characterizing
properties such as controllability, (3) the classification of systems under natural
equivalence relations (changes of variables, action of “feedback group”), or (4)
theorems guaranteeing existence and uniqueness of “internal” black box repre-
sentations of given “external” behaviors. One of the main issues is the reduction
of what are a priori infinite-dimensional questions, posed in spaces of sequences
or continuous functions (controls) –e.g.: is a system controllable; is a given tra-
jectory optimal?– to finite-dimensional ones which can be expressed in terms of
finitely many unknowns –e.g., is the controllability Lie algebra full rank? does the
given trajectory satisfy the Euler-Lagrange equations?. Such theoretical analysis
is not in principle focused on effective computational techniques; rather, obtain-
ing “finite” characterizations is the first goal. Of course, computational feasibility
is a desirable ultimate goal, but the problems of control theory are hard enough
even before such issues are considered. This part of control theory has very much
a “pure mathematical” flavor.

Regarding the issue of verification, at an abstract level, this includes all
necessary-conditions results, such as the “verification theorems in optimal con-
trol” (the theory of the Hamilton-Jacobi equation and “regular synthesis”), but
in the current context one means the search for computational tests for properties
such as controllability or optimality. Typically, the types of nonlinear systems
for which such algorithms have been developed are those for which theoreti-
cal analysis is very simple. In general, there are difficult open computational
questions regarding the computational implementation of abstract mathemati-
cal characterizations of most systems properties. The topic of design includes
the development of computer-aided tools. Linear systems theory has been ex-
tremely successful in the formulation and solution of nontrivial design problems
and their practical implementation, but few computationally-friendly classes of
nonlinear systems have been identified.

The class of behaviors that can be represented by the systems encompassed
by the approach in [7] is extremely large, so it should come as no surprise that
many of the basic verification and design objectives are NP-hard (or worse).
Nonetheless, the basic theoretical framework is useful even from the computa-
tional point of view, since it affords an umbrella under which one can formulate
subclasses of systems, and restricted problems, among which computational is-
sues can be compared.

2 Piecewise Linear Systems as a Unifying Model

Recall that linear systems (discrete-time) are described by evolution equations
of the type

x(t+ 1) = Ax(t) +Bu(t) , (1)

(or, as we summarize by dropping the “t” argument and using “+” to denote a
unit time-shift, x+ = Ax+Bu). The state x(t) evolves in some finite-dimensional



Euclidean space Rn, control (or “input”) values u(t) are taken in some space Rm,
and A ∈ Rn×n and B ∈ Rn×m are matrices that define the system dynamics.
Often, one adds a measurement or read-out map y(t) = Cx(t) to this basic
setup. Models of this type constitute the “bread and butter” of modern control
design; their theory is well-understood (see e.g. [10]) and computer aided design
packages are widely available.

Piecewise linear (or more precisely, piecewise-affine) systems arise if one has
different affine transitions in different parts of the state space and/or the input-
value set , and each of these pieces is described by linear equalities and inequal-
ities. In addition, one may allow different affine measurement maps in different
parts. Linear systems are a particular case (just one region). Multiple regions
may appear naturally in many ways, as in the examples which we discuss next.

2.1 Some Motivating Examples
As a first illustration, consider the case in which there are logical decisions

on input values. For instance, systems with actuators subject to saturation are
quite common in applications: valves that cannot open more than a certain limit,
control surfaces in aircraft that cannot be deflected more than a certain angle,
and so forth. In such cases, a pure linear model (1) is not appropriate; instead
one needs to consider a piecewise linear system of the type:

x+ = Ax+B sat (u) (2)

where, setting the saturation levels at ±1, we write sat (u1, . . . , um) for the vector
whose ith component is ui if |ui| ≤ 1 and sign (ui) otherwise. (See e.g. [13] and
references there, for such saturated-input systems, as well as feedback laws for
them which combine saturations and linear transformations –for definiteness,
the results in [13] are given for continuous-time systems, but analogous theo-
rems hold in discrete-time.) Dually, it often the case that measurement devices
may saturate, in which case it is proper to use y = sat (Cx) instead of linear
observations y = Cx. (See e.g. [3, 4] for some recent results for such models.)

Alternatively, there might be a specified a hyperplane H in Rn, and six matri-
ces A0, A+, A−, B0, B+, B−, so that the state at time t+ 1 is A−x+B−u,A0x+
B0u, orA+x + B+u depending on whether the the current state x(t) is on one
side of the hyperplane, the hyperplane itself, or the opposite side respectively.

Yet another possibility is to have transitions that take different linear forms
on different regions of the joint space of states of controls. For example, it may
be the case that transitions that would result in a new state which falls in a
certain set S are disallowed; in that case a special value, say x = x0, which may
indicate a flagged condition, should be produced. We model this situation by the
transitions: x+ = Ax+ Bu if (x, u) 6∈ S, and x+ = x0 if (x, u) ∈ S. A variation
is that case in which underflows and overflows of state variables are truncated;
this is represented (again taking max and min levels at ±1 for simplicity) by an
equation of the type

x+ = sat (Ax+Bu) . (3)

It corresponds in the current context to systems in which 2n hyperplanes in
Rn ×Rm are given (namely, Aix+Biu = ±1, i = 1, . . . , n, where Ai and Bi are



the ith rows of A and B respectively) and transitions are expressed by a different
affine map in each of the regions that result. These models are sometimes called
“recurrent neural networks,” treated for instance in [1, 2, 5, 6]; later we mention
some results that hold specifically for this class.

Finally, an even further enrichment of the model is obtained if we allow, as
part of the specification of the system, the addition of explicit constraints on
controls and states. Thus, the state space and control-value sets are taken to be
subsets X and U of Rn and Rm respectively, which indicate a priori restrictions
on the allowed ranges of variables. To make the theory stay “piecewise linear”,
we ask that these sets be definable in terms of a finite number of linear equalities
and inequalities. These are called piecewise linear (from now on, “PL” for short)
sets in [7, 8] (a more formal definition is given below). Note that, in particular,
all finite subsets of an Euclidean space, and all its linear subspaces, are PL sets.
Given a PL set Z, a map P : Z → X into another PL set is said to be piecewise
linear if there is a partition of Z into finitely many PL subsets Z1, . . . , Zk so
that the restriction of P to each of the subsets Zi is an affine map.

2.2 The Formal Setup
Thus a piecewise linear system is specified by a triple (X ,U , P ) consisting

of two PL sets X and U (the state space and control-value set, respectively)
and a PL map P : X × U → X . Dynamically, one interprets such a system as
describing a recursion

x+ = P (x, u) (4)

for updating states on the basis of previous states and inputs. A PL measurement
map X → Y into a set of possible output values is incorporated into the model if
restrictions on observations need to be taken into account. We emphasize again
that linear systems are a particular example of this concept. Finite automata
are, too: we may identify the states of any given automaton with a finite set
of integers {1, . . . , k}, and the possible input values with a set {1, . . . , `}; each
of these two sets is a PL set (as a subset of R) and the transition map of the
automaton can be represented as a PL map. Later we remark why arbitrary
interconnections of linear systems and automata also give rise to PL systems.

The definition of PL sets and PL maps in terms of partitions is cumbersome
and unnecessarily complicated from a mathematical point of view. A far simpler
but equivalent definition is as follows: The PL subsets of Rn are those belonging
to the smallest Boolean algebra that contains all the open halfspaces of Rn. A
map f : X → Y between two PL subsets X and Y of Ra and Rb respectively, is
a PL map if its graph is a PL subset of Ra × Rb. (It is not hard to show that
these definitions are equivalent to the informal definitions given earlier.)

By a PL set one means a PL subset of some Rn; it is obvious how to define
PL subsets of PL sets, isomorphisms of PL sets, etc; several “category theoretic”
aspects of PL algebra are covered in [7].

It is useful at this point to introduce the first order theory of the real numbers
with addition and order. That is, we take the first-order language L consisting
of constants r and unary functions symbols r(·), for each real number r (the
latter corresponding to “multiplication by the constant r”), as well as binary



function symbol + and relation symbols > and =. A basic fact is that a quantifier
elimination theorem holds: every set defined by a formula in L is a PL set .
That is to say, for any formula Φ(x) with n free variables x = x1, . . . , xn, the
set {x |Φ(x)} is a PL set. (Of course, we can enlarge the language by adding
symbols for sets and maps already known to be PL.) This fact is very simple to
establish (see e.g. [7]) and it provides a very convenient tool for establishing the
basic theoretical properties of PL systems. Moreover, the proofs of these facts
are constructive, in that the actual quantifier algorithm could be in principle
used to compute feedback laws and the like.

Another constructively-proved fact is the following “global implicit function
theorem” which can also be found in [7]): Assume that φ : X × Y → Rn is a
PL map, and assume that for each x the equation φ(x, y) = 0 can be solved
for y. Then there is a PL map π : X → Y so that φ(x, π(x)) = 0 for all x.
(Equivalently: for any PL subset R ⊆ X × Y with onto projection into X, there
is a PL map π : X → Y (a “section”) so that (x, φ(x)) ∈ R for all x ∈ X.) This
fact is central to the existence of feedback controllers.

The main results in [8] regard the classification of PL sets (from which we
may deduce, in turn, classification properties of PL systems); We describe them
very briefly in this paragraph, which can be skipped without loss of continuity.
Two PL sets X and Y are said to be isomorphic if there is a PL map φ : X → Y
which is one-to-one and onto (or, equivalently, since the graph of the inverse is
the transpose of the original graph, φ has a PL inverse). Identifying isomorphic
PL sets, the class of all such sets turns out to be endowed with a natural structure
of semiring, which is isomorphic to the quotient of N[x, y] (polynomials in two
variables with nonnegative integer coefficients) by the smallest congruence that
includes the equations x = 2x + 1, y2 = 2y2 + y, and y = x + y + 1. This
provides a characterization of the Grothendieck group of the category, as well as
a generalization of the Euler characteristic for polyhedra. Moreover, it provides
an algorithm for deciding if two PL sets (given in terms of formulas in L) are
isomorphic, via results on decidability of word problems and results of Eilenberg
and Schützenberger on finitely generated commutative monoids.

2.3 Interconnections
We mentioned above that arbitrary interconnections of linear systems and

finite automata can be modeled by PL systems. This is quite obvious, but it
is worth sketching a proof simply as an illustration of the use of the formalism
afforded by the language L.

Assume given an automaton with finite state space Q and input-value space
T = {t1, . . . , t|T |}, also a finite set, and transition function δ : Q × T → Q. We
consider the case where the state q of the automaton is used to switch among
|Q| possible linear dynamics:

x+ = Aqx+Bqu+ cq

q+ = δ(q, h(x, u))

where A1, . . . , Aq are matrices of size n × n, B1, . . . , Bq are matrices of size
n × m, and c1, . . . , cq are n-vectors, and where h : Rn × Rm → T is a PL



map (representing quantized observations of the linear systems). (As before, we
are not displaying time arguments; for instance, in the first equation we mean
x(t+1) = Aq(t)x(t)+Bq(t)u(t)+cq(t).) In order to represent this as a PL system,
we first identify Q with the set of integers {1, . . . , |Q|}. Then the system just
described is a PL system with states in the PL subset Rn×{1, . . . , |Q|} of Rn+1.
To show this fact, we need to see that the update equation can be defined using
the language L. Indeed, (x, q, u, x+, q+) belongs to the graph if and only if it
belongs to one of the sets Fij(x, q, u, x+, q+), for some i, j = 1, . . . , |Q|, where
each such set is described by the sentence:

(q = i) & Φj(x, u) &
(
x+ −Aix−Biu− ci = 0

)
& ∆j(i, q+) ,

where Φj(x, u) is the property “h(x, u) = tj” (described by a PL map), and ∆j

is characteristic function of the set of pairs so that δ(i, tj) = k.
Conversely, any PL system can be written as an interconnection of the above

form, if the state space is Rn and the input set is Rm. Indeed, assume that the
original transitions have the form x+ = Aix + Biu + ci if x ∈ Li, for a given
partition into k PL sets Li. Then we may view these equations as those of a
switched system, letting Q := {1, . . . , k} and using h(x, u) := (j1, . . . , jk) where
for each i, ji is the index of that set Lji for which Aix + Biu + ci ∈ Lji ; the
update equation for the finite states is then given by δ(i, (j1, . . . , jk)) = ji.

3 A Summary of Results From [7]

We now briefly summarize, in informal terms, some of the main results of the
basic paper [7]. For reasons of space we must omit most precise definitions and
statements, which can be found in that reference, and concentrate instead on
providing the main intuitive ideas.

3.1 Finite-Time Problems
The first part of the paper covers topics that are extremely simple, at least

once that the basic PL setup has been developed. It concerns problems that can
be theoretically solved by simple application of the elimination of quantifiers and
“implicit function” results mentioned above. These are finite horizon problems,
in which a fixed time interval is considered.

A typical problem of this type, and its solution, are as follows. For a fixed but
arbitrary time interval [0, T ], we wish to decide if every initial state at time t = 0
can be controlled to a desired target state x(T ) = x∗ by a suitable application
of controls in (4), and, if the answer is positive, whether there is any feedback
law K : X → U so that, for any initial state x(0) = x0, the recursive solution of
the closed-loop equations

x+ = P (x,K(x))

results in x(T ) = x∗. Such feedback designs are of central interest in control
theory, since they have obvious error-correction (noise tolerance) properties.

In the current context, when the system is a PL system, checking the property
of controllability amounts to checking the truth of a sentence in L (namely,



“for all x0 there exist u0, . . . , uT−1 so that (solving recursively) there results
x(T ) = x∗” where the “solving recursively” statement can obviously be written
as a formula in L, using iterated compositions of P . Of course, the complexity of
the formula increases exponentially as a function of the time horizon T , but at
least in principle this reasoning shows that the problem is decidable and suggests
an algorithm.

More interestingly perhaps, the following theorem holds: if the system is
controllable to x∗, then there is a feedback controller K(x) as above (the converse
is obviously also true). The construction of K is by means of a straightforward
dynamic programming argument, using the “implicit function” result at each
step. Thus PL systems are a very well-behaved class from a theoretical point of
view, much as linear systems are: if the controllability problem can be solved at
all, it can also be solved by feedback (definable within the class being considered,
namely PL maps). This is a desirable property, which fails for other reasonable
general classes of nonlinear systems (e.g. polynomial or analytic transitions).

Many other problems can be posed and analyzed in an analogous fashion.
Among the ones treated in [7] are the existence of observers (state estimators
or “filters”), stabilization using dynamical controllers, and systems inverses. We
omit details, due to lack of space.

3.2 Asymptotic Problems
More interesting than finite-horizon problems are questions involving infinite-

time, and in particular asymptotic, behavior. Most of the results in [7] are in
connection with such issues. We discuss now a representative result of this type.

Assume that a system to be controlled (the “plant”) is described by

dz

dt
= f(z(t), v(t)) , (5)

that is, the state z(t) ∈ Rn satisfies the set of first order differential equations
specified by the coordinates of the vector function f and v(t) ∈ Rm is the control
applied at time t ∈ [0,∞). (Technical assumptions will be made more precise
after we describe the intuitive ideas.) In addition, there is given a function h from
states to outputs y(t) ∈ Rp which indicates which measurements are available
to a controller at time t:

y(t) = h(z(t)) . (6)

The question is whether it is possible to stabilize the system (5), to a desired
equilibrium state z∗ (without loss of generality, we assume that z∗ = 0, and
f(0, 0) = 0, h(0) = 0), while subject to the constraint of using only the infor-
mation provided by the output measurements (6). More specifically, we wish to
know what intrinsic properties of the system guarantee that there is a PL system
that can stabilize the system in closed loop.

Since PL systems are defined only in discrete-time, it is first necessary to
clarify how one uses a PL system (4) in order to control a continuous-time plant.
The meaning is the standard one in control theory: one uses sample and hold .
Assume a sampling period δ > 0 has been picked. At each sampling instant



k = 0, δ, 2δ, . . ., the following events take place: (1) the output y(k) is measured,
(2) the discrete-time PL system makes a transition into the next state specified
by its update equation (4) (where the input “u” at time k is y(k), so U = Rp),
and (3) a constant control signal v(t) ≡ vk is applied to the plant during the
next inter-sampling interval (kδ, (k + 1)δ), according to a fixed feedback rule
vk = K(x(k), y(k)) which is a PL function of the current state x(k) of the
controller and the current observation. (See e.g. [10] for a definitions, examples,
and elementary properties of sampling.)

Next we explain the meaning of closed-loop stabilization. For the purposes
of this short exposition, we will assume that an arbitrary but fixed compact
subset Z of the state space Rn has been given, and stabilization means that, for
some fixed initial state x0 of the PL controller, every trajectory of the system
(5) obtained by the procedure just sketched, starting from any z(0) ∈ Z, is such
that z(t) is well-defined for all t ≥ 0 and limt→∞ z(t) = 0. (A stronger Lyapunov
stability-like property can be required –see [7]– namely that if z(0) is small then
the obtained trajectory should remain small.)

Observe that for there to exist any type of stabilizing controller, PL or not, it
is necessary that the system (5) be null-asymptotically controllable (n.a.c.) when
starting from the subset Z: for each z(0) ∈ Z, there is some control function v(·)
so that the solution of (5) converges to zero. (Proof: look at the v(t) produced
by a controller, if one exists.) Theorem 3.11 in [7] then states that conversely,
under assumptions that are quite mild in the context of nonlinear control, a PL
controller exists if the plant has the n.a.c. property.

We describe these assumptions now (in a stronger form than needed, so as
to make the discussion concise). The first is that the mappings f : Rn × Rm →
Rn and h : Rn → Rp are real-analytic (admitting locally convergent power
series representations around each point in their domains). It is important to
note that, while including usual descriptions of mechanical systems (which are
obtained by combining trigonometric, polynomial, and other analytic functions),
this assumption does rule out switching behavior in the system itself, or even
infinitely differentiable but non-analytic nonlinearities. The second assumption
is that the Jacobians of the maps f and h at the origin are well-behaved: if A,
B, and C are the matrices for which f(x, u) = Ax + Bu + o(x, u) and h(x) =
Cx+ o(x), then the linearized system ż = Az + Bv, y = Cz is stabilizable and
detectable (these constitute generically satisfied rank conditions on the triple of
matrices (A,B,C); see [10]). This hypothesis is essential for the proof (it is in
fact also necessary for the existence of a controller if exponential convergence
is required). Finally, we assume that the plant is observable. This means (cf.
[10]) that given any two states z1 and z2, there is some control function (which
depends on the particular pair (z1, z2)) so that when applied to the system,
different measurement signals y(t) result when starting at z1 or at z2. This
hypothesis can be relaxed considerably, and can be replaced by a condition
which is necessary if a controller exists (a “nonlinear detectability” condition).

The proof of Theorem 3.11 provides a PL controller whose state space consists
of a cartesian product of an Euclidean space and a finite set, and whose dynamics



are described in terms of “if-then-else” linear equality and inequality decisions
and linear operations. Usually a stronger property for the controller is desirable,
namely that convergence to zero occur for every initial state of the controller.
This means, in a practical sense, that a sudden and unobserved state change in
the plant, due to noise or unmodeled inputs, will not affect convergence (since
the controller, starting from the state at the given time, still regulates the plant).
This stronger property is called “strong regulation” in [7], and the main theorem
there, valid under slightly stronger observability assumptions on the system,
assures such regulation by PL systems (cf. Theorem 3.15).

4 Computational Complexity

We conclude with some remarks about computational issues. As remarked ear-
lier, finite-horizon problems are decidable for PL systems. Thus it is of interest
to study their computational complexity. Unfortunately, there is a rather nega-
tive result in that regard. To explain this result, given in [9] and not difficult to
establish, we first recall some basic concepts from logic. Given a fixed piecewise-
linear system, a fixed time horizon, and a pair of initial and target states x0

and x∗ respectively, asking if there is any control which steers x0 to x∗ is a
purely-existential problem, or a “∃” problem, for the language of piecewise lin-
ear algebra, because it is possible to write a logical formula of the type “there
exists u so that Φ(u)” which is true if and only if the property holds (and Φ
does not involve any free variables besides the components of u which represent
the control sequence; Φ is simply the sentence that asserts that the composition
of the dynamics T times, using this control, lands the state at x∗ when start-
ing from x0). Other (still finite-horizon) problems in control are not formulated
originally in ∃ form. For instance, to ask if the whole system is controllable to x∗

in T steps would require a formula of ∀∃ type, namely a formula that reads “for
all x there exists u such that Φ(x, u)” whose truth is equivalent to the desired
controllability (and now Φ has the coordinates of the initial state x represented
by a set of variables, as well as the control). Another variant appears in design
problems. For instance, given a parametric form for a closed-loop controller, say
P (λ), asking that some value of the parameter result in a feedback law which
controls each state to zero in T steps would be given by an ∃∀ formula (“there
is some parameter λ so that, for each initial state state x, Φ(x, u)”). Even more
alternations of quantifiers might appear. For example, in the context of “control
Lyapunov functions” one might ask whether there is a value for a parameter λ
so that a scalar “energy” function Vλ(x) decreases along suitable trajectories,
giving rise to a ∃∀∃ formula (“there is a λ so that, for each x, there is some u so
that either x = 0 or Vλ(P (x, u)) < Vλ(x)”). In the same manner, one can define
of course ∃∀ . . . ∃ types of problems, for all finite sequences of quantifiers.

Roughly stated, the “polynomial hierarchy” in logic and computer science is
obtained in this same way when the basic quantifier-free formulas Φ are proposi-
tional formulas, and the variables over which one quantifies are Boolean-valued.
Problems are in the class NP (non-deterministic polynomial time) if they can be



described by just ∃ formulas, and in P (polynomial time) if they can be described
with no quantifiers at all. It is widely believed, and one of the most important
open problems in theoretical computer science to prove, that the various levels
are very different in complexity. Thus, not only should P be different from NP,
but problems whose definition requires ∀∃ should be much harder to solve than
those in NP, and so forth going “up” along the hierarchy.

The main result in [9] was that problems in any given level, such as for
instance ∃∀∃, for PL systems are of exactly same complexity (in a precise sense
of reduction of one problem to another) as problems in the corresponding level of
the polynomial hierarchy. Thus one has a complete understanding of complexity
for such problems modulo the same understanding for the classical hierarchy,
including decidability in polynomial space, and a rich theory of complexity when
using parallel computing.

The situation is radically different for infinite horizon problems, such as
asking if a system is controllable (in some finite but not prespecified number of
steps). Obviously, such problems will be in general undecidable, as it is easy to
encode a Turing machine halting problem into PL behavior. On the other hand,
it is perhaps surprising that even for “mildly” PL systems such as those given
by an Equation as in (3), undecidability holds, as we discuss next.

4.1 A Special Subclass: Saturated Transitions
A special class of PL systems is that modeled by the saturated-transition

systems (“recurrent neural networks”) of the type displayed in Equation (3).
Models like this are of interest for several different reasons, including their com-
putational universality (discussed below), approximation properties (cf. [11]),
and use in experimental “neural network” work; they arise naturally when lin-
ear systems have variables subject to amplitude limitations. One might think
that control problems for such systems, being so close to linear systems, and
appearing so often in the literature, may be simpler to solve than problems
for more complicated classes of PL systems. We show next, through a simple
controllability question, that this is quite far from being true.

We call a state ξ null-controllable if there is some some nonnegative inte-
ger k and some input sequence u(0), . . . , u(k − 1) which steers ξ to x(k) = 0.
This is as considered earlier, except that now we are not assuming that the time
k = T has been fixed in advance. Before proceeding further with this class, note
for purposes of comparison that if there would be no saturation, we would be
studying the standard class of linear systems (1), and for linear systems one can
determine null-controllability of a state ξ in a computationally simple manner.
Indeed, ξ is null-controllable for (1) if and only if the null-controllability property
is verified with k = n (this is a standard elementary fact; see for instance Lemma
3.2.8 in [10]); thus a state ξ is null-controllable if and only if Anξ is in the the
reachability space of (1), that is, the span of the columns of B,AB, . . . , An−1B.
This property can in turn be checked by Gaussian elimination, so it can be veri-
fied in a number of algebraic operations that is polynomial in n and m (“strong
polynomial time”). Alternatively, we may ask the question of null-controllability
in a bit-computational (Turing-machine) model, assuming that the entries of the



matrices A and B, as well as the coordinates of the state ξ, and all rational (as
opposed to arbitrary real) numbers, and are each given by specifying pairs of
integers in a binary basis. Then the fact is that null-controllability of a state ξ for
the system (1) can be checked in a number of elementary Turning-machine steps
which is polynomial in the size of the input data, that is, the total number of bits
needed to specify A,B, ξ. Thus, the problem is in the class “P” of polynomial-
time computable problems. (From now on, we use the Turing machine model, to
stay close to classical computational complexity.)

Thus it is natural to ask if adding a saturation can change matters in a
fundamental way. The answer is yes. In fact, the change is as big as it could be:
For saturated linear systems (3), the null-controllability question is recursively
unsolvable.

In other words, there is no possible computer program which, when given
A,B, ξ with rational entries, can answer after a finite amount of time “yes” if
the state ξ is null-controllable for the corresponding system, and “no” otherwise.
(In particular, there is no possible characterization in terms of rank conditions,
such as was available for linear systems, nor any characterization in terms of
checking higher-order algebraic conditions in terms of polynomials constructible
from the entries of the matrices and vector in question.) The proof of this fact
relies upon the work on simulation of Turing machines by devices such as (3);
see [5]. From that work it follows that there exists a certain matrix A (with n
approximately equal to 1000 in the construction given in [5], and most entries
being 0, 1, or certain small rational numbers) for which there is no possible
algorithm that can answer the following question: “Given ξ, is there any integer
k so that the first coordinate of the solution of

x(t+ 1) = sat (Ax(t)) , x(0) = ξ (7)

has x1(k) = 1?” (Of course, (7) is a particular case of (3), when B = 0.) More-
over, the matrix A is built in such a manner that the above property is impossible
to check even if ξ is restricted to be a vector with the property that the solution
of (7) has x1(t) ∈ {0, 1} for all t = 0, 1, . . .. It is easy to convert the problem “is
x1(k) = 1 for some k?” to “is x(k) = 0 for some k?” simply by changing each
coordinate update equation xi(t+ 1) = sat (. . .) to xi(t+ 1) = sat (. . .− αx1(t)),
where α is a positive integer bigger than the possible maximum magnitude of
the expression “. . .”. While x1(t) = 0 nothing changes, but if x1 ever attains the
value 1 then the next state is x = 0. So the null-controllability question is also
undecidable, even in the case in which the system is this one particular system
of dimension about 1000 (which in the proof corresponds to a simulation of a
universal Turing machine, with the initial condition ξ corresponding to the pro-
gram for such a machine). This negative result shows that adding a saturation
has changed the problem dramatically from the linear case.

One may of course ask about related problems such as observability. For in-
stance, given a system (3) and a linear output map y = Cx, one may ask for
the decidability of the problem, for a given state ξ: “is ξ indistinguishable from
0?” Again this is essentially trivial for linear systems (just check if ξ is in the



kernel of the Kalman observability matrix), but the problem becomes undecid-
able for saturated systems (take Cx := x1 and use the above construction; as
Cx(t) = x1(t) is always zero or one, distinguishability from zero is equivalent to
determining if it is ever one).

While on the topic of the systems of type (3), we should point out that when
real (as opposed to merely rational) coefficients are allowed for the matrices A
and B, and the initial state, it is possible to formulate precisely the question
of determining the computational power of such devices. The, perhaps surpris-
ing, answer, is that they are computationally no less powerful than essentially
arbitrary continuous discrete-time systems (up to polynomial time speedups).
This makes such models of PL systems a universal model for “real number”
computation. Moreover, their capabilities can be understood in the context of
“Turing machines that consult sparse oracles,” in the language of computational
complexity; the reader is referred to [6] for this topic.
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