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PREFACE

The past 20 years have witnessed the emergence of a new area of
application-oriented mathematics and engineering, that of Mathematical
-System Theory. This new field has achieved significant advances during
its relatively short existence, in particular with respect to the control
and observation of finite-dimensional linear dynamical systems, whose
theory is by now widely known and applied. Perhaps the central concept
in this latter theory is that of realization, the basic problem of studying
what are the possible internal structures (i.e., sets of evolution equa-
tions,) giving rise to an observed external behavior (i.e., input/output
map, impulse response, transfer function, etc.). In one way or anothér,
either implicitly or explicitly, realization theory--together with its
associated concepts of reachability and observability (and variations
of these like controllability and reconstructibility)--permeate most
methods and results in linear system theory. When dealing with nonlinear
systems, howevér, the question of realization is only now beginning to
be studied. Besides its intrinsic interest, it is reasonable to expect
in view of the above remarks that a nonlinear realization theory may
eventually derive analogous benefits to the design and analysis of more

general systems.

The present work is an attempt to attack the realization problem for
& wide clags of discrete-time nonlinear behaviors. In choosing an sppro-
priate class of behaviors, one should of course strive for a class which
is general enough to accomodate many examples of interest while at the
same time having sufficient structure to allow for the application of
useful mathematical tools. Thus the extreme (set-theoretic) case of
automata theory and "general system theory", although providing much of
the intuition and philosophy of the approach, does not by itself constitute
the right level of generality from a more applied viewpoint. The most
important type of nonlinearity, when no strong threshold effects or other
discontinuities are dominant, is given by multiplicative effects. This
gives rise to the notion of a polynomial input/output map, in which pre-

sent output values are sums and products of past input values.
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The present work is based upon the premise that the natural tools for
the study of the structural-algebraic properties (in particular, realiza-
tion theory) of polynomial input/output maps are provided by algebraic

geometry and commutative algebra, perhaps as much as linear algebra pro-

vides the natural tools for studying linear systems. The results obtained
until now, and the problems and directions of research suggested, seem

to indicate that this premise is indeed correct. Although (or rather,
because) the theory is clearly far from complete, it seems appropriate

to present its main lines in an expository way, with the hope that it
will generate additional research. Since algebra-geometric concepts and
tools are rather new in the context of system theory, a rather detailed
discussion is included of some basic algebraic definitions end results,

in a terminology geared towards the intended applications. In this sense,
the present volume can be seen dually as an essentially self-contained
introduction to some areas of basic algebraic geometry, illustrated
through system-theoretic applications (Hilbert's basis theorem to finite-
time observability, dimension theory to minimal realizations, Zariski's
Main Theorem to uniqueness of canonical realizations, etc.) 1In order

to keep the level elementary (in particular, not utilizing sheaf-theoretic
concepts,) certain ideas like nonaffine varieties are used only implicit-
1y (eg., quasi-affine as open sets in affine varieties) or in technical
parts of a few proofs, and the terminology is similarly simplified (e.g.,
"polynomial map" instead of "scheme morphism restricted to k-points",

or "k-space" instead of "k-points of an affine k-scheme"). Hopefully,
the reader will be sufficiently motivated by the methods and results to
deepen his/her knowledge of algebraic geometry through the study of any

of various existing purely mathematical texts.

This work deals only with discrete-time systems, and no attempt is
made to treat systems evolving in continuous-time. This reflects a bias
of the author, due in part to the influence of the present microprocessor

Vrevolution, and the new possibilities that this opens up for digital
control. Associated with this, it is at present not uncommon to model

physical systems (and even more, economic and biological ones,) via
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difference equations, sometimes as "sampled" continuous-time processes.
It is clear, however, that some future applications will depend also on
a deeper understanding than is now possible of the interplay between the

notions of continuous and discrete-time systems.

Chapter I summarizes the problems and main results in an intuitive
and relatively nontechnical way. The next two chapters develop an abstract
realization theory and study various finiteness conditions. Chapter IV
treats a class of systems which are suggested naturally by the general
framework in the particular case of & certain invariant (the observation
space) being finite-dimensional; these systems turn out to include those
types for which realization theories had been developed by various authors,
and a general realization algorithm is presented, which restricts to the
various known procedures. The next chapter studies the class of realiza-
tions of a fixed input/output map, while the last deals with generalizations,
further exampleg and remarks, and a discussion of open problems. Refer-

ences are grouped at the end of the volume.

This work is largely based on the doctoral dissertation submitted
by the author to the University of Florida in 1976, under the supervision
of Professor R. E. KAIMAN. Professor Kalman provided much of the encour-
agement and arranged for the long-term financial support which made that
and other research possible. Furthermore, his early intuition of the
system-theoretic relevance of algebraic geometry and rational power
series had an obvious influence on this work. The main direct motivation
for the research into the topics discussed here was given by joint work
with Y. ROUCHAIEAU (SONTAG and ROUCHAIEAU [1975]). A number of other
People had.an important influence, either directly or indirectly through
the discussion of closely related topics; in particular, S. EILENBERG,
M. FIIESS, M. HAZEWINKEL, E. W. KAMEN, M. HEYMANN, and §. MITTER.

This research was supported in part by U.S. Army Grant DAAG29-76-G-020%
and U.S. Air Force Grant AFOSR 76-303k through the Center for Mathematical
System Theory, University of Florida.

New Brunswick, October, 1978.
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CHAPTER I. INTRODUCTION

In the present work we study the problem of realization of polynomial

input /output maps. In this introduction we restrict ourselves to shift-

invariant, scalar input/output maps defined over infinite fields, in

order to present the definitions and results in a simple way. The

development in the main text proceeds in greater generality.

We choose an infinite field %k, which will be fixed throughout this

section.

Let S denote the set of all sequences of elements of k indexed
by the integers and with support bounded on the left. In other words,
u(-) in 8 is a function wu(:): Z -k for which there exists an
integer t_ such that u(t) = 0 for all t < t . A (scalar) input/
output mep is then a map f: § —§: u(*) »y(*); £ is (strictly) causal
when, for all % in Z, the output y(t) depends only on values wu(j)

of inputs for j <+t; f is shift-invariant if u(-) »y(-) implies

(ou)(*) ~» (oy)(+), where o is the shift operator defined by
(ou){(t) := u(t - 1).

These concepts are standard. One of the contributions of the
present work is the introduction of a new notion, that of a "polynomial"
input /output map. Informally, this means that y(t) is a polynomial
function of the past input values u(j), j < t.

In order to rigorously define polynomial input/output maps we need
the concept of a Volterra series V: +this is a formal power series in
CUIRED such that ¥ is of finite

degree in each variable separately. A causal, shift-invariant map is

denumerably many variables &, &, &

uniquely determined by specifying the dependence of y(0) upon values
of the input u(t) for t < 0. So we can now say, more precisely, that
a causal, shift-invariant input/output map f 1is polynomial iff there
exists a Volterra series V, such that the output y(0) due to an
input sequence u(:) is obtained by substituting u(- j) for §j into
Wf and eveluating the expression thus obtained. This evaluation is
well-defined because there are only finitely many nonzero wu(t) (by
definition of g), and because Wf is a polynomial in each finite

subset of variables.



The present formalism is able to represent a wide variety of behaviors.

For example, consider fl’ defined by wfl = algl + a2§2 +oeee

Then an input u(*) produces an output

jéo aju(— j).

Thus fl corresponds to a linear system with impulse response sequence

85 8oy eee -

Another example is ng = Z.gjlgjg...gjr, the sum running over all
jl < j2 < ves < jr and all r > 0. Then f2 corresponds to adding all
possible products of past inputs.

The main problem we are interested in is the following. What are
natural internal (i.e., state-space) representations for polynomial
input/output maps? We are of course interested in representations with
a certain amount of algebraic, geometric, and/or topological structure;
otherwise the above question could be trivially answered via the "Nerode
realization" method of automata theory. Further, we want to use our
results to infer possible internal properties of a given "black box"; so
the choice of structure should be directly related to properties of

polynomial input/output meps.

Polynomial systems constitute a class of systems whose defining

maps are always polynomial. A polynomial system X (provisional

definition) has

(a) X = k" as its state-space (n = integer);

(b) state-transitions given by simultaneous first order

difference equations
x(t + 1) = P(x(%), u(t)),

where x(t) = (xl(t), ceey xn(t)) and P = (Pl, ceey Pn) is a polynomial
function kn+1 —akn;

(¢) an output map



y(t) = n(x(t)),

where h 1is a polynomial in n variables; and

(d) an initial state = which is an equilibrium state for the

zero input:
P(xﬁ, 0) = =¥,

(The constraint on xit to be an equilibrium state is dietated by our
restriction to shift-invariant input/output maps; the specific choice of
0 as "equilibrium input” is just a matter of choice of coordinates in
the input space.) Let us denote by P also the recursive extension of
P to sequences of inputs, i.e.

P(x, Vi ey ¥

n+l) 1= P(P(x, Vi eees vn), vn+l)'

Then I defines an input/output map £y u(.) »y(-) by the rule

y(t) 1= n(P(F, u(t.), ulty + 1), ..., ult - 1)),

where t_ <t is any integer for which u(t) =0 if 1< t . Then fj
is clearly a polynomial input/output map because it is defined as a
composition of polynomials. We may in fac? exhi?it sz directly by the
rule that the coefficient of a monomial gil...gzt should be equal to
the coefficient of the same monomial in the polynomial

n(e(xt, £, - £1))

Thus we have defined a large class of systems whose input/output maps
are polynomial. Such systems are esppealing from both mathematical and
system-theoretic reasons, because they can be realized by finite
interconnections of adders, multipliers, amplifiers, and delsy lines. 1In
order to get a reasonably complete and general theory, however, it is
necessary to go beyond polynomial systems. A larger class of systems,
called k-systems, arises when we study the problem of obtaining
"canonical" realizations of input/output meps. The theory to be

developed will show that k-systems provide the right amount of



generality for studying realizations of polynomial maps. We now
motivate their introduetion.

One of our main objectives is to obtain realizations which are
"natural” or "canonical” in the sense of not depending on any information
not implied by the input/output behavior, The class of candidates to be
considered should have some fixed structure (like polynomial systems)
so that the canonical gystem is recoverable just from the knowledge of
its external behavior. The approach which has been highly successful
with automata and linear systems consists in trying to construct
realizations which are as "minimal” or "irredundant" as possible; see
for instance KAIMAN, FALB, and ARBIB {1969, Chapters 7 and 10} and
EILENBERG [19T4k, Chapters 3, 12, and 16]. We shall adopt such a
viewpoint here, beginning with polynomial systems, and we shall see how

we are forced to introduce more general systems.

Let us consider the two-dimensional system

xl(t +1) xl(t) + u(t),

Zo = xz(t + 1) = Xl(t)XQ(t) + xl(t) + xg(t),

¥(t) = x2(t)’

with initial state 0. It is easy to see that it is possible to reach
from O any state % in k2, using in fact inputs of length not
greater than two. There are, however, redundant states which behave
identically in the sense that they cannot be digtinguished by input/

output experiments. They are of the form Any other states can

a
-1/
be pairwise distinguished from the data (xa, XX, + X+ x2) resulting

of the observation of the output at two consecutive instants. In order

to obtain a gystem with no unobservable states, we must identify the
states -al for all a in k and we must then define appropriate
"polynomial”’ transitions, compatible with the original P, on the
quotient set thus obtained. To have a well-defined notion of "polynomial
map” we must first endow our quotient set with a suitable notion of

"coordinate system", i.e. we need to define in it a geometric structure.



But this structure may not correspond to a polynomial system.

Tt turns out that the input/output mep fz of the above system ZO
admits no observable polynomial realization. %his remainsg true for the
weaker question of existence of polynomial realizations for which we
only require the property of distinguishable reachable states. 1In other
words, it is in general impossible to embed the "Nerode realization" of
an input/output mep in a polynomial system, even if f is the input/
output map of a polynomial system.

The natural algebraic-geometric way to proceed consists in

introducing the notion of (k-points of) an affine k-scheme, or, as we

shall say for short, a k-space. Such a space consists of a topological

space X together with an algebra of polynomial functions on X (a

distinguished family of continuous functions on X subject to appropriate
axioms). In particular, the spaces k" become k-spaces when endowed
with the "Zariski topology', whose closed sets correspond to subsets of
kn defined by polynomial equations; the polynomial functions on the
k-space kn are the usual polynomial functions in n wvariables. Thus
our previous choice of state-spaces furnishes an (easy) example of
k-spaces. Given two k-spaces Xl, X2 there is a well-defined concept
of polynomial map P: Xl —aXa;
composed with the polynomial functions on X2 give polynomisl functions

these are precisely those maps which when

on Xl.

A k-sgystem X 1is then defined by letting the state set XZ be an

arbitrary k-space and letting the transition map XZ X k ~9X2 and the

output function XZ — k be polynomial maps. The fundamental observation

is that the input/output maps of k-systems are polynomial.

Conversely, each polynomial input /output map can be realized by some

k-system. This fact follows rather trivially once that k-spaces have
been recognized as the proper state spaces. The proof relies on turning
the space of input sequences into a k-space £ in such a way that the
notion of (polynomial) input/cutput map becomes precisely that of a

polynomial map between k-spaces.



Having established k-systems as the class of systems to be
considered, we return to the problem that motivated the introduction of
k-spaces in the first place, namely, the exlstence of "observable™

realizations.

We shall prove that in the new class of systems it is always possible
to "reduce" a given system to one all of whose states can be distinguished
by input/output experiments. Nevertheless, this does not settle the
question of observability. It was noticed already in SONTAG and
ROUCHAIEAU [1975] that there exist input/output maps having realizations

Zl, %, both of which are reachable and observable but such that X and

22 aie nonisomorphic (as k-spaces). In fact, the example given ii the
above reference has Xl =k while X2 is a curve with a singularity,

a very different kind of k-space. The difficulty lies in the concept of
observability itself. This notion is usually defined by the intuitive
requirement that different states be "distinguishable by processing the
input foutput data™. The precise notion in this context is that different
states should be distinguishable by an algebraic processing of the input/
output data. This point of view leads to the definition of algebraic

observability, which turns out to be the proper notion in our context.

The next step in our program for obtaining s "canonical™ realization
of a given input/output map is to construct an observable realization all
of whose states are reachable from the initial state. Here we run into a
new problem: +the reachable set of an arbitrary system is not necessarily
& k-space. For instance, let us consider a two-dimensional system with

transitions defined by
x (6 + 1) = u(t),

xz(t + 1)

xe(t)u(t) + xe(t) + u(t),

and zero initial state. The reachable set fails to contain the points

-1
» b P#-L

This difficulty can be easily eliminated. Our ultimate goal is not

to obtain reachable and observable realizations but rather to construct



“natural" realizations. It is therefore enough to observe that (for
continuity reasons), the dynamical properties of the reachable part of a
system Z wuniquely determine the dynamical properties of the closure
(in the topology of the k-space XZ) of the set of reachable states.
(In the above example the closure corresponds to the whole plane.) We

shall say that Z is quasi-reachable if the closure of the reachable

states is XZ' The closure of the subset of reachable states is always
a k-space invariant under the action of inputs. So a quasi-reachable
realizetion can always be obtained from an arbitrary realization. If we
begin with a polynomial system, the closure of the reachable set is a

very special type of k-space namely, an algebraic variety. It is

natural therefore to generalize our preliminary definition of polynomial
systems to include the case in which XZ is a variety (not necessarily

kn). In other words, a polynomial system is given by a finite set of

simultaneous polynomial difference equations together with a set of

polynomial constraints on the state variables.

We shall say that a k-system is canonical if it is quasi-reachable
and algebraically observable. One of the main results of this work is
then: Every input/output map f admits a canonical realization Z

f
and any other canonical realization of f is isomorphic to Zf. We

have thus attained our goal of determining a natural class of state

representations for polynomial input/output maps.

The result on existence and uniqueness of canonical realizations
must be complemented by a discussion of finiteness conditions. In

principle, there is of course no guarantee that the state-space Xf of

T, is in any sense "finite dimensional'.

We have chosen the "transcendence degree" notion of dimension out of
the many possible definitions of dimension of k-spaces. The dimension

of a system I 1is then the dimension of X Informally, the dimension

5
of £ counts the "degrees of freedom" in the state space. In the
particular case of polynomial systems the dimension is what one would

intuitively expect. For instance, if X is the "cusp”, given by

{(x,x)ek2 © = x°), then dim = = 1.
1’ T2 1 e



We shall say that e given system £ is almost polynomial when XZ

can be obtained as a "quotient" of some space k= (the terminology
"quotient” is not quite precise here, since we shall have to admit in
general the existence of some points besides those representing the
equivalence classes of points of k"). The name "slmost polynomial"

is due to the fact that in this case XZ can be expressed as a union of

a variety and a lower-dimensional subset.

A central result in this context is: The input/output mep f has

8 finite-dimensional realization if and only if Zf is an almost-

polynomial system if and only if f satisfies an algebraic difference

equation, i.e., if and only if there exists an integer s and a

polynomial E in 2s + 1 variables such that

E(y(t)) Y(t = l)) cesy Y(t = S), u(t = l): ooy u(t - S)) = 0,

for all input/output pairs wu(-), y{-). Up to constant multiples there
is a unique irreducible equation E = O of minimal order s satisfied
by f. We shall also prove that, if f gatisfies some algebraic
difference equation, then f satisfies as well an equation £=0

linear in y(t).

As a simple illustration of the above results, let f := fzo, where

Zo is the system, introduced before,

I

x (t + 1) = x (%) + u(t),

= xz(t+l)

) x) ($)x,(8) + x () + x,(¢),

¥(t) = %,(t),

with zero initial state. The canonical state-space Xf is, as a set,
2
the union of the singleton {*] and the subset U := {x2 £ -1} of X .

The transition and output maps of X, are those induced by the projection

£

T: k2 —)Xf:Xt—)X if x is in U, xw»# if x2=-1. (These are

polynomial maps for a suitable k-space structure on Xf.) The irreducible

equation of minimal order gatisfied by f is



[y(t - 2) + 1y(t) + 11 - [y(t - 1) + 112 -
- ly(t = 1) + 1){y(t - 2) + 1]u(t - 2) = O.

In the "classical" case of linear systems it is well known that a
system is canonical iff it is a minimal-dimensional realization of its
input/output map. This result does not generalize.diréctly to the
Present situation. A counterexample is given by the system (with
X = k)

x(t + 1) =u(t), = =0,

z =
y(t) = £2(t).

Clearly, I is not canonical, because all pairs of states {a, - a)

are indistinguishable. However X 1is minimal, since it has dimension 1.

The proper treatment of the above minimality question is through the
concept of weakly canonical realizations. We shall say that I is

weakly canonical when it is quasi-reachable and (in a sense to be made

precise) "almost all" states are indistinguishable of only finitely
many other states. The example in the previous paragraph is therefore
weakly canonical, since in fact each state is indistinguishable of only
one other state. Let k be either the field of real numbers or an

algebraically closed field. We prove that a realization £ of a_

polynomial input/output map f is of minimal dimension among all

realizations of f if and only if I is weakly canonical. Over any

field k, canonical realizations are minimal.

The question of deciding when Zf is in fact a polynomial system

(i.e. Xf is a special kind of k-gpace: a variety) can be answered

theoretically via the introduction of the observation algebra Af of

the input/output map. This is a k-algebra which is canonically

associated to any given f. We prove that Zf is a polynomial system

recisely when Af is finitely generated as a k-algebra. Further, the

smallest n for which X

e can be embedded in a system of n

simultaneous polynomial difference equations is equal to the minimal
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possible cardinality of sets of generators of Af. Unless Af is
isomorphic to a polynomial ring, n is not equal to the dimension of

Zf. We shall also prove that Zf is a polynomial system when f

satisfies an input/butput equation of the type

a(u(t - 1), ..., u(t - s))y(t)" + & = 0,

where y(t) appears in £ with degree less than r. Thus if, for
instance, f 1is known to satisfy a regression equation, the realization
theory of f can in principle be carried out without introducing the
concept of k-spaces. Even in this special case, however, the general
theory is needed in order to understand the meaning of the special

hypothesis.

One of the main results is valid for input/output maps defined over
fields k which contain the rational numbers. The result states that

£ has a finite realization if and only if the Jacobian matrices in a

certain sequence Jl(f), Jg(f), ... have a uniformly bounded rank. For

a trivial example, we point out that when £ is linear the matrix
Jn(f) is precisely the n-th principal minor of the behavior (Hankel)

matrix of f.

A1l the results presented up to this point are proved later for
multivariable polynomial input/output maps, for which both the inputs

and outputs are vector-valued.

Proofs of the preceding results use tools of algebraic geometry. In
other words, we use the "theory of polynomials" in the study of arbitrary
polynomial input/cutput maps.

The second part of this work deals with a broad class of bounded
(polynomial) input/output maps, whose study can be "linearized". This
linearization permits us to obtain sharper statements. Furthermore, Zf
will again be a polynomial (not arbitrary k-) syetem.

Bounded maps f are defined as follows. Recall that Wf has a
finite degree dj in each variable gj. We say that f 1s bounded when

the degrees dj are bounded independently of j. In other words, there
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exists an integer d such that no input is raised to a power higher than
d. There are no restrictions on products between inputs at different
instants and/br different channels., It is at first surprising that the
concept of bounded map includes as particular cases all those families

of maps for which a satisfactory realization theory has been developed

in the past. TFor instance, linear systems, internally-bilinear systems
(BROCKETT [1972], ISIDORT and RUBERTI [1973], ISIDORI [1973, 19741,
FLIESS [1973, 1975], D'ALLESSANDRO, ISIDORI, and RUBERTT [1974], and

others) give rise to bounded maps. (Internally-bilinear systems are

those whose internal map is bilinear in the state and input and whose
output map is linear. No products of inputs at same instants are
performed by such systems, so d #= 1 bounds all dj') Multilinear
input /output maps (KAIMAN [1968, 1976]) are also included. (Such maps
allow products of inputs only in different channels, so that 4 :=1

is again a bound.)

We prove that if a bounded input/output map is at all realizable by

a finite dimensional k-system, then it is also realizable by an

(observable) state-affine system. The latter are (polynomial) systems

with Xz = kn whose defining equations take the special form

x(t + 1) = F(u(t))x(t) + clu(s)), =* = o,
y(t) = 2x(%).

where F(-) and G(+) are polynomial matrices and H is a linear map.
The characteristic feature of state-affine systems is the linear

occurrence of the state variable.

The above realizability result establishes state-affine systems as a
very useful and natural class of systems with respect to bounded maps.
Input/output maps realizable by state-affine systems (equivalently,
finitely realizable bounded maps) are precisely those whose “observation
space” (a linear space directly associated to the map) is finite-
dimensional. These and other results indicate that state-affine systems

play an "approximation" role in the discrete theory similar to the role
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of internally-bilinear systems in the continuous-time context (see for

instance, FIIESS [197k4, 1975] and SUSSMANW [1975]).

We then restrict our attention to realizations by state-affine
systems. Canonical realizations can now be obtained (for bounded maps)
without recourse to k-spaces. In fact, it is now natural to define
span-canonical state-affine systems as observable systems such that the
linear span of the reachable states is the full state-space kn. We

then prove that span-canonical realizations of a given bounded finitely

realizable f always exist. Further, any two such realizations can be

related by a linear change of coordinates in the state-space. Finally,

a realization is span canonical if and only if its dimension n is

smallest possible among all state-affine realizations of the same input/

output map.

The above-mentioned results are proved by first associating to the
bounded map f +the exponent formal power series wf obtained directly
from the Volterra series wf. As opposed to Wf, the exponent series is
a power series in noncommutative variables. The transformation Wf “*Qf
permits the explicit consideration of dynamics. We then remark that
state-linear realizations are in a one-to~one correspondence with

representations of wf. (The concept of representation of a

noncommutative power series was introduced by SCHUTZENBERGER [1961] as a
generalization of automata-theoretic ideas, and has been rediscovered
since by many authors, notably in the context of stochastic automata.
Representations have been called sequential systems by CARLYIE and PAZ
[1971] and linear-space automata by TURAKAINEN [1972]. A falrly complete
account of representations, also called "automata with multiplicities",
may be found in EILENBERG [1974]. The notion of representation which we

use is in fact a minor variation of that in the literature.) The idea
of associating representations to systems is not totally original, since
an analogous method was used by FLIESS [1973] to study the special case
of internally-bilinear systems. We give a brief but self-contained
exposition of those results on repregentations which are relevant to our

work.
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An interesting observation is that, under the above one-to-one
correspondence, span-reachability and observability for state-affine
systems corresponds precisely to (automata-theoretic) reachability and
observability for representations. Realizability of f can then be
studied via the behavior (Hankel) matrix B(f) of Pp, and minimal
state-affine realizations can be obtained by operating on E(f), using
the methods developed for representations by FLIESS [1972, 1975]. We
give such a realization procedure, which generalizes and unifies known
algorithms for linear and for the various kinds of bilinear systems. An
interpretation of E(f) follows from the remark that the observation

space of f is isomorphic to the row space of B(f).

We sharpen the result on algebraic difference equations by proving

that a bounded map is finitely realizable if and only if it satisfies

an input/output difference equation which is linear in the output. This

is a new result even in the (very special) cases of internally-bilinear

systems and multilinear input/output maps.

SCHUTZENBERGER [1961] gave a generalization to power series of

Kleene's theorem: A language L is recognizable by a finite automaton

if and only if L can be described by a regular expression. This

generalization can be applied to @f via the above correspondence

between state-affine systems and representations. The conelusion is

that f has a state-affine realization if and only if wf is rational
i.e., if and only if @f can be obtained from polynomials by a finite
number of additions, multiplications, and inversions. As a consequence,
it becomes possible to apply the standard calculus of interconnections
of automata (see, for instance, EIIENBERG [197L4]) to find Pp (and
therefore wf) from any state-affine realization of f, and, viceversa,

to construct realizations given rational expressions for ¢f.

We also define the subclass of finite maps f, corresponding to the
restriction that the total degree of wf should be finite. We show
that the span canonical realization of such maps can be decomposed as a
cascade of linear systems and memory-free nonlinearities. The existence

of such decompositions characterizes finite maps.
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Returning to the case of general polynomial response maps, we study the
class QR(f) of quasi-reachable realizations of a fixed f. Under the

natural ordering induced by simulation (Zl simulates 22 when there is

, into 22), QR(f) +turns out to
be a complete lattice. The minimal element of QR(f) is Zf, and the
largest element is the realization having the input space & as its state-

a dominating k-system morphism from Z

space. The join in QR(f) of Zl and 22 is a subsystem of a parallel
connection of Zl and T, (a fibre product). The lattice operations
permit constructing (sometimes simpler) realizations from given ones. The
relevance of QR(f) 1lies mainly in the understanding of the relationships
that hold among different realizations, and also in the development of
alternative realization theories. For example, some authors use a differ-
ent definition of "canonieal", as "initial (not necessarily algebraically)
observable realization". A theory using this alternative definition will
be easily derived from the consideration of the order properties of the
subset of observable realizations. Other subsets (in fact, sublattices)

of interest are also studied. Using AR(f) permits obtaining further
ingight also into the role of arbitrary k-systems as a "completion" of the
subset of polynomial systems. Moreover, it also allows the construction of
counterexamples to the existence of polynomial canonical realizations even
if "canonical" is interpreted differently than quasi-reachable and alge-
braically observable (for example, the above alternative, or as "final

quasi-reachable").

Another application of QR(f) will be in the study of normal realizations
of f. (The notion of normality is closely tied in algebraic geometry with
that of nonsingularity; in fact, both coinecide in dimension one.) We shall
construct a complete lattice of normal realizations of f, and shall ob-
tain a normalization of any element of QR(f). (For example, a system
whose state-space is a cusp will have as its normalization & system whose
state-space is a line.) Normality permits proving a strong version of the

uniqueness theorem for canonical realizations: Two abstractly canonical

(i.e., reachable and [not necessarily algebraically] cbservable) normal

polynomial realizations are necessarily isomorphic. In particular,

returning to the "naive" definition of polynomial system with X = kn,
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these are always normal, so any two such canonical realizations of a given
f must be equal up to a polynomial change of coordinates. The proof uses

in part some well-known but nontrivial algebraic-geometric facts.

A number of results provide necessary and/or sufficient conditions for
Zf being a polynomial system (among them: finitely generated observation
algebra, existence of integral or recursive difference equations, T
bounded). In many applications these conditions hold directly; for exam-
ple, it is usual to define i/o maps via "autoregressive" (i.e., recursive)
equations, while other problems give rise to bounded maps: internally-
bilinear f with nuclear reactor and population models (see e.g. MOHLER
[19721), multilinear f in image processing (e.g., KAMEN [19791), finite
f in some stochastic filtering contexts (e.g., MARCUS [1979]). 1In other
applications, an approximation of the original problem may result in these
conditions being true (for example, disregarding higher-order harmonics

corresponding to a periodic input, for systems with "mild" nonlinearities).

In the above context, k-systems may be seen just as a technical tool
which facilitates the study of polynomial systems, which can be implemented
in turn by sets of simultaneous polynomial difference equations. There

are cases, however, in which Z_ may not be polynomial, even if it admits

a polynomial (noncanonical) reaiization. In fact, this was the original
motivation for introducing more general systems. In those cases, it becomes
of interest to find a way of somehow "programming" explicitly the resulting
k-system. This will be accomplished in the last chapter, resulting in a
description for Zf in terms of locally rational transition and output maps
in finitely many variables. Some remarks are also included there on the
topic of determining a bound for the number of equations needed to represent

Zf when this is polynomial.

Also in the last chapter, we shall briefly discuss generalizations to
arbitrary k-spaces of input and output values, and to nonequilibrium
initial states. The first generalization allows the ineclusion of algebraic
constraints, for example, for k = reals, the restriction to inputs of a
fixed magnitude. The second allows treating i/o maps for which the depen-
dence itself of present outputs on past inputs is allowed o change in time.
The work closes with some remarks on other results and open problems and

suggestions for further research.



CHAPTER II. AILGEBRAIC PRELIMINARIES

In this chapter we shall briefly discuss some basgic notions of
algebraic geometry which are used in the sequel. The main object to be
introduced is the set of k-points of an affine k-scheme (k = field);
we shall simply call this object a "k-space".

The study of k-spaces is per se not included in standard texts in
algebraic geometry; usually one studies instead the set of all points of
a scheme and then tries to deduce special properties of the k-points.
For instance, the study of finitely generated reduced schemes over the

reals R, 1.e. the study of solutions of polynomial equations with real

coefficients
(*) Pi(xl’ ceey xn) =0, i=1, ..., r,
focuses on the complex solutions (xl, ceay xn) in g? of (*) rather

than on the real solutions. This approach has proved highly appealing,
since statements concerning the set of complex solutions do not have to
elucidate certain exceptional or degenerate cases. In fact, it is

customary to proceed a step further and embed the corresponding problem

in projective space.

To infer the nature of the set of k-points from the properties of
the entire scheme is not always a straightforward matter; it may involve,

in fact, nonalgebraic (e.g. differential-geometric) arguments.

For purposes of this exposition we have adopted the procedure of
defining k-spaces directly. We shall give here the definitions and the
main results needed later. With the exception of some trivial statements,
no proofs will be given for those facts for which a precise reference is
available (and given). There is unfortunately no single source for the
results quoted. We rely mainly on BOURBAKI [1972] and DIEUDONNE [1974].
Except for some matters of style and emphasis, no original contributions
sppear in this chapter.
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1. k-Reduced Algebrasg,

Let k denote an arbitrary but infinite field, to be fixed

throughout the discussion. Recall that a (commutative) k-algebra (or,

simply, an algebra) is a pair (A, @), where A is a commutative ring
with identity and ¢: k - A is a ring homomorphism with ¢(1) = 1. We
shall denote such algebras by the corresponding ring A and identify
k with its (isomorphic) image ¢(k). Thus the scalar product r.a,
r€k, ac€h, is the multiplication in A. The field k may always
be viewed as & k-algebra, with ¢ = identity.

A homomorphism of k-algebras i: A — B will mean a homomorphism

whose restriction to (k) = k is the identity.
We adopt the following notation conventions:
(1) the first few upper-case Latin letters A, B, C, ...
denote k-algebras;
(ii) A 8% B or simply A® B is the tensor product slgebra;

(1ii) if A 1is an integral domain, then GQ(A) denotes the
quotient field of Aj;

(iv) k[Tl, ceey Tr] denotes the ring of polynomials in r

variables over k; when r =1 we write simply k[T];
(v) "homomorphism" will always mean k-algebra homomorphism;
(vi) Hom (A, B) denotes the set of all homomorphisms A —B.
(1.1) ©DEFINITION. A k-idesl M of a k-algebra A is the kernel of

a homomorphism A — k. The k-radical ra.dk A of A is the intersection
of all k-ideals of A.

Let M be a k-ideal of A. Since A is a k-algebra, AM=~k is
a field, so M is maximal, but not every maximal ideal of A is a
k-ideal. For instance, let k =R and A = R[T]. Then the ideal M

generated by x2 + 1 is maximal (because x2 + 1 1is an irreducible
polynomial) but AM = c # R. 1In the particular case in which A 1is
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finitely generated and k is algebraically closed, all maximal ideals
are k-ideals; this is a consequence of Hilbert's Nullstellensatz; see
BOURBAKT [1972, V.3.3, Proposition 2].

There is a bijective correspondence between k-ideals and

homomorphisms A - k. Indeed, let 4y, v: A -k and suppose that
ker B = ker v. Take any x in A. Since p(x) is in kX CA and
B is the identity on k, x - u(x) belongs to ker 1 = ker v. Thus
0= w(x - u(x)) = v(x) - u(x). So the maps 1 and v are equal.

Let X be a set. The set kX of all functions X -k is a
k-algebra under the pointwise operations, the constant functions
constituting the subring isomorphic to k. A subalgebra of kX is

called an algebra of functions on X.

(1.2) TIEMMA. The following statements are equivalent:

(&) radK A = {O}.

(b) A is isomorphic to an algebra of functions.

PROOF. (b) implies (a). Tet A be identified with a subalgebra

of kX. For each x in X, the evaluation map
X
e K -k P - o(x),

restricted to A 1is a homomorphism, hence ker exlA is a k-ideal.
Clearly then rady AC M {xer e, X in X} = {03,
(a) implies (b). ILet X(A) denote the set of all homomorphisms

u: A > k. Define t(: A —>kX(A) by evaluation:

t(a)(u) := u(a).

Then ¢ 1ig a homomorphism; moreover, it is in fact one-to-one. To
prove this, assume that ((a) = 0, i.e. t(a)(n) = 1(a) = 0 for some
a in A and for all u in X(A). Then a is in the kernel of every
M: A -k, i.e. in the k-radical of A, which is O by hypothesis.
So a = 0. Therefore A = ((A).
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Let us observe the duality implicit in the preceeding arguments.
Homomorphisms A — k may be viewed as points on which elements of A

act by evaluation.

This duality is fundamental in algebraic geometry.

(1.3) DEFINITION. An algebra satisfying the conditions in (1.2) is

called a k-reduced algebra.

For every k-algebra A, the quotient ring A/radK A is
k-reduced.

An important fact related to (1.3) is Hilberts's Nullstellensatz,

which can be phrased as follows: A finitely generated algebra A over

an algebraically closed field k 1s k-reduced if and only if A has

no nonzero nilpotents.

A recent generalization of this celebrated result (DUBOIS [1967],
DUBOIS and EFROYMSON [1970]) is the following: A finitely generated

algebra A over a maximally ordered field k (e.g. k =R) is

n
k-reduced if and only if for any X, in A the relation Zi—l x? =0

implies xi =0 for all i.

The main idea in what follows is to view the elements of a
k-reduced algebra A as functions on X(A). Take x in X(A), a in
Viewed as a function t(a) on X{A), a has the value t((a)(x) = x(a)

A,

at x. Except when discussing certain delicate points, we shall therefore

identify A with its image under ¢ and so we shall write ((a) as a

and t(a)(x) as a(x). The fact that x is a homomorphism means that

the algebra operations in A are now represented as pointwise operations:

(ab)(x) = a(x)b(x).

It is worth keeping in mind the following:

(1.4) EXAMPIE. Let A :=k[T., ..., T ]. Since k is infinite, a
n 2

lJ

polynomial a(Tl, cee, Tn) can be identified with the polynomial function

k* -k (xl, cees xn) raa(xl, ceey xn). Thus, by (1.2), A is k-reduced.

A homomorphism p: A —k 1is completely determined by giving values of
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u(Tl), ceey u(T ) in k. Conversely, for any choice of (x cen, xn)
n

in k  there is a homomorphlsm H: A >k defined by u(T ) x,. Thus

one identifies X(A) with k and (: A —>kX(A) with the assignment:

polynomial ~ polynomial function.

(1.5) IEMMA (canonical factorizations). et 7: A -»B, where B is
k-reduced.

(1) Then there exists a factorization

A—T1 38

u\. Y

c

where W is onto, v is one-to-one, and C is k-reduced.
u V.
(ii) Further, let two factorizations A —% c; R and

A Jﬁ‘ C —JavB of T be given, with ul onto and v one-to-one.

2
Then there exists a unique 7: Cl ~>C2 such that the following diagram
commutes:

ST

PROOF. The existence of factorizations (u, C, v) and of the
map 17 are elementary algebraic facts. We must only prove that any
such C is k-reduced. But C = v(C) CB, and B is an algebra of

functions. So C 1is also an algebra of functions.

The above lemma plays an important role in characterizing canonical
realizations, analogous to the role of its linear variant, Zeiger's
lemma (KAIMAN, FALB, and ARBIB [1969, Chapter 10, Lemma (6.2)]), in
linear system theory.

(1.6) TREMARK. Products of k-reduced algebras are k-reduced. Indeed,

assume that Aj is a subalgebra of Exj for each J in J. Then

I Aj is an algebre of functions on the disjoint union of the Xj'
J
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It follows from the definition of the tensor product ® that for
any two homomorphisms dp: A -C and v: B —»C there exists & unique

homomorphism
(1.7) u®v: A®B 5C: % 8, ® b, -2 u(a; Iv(b, ).

(1.8) 1IEMMA. Let A, B, C be k-algebras. Then:

(a) The assignment (M, v) >R ® v esteblishes & bijection
between Hom (A, C) X Hom (B, C) and Hom (A® B, C).

(v) X(A® B) is naturally identified with X(A) x X(B).

(¢) If A, B sre k-reduced, so is A ® B.

PROOF. (&) Write jj: A>A®B:rava®l and
,ja: B-A®B: b »1®Db, We then define the inverse of the
assignment (B, v) »p® v as Hom (A® B, C) »Hom (A, C) X
X Hom (B, C): 7 » ('5’°J'1, 7°J'2).

(b) Apply (a) to C := k.

(¢) Since X(A® B) has been identified to X(A) x X(B), it
ig enough to prove the following: if (p, v)(e) = O for some ¢ in
A®3B and for all (p, v) in X(A) X X(B), then ¢ = O. Assume that
¢ # 0, and express c as & finite sum 2, a; ® b, with the b,
linearly independent over k. For any p in X(4), consider the
element b :=2 u(a‘i)bi of B. For any v in X(B),

y(b) =% u(ai)v(bi) = (p, v)(c) = 0. Since B is k-reduced, the
function b = 0. The bi being linearly independent, it follows that
u(a.i) =0 for all i. Since A 1is k-reduced and p wes arbitrary,

ai=0 for all i. So ¢ = 0. O

(1.9) REMARK. Recall that, in any category, the coproduct of &
femily {’JZA, A €A} of objects is dgfined as an object T = ]A[ 'L}\ and
morphisms vyt ’Il)\ - T which satisfy: for eny object © and morphisms
97\: ‘Il)\ @ there exists a unique morphism v: T - & such that

vow, = 67\ for all A. An equivalent way of expressing the properties
(1.8.a) and (1.8.c) is to say that A ® B (together with the inclusions
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ara®l, brl®Db) is the coproduct of A and B in the category
red
Algk of k-reduced algebras, having (k-algebra) homomorphisms as its

morphisms.

By induction, the coproduct of any finite family Al, ceey An

in Algll;ed is Al ®...® An. In the case of the category A_]_.g__ik of

all k-algebras (as in all algebraic categories), an arbitrary (not

finite) coproduct exists. In fact, this coproduct can be obtained by

the following direct-limit construction. Consider first the disjoint
union of all {®AO A7\, AD A = finite}. Then, for each pair Ao C A('),
identify ®Ao A7\ with the image of the inclusion morphism

® A./\ -8,, A obtained by adding coordinates equal to 1 in the

Ag AL A

positions A in A(') - Ao. The algebra A obtained from this
construction is the coproduet of the A.)\ in Algk. If all A.)\ are

k-reduced, so is A, Indeed, by the construction just sketched, an

element x of A is in some (finite) tensor product ®AO Ay, and
every homomorphism ®Ao A.)\ -k extends to a homomorphism A -k (just
define A7\ -k arbitrarily if A is not in AO). Assume now that x
is in the kernel of all homomorphisms A —k. Then x is in the kernel
of all homomorphisms ®, A, =k, soby (2.8.¢), x = 0. Therefore A
is k-reduced, and g fortriori A is the coproduct of the A7\ in

Algired. Thus arbitrary coproducts exist in the category of k-reduced

algebras. Moreover, the construction shows that 4 = I A'}\ includes all
the A,)\, and that A is generated by the k-algebras A.}\ Finally,
observe that the categorical definition of coproduct given above, applied
to @ :=k, shows that the set X(A) of morphisms A —k is identified,
through composition with the inclusion homomorphisms A./\ - A, with the
set II\[X(A?\) of families of homomorphisms A -k

(1.10) DEFINITION. Let A be an algebra of functions on & set X.
Take x, y in X. Then A geparates x and y iff there exists an &
in A such that a(x) # a(y).

(1.11) DEFINITION. ILet A be & subalgebra of the k-reduced algebra B.

Then A is maximallx segara.ting with respect to B iff there is no C
such that A g CCB, and C separates the same points of X(B) as A.
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We shall later make use of the following
(1.12) EXAMPIE. Iet A := k[Tng, n > 0] be the subalgebra of
k[Tl, T2] generated by all the monomials Tng, n>0. Then A is
maximally separating with respect to B := k[Tl, Tg]. Note that A

identifies all points of the form (O, XE) and separates any other
pair of points in X(B) = k2. Assume that there is a € as in (1.11).
Take P(Tl’ T2) =2 a..TlTJ in C. Since C separates no more points

ij7172 T
than &, P(0, x,) = P(0, 0) for all x,. Therefore 1 aojTg is a
constant polynomial. Since k 1is infinite, P has no terms in Tg,
. i-1 s P
j>0. So P=a + iéo aijTl (TlTe) is in A. ]

Recall (BOURBAKI [1972, Chapter V]) that the algebra A is
integral over the subalgebra B iff every a in A satisfies an

equation

n n-1
a + bla + ...+ bn = 0,

for some bj’ j=1, «.., n in B and for some n > O.

A k-algebra A is finitely generated iff there exists a finite

subset {al, ceny as} of A such that each element of A can be
expressed as a finite combination of 8ys erey By using sums, products,

and multiplication by elements of k.

(1.13) IEMMA. ZTet the k-algebra A be an integral domain, and assume

that A is integral over a subalgebra B.

(a) If B is a finitely generated k-algebra and Q(A) is a

finitely generated field extension of Q(B), then A is a finite

B-module and so also finitely generated as a k-algebra.

(b) If A is a finitely generated k-algebra then B is also

finitely generated.

PROOF. (a) This is an easy consequence of BOURBAKI [1972, -
V.3.2, Theorem 2].
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(b) Iet 85 ..+, 8 generate A. Each e, satisfies an
integral equation with coefficients bij in B; call CC3B the
k-algebra generated by all the bij' Then A 1is integral over c,

and so B is integral over C. By (a), B is finitely generated.

2. The Zariski Topology.

For the rest of this chapter, unless the contrary is explicitely
stated, A, B, ¢, ... will always denote k-reduced algebras.

Recall that X(A) denotes the set of all homomorphisms p: & — k.

We now introduce an operator V which assigns a subset V(S) of
X(A) to each subset S of A. It is defined as

(2.1) v(8) :={x in X(a4) | a(x) =0 for all a in s§).

Thus V(S) is the set of solutions of the simultaneous equations
a(x) =0, a in §. Since, by convention a(x) means x(a), where

X: Ak is a homomorphism, we can give the equivalent definition
(2.2) v(8) := {x: A >k | ker x D 8).

(2.3) PROPOSITION. The operator V satisfies the following
properties:

(2) v(8) = x(A) if and only if § = {0]}.

(v) v(a) = 4.

(¢) 8CT implies V(T) c v(s).

]

(d) Iet (s) denote the ideal of A generated by S. Then

v(s) = v({s}).
(e) v(U{sx, A in A)) =ﬁ{v(‘s7\), A in A).

(f) Let I.J denote the Product of the ideals I, J of A,
i.e. the ideal generated by {ab, a in I, b in J). Then

W)U v(I) =v(TNJI) = v(1.J).
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PrROOF. (a), (b), (c), (d), and (e) are easy consequences of
the definition of V.

We now prove (f£). By (c), ImJgI and ImJ_(;J imply
v(1)Uv(@) cv(IMNJ). similarly, I.JCI(J implies
V(I1MJ)  V(1.J). Consequently, it will be sufficient to show that
if x is not in V(I)UV(J) then x is not in V(I.J). But if x
belongs to neither V(I) nor V(J), there are a in I, b in J
such that a(x) £ 0, b(x) # 0. So (a.b)(x) = a(x)b(x) # 0. Since
ab € I.J, x is not in V(I.J).

It follows from (a), (b), (e), and (f) above that (V(s), s C4}
is the family of closed sets for a topology on X(A), called the

Zariski topology. Therefore we shall henceforth refer to sets of the
type V(S), S CA, as closed sets.

Occasionally it is convenient to define closed subsets of X(A)
in an indirect manner. Let A, B be any k-reduced algebras, and
congider the tensor product A ® B. Let S be any subset of A& B.
For any s =2 a; ®Db, in § and any x in X(A) let s(x) be the
element 2. ai(x)bi of B.

(2.4) IEMMA. vB(s) := {x € X(A) ] s(x) =0 for all s in S} is
a closed subset of X(A4).

PROOF. Iet {b,, N in A} be a basis for B as a k-vector
space. Each s can be expressed in the form L & o ® b?\ (finite sum),
4
so s{x) =2 a, (x)b,. Since ({b,} is linearly independent,
58 A A

VB(S)=V({H-)\S in A, s in 8, A in A}).

We now define an operator I which associates a subset I(Z) {in
fact, an ideal} of A to each subset Z of X(A). It is defined as

(2.5) 1I(2) :=f{a in A | a(x) =0 for all x in Z}.

Thus I(Z) 1is the annihilator of Z; it is evidently an ideal of A.

We can define I(Z) equivalently via homomorphisms, which gives
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(2.6) T(Z) :={{ker x, x in Z).

{(2.7) PROPOSITION. The operator I has the following properties:
(a) 1(x(4)) = {0}.
(v) 7, C2,=>0Uz) ¢ 1(z,).
(c) zcv(I(z)), scI(v(s)).

(a) 1 (U{zx, A in A}) =ﬁ{1(v7\), A in Al
() I(V(8)) is the intersection of all the k-ideals
containing S.

(£) v(1(z)) = {x in X(&) | ker x D ZE?Z ker z].

PROOF. (a), (b), (¢), and (&) are easy consequences from (2.5),
(2.6).

(e) Observe that, by (2.6),

1(v(8)) =M {ker x, x in V(8)],
and by (2.2),

x is in V(8) iff 8 C ker x.

(£) Similar to (e}.

(2.8) REMARK. Using (2.3) and (2.7) it is easy to verify the following
facts:

(1) 1(v(z(z))) = 1(2),
(11) w(z(v(z))) = v(2),
(1i1) the Zariski closure of any Z CX(A) is V(I(z)), and

(iv) an ideal I is of the form I(Z) if and only if
1 = I(V(I)).

Tdeals as in {iv) are called closed; this terminology comes from

regarding S — I(V(S)) as an algebraic (not topological) closure operator.
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One could have deduced (i)-(iv) from the fact that, by (2.3c),
(2.70) and (2.7c), the pair {V, I} constitutes a duality or Galois
connection (KUROSH [1963, § 51]). Finally, it also follows that {V, I}
establish an inclusion-reversing bijection between closed ideals of A
and closed subsets of X(4).

(2.9) IEMMA. For any ideal I of A, X(A/I) can be naturally
identified with V(I); therefore the canonical map 7: A —»A/T can

be naturally identified with the restriction mep a FaaIV(I), where

a ig viewed as a function on X(A). Furthermore, I is closed if
and only if A/I is k-reduced.

PROOF. From elementary algebraic considerations, the injection
X(A/I) > X(A): ¥y »yom shows that there is a bijection between
functions y in X(A/I) and those functions x = yofr in X(A) for
which xlI = 0, that is, I C ker x. These are precisely the x in
v(1).

To prove the second part, note that k-ideals of A/I correspond
via 7 to those k-ideals of A which contain I. Thus radk AT =0
Precisely when I is the intersection of all the k-ideals containing
it. Applying (2.7e) to (2.8iv) gives the proof.

We need the following elementary topological

(2.10) DEFINITION. A topological space Z is irreducible iff Z is

not the union of two proper closed subsets, in other words, iff

z=12,%,, Z closed, implies Z =2, O Z =1

1 2°

Clearly, Z is irreducible iff any two nonempty open sets of Z

have a nonempty intersection, i.e. iff any open subset of Z is dense.

Therefore, irreducibility permits the use of local intuition and methods

(= arguments about neighborhoods) in the proof of global statements.

To apply the above concepts in our context, we must study more
. closely the Zariski topology in the spaces X(A). This topology will
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in general not be Hausdorff (= different points having disjoint
neighborhoods), but it is true that each point of X(A) is a closed
set. Indeed, by (2.7f), {x} = {z | ker z D ker x}; since ker x is

a maximal ideal, it follows that x} = {x} as wanted.

A set 2 EZX(A) can be given the subspace topology; thus
irreducibility of Z is well defined. In particular, it is easy to

see that a closed subset V of X(A) is irreducible iff

2,11) vcv,Uv,, V., bvoth closed in X(&), implies VCV. or
=1 2 i 4 -1

Vv,

Recall that an ideal P of A, P # A, is prime iff, for any
ideals Jl, J2’ Jl.J C P implies Jl CP or J2 C P. Equivalently,
P is prime iff, for any a, b in A, ab in P implies either a

isin P or b is in P; see BOURBAKI [1972, II.1.1]. We then have:

(2.12) IEMMA. Let V be a closed subset of X(A). Then V is
irreducible if and only if I(V) is prime.

PROOF. [Yonly if"] Assume I3, CI(V). Then, by (2.3c),
v =v(I(V)) c V(Jl) UV(Jg). Since V is irreducible, V C V(Jl) or
vgv(Jg). Thus by (2.6c,b) J, C I(V(Jl)) CI(V) or

J, C I(V(JZ)) c I(v).

1

[™if"] Assume V =lev2, V, closed. Then by (2.7d)
I(Vl).I(V2) cC I(Vl) ﬁI(vz) =1 (leve) = I(V). This and
I(V) = prime imply I(Vl) CI(V) or I(Vz) C I(V). Thus

V=V'I(v)gv1(v1) =V, or VCV,.

1 2

In particular, X(A) 1is irreducible iff A is an integral domain.

It follows from (2.12) that V> I(V) and I + V(I) establish an
inclusion-reversing bijection between irreducible subsets of X(A) and

prime ideals of A.
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3. k-Spaces.
A4 k-space is the abstract version of a space of the type X(A):
(3.1) DEFINITION. A k-gpace (X, A(X)), or simply X, is a set

X and a k-algebra A(X) of functions X —k such that the map
X -»XAX): xp e, (= evaluation at x) is bijective. The elements

of A(X) are the polynomial functions on X.

The terminology "polynomial functions” is motivated by Example (1.k).

We always consider a k-space X as a topological space, with
topology induced from the Zariski topology on X(A) by the bijection
X = X(A(X)). We shall see presently that all k-spaces are essentially
of the type (X(A), t(A)), where A is k-reduced an ( is the map

introduced in (1.2).

(5.2) DEFINITION. Let X, Y be k-spaces. Amap f: X »Y is
Polynomial iff for each polynomial function b: Y -k in A(Y) the
composition bef: X >k is & polynomial function in A(X).

We shall use X, Y, Z to indicate k-spaces; f: X »Y will

always mean & polynomial map.

It can be trivially verified that k-spaces as objects, together
with polynomial maps as morphisms, constitute a category. In this
category we have the following

(3.3) IEMMA. Every k-space is isomorphic to a k-space of the

type (X(A), v(A)), where A is k-reduced and . is the map
introduced in (1.2).

SKETCH OF PROOF. Given a k-space (X, A(X)), let A := A(X).
An easy check shows that X - X{A): x & e, is the required isomorphism
of k-gpaces.

Since all results will be stated up to isomorphism, we are justified
by (3.3) when carrying out our proofs sbout k-spaces only for those of
type (X(A), t(4)). We continue to use our convention of identifying
t(A) with A (so A(X(A)) =A) when there is no danger of confusion.
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A major role is Played by the k-spaces introduced by the following

(3.4) DEFINITION. A k-space X is a variety iff A(X) is a
finitely generated k-algebra.

Iet al, ooy an generate the k-algebra A. Generation is
equivalent to ontoness of the k-algebra homomorphism
R k[Tl, cee, Tn] — A defined by the assignment T, »a,. By (1.4)
and (2.9) we see that (X(&), ¢(4)) is isomorphic to (V, B), where
V is the set of points x in kn which satisfy all equations
f(x) =0, £ in ker {, and where the functions in B are the
restrictions to V of the polynomial functions kn — k. There are
many possible representations (V, B) for each A, depending upon

the choice of generators a

17 +++» 8, Thus, (affine) varieties are the

coordinate-free versions of those subsets of K" defined by polynomial

equations. When studying varieties, it is usually simpler to deal with
representations of the type (V, B). Note that if (Vl, Bl) and
1gkn and V2_C_km, a
map f: Vl —aVé is polynomial precisely when f 1is defined by an

(Vg’ B2) are (concrete) varieties, where V

m-vector of n-variable polynomials.

(5.5) DIGRESSION. Let k = g, the reals. Then varieties have a
natural topology induced from their embedding in Euclidean space with
the usual topology. This topology is finer than the Zariski topology;
(for instance the only proper Zariski-closed subsets of Rl are finite
sets). More generally, given any normed field k, we may define a

strong topology on k-spaces by choosing as a basis of open sets all

finite intersections of sets of the type f-l(N), for all polynomial
functions f and all open sets N in k, 1i.e. the coarsest topology
in X for which all f in A(X) become continuous for the normed
topology of k. (See for instance SHAFEREVICH [1975, Chapter 7] for
the case of varieties over g.) For the purpose of this work,
realization theory, we are mainly interested in (global) questions of
structure; thus we shall use only the Zariski topology, even in the cases
k=R or C, except for the proof of some technical facts on varieties

over R in Section L, O
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(3.6) DEFINITION. Iet g: X; »X,. The transpose of g is the

homomorphism A(g): A(Xz) —>A(Xl) defined by

A(g)(£) := fog.

(3.7) IEMMA. Fix two k-spaces X,, X.. Then the assignment
1 2

A: g »A(g) establishes a bijection between polynomial maps X, =X,

and k-algebra homomorphisms A(Xe) —;A(Xl).

We shall write X(u): X(B) -»X(A) for the polynomial map

corresponding to the homomorphism M: A — B.

PROOF. The problem is to define an inverse X of the transpose
functor A. Le;t(.the k-spaces Xj be (X(A'j ), L(Aj)), g=1,2
and Lyt Aj —»X% J the canonical maps. Iet a: L2(A2) ~ Ll(Al) and
take x in X. Since e : Ll(Al) -k is a homomorphism,
: A

exgotoc -k 1is also a homomorphism. Now define

2° 72

X(a): X(Al) ->X(A2): o~ e 0oL,

It is easy to verify that X(A(g)) =g and A(X(2)) = a for all
g: X(Al) —>X(A2) and all a: L2(A2) - Ll(Al). : D

(3.8) COROLIARY. The category of k-spaces is dual (arrows reversed)

to the category of k-reduced k-algebras. 0

The above duality allows the translation of constructions and
statements about algebras into (dual) statements about k-spaces, and
vice versa. For instance, (1.8) says that the categorical product
X XY of two k-spaces X, Y 18 the k-space X(A(X) ® A(Y)) and
that the wunderlying set of this k-space is the cartesian product
X X Y. By induction, X(Al) X X(A2) X veo X X(An) = X(Al ® ... ® An).
And, in particular, (X(k[T]))n (n-th fold power) coincides with
X(k[Tl, ceny Tn]) = kn; see Example (1.4). This also shows that the
notation kn is consgistent with products in the category of k-spaces.

(Note that, in particular, K - X(k) = one point, say {0}).
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As an example of the transpose construction, consider a function
f: X - k. Since the transpose A(f): k[T] - A(X) 4is a k-algebra
homomorphism, A(f) is determined by A(f)(T) = Tof, Since T is
the identity map on k,

(3.9) A(£)(T) = £.

So the transpose of f is the map P(T) ~ P(f).
We now relate various properties of polynomial maps to properties
of their transposes.

(3.10) DEFINITION. A polynomial map f: X -Y is domina:ting iff
£f(X) =Y¥; f is a closed immersion iff f can be factored as &,°8,>

where 8 is an isomorphism X = V and 8, is the inclusion map
V -Y, for some closed subset V of Y,

(3.11) IEMMA. Iet Q: A »B and denote f := X(a): X(B) - X(A).
Then

(a) £7HV(s)) = V(a(8)) for any S CA.
() £ 4is contimuous.

(e) £(V(I)) = v(a’l(I)) for any closed ideal I of B.

(d) £ is dominating if and only if o is one-to-one.

(e) f 4is a closed immersion if and only if « is onto.

PROOF. (a) x is in f'l(v(s))
iff f(x) is in V(8),
iff a(f(x)) =0 for all a in 8§,
iff afa)(x) =0 for all a in 8§,
iff x is in Vv(x(8)).

i

(b) A1l closed sets in X(4) are by definition of the
form V(s). By (a), pre-images of closed sets are closed.

(¢) We first prove that ot-l(I) = I(£(v(I))); in fact the

following statements are equivalent:
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a is in I(£(V(1))),
a(f(x)) =0 for all x in V(I),
ofa) is in I(V(I)) = I (I = closed!),

a belongs to ot-l(I).

Therefore V(a™ (1)) = V(T(£(V(T)))) = F(V(I)), as required.

(4) Applying (c) to I = {0}, v(a'l(I)) = f(X). So f is
dominating iff V(ker a) =Y, which by (1.1la) is equivalent to
ker o = {0}.

(e) Dualizing (3.10), f is a closed embedding iff the
transpose homomorphism ¢ factors as [320 Sl, where Bl is a
homomorphism B ->B/I for some ideal I and (32 is an isomorphism.

Such factorizations exist precisely when « is onto. a

Both dominating maps and closed immergions will play important
roles in our treatment of realization theory. We emphasize some

intuitive aspects of these concepts through the following

(3.12) DISCUSSION. It follows from (e) above that « onto implies

that £ 1is one-to-one. The converse is false. For an easy example,
consider X =Y =k := R, fl(x) i= x3. Then, fl is one-to-one,

but A(fl): k[T] - k[T): T T is not onto (T is not in the image).
The problem does not lie in the fact that R is not algebraically
closed: for any field k we may consider fg: k ->k2: X e (x2, x3);
£, is one-to-one but A(f)): KT, T,] »k[Tl: T, » T, T, 0D

2 2 3 2
has image k[(T°, T°]1 # k[T].

A variation of the last example provides a bijective map f3
which is not an isomorphism. Indeed, consider the "cusp"

Y := {(x, y) in kalx3 =y2).
Then

(3.13) f3: k->Y: x H(XE, x3),
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is bijective. But f is not an isomorphism, because, by the
equivalence of categories (1.7), £, dis an isomorphism iff A(f5) is
an isomorphism. But A(Y) = k[Tz, T3] # k[T]; see DIEUDONNE [197hk, 1.1
Example 5]. Intuitively, we cannot expect to have any isomorphism

between k and Y because the curve Y has a singularity (at the

2

origin) while the line k has none.

It is not difficult to prove that, in the category of k-spaces,
monomorphism = one-to-one and epimorphism = dominating. A dominating
map is in general not onto. This is illustrated over %k = R by
X=Y :=B, £(x) := x2; this is a dominating map because the
smallest Zariski closed set containing the nonnegative reals is all of
R. 1In the particular case when k 1s algebraically closed and X is
an irreducible variety, a dominating f becomes almost onto, in the
sense that f(X) contains a Zariski open subset of Y; see (3.1L)
below. Thus in this particular case f(X) is all of Y except at
most for a subset of "lower dimension" (to be made precise later).
Moreover, it can be proved that, when k =C and Y dis given the

strong topology (3.4), f£(X) has a nowhere dense complement.

We remarked above that the image of a polynomial mep is in general
not a closed set. When f: X -»Y is a polynomial map between two
varieties, one can sometimes characterize f(X) as a set defined by
polynomial equalities and inequalities. A constructible subset C of
a variety X is a finite union of sets of the type U(PWF, where U
is open and F is closed. In other words, C 1is in the Boolean
algebra generated by the Zariski topology of X. When k is a real-
closed field (JACOBSON [196L, VI.2]), like k =R, we define an

real-constructible set C as a finite union of sets V/()F, where F

is closed and U is of the type {x in X|f(x) < 0} for some
polynomial function f.

(3.14) THEOREM. Let X, Y be varieties and let f: X »Y. Then

(a) If k is algebraically closed and C is a constructible

subset of X (e.g. C =X), then f£(C) is a constructible subset of Y.
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(b) If k is & real-closed field (e.g. k =R) and C is a

real-constructible subset of X (e.g. C.=X), then f(¢) is a

real-constructible subset of Y.

(e) If f is dominating, Y is irreducible, and k is

algebraically closed, f(X) contains a (Zariski) open subset of Y.

(d) If £ is dominating, Y is irreducible and k = R, then

£(X) contains a set open in the strong topology of Y.

PROOF. (a) This is the well~known CHEVALLEY's theorem; see
for instance DIEUDONNE [1974, Chapter 4, Corollary to Proposition 1L].

(b) This statement is essentially the generalized STURM's
Theorem due to TARSKI and SEIDENBERG; see JACOBSON [1964, VI.101. (The
usual statement of the TARSKI-SEIDENBERG result requires that the
coefficients of f be rational, so that f£(C) can be constructed
algorithmically. However, the proof itself does not depend upon this
requirement; see SEIDENBERG [195L4, footnote in page 366].)

To prove (c¢) and (d), write f£(X) = fih%te Ui(ﬁ\Fi as in the
definition of constructibles and real-constructibles, with the Fi
closed and the Ui Zariski-open or, when k = R, of the type

{f(x) < 0}, so open in the strqgg_iopology. If F, #Y for all i,
then, by irreducibility of Y, £(X) =\v)Fi # Y, contradicting

domination of f. So some F, =Y, and £(X) contains ;.

An important type of dominating map arises in the following

(3.15) DEFINITION. The principal open set defined by a € A is

D(a) := {x in X(A) | a(x) £ 0J.

The principal open sets constitute a basis for the Zariski topology.

Indeed, the complement of any closed set V(S) is the union of the
D(a), a in 8. TFor simplicity, let A De an integral domain. Denote
by ol the algebra A.gia-lA C Q(A) consisting of all b/an, b in
A, n>0. Take any o: a 1A 5k, Then 8 := alA: A sk satisfies

B(a) #£ 0. Conversely, if 8: A -k and p(a) £ O then the rule
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a(o/a”) := B(b)/p(a)” defines the (unique) « extending PB. Therefore
D(a) is the image of the map

(3.16) x(a™"a) ->x(a),

dual to the inclusion A C a_lA. This map is both one-to-one and
dominating and establishes a homeomorphism between X(a'lA) and D(a);
see BOURBAKI [1972, II.L.3, Corollary to Proposition 13]. Iocal
arguments about k-spaces are often simplified by restricting attention
to principal open sets. m]

We shall be especially interested in "quotients" of varieties:

(3.17) DEFINITION. A k-space X is an almost-variety iff there

exists a variety X and a dominating polynomial map f: X - X.

By definition of "dominating", this means that X has a dense
subset f(}z) consisting of equivalence classes of elements of X. ILet
f: X X as above. By Hilbert's basis theorem we may write
}E = )ElU U)Er, where the }?i are irreducible closed sets; see
BOURBAKT [1972, III.2.10, Corollary 3 of Theorem 3}. From the
definition of irreducibility, it is easy to prove that continuous
images and closure of irreducible sets are irreducible. Hence
X, := f(Xi) is an irreducible closed st}bset for each i. Since
f]Xi: ii ——>Xi is dominating and each Xi is a variety, X can be

written as & finite union of irreducible almost-varieties.

The next lemma shows that every irreducible almost-variety has an
open (hence dense) subset which is a variety, justifying the terminology
"almost variety".

(3.18) IEMMA. Iet X be an irreducible almost-variety. Then there
exists a prinecipal open set D(a) of X which is a variety, i.e. such
that & TA(X) is finitely generated.

PROOF. Let f: )E——>X be dominating with X an irreducible
variety. Then A(f): A(X) -»A(}A{) embedds A(X) in B := A(X); we
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identify A(X) with its imege A C B. By BOURBAKI [1972, V.3.1l.,
Corollary 1] there is en a in A and Ty eees T, in B such

that the finitely generated algebra a-lB is integral over the
polynomial ring a'lA[Tl, ceey T,). By (1.13) a_lA[Tl, ceey Tr] is

a finitely generated algebra. Let Pl(Tl, ceny Tr)’ ceey Pm(Tl, ceey Tr)
generate a'lA[Tl, +eey 1. Then P, (0, ..., 0), ..., P (O, ..., O
generate a-lA. Thus a-lA is finitely generated

We shall find in Chapter IV that the canonical state-spaces are in
general almost-varieties. In particular we shall give an input/butput

map whose canonical state-space is that given by the following

(3.19) EXAMPIE. ILet A :=k[TyT5, n>0]. Since ACK[T,, T,),
X(A) 4is an almost-variety. Teke a := T,. Then ala = k[Tl, T,»

is a finitely generated algebra. As a variety, X(a_lA) can be

-1

T1 ]

represented by the set of solutions (x, y, z) in k5 of the equation
xz - 1 = 0. Note that X(a-lA) can be also naburally viewed as the
principal open set x; £0 in k2. A point x of X(A) not in D(a)
satisfies x(Tl) = Tl(x) = 0 and (as we now show) it also satisfies
x(Tng) =0 for all n., This is not trivial, since the ¥proof"
x(TlT2) = x(Tl).x(Te) = O.x(T2) = 0 is fallacious: x(TE)' is not
defined, because T2 is not in A. One way to prove the statement is
by means of the theorem of extension of places (see BOURBAKI [1972,
VI.2.h, Propositicn 13]). This theorem implies that, if there is no
extension of x such that X(TE) is defined, then there does exist an
él and such that x(T;l) = 0 (the values
of the extension of x, though, are not necessarily in k). But if
this is the case, then x(Tng) = x(Tng+l)x(T;l) =0 for all n, as

overring of A containing T

wanted. Therefore the complement of D(a) consists of just one point
and X(A) dis the disjoint union of the variety X(a-lA) and this one
extra point.

L. Dimension,

There are various possible notions of dimension for a k-space X.

A1l these notions coincide if X 1is a variety and k 1is algebraically
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closed, but this is not true for more general X or k. Thus our choice

will be to some extent arbitrary, to be justified by the results.

Iet A be an overring of B having no zero divisors. Recall that
elements zl, veey ﬂn of A are algebraically dependent over B iff
«..y T ] such that

n

vee, B are
1’ > n

there exists a nonzero polynomial P in B[Tl,
P(Zl, ceey En) = O. When no such P exists, £
algebraically independent. We review some elementary properties of

algebraic dependence. They can be found, for instance, in ZARISKT and

SAMUEL [1958, II.12].

An arbitrary subset L of A 1is algebraically independent iff
every finite subset of L is. A transcendence basis for A (over B)

is a maximal algebraically independent set L CA; in other words, if

s is not in L, then LU {s} is algebraically dependent. All

transcendence bases have the same cardinality, the transcendence degree

trdegB A of A over B. When B =k, we denote trdegk A Jjust by
trdeg A. When trdegB A =0, A is algebraic over B.

The notion of transcendence degree, which is based on "dependence",

is analogous to that of dimension of vector spaces.

A transcendence basis for A over B can be extracted out of any
system of generators of A over B. In particular, when A is a
finitely generated B-algebra, trdegB A is finite. If both A, B are
k-algebras, then

(4.1) trdeg A = trdeg B + trdeg, A.

(k.2) IEMMA. (ZARISKI and SAMUEL [1958, IT.2, Theorems 28 and 29]).
Let A, B be integral domains, and let ¢: A - B be onto. Then

trdeg B < trdeg A; if both are finite then equality can only hold when

® 1is an isomorphism.

When the k-algebra A is not an integral domain, one can still
define trdeg A, making use of the integral domains {A/P, P prime
ideal of A}; Just let
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(4.3)  trdeg A := sup {trdeg A/P, P prime ideal of A}.

By (L.2), this definition is consistent with the basic definition for

integral domains.

We define a notion of dimension for a k-space by setting
(L.4)  dim X := trdeg A(X).

Observe that an almost-variety X ig always finite-dimensional, since

then A(X) is included in a finitely-generated algebra.

A combinatorial consequence of the definition of dimension is:

(4.5) IEMMA. Iet dim X =n Dbe finite. Iet

Vo g Vl g .o g VS,

be a chain of irreducible closed subsets of X. Then s <n.

PROOF. Clear by (2.12) and induction on (L4.2).

Iet f: X -»Y be a polynomial map. Since f 1is continuous and
points of Y are closed, the fibers f-l(y), ¥y in Y, are closed
subsets of X. Therefore each fiber is a k-space and as such has a

well-defined dimension.

We shall see below how to generalize the dimension formulas for
linear maps (dim X - dim ker £ = dim £(X)) to the polynomial context.
This will follow from a general result on the structure of polynomial

maps.
The next theorem summarizes a number of relevant results in a form

convenient for our purposes.

(L.6) THEOREM. Iet X, Y be two irreducible almost-varieties, with
dim X =n, dim¥Y¥ =m. Yet f: X -Y be a dominating polynomial map.

Then there exists an integer s > 0, irreducible varieties Xl’ Yl and
polynomial mapi_mJX: Xl - X, JY: Yl -Y, fl: Xl -9Y1 and
g: Xl —9Yl X K such that
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(a) Iy [respectively jY] identifies Xl [ respectively Yl]
with a principal open set of X [respectively Y] as in (%,16),

(b) The following diagram commutes:

where prl denotes the projection in the first factor.

() g is dominating and the sets g-l(z) have cardinality at
most s for each z in Y, X K,

(a) If k 1is algebraically closed, then g is onto and each

g-l(z) has exactly s elements.

17 Yl are differentiable manifolds and

have full rank at every point.

(e) If k=R then X
the differentials dg and df

1
(f) If either k =R or k is algebraically closed,

aim £7(£,(x)) = n - m,

for each x in Xl.
PROOF. ILet A := A(Y) be identified through A(f) to a
subalgebra of B := A(X). By (3.18), there exist a in A and b in
B such that a 'A and b 1B are finitely generated. Then
ala calBca b B, By BOURBAKT [1972, V.1.5], there is some s in
a™'A such that s'l(a'lA) is integrally closed in its quotient field.
Replacing if necessary a by sa, we may assume that a-lA is
integrally closed. By BOURBAKI [1972, V.3.1, Corollary 1], there exist
Tys +++5 T, algebraically independent elements of (ab)-lB such that

- - . -1 .
(ab) 1 is integral over A' :=a lA[Tl, cen, Tn-m]' Since & A is

integrally closed, A' 1is also integrally closed; see BOURBAKT [1972,
V.1.3, Corollary 2].
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Let s be the separable degree of the algebraic field extension
Q(B):9(A*). By BOURBAKI [1972, V.2.3, Remark 3], the fibers of the
canonical map X((ab)—lB) —aX(Al) have at most s elements. ILet
X, = x((ab)‘]B), Y := x(a'lA) and let Jjy, Jy» f;, g be respectively
the maps dual to the inclusions B g:(ab)-lB, ACala, ata g:(ab)_lB,
A? gﬁ(ab)-lB. Then (a), (b), and (e¢) hold by construction.

If k 1is algebraically closed, there exists an open set V in
Y, X ¥"™ such that g—l(z) has precisely s elements for each z in
V; see DIEUDONNE (1974, Chapter 5, Proposition 6]. Iet UC g'l(v) be
a principil open set. By (3.1k4), fl(U) contains a princigal open set
W. Iet UC f;_l(W) U be a principal open set. Then g(U) CV implies
that, for any z in Y, X k'™ either %-l(z)fWﬁ‘ is empty or it has
exactly s elements. Replacing X; by U and Y, by W gives (a);
g is surjective by DIEUDONNE [1972, IV.L4, Corollary 1).

Let k = R. We replace Xl’ Yl
subsets; see, for example, BROCKER [1975, Theorem 12.12]. We may further
replace X

by nonsingular principal open

1 by a principal open set in which dg has maximal rank p.

By (3.1L4), g(Xl) contains a strong open set of ¥, X kn—m, so by
SARDS' theorem (see BROCKER [1975, Theorem 2.11]), p = n. Similarly

with f,. Thus (e) follows.

(f) For k algebraically closed, see DIEUDONNE [ 1974, Chapter
4, Theorem 2]; for k =R this follows from (e) and BROCKER [1975,
Theorem 1.9].



CHAPTER IITI. REALIZATION THEORY

We investigate in this chapter the general realization theory of an
m-input, p-output polynomial response. Before doing this, we develop
the formalism of Volterra series and prove some simple facts to be used

later in the study of finiteness conditions.

Throughout this work, k denotes an infinite field; all parameters
belong to k. The assumption that k is infinite is merely a technical

convenience, permitting the identification of polynomials and polynomial
functions.

Both m and p (number of input and output channels, respectively)

are positive integers, arbitrary but fixed throughout the discussion.

5. Volterra Series.
We shall use the following notations:

N := set of nonnegative integers.
u@ := get of eolumn m-vectors over N.
E?Xt := set of m X t matrices over N.

*
(g?) := set of all finite sequences of elements of E?,
including the empty sequence denoted by A.

If o is in (g?)*, O = O ety # A then |a| := length of
@ :=t; [loff := weight of « := Qp + eee + O IA] = |l = OH
aij := element in i-th row of column vector Oﬁ, =1, ..., t,
i=1, ..., m.

*
A := set of proper sequences: < in (g?) belongs to A iff

a=A or o= al...a% with at £ 0,

If a= ai...O% and P = Bl...BS are in (Nm)*, Oof := concate-

nation of @ and B := ai"'atsl"'Bs‘

If, say, t < s, then 0+ B := sum of @ and B := 71...73,
where 7, i=q, + B, for 1=1, ..., % (addition of o, B; is row-
wise in ﬂ?) and 7, :=@, if 1i=%t+1, ..., s. Similarly if t > s.
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*
Since an o = 000y in (__N_m) is a sequence of columns, we may
regard O as an m X t matrix. Thus we may, and shall, make the
following identification:

*
= Uyt
0" -
Under this identification, concatenation of o and B is the same
thing as formation of the block matrix [oz§ Bl; addition is simply
addition of matrices (augmented by zeroces to the right if necessary).
Observe that the notation aij is consigtent with the matrix

interpretation.

Each of the operations, concatenation and addition, make (lin)*
into a monoid; in both cases A 1is the identity. In both cases A is
a submonoid, i.e. if & and B are both in A, then both op and
o+ B are in A, We shall denote by (4, +) and (4, +) the two
monoids thus obtained. Both monoids will play a central role in our
theory. The monoid (4, +) 1is used in defining "polynomial® and (a4, -)

is used in obtaining finiteness conditions.

Let gij, i=1, ..., my, J=1,2, 3, ... denote denumerably

many (distinct) indeterminates, and for each j let £. denote the

Let be in ()* “and deri
subset glj, ceey gmj. a:al...ot_t e in (X and define
a o
(e L,

a.
where each ng is itself a monomial
X fo %.
Jor= g0, e
gd = P,

with ggj =1 for any i, j. We interpret §A as 1. A formal power

series V¥ 1is an infinite formal combination of the monomials go‘ with

EOC - §CXO - gOIOO -

coefficients in k. Since «+. , care must be taken

not to count each go‘ more than once. This is the reason for

introducing A. Thus, a formal power series in the gij with

coefficients in k is a map
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W:A%k:anw
denoted also as

a .
(5.1) wltys 8 woe ) = T VGET, Vg dn ke

The set of formal power series can be made into a k-vector space
by defining term-wise the addition of two power series V, ¥ and the

multiplication by scalars r in k:
(¥ + r¥)y 1= Yy + rﬁa for all «.

Using the structure of the monoid (4, +), we may also induce a

convolution product among series, which extends the multiplication of

a [0
monomials defined as ¢ .gB = ¢ +B. This extension is well-defined

because (A, +) is locally finite, i.e. each & in A can be split
in only finitely many ways as al + aé, o& in A. The convolution of
the power series ¢1’ We is then defined globally by the formula:

.2 ¥) = v i
(5.2) (W), 55:0‘ Uk, for all o in A

The set of all formal power series forms a k-algebra when endowed
with the operations of scalar product, sum, and convolution product. In

fact, it is easy to prove that this algebra has no zero divisors.

We intend to derive response maps by evaluating power series for
particular values of the gij. Thus we want to restrict our attention
to a suitable class of series so that evaluation at arbitrary input
values is welldefined. In accordance with related investigations in the

literature, we shall call these Volterra series.

Let V¥ ©De a formal power series. For each gij’ ¥ may be
rearranged into a power series in gij whose coefficients are power

geries in the other variables. We call V¥ a (formal) Volterra series

(over k) iff, after each such rearrangement, V¥ becomes a polynomial

in gij'
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In other words, V is a Volterra series brecisely when there exist
integers dij such that any gij appearing in V¥ has exponent < dij'
The smallest bound dij for the exponents of Eij is the degree

of i i i e o
degij ¥ ¥ in gij (if gij does not appear in v, deg, ¥ 1= -),

Thus ¥ is a Volterra series if and only if degij ¥V <o for all i, j.

For example,

2 2 2 2 n
Y, = 4 b8 + oee. + gll...gin

IR BT LTI SR ALY *oeee

is a Volterra series, and deglj v, = 29 (if m > 1 then also

1
degij Yy =-o for i=2, ..., m)
2 n
Wz 1= 511 + §12 + gle + oee. + gln +oee. + gln + e

is also a Volterra series, with deg.. ¥, = j; Dut
’ 1j "2

. 2 3 n
WB := gll + gll + 511 + eee + 511 + oeea

is not a Volterra series.

Since finiteness of the degij is preserved under the algebra
operations, the set of all Volterra series is a k-algebra. This
k-algebra is an integral domain, since the algebra of all power series
does not havé any zero divisors.

(5.3) NOTATION. Y

Volterra series over k. (For each m, a different ¥,)

or just ¥, is the k-algebra of (formal)

(5.4) DEFINITION. The degree of a Volterra series V is

deg ¥ := sup; {degij ¥V} <o,

Thus deg Wl = deg wg = o for the above examples while, on the
other hand,

deg (al§ll + a2§12 + oae. + angln + e ) =1,
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A column p-vector of Volterra series can be obviously regarded as

a power series in the gij with coefficients in kp, via the

identification
(D) (1)
o a
\l[ = . = Z : § .
. ain A .
() @)

The definition of degree can be obviously generalized to the vector case
(l), ceey degij W(p)}. We let ¥ denote
the set of all vector Volterra series.

via degij ¥ 1= max {degij \j

Volterra series with deg ¥ < » will be studied in detail in
Chapter V. An important tool in that study will be the concept of

exponent series, which we now introduce.

The concept of time-shift is incorporated into the context of
Volterra series through a product of Volterra series which is based upon

the monoid (A, +). We dencte by w.@ the Volterra series defined by

(5.5)  (b.b), := Syzﬂqraq?y for all q in A.

Note that w.@ is not the same as the convolution product w@ defined
by (5.2). A change of notation is useful at this stage. Instead of
writing ¥ =1 v £% we shall use the notation

(5.6) T2

and call the expression (5.6) the exponent series ¢ associated to V.

Thus ¢ is just a different notation for the same mathematical object V.
It o, $ are associated to ¥, @, we denote @@ = W.ﬁ. With these
notations, the product (5.5) can now be expressed simply as a linear
extension of the multiplication among indeterminates:

.7 o=@ CDBB) =§% PP 0B
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Exponent series provide a new way of expressing the condition
"deg ¥ <", For this, let

(5.8) supp ¥ = supp ¢ := {@ in A | ¥, £ 0},

be the support of V¥ (or of its associated exponent series).

(5.9) DEFINITION. The support of ¥ is finitely generated iff

there exists e finite subset J =J, of N' such that

(5.10) supp ¥ C & := I N,

i.,e., each column Oﬁ of a= al...at is in J, for each o in supp V.

Tn terms of the exponent series @ associated to V¥, (5.9) means that

® 3is a power series in the finitely many (noncommuting) variables in J.

Since for any integer 4 there are only finitely many vectors in Q?

with all entries < d, we have the following trivial

(5.11) LEMMA. deg ¥ < if and only if supp ¥ is finitely generated.

The fact that deg ¥ <~ is equivalent to ¢ being a series in
finitely many variables will be exploited in Chapter V.

We now return to our study of arbitrary Volterra series. Their
introduction was motivated by the need of evaluating series at arbitrary
input values. We now study these evalustions. In fact, we study a more

general type of operation on Volterrs series.

Let K be an overring of k, and suppose given an infinite family

r = {rij’ i=1, ..., m J=1,2, ... 1 of elements of K. As before,
we introduce the shorthand notation rj = rlj’ ey rmj for each Jj, and,

for each o = Q.- in A,

o, .% Qg . _ .01 Ot
Toi= TyTe..ry o= T3 -eer BT,

(products in the ring X).
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The definition of a Volterra series V¥ as a power series with all
degij ¥ <w is clearly equivalent to the requirement that V¥ be a
polynomial when expressed as a series in each finite subset of variables

gl, ceny gt, for any fixed t. Thus we may write

!
(5.12) ¥(g;, &,y --- )=ocizn Aca(gtﬂ’ ]
la] <t

and ga = 0 for all but finitely many «. Let us make the substitutions
Bi5 O Tiy
the resulting products between the rij' We obtain

in (5.12), for i =1, ..., m and J =1, ..., t, performing

(5.13) 11/(1'1, veay rt, §t+l’ s ) = Z A‘ga(gt-‘-l’ )a
Taf=t

Since, as we already remarked, the sum in (5.13) is finite, a further

evaluation gij »0 i=1, ..., my, J>1%, results in a finite linear

combination

(5.18) W(ry, +vey Tys 05 aen ) =Lt (0, ... )%, £(0 -+ ) in k.

When K =k, (5.1L4) is then in Xk, the result of substituting a finite
"input" sequence into the Volterra series. 1In general we obtain an

element of K, and the assigmnment

(5.15) ¥ >K: w.-ny(rl, veey Tyy Oy el ),

is clearly a k-algebras homomorphism.

We may instead apply to (5.13) the further substitutions

E.. &

i3 1,34 i=1 ..., my J>1%, to obtain
53

. 04
(5.16) ¥(ry, «ooy Tys Epy Eny oo ) =% ga(gl, ce. T,
Since (5.16) is a finite K-combination of Volterra series over k CK,
we may regard (5.16) as a Volterra series with coefficients in K; this

justifies the notation W(rl, ceey rt)(gl, s oo ) or just
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(5-17) \lf(rl) coey r‘t)’

instead of \Il(rl, s Ty §l, .e. ). An alternative is to view

\]f(rl, ceey rt) 8s an element of ¥ & K. The assignment
(5.18) ¥ >V ® K ¥ qu(rl, ceey rt),

is clearly a k-algebra homomorphism. Moreover, (5.18) is an
isomorphism when the rij are algebraically independent over ¥, since

it just amounts to a relabeling of variables.

In order to state a technical lemma to be used later, we need the

following

(5.19) NOTATION. Let t > O be an integer. Then
€t ‘I’—)k[gl, ceey §t],

is the homomorphism 1Vo—>\lf(§l, ceey By Oy Ll ).

Since k[él: ceey Et] is an integral domein, Xker €, 1is a prime ideal.

Also,

t

(5.20) tQO ker €, = {o}.

Let s < t. Then there exists an onto homomorphism

€t k[gl, cees §t] —->k[§l, ceey §s],
obtained by setting gij =0 for i=1, ..., m and j=s+1, ..., t.

By definition of €

(5.21) es,t°€t =€
1= et(B). Then

Iet B be a k-subalgebre of Y and write B
R is a prime ideal of B and

, i= ker et!B = BMNker €
@Rt g@ker €, = {0}. We prove a technical

(5.22) IEMMA. trdeg B = sup {trdeg B,J.
£20 t
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PROOF. By (4.2), trdeg B > sup {trdeg Bt]. Thus it will be enough

to prove that sup {trdeg Bt} =n <o implies B = B, for all large t.

Since each € tlBt: Bt —aBS is onto, the integers trdeg Bt form an
2

ascending chain, bounded above by n. So trdeg Br = trdeg Br+l =

for some r. By (4L.2), e ,|B

r,t' 't
t >r. Soby (5.21), R, =

Py

% is an isomorphism for each
" Rr' Therefore Rr =f"\Rt = {0} and
etlB: B=~B, forall t>r.

6. Construction of © and T.
We now begin to define response maps.

(6.1) DEFINITION. The input space © is the k-space X(¥).

To verify that Q is well-defined according to the setup developed
in Chapter II, we remark that ¥ is k-reduced. Indeed, ker € is a
closed ideal for each t, since k[gl, ceny gt] is k-reduced. So by

(5.20) the ideal {0} 4is closed, i.e. ¥ 1is k-reduced,

(6.2) DEFINITION. The space of input values is

U := km.

The algebra of polynomial functions on the k-space U is
k[Tl, cees Tm]. Therefore the algebra A(Ut) of polynomial functions
on the +t-fold product of k-spaces Ut =UX ... XU 1is the ring of
polynomials in mbt variables. So we may denote A(Ut) by
k[gl, ey gt]. We adopt the notational convention of writing the
sequences (ul, Ugs e, ut) in Ut in an inverted order (u,, ..., ul).
Thus, the coordinate function gij acts on elements of Ut by
gij(us, ceey ul) =g o= i-th entry of j-th vector counted from the
right (for instance, if m = 1, then 512(0, 1, 0, 0, 0) =0,
glu(o, 1, 0, 0, 0) = 1). This notation will be consgistent with the
following interpretation: (ut, ey ul) represents an input sequence

such that uj is the input at time 1 - j.
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Using this notation, €y gives rise to a closed immersion
t .
st 1T X(es,t)' U5 5U° is a

closed embedding, mapping sequences (us, ven, ul) of U° 1into

i, = X(et): ot - Q. Similarly, each i

(0, ..., 0, Uy eeey Uy, ul) in Ut. By (5.21) the following diagram

commutes:
1 t
(6.3) U ——8t 4b
iS\./‘t

Q

Therefore the sets it(Ut), t > 0, form an ascending chain in 0 whose
union (limit) may be identified with the set of all infinite sequences

(..., U eeey Uy ul) with finitely many nonzero entries; the rule

t-1
(6.4) (.“,O,u,..nlﬁ)~u¥ +oaa. g,

permits identifying this union with the set of polynomisls over some

symbol, say 2z, with coefficients in U = km. Thus we have the
AP, /
(6.5) NOTATION. U[z] := tLEJO 1t(U ).

We shall denote by (0) the sequence with w =0 for all t.

(6.6) IEMMA. U[z] = Q.

PROOF. Clear by (2.7.f) and (5.20).

We may regard O as a "completion" of U[z]. This will allow us to

endow Ulz] with the geometric structure carried by a subset of the

k-space Q.

There will be no danger in identifying gt with it(Ux), so that we
mey think of Ut as the closed subset of U[z] corresponding to the
sequences ( ..., O, LIRS ul).

Now let K ©be the field obtained from k by adjunction of dennumera-
bly many new indeterminates Sij’ i=1, ..., m J=12, ... .
Applying (5.18) with Ty = Sij’ we define
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(6.7) 6 * WaY@kwr..”Sd:Wwar.u,%%
By duality, there is a polynomial map

(6.8) at:=xwth thf-am

Thus St is the map whose transpose A(St) = et. We claim that the

t
polynomial action of U wupon € given by 61: is the natural extension

to O of the "concatenation" maps

(6.9) B, 4 VS x U 50 ((ug, vy w), (oo, §)) e

o (ug, .o, g, ﬁt, cees ﬁl).

In other words, we have:

(6.10) IEMMA. The following diagram commutes for each s, t:

5
U x Ut —— St st

lls X1 lls+t
& S

QXU —> Q.

PROOF. By duality, it is necessary and sufficient to verify that

the following diagram commutes:

A(St)

¥ 8,]

1 e Sy

€ it Ao ) es[sl, ceey st]
s,t

k[gl’ MR 4 §S+t]

» Y[

%k[gl, ooy gs][sl, ‘eey St].

Note that, in the coordinates displayed, A(Bs 1_})

is given by E,. e S, .
R ii i
if j > t. Thus the diagrem

J
if j=1, ..., t, and by 513 Hgi’j_t
commutes by definition of €1 Sy et.

In view of (6.10), there will be no danger in denoting the operations

Ss g 88 well as St, for a1l s and t, simply by concatenation
2
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(6.11) v := st(m, v) for ® in Q, v in ut.
Let f be a polynomial function @ —k. Since A(Q) = ((¥) =¥,
clearly f can be identified with a Volterra series ¥ = wf. So, by
t .
(3.8), v|u = Voi,,

A1 )(T) = (A(3)°A(NNT) = A(L)(¥) = e, (V);
thus (with the notation in (5.1%4))
(6.12) wlut; () ., w) ke, .o, u, 0, ... ).

Since Ulz] is the increasing union of the Ut, amap Ulz] »X
is specified by its restrictions to the Ut. In particulaer, take V¥ in
¥. Then by (6.12) the value of V¥|Ulz] at ( ..., Uy eeey W) is
obtained by evaluating the power series ¥ at gij HE uij = i-th row of
uj. This evaluation is well defined because almost all u'j are zero.
A continuous function is already determined by its velues in a dense

subset, so by (6.6) the assigmment ¥ V¥ |U[z] is one-to-one.

Thus the following mild abuse of terminology is justified:

(6.13) DEFINITION. A polynomisl map £: Ulz] —»X, where X is a
k-space, is the restriction of a polynomial map 29: Q2 ->X.

The gist of the introduction of © is that the abstract set of
input sequences U[z] can now be exhibited as a dense subset of the
k-space Q and thus U[z] is itself endowed (by restriction) with

coordinates and polynomial functions.

Thus the polynomial functions f: U[z] -k are in a bijective
correspondence with Volterra series V, wvia evaluation of V¥ at
gij 1= uij' More generally, a polynomial map f: Ulz] >k is uniquely
determined by the functions w&of: Ul 2] —ak, vwhere ‘T, Jj=1, ..., D
are the natural projections kP — k. So polynomial meps f: U[z] ax
are in a bijective correspondence with Yp, the ordered p-tuples of

Volterra series.
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(6.14) DEFINITION. The space of output values is Y := k.

Thus,
(6.15) ¥~ polynomial maps Ulz] - Y.

Finally, we define

* t e s .

U = ééé U (disjoint union).

This set should not be confused with U[z], the set of finitely nonzero
*

sequences, which was obtained as a quotient set of U, via the

identifications (w , ..., ul) ~ {0, ..., O, Ups eeey ul). The unique

element of U is denoted (@).

(6.16) DEFINITION. The output space I' is the set YU* of all maps
2 zhe output space 1s the set ot all maps
U >Y.

*
Thus an element of I’ is an U -indexed sequence of elements of Y.
By (1.9) and (3.8), T is a k-space, the product of the k-space Y
*
with itself, U times.

7. Abstract Response Mapg and Systems.

For any vector space V over k we congider the set of sequences
Z -V with support bounded on the left:

Vi={u: 2V | (3 Tu)(u(t) =0 if t < Tu)}.

The shift operator o = oyt Y -»YV is defined by

(ou)(t) :

u(t + 1) for all t in Z.

In particular we shall call

({{=]

:= get of input sequences;

=

:= set of output sequences.



55

(7.1) DEFINITION. An input/output mep f is a map f U->Y¥; £ is
called

(a) (strictly) caussl iff, for all u, 4 in U, and for all
T in Z, u(t) =a(t) for t <t implies £(u)(t) = £(2)(t) for

(b) constant structure (or shift-invariant) iff f(ou) = of(u)

for all u in T.

An input/output pair of £ is a pair (£(u), u), u in

e

An input/output map can be regarded as an abstract description of
the external behavior of a "black box" (physical device, computer, etc.)
operating at discrete instants ..., -2, -1, 0, 1, 2, ... of time.
Constant structure means that this behavior is invariant under time
shifts. ‘

Rather than working with the input/output map, it is technically
more convenient to work with the response map of the same "black box",
i.e., with the description of outputs resulting immediately after the

application of finite sequences of inputs.

(7.2) DEFINITION. A response map f is & map
f: Ulz] »Y.

Let n: L -»Y: y »y(l); then the assignments

£of = nof|ufz],
2nd

£ £(u)(t) 1= £(ctn),

establish a bijection between causal constant-structure input/butput maps

and response maps.

In the above formulas we are implicitely identifying TU[z] with a

subset of g, via the rule
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wz"t +u;, U
. ) ,

where u(- t) := w , if 0<t <7t and u(t) = 0 otherwise.

In view of the above bijection, we shall state most of our
definitions and results in terms of response maps. Only when dealing

with input/output equations shall we refer again directly to input/
output maps.

The following abstract definitions and notations are mostly well-

known. They belong to "general system theory"; no structure is imposed

on systems or preserved by response maps. Later we shall refine these

definitions by adding suitable algebraic structure.

(7.3) DEFINITION., An abstract (constant structure) system = is an
object (X, P, h, xﬂ), where

(a) X is the state set;
(b) P: XX U X is the transition map;

(e) h: X »Y is the output map; and

(a) %' in X is the initial state, and satisfies P(x#, 0) =

The +t-th iterate of P is the map P(U): X x U’ X defined

recursively by
p0) ._ 1, (1) . p,
O Y DR G CHN CHNRIPMTR W R

The reachability map of X is

t-1 t
g: Ulz] »X: u, z + ... 4 ulHP( )(xﬂ, (ut, ceey ul));

the t-step reachability map is g = gIUt; the +t-step reachable set

. o t
is X := gt(U ).
For each w in Ut, t > 0, the cbservable map induced by w

n': X 5¥: x 0—>h°P(t)(X, w).

0.

is
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The basic observables of £ are the functions hg t= w&ohw,
*
=1, ..., p, w in U . The observability map of X is
*
n': X 5T x ka{hw(x), w in U J.
Z is called

reachable iff g 1is onto;

observable iff hF is one-to-one;

abstractly canonical iff both reachable and observable.

The response of X is fz i= hog. Given a response f, £ realizes
f iff f = fz.

(7.4) DEFINITION. Consider abstract systems Z, ﬁ. An abgtract
system morphism T: £ - % is given by a map T: X -3 such that:

(1) 1(x") = %, ana
(ii) the diagram
X X U e X h
lT X1 l;\\\\\\\"‘ Y,
5 A/ﬁ'

2 X U ~———————pX
commutes.

Note that the existence of a system morphism T: & —» 2 implies

that fz = fi; this is proved by a trivial induction.

We shall call Syst bs the category consisting of abstract systems

as objects and morphisms defined as in (7.L4).

Analogously with concepts related to Y, the same concepts can be

defined directly in terms of the response map:

(7.5) DEFINITION. ILet f Dbe a response map. The observable mep of

¥
f induced by w, where w is in U, is
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2 Ulz] 5Y: v e £(vw).

The basic observables of f are the functions fg i= Wj°f,

*
J=1, ..., p, w in U . The observability map of f is
*
£ Ulz] =T v oo (£9(v), v in U ).

Thus the value of fw is the result of an input/output experiment
in which the output is observed at the end of the application of the
concatenated input wvw, v = given, w = chosen. The collection of

results of all such experiments is fP.

L _ .

Since clearly
£ =t iff £ = ¢,

In terms of the new notations, the definition of realization may be

restated as follows. For any system X and any w in Ut, v in Us,

f;j(W) = £5(wv) = hog(wv) = h°P(S+t)(xﬁ, wv) =
) (g(w), v) = nVeg(w),

]

so fg = hF°g. Thus,

(7.6) = reslizes f iff f' = hleg.

We now restate in our formalism largely well known facts (see, for
instance, EILENBERG [197L, Chapter XITI]).

(7.7) IEMMA., Iet = = (X, P, h, x') sand %= (X, B, §, &%) have the

same response map. Assume that Z 1s reachable and that i is

observable. Then there exists a unique map T: X - X such that the

following diagram commutes:

z]’/////*r
*\\\\\\‘

- >

T\.
/

>
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This unigue T induces an abstract system morphism 2 —ai.

PROOF. We first prove uniqueness. If sucha T exists, then
~T ~T,~ . A
h' (T(g{w))) = h' (glw)) for all w in Ulz], so T(g(w)) = g{w) by
observability of i. Since X is reachable, every state in X is of

the form g(w). Thus there is a unique choice of T,
(*) T: g(w) » g(w).

To prove existence, we need to see that T as in (¥) is & well-
defined map. In other words, if ~g(w) = g(v), it should follow that
N -~ AT, T I APEN - .
g(w) = g(v). But h (E(w)) =1 (g(w)) = n (g(v)) = W' (&(v)) inmplies

g(w) = g(v) by observability of z.

1]

We now prove that T 1is an abstract system morphism. Since
T(xt) = T(g(0)) = g(0) = iﬂ, we are only left to prove that
T(P(g(w), u)) = ﬁ(T(g(W)), u) for every w in Ulz] and every u in
U. But T(P(g(w), w)) = T(g(wu)) = &(wu) = B(&(w), u), as required. 0

(7.8) THEOREM. ILet f be a response map. Then f has an abstractly

canonical realization Zac' If % is any other abstractly canonical

realization of f then there exists a unique isomorphism T: Zac - Z.

PROOF. Abstractly canonical realizstions = correspond to
factorizations fF = gzohg, where & is onto and hg is one-to-one.
We first prove the uniqueness part. Given any two abstractly canonical
systems X and i, there exist by (7.7) Tl: z —ai, T2: z —>§. Since T.°T

12
is an abstract system morphism, it follows by the uniqueness part of (7.7)

that Tl°T2 = 1dentity abstract system morphism b3 —9§. Similarly,

T2°Tl is the identity £ —-%. Thus T

isomorphisms.

12 T2 are inverse abstract system

For the existence part, simply take RIRE fP(U[z]) crT,
xgc t= fP(O), h, . i= projection onto (¢)-th factor, and

Pac(fr(w), u) := f'(wu). Note that P,o 1is well defined, since
fF(w) = fF(ﬁ) implies that for any u, v, f'(wu) = f(wuv) = f(w) =
= (@) = £ (). o
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8. Polynomial Response Maps and k-Systems.

We begin now to study response maps which are polynomial (Definition
(6.13)). The input/output map associsted to a polynomial response map
will be called a polynomial input /output map.

The notion of polynomial response maps is new, as is the following

(8.1) DEFINITION. The abstract constant structure system = = (X, P,
h, xﬂ) is & k-gystem iff X is a k-space and both P and h are

polynomial maps.

The terminology "k-system” is just a convenient short neme for our
systems. In no way is it intended to imply that (8.1) constitutes the
most general class of systems definable in terms of the field structure
of ‘k.

(8.2) IEMMA. The reachability map g: Ulz] X of a k-system = is

a polynomial map.

PROOF. By definition (6.13), we need to find a polynomial
extension gﬂ: Q-X of g. Dually, we construct a homomorphism
A(gQ): A(X) > Y such that etOA(gQ) = A(gt) for each t > 0.

Pick any a in A(X). Then A(gt)(a.) = acg, belongs to
k[gl, ceny gt] for each t > 0. We define a power series Wa in the
variables gij by

V¥ := coefficient of t* in Alg, ,)(a)

o fad M

for each O in A,

s s s a
Now we claim that degij V® <o  for each i, j, i.e., V¥ is

a Volterra series. Teke any i, j. ILet t > Jj. From the definition of

P(t) it is clear that
p6) _p(0o(p(t-3) 1,
As gt = P(t)(x#; ')J
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a'ogt = aOP(j)O(P(t-j)(xﬂ") X lUj)'

Thus the degree to which g appears in a°gt, for any t > J, is at
most the degree of the polynomlal aoP J in the variable gij' So wa

is a Volterra series.

Let A(gﬂ) = a V%, By construction, ¢ W = A(gt)(a) for each
a in A(X) and t > 0. Since each A(gt) is & homomorphism, A(g ) is
also a homomorphism. 0

The following result, the main of this section, suggests that

k-systems are the natural realizations of polynomial response maps. This

will be confirmed later by the result on canonical reslizations. We ghall
reserve the name "polynomial systems" for a special type of k-system in
which a strong finiteness condition holds, which will allow P and h to

be represented by actual polynomials.

(8.3) THEOREM. The response map f is polynomial if and only if f is

realized by some k-gystem.

PROOF ["only if"] The free realization Zfree(f)

(q, 8 f (0)) is & k-system realizing f.
["if"]. Iet f = fz for some k-system 2. Define

fQ = h°gQ.

Then fQIU[z] = hongU[z] =heg = f. So f 1is polynomisl.

Properties of X serve to classify k-systems.

We shall say that Z 1is a polynomial system [ respectively almost
polynomiall iff XZ is a variety [respectively an almost

variety].
An irreducible X is one for which XZ is irreducible.

Similarly, we define (recall Section (L))

dim £ := 4im Xz.
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The polynomial functions XZ —k are the costates of Z.

The notion of abstract system morphism is too weak to serve for
comparing k-systems. A suitable category sttk of k-systems is

obtained with morphisms as in the following

(8.4) DEFINITION. An abstract system morphism T: & -2 between two
k-systems is a k-gystem morphism iff T: X - X 1is a polynomial map.

T: £ 5% is dominsting, a closed immersion, etc., iff T: X »X has
the corresponding property; 2 dominates 5 iff there exists a

dominating T: Z —ai; % 1is a closed subsystem of £ iff there exists

a closed embedding T: Z SE.

It is eagy to see that k-systems form a category with the above
notion of morphism. Note that a k-system isomorphism T: Z = b3 is

the same as a polynomial change of coordinates in the state space.

9. Quasi-Reachability.

Erom here until the end of Chapter IV, f ig an arbitrary response

map and X = (X, P, h, xﬂ) is an arbitrary k-system.

The reachable set of X is

XR t= g(U[Z]) = thJO g(Ut) = ‘tL?_JO Xt.

(9.1) DEFINITION. £ is gquasi-reachable iff iR = X.

By (6.6) and (3.11) we have the following

(9.2) LEMMA. The following statements are equivalent:

(a) £ is quasi-reachable.

(v) gQ is dominating.
(c) A(gg) is one-to-one.

(9.3) IEMMA (SONTAG and ROUCHALEAU [1975]). it =X for some
t >0 implies Xt = XR'
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PROCF. Since P is polynomial, it is continuous; thus

Xpp = P(Xt+1 X U) C P(Xt+l X U) = P(Xt X U) C P(Xt X U) = Xt+1’
Slngf cleafiy Xt+l E:Xt+2’ it follows that Xt+l E:Xt+2 gﬁXt+l = Xt+l’
s0 Xt+l = Xt+2 and the result follows by induction, ]

(9.4) COROLLARY. If dim © =n <« then T{n = ER.

PROOF. Since gQ is continuous and Ut is irreducible for
each t >0, it is irreducible. By (4.5), the chain fit} cannot
have length greater than n. So (9.3) gives the desired result. O

Thus in the finite-dimensional case a guasi-reachable system is

quasi reachable in bounded time. The analogous statement for

reachability is false, as illustrated by the following example. Take
R ¥ 1= 0, P(x, u) :=x+ ut - 2u, and

h erbitrary. Then X, = {x in R ] x> -t} # X, =X forall t>0.

k:=R, m=p:=1, X:=R, X

(9.5) IEMMA. X has a guasi-reachable closed subsystem ZQ'

PROOF. Iet X, :=X;. Since P is continuous, P(X X U) C Xy
%Q = (X, PIXQ X U, thQ, xﬁ). The inclusion

of XQ C X exhibits ZQ as a closed subsystem of Z. a

We may therefore define

10. Algebraic Obgervability.

As discussed in intuitive terms in KAIMAN [1968, Chapter 10],
observability of I means the existence of a procedure for determining
the state x of Z from data obtained by experiments of the type:
"apply an input sequence to X Ybeginning in state x and observe the
corresponding output sequence"”. In terms of the bagic observables {hg]
introduced in (7.3), this informal description of observability can be
made precise by requiring the existence of a set of arbitrary functions
of experiments

W W,
1,A r(A),A
CHIIE N
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with A = {A} some arbitrary indexing set, such that each state x is
uniquely determined by the data {“x(x)}xeA'

When this procedure is interpreted in the weakest possible,
nonconstructive sense, the functions n, are completely arbitrary and
"observability" reduces to the abstract definition (7.3). In the case
of (finite-dimensional) linear systems over a field this abstract
definition turns out to be equivalent to the existence of linear
combinations U which give every coordinate of the state; see

KAIMAN [1968, Chapter 10]. For linear systems over a commutative ring,

however, the abstract notion of obgervability is no longer equivalent
to the existence of & linear procedure; some of the resulting problems
are studied in SONTAG [1976, 1978]. 1In general, observability should
be formalized with reference to the particular category over which the
system in question is defined. Thus, in the context of k-systems
observability is defined by requiring that each coordinate of the state
(i.e., every costate of the system) be a polynomial in the basic
observables. This is the definition given below, which is a direct
generalization of that given in SONTAG and ROUCHALFAU [1975] for
polynomial systems. A direct study of bilinear response maps, KAIMAN
[1979] suggests the same conclusion.

(10.1) DEFINITION. The observation space L(Z) [respectively the
observation algebra A(Z)] is the linear subspace [respectively the

subalgebra] of A(X) generated by the basic observables. An observable
is a costate in A(Z). I is algebraically observasble iff A(Z) = A(Z).
When X is jrreducible, the observation field 3(2) is the quotient
field of A(Z).

Consider the cbservability map w: X o1 = YU* introduced in (7.3).
Since each n is a polynomial map, hF is also a polynomial map. By
(1.9), A(r') is generated by the algebras A(Y) appearing in the
coproduct. So the image A(hr)(A(F)) coincides with the algebra
generated by the A(hY)(A(Y)), each of which is itself generated by
hX, cees h;. We conclude that A(Z) is the image of A(I'). The dual
of thig fact is:
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(10.2) IEMMA. X is algebraically observable iff h' is a closed

immersion.

(10.3) COROLLARY. If I is algebraically observable then = is
(abstractly) observable.

Algebraic observability is a stronger requirement than sbstract

observability. This is clear from the counterexamples given in (3.12).

We remarked in (9.5) that every k-system has a closed quasi-
reachable subsystem. It is less trivial to prove the corresponding

statement for algebraic observability:

(10.4) PROPOSITION. £ dominates an algebraically observable system

Z.'obs.

PROOF. Iet 1i: A(Z) -»A(X) be the inclusion maep. Iet

obs KO0 o x(1)(x"). since A(n)(A(Y)) C AX), we

X 1= X(é(Z)),

may factor h: X =Y as

X h > Y,
X(;s\\\\‘ ////;gbs,
Xobs, for some hObs.

Thus the proof will be complete if we can prove that P induces

obs, ¥ObS o u x5, tnen X(i)

is the required dominating k-system morphism X —9Z°bs. Therefore we

through X(i) a k-system morphism P

must show that
(10.5) A(P)(A(=)) SA(Z)[T:L, cen, Tm].

i.e., we must prove that when an element q of A(P)(A(Z)) is
o qm, the
coefficients of such a polynomial ¢q are sgain in A(Z). Since the

algebra A(Z) is generated by the space L(Z), statement (10.5)

expressed as a polynomial in the variables T

follows from the following
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(10.6) IEMMA. Let it be the subspace of A(X) generated by all

those hg with w in U°. Then

A(PY(L,) C 1

L) €Ly qlT, ooy ).

m

PROOF. We first observe that when Tl’ . Tm are specialized
at an u in U = km, a polynomial in A(P)iFt becomes an element of
L,y Indeed, denote by e(u): A(X)[Tl, ceey Tm] —k the corresponding
specialization. Then

e(u)oA(P)oA(n") = A(R™).

Therefore e(u)(A(P)i%) CLy,y> os vanted. Our claim follows from the
following more general result (with A = A(X), F = k[T, ..., Tm] and

the {ci] a finite set of monomials in Tl’ ey Tm):

(10.7) MATN IEMMA, PART 1. Let A, F be vector spaces over k, with

F a space of functions Z —»k for some set Z. Assume that

Cos see, C
1’ > “n

are linearly independent elements of F, and let 81y eees B be in A,
Then the linear subspace of A generated by
n
{éél ci(z)ai, z in 2},
coincides with the subspace generated by Bys eeey an.

PROOF. Clearly 2 ci(z)ai is in the space generated by

a It is then enough to prove that each ai, say a can

12 ot Byt
be written as

1,

n n
B = & %j(éél ci(zj)ai),

for some 2z sy 2o € X. Rewriting this expression as

l,

n n

a; = fél ai(fél %jci(zj)),
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we see that it is enough to prove the existence of a A in kn such
that TA = (1, 0, O, ..., 0)', where

cl(zl) 01(22) . cl(zn)
T = : : :
cn(zl) cn(zz) ces cn(zn)

It is therefore enough to find Zys e, Zn such that T is

nonsingular.

Form the n X Z matrix f whose 1i-th row is ¢y seen as an
element of k%. Then existence of T (as a submatrix of f) follows
from the fact that rank T = n.

11. Existence and Uniqueness of Canonical Realizations.

(11.1) DEFINITION. X is canonical iff £ is quasi-reacheble and

algebraically obgervable.

We associate yet another map to f. The extended observability map

free(f)
I
introduced in (8.3). The observability map £ : Ulz] =T introduced

fQP: Q@ -I" of f is the observability map of the system I

in (7.5) is clearly the restriction of fQP to Ulz]. Since Ulz] 1is

dense in , we may immediately generalize (7.6):

(11.2) T realizes f iff £ = nlog™.

(11.3) IEMMA. Let = = (X, P, h, xﬂ) be a quasi-reachable and

= (x, ﬁ, h, Qﬁ) an algebraically observable k-system which realize

f. Then there exists a unique k-gystem morphism T: Z ~9§.

PROOF. Consider the diagram

T r.
\i /
5 3 ar

(11.4) @
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By hypothesis, gQ is dominating, ﬁP is a closed immersion, end
Q AT A
nlo og = £ hPogQ. Thus by the dual of (1.5) there exists a
polynomial map T: X —»X meking (11.4) commutative. Restricting to
Ulz] € Q, the diagram
/\Q)‘
\IXR/'
commutes. Thus we may apply (7.7) to the abstract systems (XR, PIXr X U,

thR, x#) and 5. We conclude that the continuous maps ToP: X X U »X
and Po(T X lu) coincide in the dense subset X_ X U, so they are equal. U

The main result of this chapter is:

(11.5) THEOREM. Let f be a polynomial response map. Then there is a

canonical k-system Zf realizing f. If X 1is any other canonical

k-system realizing f, there is a unique k-system isomorphism T: Zf - Z.

PROOF. Uniqueness is clear by (11.4k). To prove existence, take
the system Zfree(f); this is quasi-reachable because gQ is the
identity. Applying (10.4) we obtain the observable system
S, iz (2. (£))°°%. Since I.  (f) dominstes X, the latter is also

f free free higd

[}
quasi-reachable,



CHAPTER IV. FINITENESS CONDITIONS

We have shown in the previous chapter thet any polynomial response
map f 1is realizable by a canonical k-system. We now turn to studying
what conditions must f satisfy in order that the canonical system Zf
has various finiteness properties.

The main tool in this study will be three structures obtained from
the basic observables (7.5) of f by different algebraic operations:
the observation space L., algebra éf and field gf. We show that

f
the conditions

gf = finitely generated field over Kk,
éf = finitely generated algebra over k,
;f = finitely generated vector space over Kk,

each corresponds to an important characterization of Zf.

We then relate each of the above conditions to the existence of

certain input/output equations for f.
We also show how to check the finiteness condition on gf via a
Jacobian criterion. As an application we show that

t) =u(t - ) +ut -22 4 et -0)F ...

has no possible finite-dimensional realization.

In the final section we discuss examples and counterexamples

associated to the results and constructions of the last two chapters.

We continue to denote by f an arbitrary polynomial response map.

12, The Observables of f.

Since Zf is quasi-reachable and Q is irreducible, it follows that

Tp 1is irreducible, so Q(A(Xf)) is well-defined:

(12.1) DEFINITION. The gbservation space Le [respectively observation
algebra éf, respectively obgervation field QT] of £ is



70

Q(Zf) [respectively A(Zf), respectively Q(Zf)].

Thus ;f, éf, Qf are the space, algebra, and field generated by
the basic observables {(fQ)v, w in U*, j=1, ..., p} of Zfree(f)'
Each function (f9>§: 0 >k: o k%Wb(f(&W)) is already determined by its
restriction £ to Ufz], which is dense in Q. The restriction
(fg)g k;fg serves to establish the following identifications in terms

of the basic observables of f introduced in (7.5):

(12.2) ;f is the subspace of kU[Z] generated by the basic observables
W . * .
fj’ w in U, j=1, ..., p.

(12.3) A; 1is the subalgebra of kU[Z] generated by L.

W . *
The fj can be also viewed as maps U —Xk, so one can also

identify E@ and éf
generated by the fg.

with the subspace and subalgebra of k

Yet another representation of the observables is obtained via the
(vector) Volterra series Vo = (wgl), ceey wgp))’ of £ (see (6.15)).
By the discussion in (5.16)-(5.17), the Volterra series of f t'*'"1 ig

precisely wf(ul, ceey ut); coordinatewise:

(12.4) The Volterra series of f;t"'ul is Wga)(ul, cees ut).

Thus Qf, Af, and gf can be in?erpreted ags the space, algebra, and
field generated by the series {W§J)(u1, ceny ut), =1, ..., b,

*
ut...ul in U }. Using this interpretation, we may define

(12.5) degij f:= degij ¥ deg f := deg Vo

f’
By (12.4) it follows that

W \'§
(12.6) degij < degi,j+t f, deg £ < deg T,

for w in Ut.

The observables are the main system invariants in our approach. The

study of LT’

chains which approximete them:

éf, gf will be simplified by the consideration of various
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-
(12.7) DEFINITION. The observability chains [QJ’t(z), t >0} and
{éo’t(z), t >0} of I are, respectively, the subspaces and subalgebras

W
of A(Z) generated for each t by the elementary observables hj’

=1, ..., P, w in Ur, r <t. The reachability chains

T¥E), t>0) ana BYE), ¢ >0} are, respectively, the
subspaces and subalgebras generated for each t by the restrictions
h‘;.’lxt, gL o p W oin U'. The disgonal chains (L(Z), t > 0)
and {A7°(Z), t > 0} are, respectively, the subspaces and subalgebras

generated for each t by the restrictions hglxt, d=1, ..., p, W

in Ur, r <t. When X 1is irreducible there are corresponding chaing

of fields ~c;o’t(z), etc. The observability, reachability, and diagonal

chaing of f are L7° :z‘&O,t(Zf)’ ete.

We write I{O,t’ etc., instead of ;O’t(z), etc., when there is no

danger of confusion. In terms of Volterra series, we have:

(12.8) ‘;ﬁg’t, Ag’t CY are generated by all waf(ul, ceey ur), r <t;
(12.9) g?’t, A?’t Cx{ E)s nes gt] are generated by all € Vs
t t
(12.10) Lo Ag gk[gl, ceny E,t] are generated by all et(wf(u s eeny ur)),
r <t

Before proving some properties of the chaing just introduced, we need
the

(12.11) MAIN LEMMA , PART 2, ITet A be a k-algebra, and take a polynomial
Q in A[Tl’
Then the linear subspace of A spanned by {Q(u), u in D} is equal to

ces Tr], for some r > 0. Let D be a dense subset of k',

the linear span of {Q(u), u in k3.

PROOF. We may assume that Q # O. Write

S
Q(Tl, cet, Tr) = iZ= ci(Tl, cees Tr)a.i,

ces Tr] and 211 a, in A, and with s smallest

with all c; in k[T, .



72

possible. Minimality of s implies that both {al, ey as} and

{cl, ey cS] are linearly independent over k.

We claim that the restrictions cilD are linearly independent asg
functions from D into k. Otherwise there would exist bl’ ey bS
in k such that 2 bici(d) =0 for all d in D. By continuity of
the polynomial function 2. bici: k¥ -k, it follows that b bici =0

on all of kr, contradicting linear independence of the ;-

Main Lemma (10,7) can then be applied twice, first with Z :=D and
then with Z := k. Thus {Q(u), w in D} and Qu), u in x°)

both span the same space as {al, ceey as]. |

We collect below some rather technical facts which will be needed in

deriving the main results of this chapter.

(12.12) PROPOSITION. For any I and f,

(a) 1r Lp,t(z) - Lp,t+l

%) -y,

(£) for some t >0, then

() 12 A™%

27%z) - a().

%) = é?’t+l(2) for some t >0, then
(e) If ép’t+l(2) is algebraic over gp’t(z) for some t >0

and if {P(x, w), x in X, uw in U} is dense in X (e.g., if =

is quasi-reachable), then A(Z) is algebraic over g?’t(z).

O,t+l(z)

(@) 1f is integral over Ao’t(Z) for some t > O
It a4 Yor some t >0,

then A(Z) is integral over é?’t(z).

0,t . - R . 0,t
(e) éf is finite dimensional and éf

generated algebra for all t > O.

ig a finitely

(£) If dim Z =n then dim =, < n.

(g) Let dim X n. Then enlgf:L =17, and e |A.:

f =
) _ t
(h) dim T = %gg {trdeg Af].

PROOF. (a) By (10.6),
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(12.13) A@)E") = a@) (WL E) = U a@)i) c

0<s<r ~g Ogs<r gl =
€ odeke BpalTys s T €
O, r+1
cL” [Tl, ceay Tm],
for all r > 0. By the argument in (10.6), L., is spanned by the
coefficients of the polynomials in
~ 0,t+1y _ 0,t 0,t+1
AP)(Ly,y) SAMNE” ) = a(®NL” ) CL7 7Ty, wen T,
; y . 0,t+1
(using (10.3)). Thus L., 1s spanned by elements of L , i.e
> 0, t+1
~I*'t+2§~L“ . Then
0
b ,t42 ;9’t+l,

and (a) follows by induction.

(b) Analogous to (a).

(c) Take any elementary observable hg with w in Ut+l.

Since, by hypothesis, hg is algebraic over ép’t, there exists an

s >0 and a polynomial L(TO, cens TS) in k[To, cers TS] with the

properties:
(i) LY, n'i, ..., n's) =0
J Jy dg
for some elementary observables hgl, ey hgs, vy in Uri, Ty <t, and
1 s

(ii) if f(Tl, .--» Ty) is the leading coefficient of L expressed as a

polynomial in To’ then

(12.14) L(n'L, ..., n's) £ o.
J1 Ig

If

I (x), ..., nV5(x)) = L'L(P(x, u), ..., b S(P(x, u)) = O
Jp I d1 Jg
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for a11 uw in U and x in X, the density hypothesis leads to a
contradiction of (12.14). So

D:={u in U | f.(h?vl, cee, BU8Y 40} £ 6,
1 Js

and by (2.4), D is open, hence dense, Take u in D. Then

uw uv uv. W v
L(h:', ho'l, oo, he'®) = L(hi(P(-, u)), ..., h.5(P(+, u))) =0,
J 31 g J Jg

and the equation is nontrivial, i.e.

L', ..., n%s) 4o,
Jl Js

by definition of D. Thus the elementary observables

uw . .
[hj ,u in D, J =1, ..., p},

0,t+1

on

are algebraic over Let Q(Tl, ey Tm) be the polynomial
h?oP considered as a polynomial in Tl’ ey Tm (input variables) with
coefficients in A(X). We showed above that the elements Q(u), u in D,

0%+ gy (12.11), the span of {Q(w), u in ¥%)

S

are algebraic over
coincides with the span of {Q(u), u in DJ}. Thus every generator
Q{u) = hgw of é?’t+2 is algebraic over ép’t+l for all ww in UTTC,

The result follows by induction on .

(d) This is analogous to (c).

(e) 8ince ég’t is generated by ;g’t = span of ég’o, ce ey ;g’t
it is enough to prove that each ;g’o is finite dimensional. But, by the
Main Lemma (10.7), Lg’t is generated by the coefficients of

(3)
12 (sl, cees st).
(f) By (9.5) and (10.4), = has a subsystem ;a which dominates
'subquotient” of ). Thus (e) follows from (4.2).

. . 1
e (i.e. T, is a

(g) Apply (9.3) to Tp; observe that A(gn) =€
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(n) By (c) above applied to s

dim 2, = { trd A ’ }
m = 8su] e .

The result is then clear by (5.22) applied to each ég’t.

13. Finite Realizability and Minimality.

(13.1) DEFINITION. f is finitely realizable iff f has a finite

dimensional realization.

We collect various characterizations of finite realizability in the

following

(13.2) THEOREM. The following statements are equivalent:

(a) £ is finitely realizable.

(b) dim =, < w,

hif
(e) £, is an almost-polynomial system.
() Qp 1s a finitely generated field extension of k.
(e) €t Ap = ég’t for some t > 0.

(£) Qp = gg’t for some t > O.

(g) A, is algebraic over ég’t for some t > 0.

PROOF. We prove (a) = (b) = (e) = (c) = (d) = (g) = (f) = (v) =
= (a).

(2) = (b) This is (12.12e).

(b) = (e) This is (12.12f).

(e) = (¢) By definition, é?’t is a subalgebra of

t

A(U) =k[§l: veey E‘t]'

(e) = (a) Let A, Ve included in the finitely generated
algebra k[bl, ey bs]. Then gf is included in the finitely

generated field k(bl, cees bs). By LANG [1965, Chapter X, Exercise 6],
gf is itself finitely generated.
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(a) = (g) Clear from Q = U Qg’t.

t=0
(g) = (£) Irf A, has the same quotient field as ég’t, then
Af is obviously algebraic over ."Z\.g’ t.
(£) = (b) Clear from (12.12¢)
b) = (a) Trivial. i}
(b) = (a)

We consider briefly the topic of minimal-dimensional realizations:

(13.3) DEFINITION. A system X is minimal iff

dim = < dim =

for any 2 with fi = fz.

By (12.12f), X is minimal iff dim 2 = dim Zo
2

For any x in X we define the observability class of x,

(13.4) obs (x) :={z in X | hP(z) = hP(x)}.
We are interested in the case in which Obs (x) is generically finite:

(13.5) DEFINITION. 5 is weakly obgervable iff there exists an open
dense subset U of X and an integer s > 0 such that Obs (x) (MU

has cardinality <s for all x in U. I is weakly canonical iff 3
is quasi-reachable and weakly observable.

Let Z be a quasi-reachable realization of f£. By (10.L), there is

a dominating morphism T: % —>Zf = (Xf, Pf, xﬁ,, hf). Since T 1is a
system morphism, hEOT = hF. Thus
n'(x) = n'(z) iff hg(T(x)) - hg(T(z)),

iff (observability of 2f!) T(x) = T(z). So

Obs (x) = T-l(T(x)) = fiber of T +through x.



77

If either k =R or k is algebraically closed, and if X is a quasi-
reachable almost-polynomial system, then (4.6) implies that

(13.6) dim Obs (x) = dim = - dim Ze

for all x in some open dense set U. In barticular,

(13.7) THEOREM. Let either k = R or let k be algebraically closed.
The almost polynomial system £ is weakly canonical if and only if X

is both minimel and irreducible.

PROOF. ["if"] If X is not quasi-reachable, then ZQ has

strictly lower dimension, contradieting minimality. So £ is quasi-
reachable, and there exists T: = —>Zfz dominsting. Apply (L4.6),
noting that n =m. Iet U := jX(Xl); then (4.6¢) shows that the sets

Obs (x) U have a bounded cardinality when x is in U.

["only if"] Irreducibility is a consequence of quasi-
reachability. Assume that dim Zfz < dim X. By (13.6),

dim (Obs (x) MU) = dim (Obs (x) MNU) = dim Obs (x) > O

for almost all x, so Obs (x) MU cannot be generically finite. [m]

14, Polynomial Canonical Systems.

We have proved in the previous section that "f finitely realizable"

is equivalent to "Zf is almost polynomial"”. We now ask under what
(stronger) conditions %, is a polynomial system.
The precise "input /output” condition for Zf = polynomial is

immediate at this stage. Since A(Zf) = A, we see that the canonical

system Zf is polynomial iff the observation algebra A, 1is a finitely

f
generated k-algebra. Some useful charascterizations of this latter

condition are given in the next

(14.1) THEOREM. The following statements are equivalent:
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(a) =, 1is a polynomial system.

b
0,t _
(v) Af = éf for some t > O.
(e) Ap is integral over Ag’t for some t > O.
PROOF. (a) = (b) Since
0,t
A= a2
" gz0 ~f
) 0,t )
there is & t > 0 such that éf contains all the generators of éf.
(p) = (¢) Obvious.
) Oyt .. _ i
(¢) = (a) A, integral over Ar implies gf = Q(éf) is

algebraic over Q(A2%Y), so trdeg §.= trdeg gg’t = finite by (12.12e).

By (b) & () in (13.2), Qp 1is finitely generated over k. By (1.13a)

we conclude that A

£ is finitely generated. ]

We shall now describe a procedure which enables one to obtain a
polynomial canonical realization when a finite set of generators of

A is known.

f
Agsume now that éf is generated by Wl’ ey Wn as a subalgebra
of Y. In particular trdeg éf <mn, so en’éf is an isomorphism.

Thus any relation
(04
(14.2) \Ifi(u) =§Pa,i(\|rl, cee, Wn)u ,

vhere u = (U, «.., um)' is in U and the P, , are finitely many
y
polynomials, is equivalent to

[0}
eﬂﬁu):%?&i@ﬂﬁ,.”,eﬂhh.

The transition map of the canonical realization Zf is given by XCel),
with 6, defined as in (6.7), 0.t Ar —aéf[sl]: ¥ raw(sl). Thus the
canonical realization may be obtained from €n+lwl’ ooy en+lwn as

follows:
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STEP 1. Substitute

J>2, in each €n+1w'

L A W RTIE S

STEP 2. Write €n+lwi as & polynomial in the variables
vey T @
2

m

T =T,

(15.3) ¥y =T agty, ooy E,n)Ta.

n+l'i

STEP 3., Express each qia as a polynomial combination of

enwl’ veey envn:

(1h.4) %o = Pia(enwl’ cery enwn);
this is always possible by (10.5), since €Vqs oens eV, generate ég’n.
STEP 4. Since each w§,3> is in m?’n, j=1, ..., D, there

are polynomials hj with

enng) = hj(enwl, e g V), 3 =1, ..., D,

Then X, 1is the quasi-reachable subsystem Ty of = (kn,

(Pia)’ (hl, cee, hp), 0), i.e., I, 1is given by the equations

xi(t +1) =2, Pia(xl(t +1), ..., xn(t + 1)), xf_ 1= 0,
(1k4.5) i=1, ..., n,
yj(t) = hj(xl(t)’ ooy Xn(t)), J=1, ..., p,

subject to the constraints

Q(Xl(t), eney Xn(t)) = O;

for each polynomial @ for which Q(envl, R enwn) = 0.

(14.6) EXAMPIE. A simple illustration of the above procedure is the

following. Let f = fz, where X 1is givenby m=p =1, X :=k and
2 2
x(t + 1) = x (8) +u(t), x =0, y(t)=x(t).
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2 2 2 2 2

Ty, f(ut,u..., u,) =2(( vl v )T b w )T Ll 1212) + )"
Note that f = (f + u)°, or equivalently, Wf(u) = (Wf + u)® for all
u in U. Thus Y, generates A, and n =1. Since ey, = (§2 + & )2,

5 5 f o 2°f 2 1
step 1 gives (gl + T)°. But € Ve = £, s0

2 2 2

(gl + T = (c—:l\lrf + T)". Thus (12.5) becomes

(7)) x(t + 1) = (x(+) + 0, =¥ =0, y(t) = x(t),

with Xf = k. The procedure X —aZf

unobservable states {x, - x}, giving the algebraically observable

has identified the pairs of

system % On the other hand, (complete) reachability of = became

Just quasi-reachability of Zf- A more direct way of obtaining Za

in those cases (as with the present example) in which a quasi-reachable
realization £ is already known is through (10.4). By (12.12b) and
(1L.1c) we must generate the algebras é?’t(z) until é?’t(z) = é?’t+l(2)
for some t. Calculating, 59’0(2) = algebra generated by h = k[ng];
é?’l(z) = algebra generated by n2 and by all (n2 + u)2, u in

k = (by 10.7) algebra genersted by n2 and by the coefficients in u of
21 22%%=). so a(x) = 2% 0(m).

Restricting A(P) to A(Z) one obtains again (1k4.7).

2 2 2
T]+2T]u+u :k[n,n]=k[n

We shall see in Section (1.6) that Zf is polynomial for a wide class
of response meps, which includes all those maps defined by recursive

polynomial equations.

15. Bounded Maps.

An important role in studying the condition dim éf <o ig played by
the response maps introduced in the following
(15.1) DEFINITION. f 1is bounded iff deg f <o,
(Recall Definitions (5.4) and (12.5) for deg f.)

The system-theoretic meaning of a bounded mep is that no input is
raised to a power higher than a certain bound. Very simple systems can

give rise to nonbounded maps. For instance, let
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S ox(t+1) = xa(t) + u(t); <* =0, y(t) = x(t).

Computing fZ', by iteration shows that it is clearly not bounded.
However, the notion of bounded map is general enough to accommodate
those classes of response maps for which a realization theory exists in

the literature today. These cases correspond to the next three examples:

(15.2) EXAMPIE. f is linear iff EVe =0 and each monomial in Ve
has degree = 1. In particular, deg f =1 <,

(15.3) EXAMPLE (KAIMAN [1969, 19761). f is multilinear of order 'm

iff all the nonzero monomials appearing in Ier are of the form

agml«--imjm, a in k,
i.e. f]UJc is m-linear as & map Ut = (km)JG = (kt)m ->Y, forall t>0.
Then, deg f = 1 <w, (More generally one may consider s-linear maps

f: U;'_X...XU: - Y, where Ui t= ri, i=1, ..
Ty + ...+ rs = m. Here we took all ri =1 Just for notational

., 8 and

simplicity.)

(15.4) EXAMPIE (BROCKEIT [1972}, ISIDORI and RUBERTI [1973], ISIDORI
{1973, 1974], FLIESS [1973], D'ALESSANDRO, ISIDORI and RUBERTI [1974]).
f 1is internally-bilinear iff all monomials appearing in P are of the
type

at  «..8 , t>0, a in k.
il i -

Agein deg f =1 <o,

Note the difference between the bilinearity in (15.4) with that in
(15.3) (with m = 2). Neither of these implies the other.

(15.5) THEOREM. Let f be s response map. The following statements

are equivalent:
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(a) £ is bounded and finitely realizable.

(b) f 4is bounded and realizable by a polynomial system.

{(¢) f is bounded and %, is a polynomial system (i.e., Ae

is finitely generated).

(d) f is bounded and ;% is finite dimensional.

(e) dim Lp <.

(f) f admits a realization with X =k and transitions of
the form

x(t + 1) = F(u(t))x(t) + a(ult)),

where F(.) is a matrix, and G(-) a vector, of polynomial functions.

(g) f admits a realization as above with, further, h linear.

(h) f admits an observable realization as in (g).

(1) f admits a realization as in (h), with G = O.

PROOF. The only nontrivial implications in the diagram

(@) = (e) = (1)
& 2@ ),
(0) = (£) = (e)
are (a) = (d), (e) = (i), and (f) = (a), which we now prove.

(a) = (d) Let dim Zo=n and deg f =d. By (12.12¢g),

*
€, ;‘fzg@i’n. By (12.6), deg f' <a forall w in U. So
s * . R,n
deg etwf’j(w) <d forall w in U and j=1, ..., p. Thus L
is a linear space generated by a set of polynomials in nm variables of
joint degree < nmd. Thus dim L. = dim L?’n < (nm)nmd <o,

(e) = (i) ILet dim L,
of L. as a subspace of Y. By (11.5) the polynomials q;, *ntroduced

=n, and let {Wl, veey Wn} be a basis

in (14.3) are in Q?’R. Thus each P, =~ in (14.4) can be chosen linear,

and (i) follows from the formulas (1L4.5).
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(£) = (a) Iet F(u) = (Fij(u))’ a matrix of polynomials, and
let h(u) = (hl, ceey hp), a vector of polynomials. Denote

deg F := gup {deg F

..} and deg h := sup {deg h.). Then
i,3 1d J J

deg f < deg F.deg h < =, O

We can see from either (f£f) or (g) ebove that an essential
characteristic of bounded maps is the absence of any intrinsic nonlinear
feedback.

The above theorem shows that the problem of deciding whether a
bounded map is realizable is equivalent to checking whether a realization
as in (g), (h), or (i) exists. We shall study in Chapter V the connection

between such special realizations and some questions of asutomata theory.

These special configurations are highly appealing because they can
be studied by linear-algebraic methods. It should be noted carefully,
however, that, for certain questions like synthesis, alternative (lower
dimensional) representations may be more useful. This is illustrated

by the following example. Consider the one-dimensional system I
(15.6)  x(t + 1) = x(t) + u(t), =¥ :=0, y(t) = x5(¢),

where s > 1 is an arbitrary integer. Then dim L, = & and therefore
(see Chapter V) representations as in (g), (h), or (%) have dimension at
least s. The system £ may be, however, obtained back from any
observable realization = as in (h) in the following way. Since = is
canonical (easy verification) by (11.3) I is a closed subsystem of z.
Indeed, the reachable set of 5 will be one-dimensional, and the
restrictions of P and ﬁ to this reachable set will define a subsystem

isomorphic to Z.

16. Input /Output Equations.

We shall now study the existence of input/butput equations and
relate them to various finiteness conditions. We treat only the case

P =1, since when there is more than one output channel one may
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separately study each Wjof, j=1, ..., p. We let Sij be

indeterminates, i =1, ..., m, Jj>1, and denote Sj = Slj’ ooy S

(16.1) DEFINITION. Let r > O be an integer, and let E De a

polynomial in k[Lo, Ly eees L, 85 «eoy Sl], nontrivial in L .

Apair (y, w), y in Y, u in U satisfies E iff

E(Y(t)) y(t = l): e Y(t = I‘), u(t - l)’ ey u(t - 1‘) =0

for all t in Z. The response map f satisfies the algebraic

difference equation E iff every input/butput pair of f satisfies E.

The order of the equation E is r. The equation E is

(a) rational when deg, E =1, i.e.
o

E=E (L, «o., L, S, veey, 8.)L +E_(L,, oo, L, S, +0e, S
1M 1'% 2\

r T

(b) integral when

]
E =El(sr’ ey 8)L +E2(LO, Ly eeey Ly 85 nny sl),

;)

with degLo E2 < 83

(e) recursive when rational and integral, i.e.

E = El(Sr’ ceey sl)L0 + Eg(Ll, oy Ty s eeey sl);

(d4) affine when

T
E = zéo Ez(sr, vees Sl)Lj + E(SI_, ceey sl).

The main result of this section is the following

(16.2) THEOREM. ILet f be a polynomial response map.

(a) The following statements are equivalent:

(i) f is finitely realizable;
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(ii) f satisfies an algebraic difference equation;

(iii) f satisfies a rational difference equation.

(b) The following statements are equivalent:

(i) £ 4is bounded and finitely realizable;

(i1) £ satisfies an affine difference equation.

(¢) If f satisfies an integral difference equation then X

f
is a polynomial system and f satisfies a recursive equation.

The proof of this theorem will be postponed until we establish some

technical facts about algebraic difference equations.

The study of such equations will be algebraized through the
introduction of the field X = k({Sij, i=1, ..., Q, sz 1}) obtained
by adjoining the indeterminates Sij to k. Let L%, éf be the
K-subspace and K-subalgebra of ¥, generated by Ve and (recall (5.17))

all the V¥.(S., ..., 8;) (note order of arguments'), for all +t > 0. TLet
£ ¢ 1 =

g5 := g(ab).

(16.3) IEMMA. Let f be a polynomial response map. Then

(a) f satisfies an algebraic difference equation if and only
if trdegK Qg < oo,

(b) f satisfies a rational difference equation if and only if
gg is a finitely generated field extension of XK.

(¢) £ satisfies a recursive difference equation if and only if

is a finitely generated K-algebra.

g

(d) If f satisfies an integral equation and a (possibly

different) rational equation then f satisfies a recursive equation.

(e) f satisfies an affine difference equation if and only if

dim, LI; <o,

PROOF. We begin with some general remarks. Observe that an

equation E of order r is equivalent to
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Upe..ly  Ur...
(16.4) B(greccUL piressv2 s ogUr e Uy eees w) = 05
for all (ur, ceey ul) in U". 1In terms of Volterra series, (16.4) is
equivalent to

(16.5) E(wf(sr, cees sl), wf(sr_l, ceey sl), ceey wf(sl), Ve

S «ees sl) = 0.

A change of varisbles S, 8

2 2+1°
gj kagj_l if j > 1 +transforms (16.5) into

£ =1, ..., r, gl peSl, and

(16.6) E(wf(sr+l, ceey sl), wf(sr, ceey sl), ceey wf(se, sl), wf(sl),

Spp1 *res s2) = 0.

Thus an equation of order r gives rise to an equation of order r + 1.
We now prove (a). Let f satisfy E, with E of order o

smallest possible. Let c(Ll, ey Ly 8, eeey sl) # 0 be the

leading coefficient of E as a polynomial in LO. Suppose that
(*) c(wf(sr_l, ceey sl), vees Vos S, ey sl) = 0.

Dividing by Sr if necessary, we may assume that c(L
S, 1 vees sl) # 0. Thus

1 eees Ly O

c(wf(sr_l, ceny sl), cees Vs 0 8 15 eeey sl) = 03

is an equation for f of order < r - 1, contradicting minimality of r.
Therefore (*) is false. So (1L.L) is a nontrivial equation for
wf(sr, vees Sl) with coefficients in

K, = K(wf, cees wf(sr_l, ceey sl)).

Since the derivation of (16.5) from (16.L) is just a relasbeling of

variables, the same argument gives a dependency for wf(sr+l’ ceey Sl)
over K(wf, ey Wf(Sr,
algebraic extensions are again algebraic (formula (4.1)) we conclude that

cees Sl)). Since algebraic extensions of
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Wf(sr+l’ cee, Sl) is a%so algebraic over K., and by induction also

K .
gf is algebraic over Kr' Thus

trde K trde ﬁ <r<o

rdegy 9 = €g fr ST <

Conversely, assume that trdegK g? < o, Since the wf(st, ooy Sl)
generate gg, there exists an r > 1 such that g? is algebraic over ﬁr'
In particular, Wf(Sr, ey Sl) is algebraic over ﬁr’ so there is an
equaEion of algebraic dependence Q(Wf(sr, ceuy Sl)) = 0 with coefficients
in Kr' Multiplying by a common denominator if necessary, we may assume
that all coefficients of Q are in k[{sij}'xJ{wf, cen, wf(sr_l, ey sl)}].
Dividing if necessary, we may further assume that no sij divides Q.
Therefore the evaluation Sij >0 for all j >r gives an algebraic

equation of order r.

(b) A rational equation E is equivalent to the statement
1", = o0 « K M N -
Wf(Sr, ceny Sl) belongs to Kr . Since gf is the union of the Kr’
(b) is clear.

(c) Existence of a recursive equation of order r is equivalent

to wf(sr’ ceey Sl) belonging to the algebra
A =KV, ..., wf(sr_l, cee, sl)],

K
which is in turn equivalent to A_. being finitely generated.

f
(4) An integral equation corresponds to wf(sr, cens Sl) being

integral over A, so by induction as in passing from (16.5) to (16.6),

we conclude that A. is integral over A . Since, by (b), Qg = Q(AK)
~f r K ~~f
is finitely generated over X, we conclude from (1.13%a) that Ay is

finitely generated.

(e) Similar to (c); just observe that an affine equation of
order r 1is equivalent to Wf(Sr, ey Sl) belonging to the span of
Vor voes wf(sr-l’ ceey Sl) as a space over K.

(16.7) 1IEMMA. Let f be a polynomisl response map. Then
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K
(a) trdeg, Q. <« if and only if trdeg Qp <.

(v) dimy ég <o if and only if dim Ly <=.

() If ég is a finitely generated K-algebra, then éf is

finitely generated (over k).

PROOF. We first prove that the finiteness statements on LK,
Ag, and g? imply .the corresponding conditions on ;f, éf, and gf.
By (6.3) these statements are equivalent to the existence, respectively,
of an affine, recursive or algebraic equation E for f. Iet
c(Ll, cees L, Sy veny Sl) be the leading coefficient of E as a

polynomial in Lo' Let

D := {(ur,‘..., ul) in U | c(wf(ur_l, ceey ul), cee) Wf(ul),
cor Vo Wy e, ul) = 0},

By (6.4), wf(ur, ceey ul) is in the space L, [respectively in the
algebra A,, respectively algebraic over gf] for all (ur, cees ul)
not in D. The conclusion is then clear from the Main Lemma, Part II

(12.11) and (12.12e).

Now we prove the "if" parts in (a) and (b). By the Main Lemma
(10.7), the coefficients of wf(sr, cee, Sl)’ considered as a polyncmial
in Sl’ . Sr’ are in Lf. Thus éf is in the linear space overK K
generated by ;f, which has a finite basi; by hypothesis. Since gf is
generated as a field by the elements of gf, the conclusion about Qg
is also immediate.

We may now complete the
PROOF OF (16.2). (a) Follows from (16.3a,b), (16.7a) and the
equivalence of (a) and (d) in (13.2).
(b) Clear from (16.3e) and (16.7b).

(e) An integral equation is in particular an algebraic equation,
so by (a) f satisfies a rational equation. The conclusion is then
clear from (16.3d), (16.3%c), and (16.7c).
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(16.8) REMARKS. (a) For a finitely realizsble f there is up to
scalar multiplication a unique algebraic difference equation E with
the two properties: (i) E is of minimal order r, and (ii) E is
10 eees Ly 8, e, 8.0
Uniqueness follows eagily from the discussion in HODGE and PEDOE
[1968, page 110].

irreducible as a polynomial in k[Lo, L

(b) It is easily verified that two polynomial input /output
maps satisfying the same rational equation necessarily coincide.
Moreover, by simple division of polynomials, f (more precisely, Wf)

can be reconstructed from the ratiomal equation E.

{¢) It can be seen by & counterexample that Zf = polynomial
system does not imply that f satisfies an integral difference equation.

17. Jacobian Condition.

We now show how to check the condition "f is finitely realizable"
by examining increasing truncations of the Volterra series. We take k
to be a field of zero characteristic (when char k = hs) % 0 one may

generelize the criterion via spaces of differentials).

As in the previous section, we assume p = 1 without loss of

generality.

Denote by DrS’ l1<r<m, s>1, the operator which takes
partial derivatives of polynomials with respect to the indeterminate

£, Let DP, s>1, be the row vector (DlsP’ ceey DmSP).

(17.1) DEFINITION. The n-th Jacobian matrix J(f) of £ 1is

Dlenwf Deenxjrf ves Dnen\lff
Dlenwf(sl) . cee Dnenwf(sl)
To(f) 1= : D :
Dlenuff(sn_l, ey 87) . cee DpeVo(S 1, ..e, §,)
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(17.2) EXAMPIE. Let f be a linear response map with "impulse

response" A, ey Ay wen, die Vo= by aijgij and
A = (alj’ cees amj)’ j>L. Then
r m n m
eVe(8, -oey 89) = 321 2 %85 rg * 321 2 8; garbiy’

SO

Dsenwf(sr’ tre Sl) = Aoy
Thus 'Jn(f) is the n-th principal minor of the block Hankel matrix of
f (KAIMAN, FALB, and ARBIB [1969, Chapter 10]), and it is well-known
that realizability of f is equivalent to the existence of an integer s
such that rank Jn(f) < s Tfor all n. The Jacobian of f gives a new
way of interpreting the classical Hankel matrix of f.

(17.3) THEOREM. f is finitely realizable if and only if there exists
an s >0 gsuch that

rank Jt(f) <s for all t >0,

i.e., if and only if every (s + 1)-minor of Jt(f) is zero for all
t > 0.

PROOF. By HODGE and PEDOE [1968, III.7, Theorem ITI],
rank Jn(f) = trdegy K[enwf, ceey enwf(sn_l, ceey sl)].

(K is k({Sij]) as in the previous section.)

["only if"] By (10.12h), there is an s such that
trdeg, églf s for all n > 0. By the Main Lemma (10.7) each

enwf(sn-l’ s Sl), j=0, ..., n -1 is a K-linear combination of
elements of Ag. So rank Jn(f) < s.

["if"] If rank Jt(f) <s for all t >0, in particular
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(17.4) trdeg, Kle Vo «voy etwf(ss, cens sl)] <'s,

for all t >s. Let B be the subalgebra of YK generated by

Vor ooy wf(ss, ceey sl). By (17.4), trdeg, et(B) < s for all

t > s. It follows from (5.22) that trdegK B <s. So there is an

r < s such that wf(Sr, ceey Sl) is algebraically dependent over

Vpr oees wf(sr_l, cee, sl), and the conclusion follows from (16.7a). O

(17.5) EXAMPIE. As an application of (17.4), we prove that the

polynomial response map f, with m =p =1 and

Ve 2 3 L 5
wf t= 511 + g12 + 513 + Elh + 515 + ...,

is not finitely realizable. Since

2 r r+1 r+n
enllff(sr, ceey Sl) =S 48t ...+ S+ &+t g
r+s-1 .
for any s < n, Dsenwf(sr, ceay Sl) = (r + s)glS 3 this latter

expression is also Dsen_lwf(sr, ey Sl) if s < n. Therefore

and so

2n-2

in * t(g

det Jn(f) = (2n - 1) det Jn_l(f)g 177 e gln),

where degln t <2n - 2, Since gln is algebraically independent over
k(gll, ceey gl,n-l)’ an induction on n shows that det Jn(f) £ 0 for
8ll n. a

18. Some Examples and Counterexamples.

We discuss now several examples related to canonical realizations and

input /output equations.
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(18.1) EXAMPIE. We wish to illustrate the calculation of a nonpolynomial
canonical system, via (10.4). Consider the system z i= (ke, P, h, 0),

where m =p =1 and the equations of ZO are

xl(t +1) = xl(t) + u(t),
x(t + 1) = x (8)x,(8) + x, (%) + x,(t),
y(t) = x,(t).

The 2-step reachability map of Zo is
2 +
(18.2) gt U2 -k (ue, ul) H<ulu2u2>,

which is obviously onto. So ZO is reachable.

We want to calculate a canonical realization of fo t= fz . Since Zo
0
is reachable, I, = Zgbs; we apply the construction in (10.k4) to obtain
o
% . The observation algebra A(Z ) will be determined as Ao’t(z ) by
fo ~*"0 =0] o}

induction on t, using the Main Lemma (10.7). Write A(X) = k[nl, ne], g0
A(P): my by + T, My N, + My + Ty

and
h = Mo+

To simplify calculations, let ﬁi =7 1, i=1, 2, so that

i
- 1. Then A% -k, - 11 =

A(P): 1y PNy + T, Ay nM, end b=
= k[ﬁz]. By induction,

+
2

O t -~ A~ -~ At
A ’ = k[ng’ 712711; sy ﬂenl])
because
~ At -~ ~ 1t
A(P)(Ashe) = AR)(A,)- (A(RYA)))

~A A g t
Mgy + 1)
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1 )
_ tya ad+l t-j
= X, (3)”2“1 T,

~ at+
so the new generator M504 1 appears as the coefficient of T°. Thus

(18.3) A, = A(zo) = k[ {(n, + 1)(111 + 1)t, t > 0}]
o]

is not a finitely generated algebra. Therefore Zf is not a polynomial
o
system,

By (3.17) the canonical state space Xp = X(éf ) = X(k[ﬁgﬁi,

t > 0]) is an almost-variety which can be represented b§ the principal
open set D := {n2 £ -1} in 1 - X(k[nl, na]) (or, equivalently,

{ﬁ2 # 0} in X(k[ﬁl, ﬁg])) Plus an extra point (*}; see (3.19). The

morphism

T X %08 - e s
(o]

in (10.4) is the map X(i), where i: Ap —ek[ﬁl, ﬁz] is the inclusion
o

map. Therefore

T(x) =x if x is in D, and

T(x) = * if %, = - 1.
Since T 1is a k-system morphism, the transitions in Zf are

o)
Pfo(x, u) = T(P(x, u)) if x is in D, and
P, (¥, u) =% for all u in U.
o
The initial state in Zf is 0 in D and the output is given by
o

h(x) = x, if x isin D, and

h(*) = - 1.
Note that T identifies precisely those states of XE which are

o]

indistinguishable.
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(18.4) EXAMPIE. Consider T, and f_ as in (18.1). We now prove

that there exists no polynomial realization of fo in which every

pair of reachable states is distinguishable. In other words, it is

impossible to find any polynomial system ﬁ realizing fo and a
one-to-one abstract system morphism

T % -7

ac ac
where Z is the abstractly canonical realization of f . Our claim
depends on two facts. (i) ILet A := A(gg)(A(Z ) CZA(UQ) Then A

is maximally separating (1.11) with respect to A(U2). Indeed, write
A(UE) = k[T, T ], by (18.2) and (18.3),

1?

A= k[[(T2 + 1)(Tl + T+ 1)t, t > 03],

2

With a change of variables T, =T, + 1, 52 t=T) + T, +1 in A(Ue),
A becomes X[{T Tl’ t > 0}). By (1.12), A is maximally separating.

(i1) Now our claim follows from the following more general fact:

(18.5) IEMMA., ILet f be any polynomial response map. Assume that

(1) the n-step reachsbility map g n of I, is onto and (ii)

A(gf n)(X ) is maximally separating in A(Un Then any quasi-

reachable 5 realizing f whose reachable states are distinguishable

is isomorphic to Zf.

PROOF. Let T: Z -3, be the unique dominating morphism (10.4).
We must prove that T is an isomorphism. The restriction of T to the
reachable part ZR of ¥ induces a morphism of abstract systems

TR: ZR —>Zf. Since by hypothesis ZR is abstractly canonical, TR is

a bijection (7.8). Therefore ZR is also reachable in n steps. In
particular, % is quasi-reachable in n steps and A(gn) is one-to-one.
Iet B := A(g )(X }. Since Tog = & n T is an isomorphism iff

B = = A(gf )(X ). By definition of max1mally separating” (1.11) it
will be enough to prove that B separates no more points of Un than A.
So take v, w in U and suppose that A does not separate v and w,

i.e.
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(18.6) a(v) = a(w) for all a in A.
By definition of A(gf 2), (18.5) is equivalent to
b

c(gf,n(v)) = c(gf,n(w)) for all ¢ in Aps

in other words, gf,n(v) = gf’n(w). Since Bp n = Tog, and T is
one-to-one on reachable states, we conclude that gn(v) = gn(w).

So d(gn(v)) = d(gn(w)) for all 4 in A(X), which means that

b(v) =b(w) for all b in B, i.e. neither does B separate v and

Ww.

When k =R or k is algebraically closed the hypothesis of
Lemma (18.6) can be weakened considerably, replacing (i) by just

dim %, = n. The (easy) proof of this stronger lemma uses (4.6) plus

(18.5).

(18.7) EXAMPIE. We continue to investigate ZO, fo, and determine

the (unique) irreducible equation of minimal order satisfied by £

Let ﬁl’ ﬁ2 be coordinates for ZO defined as before.
Working in Q(ZO),

h+1l=m, h2+1=q4f, and 2" 41 - iy + fyfisty,
for all (u2, ul) in U2. Since

ifip = (anp)y = (B2 4 1)2/(n + 1),
we conclude that

(h+ )% + 1) - @2+ 1)%- @% + 1)(n + 1)u, =0,

for all (u2, ul) in U2. Since h(g(w)) = £f(w) for all w in U[z],
the polynomial
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2
E := (L2 + 1)(Lo + 1) - (Ll +1)° - (Ll + 1)(L2 + 1)82,
gives an algebraic (rational) difference equation for fo’ i,e.

[y(t - 2) + 1)y(t) + 1] -[y(t - 1) + 11° -
- [y(t - 1) + 1)[y(t - 2) + 1]u(t - 2) = 0,

for all input/output pairs (y, u) of £o' The polynomial E is
easily seen to be irreducible, and E is of minimal order for fo’
because h = ﬁz -1 and n”-= ﬁlﬁe -~ 1 are algebraically

independent. a

R K .
(18.8) EXAMPLE. Since always trdeg, Q. < trdeg Q., there is

always an algebraic difference equation of degree dim X There may

ot
exist, however, equations of order strictly lower than dim =, To

illustrate this, consider the bilinear input/output map fl = le,
en+l

where m =2, p=1, and Z :=(k , P, h, 0), n>1 arbitrary,

1
and P, h are given by the equations

xl(t +1) = ul(t), xn+l(t +1) = u2(t),
x,(t + 1) = x (8), x ol +1) =x (%),
xn(t +1) = Xn_l(t): xgn(t +1) = x2n-1(t)’

X1 (8) = x (B)uy(8) + x, (8)u, (¢),

y(t) = %, (5).

It is easily shown that Zl

However, fl satisfies the (affine) difference equation

is canonical, so dim gfl = din Zl =2n + 1.

y(t + 1) = ul(t - n)uz(t) + u2(t - n)ul(t),

of order n+ 1 <2n + 1. Note that fl is also a counterexample to
3
k

dim L, = dim Lg. Counterexamples with m =1 also exist; e.g. X22 = R

B

ng := 0 and 22 given by



97

]

xl(t +.1) = ut),

xz(t +1) = XB(t),

x3(t + 1)

v(t) = XB(t)’

x5(t)xl(t) + xl(t) + xe(t)u(t),

which satisfies an affine equation of order 2:
v(t) =y(t - Lu(t - 2) + y(t - 2)u(t - 1) + u(t - 2).

(18.9) EXAMPIE. When I, 1s a polynomial system, it is natural to
represent it by a system of simultaneous polynomial difference equations.
An important question in applications concerns the minimal possible
number r of equations in such representations of a given Zf. By
(3.4£f), r = smallest possible cardinality of a set of generators for

Zo.» In general, r < trdeg A and equality holds if and only if

f £’
Af = k[Tl, ooy Tr], which is always the case for linear response maps
f. A result of KAIMAN [1979] shows that éf

for bilinear single-output (p =1) responsge maps. For more general

is a polynomial ring also

response maps, even bounded ones, Xf may be different from affine

space. For instance, let m =p =1 and let f3 be the response map

satisfying

y(t) = u2(t - 2)u(t - 1) + Wt - 2).

Then f3 = fZ ,» Where XZ : ke, xﬂ = 0 and 23 has equationg
pJ 3 3

xl(t + 1) = u(t),

LI}

x,(t + 1) sz_(t)u(t) + x?_(t),

y(t)

xz(t).

. . . 2
Since 23 is quasi-reachsble, A, = A(Z) = k[n,, ni, n,]. Thus to

represent the canonical realization (polynomial by (16.2¢)) I, one
needs at least 3 equations. (Note that the noncanonical realgzation

23 of f3 requires only 2 equations!) A representation of I

for instance,

is
f 2
3
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x (6 + 1) = v (t),
x,(t + 1) = w(t),
x5(6 + 1) = x; (£)u(t) + xy(8), 2 2o,

y(t) = x,(4),

_ . 3 _ .2 .

where X, = {(xl, Xy, x5) in ¥’ | x{ = x,}, a surface with a
singularity at x = 0. Since dim Xf = 2, 23 is minimal, a fact which
agrees with X, being quasi-reachable and abstractly observable, so

weakly canonical (13.7). O

(18.10) EXAMPIE. Consider a homogeneous polynomial response map T3
i,e. all monomials in wf have the same degree, say s. Take, for
simplicity, m = p = 1. One way of applying the theory of multilinear
response maps (15.3) for obtaining realizations of such f is the
following. Let

Y, =2 a, A S S

£ 11"'1s lll lls

where the sum runs over all possible sequences (with repetitions)
il, cvey is of integers > 1. Define the s-linear response map £°
(with m=s, p=1) by

¥

o * 1.4
s

It is eagily verified that f is finitely realizable iff £° is

finitely realizable. Given any realization X of fo, a realization

ﬁ of f 1is obtained by applying the same input to all the input channels

of X. Such a method of realizing a homogeneous f has been suggested by

several authors (see, for instance, BUSH [1965]).

The method is theoretically unsatisfactory, however, given the
noncanonical nature of i. The following example shows that this
procedure may be also unsatisfactory from a practical (synthesis) point

of view. Specifically, we shall give a homogeneous response map f of
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(arbitrary) degree s such that Z, has X, =k but such that the

lowest possible dimension for a realization i obtained by the above

procedure is s. That is, we look for an f with Xf =k and
dim EfO = S.
Let Z, have the equations (with X = k)
L
x(t + 1) = x(t) + u(t), o o,
s
y(t) = x°(t).
Then fz = fzh, where Zh has m=s, p=1, X = x° and equations
x, (6 + 1) = x,(8) + u(t), xg =0, i=1, ..., s.
y(t) = 2 (8)...x_(%).

Clearly, Zh is reachable. Moreover, Z‘.2+ is algebraically observable,
since, writing A(x®) = k[ng, ..., ns], the coefficient of Tl...i'i...Ts
(Ti omitted) in

A(P)h = (nl + Tl)...(ns + Ts),

is - Thus Zh is canonical and has dimension s.

(18.11) EXAMPIE. Consider strictly recursive equations

(*) y(t) = R(y(t - l)) ceey Y(t = I‘), u(t = l)) ey u(t - I‘)),

for finitely realizable polynomial responses f, where R is a
polynomial. Such equations are well-known to exist for linear response
maps. By the Cayley-Hamilton Theorem, the internally-bilinear response

maps (15.4) of systems of the form

"

x(t + 1) = Fx(t)u(t),

y(t) = Bx(%),

m =1, F, H=1linear) are easily seen to also satisfy equations (*).
2 )
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In general, however, a finitely realizable polynomial response
map satisfies no equation such as (*). To construct counterexamples
it is enough to exhibit systems X such that for each r > 1 there
exist pairs of inputs w, w for which w(t) = w(t) for t >0,
f(w)(t) = £(w)(t) for 0<t <r but f£(w)(r) £ £(w)(r). Such w, w

clearly contradict (¥). We give three such counterexamples.

(a) A one-dimensional system XZ_ with m = p = 1, where

5
x(t + 1) = x(t) + u(t), %t = 0,
y(t) = E(v).
Here take w(t) =w(t) :=0 if t#£-1, r-1, wir-1)=w(r-1):=1,
w(- 1) :=-1 and w(-1) :=1.

(b) Again m=p =1, and Zc given by

+

x, (6 + 1) = x,(8) + x ()u(s), bl

X
(6 + 1) = x,(8) + x,(8)ult), xg = 1,

+

y(t) = xl(t) + xe(t).

1

Here take w(t) =w(t) :=0 if t #-1, r-1, w(r-1) =w(r-1) := (_ 1),

w(- 1) :=0 and w(- 1) := ( ll). Note that fy is an internally-bilinear
- 6
response map.

(¢) Tet m=2, p=1, and 27 given by

x (6 + 1) = x(8) + u (8), =0,
x2(t +1) = xE(t) + u2(t), xg := 0,
y(t) = % (£)x,(¢).

Here take w(t) =w(t) :=0 if t#-1, r-1, wir-1) =w(r-1) =
=w(- 1) := (1) and w(- 1) := - (i). Note that f; 1is a bilinear response
map.

7



CHAPTER V. STATE-AFFINE SYSTEMS

Some special types of system configurations arose in Theorem (15.5)
as natural realizations for bounded input/output maps. The most useful
of these configurations are state-affine systems; they are studied in

this chapter.

As indicated in Chapter I, we shall base our development on the
notion of a representation of the Volterra (or, equivalently, the

exponent) series of f.

19. Recognizable Series.

Throughout this section, ¢ is an exponent series (5.6) whose

support is contained in A where

J)

, 8 1.

J={80=(O), CIPERPE s

(19.1) DEFINITION. A representation (with support in AJ) is an
object R = (X, {Fa, @ in JJ, {ga, O =8y, vuny 68}, h), where

(a) X is a vector space over Kk,

(b) each F, X —>X is a linear map,
(e) each &y ig in X, and

(4) h: X »Y = k° is a linear map.

= i * = coe
For each « = al...O% in J% let Fa : Fa FQ%,

and write F, := lX'
* 1
If 7= al...at(o)...(o) is in J, with Q& # (0), then

A

if 7 =(0)...(0), g, := 0. With these notations, R is accessible iff

span {ga, a in Aj] = X;

R is reduced iff
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OZC'L?IJ* ker hF = {0};

R is canonical iff R is both accessible and reduced. The dimension

of R 1is
dim R := dim X <,

The exponent series ®p represented by R is given by

ch(oz) := hg, for all a in A

The representation R is minimal iff, for any R for which CPR = q’ﬁ’
necessarily dim R < dim R. When dim R < ©, Pp is recognizable. The
linear map T: X eﬁ induces a morphigm of representationg

T: R = (X: {FCX]’ {ga}; h) ‘)ﬁ = ()E; {ﬁa}’ {éa}, ﬁ))

iff Tga = ga and TOFa = FotoT for all o and h = heT.
The terminology "recognizable" is taken from automata theory, as

explained in Chapter I.

It is easy to see that representations form a category with the

above notion of morphism.

(19.2) DEFINITION. The behavior matrix B(®) of ¢ is an infinite

block matrix, with rows indexed by J* and columns indexed by AJ,
whose (@, B)-th entry is ¢(ap), a column vector in Y = kP,

We denote by BB the B-th column of B(®).

(19.3) THEOREM. Any © has a canonical representation Rq)' If R

~

and R are two canonical representations of ©, there exists a unique

representation isomorphism T: R -—>§. Further, ¢ 1is recognizable if

and only if rank E(Cp) < w3 in this case a representation R of ¢ is

canonical (i) if and only if R is minimal and (ii) if and only if
dim R = rank B(9).
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PROOF. We define RqD = (X, {Fa}, {ga], h) as follows:

X := linear space spanned by {BB, B in Aj}’

8 = 35.’ i=1, ..., 8

i i

h := linear map induced by the projections in the A-th block

TOW: BB - o(B), and

F.. = linear map induced by the column shifts B_ B s
B B 3.B

. 1
i=0, ..., s.

Note that the Fa are well-defined, since any relation among columns

19.4 % rB, =0, r, in k
(19.4) (finite) "B P > 7B ?
implies 2 rBBS'B =0, 1i=0, ..., s. Indeed, the o~th (block) row
i
of L TeBs. is % rB$(a6iB), which is also the OB, -th row of (19.k4),
i
and hence zero.
Clearly,
g, =F g, =B,
B 61"'B.t_l B.t B

for any B in AU’ so R 1s accessible. By definition of h,

coch(B) = h(gg) = n(B,) = o(p),

o R_ represents ®. Now take x =J. r B_ in ()ker hF . Then
80 Ry Tep ¢ B8 a a

0 =hFx = 7 r hF

= = Q= 1
g aﬁl"'st-lgst hX rs@(aﬁ) o-th block row of x,

*
for all o in J . Thus x =0 and R is reduced, hence canonical.

The proof of the theorem will be complete after we establish
the following lemma (similar to (7.7) and (11.3)):

(19.5) IEMMA. Let R, R be representations of ®, with R accessible

and R reduced. Then there exists a unique representation norphism




104

T: R >R. When R is canonical, T is onto.

PROOF. Define T: X -X as the linear extension of

T(ga) =g, Q in A
By definition of representation morphism, this is clearly the only
possible choice for T. Thus the lemma will follow if T is well-
defined. We must show that if x =2 ngB

- - *
X =2 ngB = 0. Pick o in J . Then

= 0 (finite sum) then also

h°Fa(x) =2 rBh(gaB) =2 rsm(aB) =2 rBh(gaB) = hFa(x) = 0.
Since R is reduced, this means that % = O.

(19.6) REMARK. The above theorem gives rise to an algorithm for
constructing representations of a recognizable series @ from g(@).

Tt is only necessary for this purpose to find a submatrix ¢ of full

rank of B(9) and to express the gy F, @nd h with respect to the
basis consisting of the set of columns used in the definition of 0.
This algorithm is a minor variation of that given by FLIESS [1972] and
generalizes the one given for the linear case by ROUCHALEAU [1972].

(19.7) EXAMPIE. ILet m =p = 1 and take a linear (15.2) response
mep £, with Vo =2 8t ., 0= (Z aiOl)l. The only possible
nonzero columns of g(wf) are those indexed by 1, 01, ... , and the

only possible nonzero rows are those indexed by {On, n > 0}:

1 0L 01 ... o1

al ay a3 . . . &1
o] a a3 a)+ an+2 .
02 a aLL a .

5 o . an+5
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the classical Hankel matrix of the linear response map f. When

m, P # 1, the only possible nonzero part of B(®) becomes, with a

suitable ordering of row and column indexes, the block Hankel matrix
of fj the realization procedure in (16.6) coincides with the well-
known "Silverman's formulas" (SILVERMAN [1971]) O

(19.8) EXAMPIE. When f is internally-bilinear (15.4), our B(®)
becomes the generalized Hankel matrix introduced by ISIDORI [1973] and
FLIESS [1973]. When f 4is bilinear in the input /output sense (15.3),
the nonzero part of §($) can be arranged so as to become the matrix
introduced by KAIMAN [1976]. w]

20. State-Affine Systems.

(20.1) DEFINITION. The Polynomial system I is gtate affine iff

() X =k for some integer n,

(b) h: X >k is a linear map,

(e) < - 0, and

(d) for each fixed input value u, P{x, u) is an affine

( = linear + translation) function of x.

In other words, there exist polynomials pij(Tl’ ceey gn) and

qi(Tl’ cie, Tm) such that the transition equations for = are given

by

n
xi(t +1) = 320 pij(u(t))xj(t) +aq;(u(t)), i=1, ..., n

L is span-reachasble iff the set of reachable states XR spans kn;
span-canonical iff both span-reachable and observable; minimal iff

dim % < dim 5 for any state-affine system £ for which fz = fﬁ' A

system morphism T: = -5 between state-affine systems is a morphism

of state-affine systems iff T: X —aﬁ is linear.

(20.2) REMARK. Tt follows from Theorem (15.5) that a polynomial

response map f is bounded and finitely realizable iff f can be
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realized by a system which is state affine except for the condition
xﬁ = 0. A coordinate translation may of course be used to make xﬁ =0,
without changing the affine form of P. However, this makes h an
affine, rather than a linear, map. In other words, the equilibrium-

level output h(xﬁ) may become nonzero. We shall assume for the rest

of this chapter that a coordinate translation has been performed (if

necessary) on Y = ¥ so that

®f(A) = 0 for all response maps f.

With this convention, h(xﬁ) = 0 for every system. Thus bounded +

finitely realizable = realizable by a state-affine system.

(20.3) REMARK. The basic observables of a state-affine system are

affine functions of the state; thus
(sbstract) observability = algebraic observability,
for such systems.

let & be a state affine system. Since P is affine in x and
polynomial in u, there exists a subset J = {80 = (0), 61, ooy 68}
of g? and matrices {FS.’ 5; in J} and {gg., i=1, ..., 8}
i i

such that

S S

2] B3
(20.4) P(x, u) = izo Fg Xut + 121 gy W T
i i
n . .
We shall call R =Ry := (x7, {ng, i=0, ..., 8}, {gﬁi’ i=1, ..., 8},
h) +the representation associated to XZ. Take W = W,_...W in Ut. An

t 1
easy calculation shows that

(t) o
(20.5) P (mw):agf(%$+%w.

Thus the 1t-step reachability map gt U't —akn becomes
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() ]
(20.6) gy =20, w = T gu®,

and therefore

i

£5(w) = n(g, (W) = T n(g W = T o (a)?,

so that wf = @R.

We now have proved the following

(20.7) IEMMA. The assignment I - Ry 1s a bijection between state

affine realizations of a bounded Polynomial regponse map £ and

finite-dimensional respresentations (with fixed basis for X) of Ope

The above assignment preserves reachability and observebility

properties:

(20.8) IFMMA. I is span-reachable [respectively observable] if and

only if RZ is accessible [respectively reduced].

PROOF. Iet b: kn —~k be a linear function, and taeke w in
Ut. Then (19.6) implies that

(20.9)  blgy(w) = T o w(g W

Since k is an infinite field, the right side of (20.9) is zero for all
w in U't iff b(gu) =0 for all o in J . Thus there exists a

b £ 0 with b(gt(w)) =0 for 211 w in Ulz] (i.e., = is not
span-reachable) iff there is a b # 0 with b(ga) =0 for all «

(i.e., Ry, 1is not accessible).

We now prove the observability part. Take w in Ut. Then

(20.10) n"(x) = hOP'(t>(x, W) = cxi%Jt n(Fx + ga)wa.
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Two states x and X are indistinguishable iff n(x) = W (%) for all
w in U, which by (20.10) means that

(20.11) z & OF (x - )W =0 for all w in Ut and all t > O.
. a Rl = 2 B v
oind
Using again the fact that k is infinite, (20.11) is equivalent to
X - X being in ker WP, for ell o in 7. so n' is one-to-one

iff Mker hFa = {0}, as required.

(20.12) REMARK. The hypothesis k = infinite is essential for the
above result in its present form. The correct generalization to
arbitrary fields is that only monomials u8i which are linearly
independent as functions should be used in the definition of a state

gffine system.

From (20.7), (20.9), and (19.%) we obtain the main result of this

section:

(20.13) THEOREM. Any bounded and finitely realizable response map

f hag a span-canonical state-affine realization, unique up to

igomorphism ( = change of basis in the state-space). A realization Z

of f is span-canonical (1) if and only if £ is minimal and (ii) if

and only if dim & = rank g(cpf).

Of course, realizations can be obtained from E(@f) uging the
algorithm in (19.4). There is an interesting interpretation of the

row-space Bf

observation space éf and the state space of the span-canonicel state-

affine realization of £ (i.e., the column space of Qﬂ@f)). Agsume

of Q(Qf), which implies a natural duality between the

for simpliecity that p =1, and define

on generators by

(20.14) p-th column of (") :=<2g£3$ 0] (aB)wa for w in Ut, t > 0.
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It is not difficult to verify the following

(20.15) PROPOSITION. 1: Le = Rp- In particular, dim Ly = rank B(Cpf) =

= dimension of span-canonical state-affine realization of f. [m]

21. Finjte Responge Maps and Cascades of Linear Systenms.

(21.1) DEFINITION. The total degree of the polynomial response map f

(or of its Volterra series Wf) is

tdeg £ = tdeg ¥, := sup {llof | v (@) # 0) <=

f is finite iff tdeg f <=,

Since obviously deg Wf.f tdeg Wf, a finite response map is in
particular bounded.

(21.2) EXAMPIES. The nonzero polynomial response map f is linear
if and only if tdeg f = 1; when f is bilinear, tdeg f = 2. On the
other hand, an internally-bilinear response map f 1is bounded but not

necessarily finite. a

A natural class of realizations for finite maps will consist of
feedback-free interconnections of linear systems, defined below:

(21.3) DEFINITION. The polynomial system 5 is a cascade of linear
#

systems iff X = kn, x" = 0 and there exists a direct sum decomposition.

X=x®...0x%, a>1,

and linear maps Ai: Xi —9Xi, i=1, ..., d such that the transition

equations of X~ become

xi(t +1) = Aixi(t) + Bi(xl(t), ceey xi_l(t)', u(t)),

xi(t) in X, forall ¢, i=1, ..., d.

Given a decomposition X = X @... BX, as above, let

d
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i=1, ..., d.

(21.4) z‘_j = x;.| D ... EBXd,

Conversely, for any chain Zd g:Zd-l C ... CZZl =X, there exists a

decomposition {Xi} such that (21.4) holds. Thus the following result

is easy to prove.

(21.5) IEMMA. The state-affine system I is a cascade of linear

systems if and only if there exists a chain of subspaces

fo}y=2z_.cz2 . Cc...CZ =%,

d+1 d 1

such that, with the notations of (20.L4),

F8 Zj g:Zj, j=1 ..., 4, and

i=1, ..., s, J=1, ..., d.

e |
S
in

Zj+l’

For any o = al"'O% in supp ¥, let

#(a) := number of nonzero vectors among Oi’ ey 0%.

Clearly,
#(a) < lloll < a.
The main result of this section is the following

(21.6) THEOREM. The following statements are equivalent for any

polynomial response map f:

{(a) £ is bounded and the span canonical state-affine

realization of f 1is a cascade of linear systems.

(p) £ 1is realizable by a cascade of linear systems.

(¢) f is a finitely realizable finite map.

PROOF. (a) = (b) Trivial.
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(o) = (¢) Let f=1fy, with I as in (21.3). ILet each Gy
have total degree 55 and let h have total degree s. It follows by

induction on i +that

tdeg wf < ssl...sn.
z

(e) = (a) Iet tdeg V. = d. Referring to the realization
f
constructed via (19.3), let

Z, t= span fBB, B in A, J<#(B)), =1, ..., 4d+01.

The result is then clear by (21.5). a

22. Rationality.

We now indicate how the automata-theoretic notion of rationality
generalizes to the present context. The convention (20.2) that ¢(A) = 0

for every exponent series is still in force.

(22.1) DEFINITION. A secalar (p = 1) exponent series © is rational

iff © can be expressed in terms of finitely many vectors in g? by

means of a finite number of any of the following three types of

operations:
(1) (9, &) »r0 + s§, for any r, s in k,
(i1) (9, §) 03,

% i
ii1) o = 9
( ) - O® {20 ’

*
where ¢ ig interpreted as

% -
o (o) := 2 ®l(a), for all o in Aj'
is|a] -
A vector exponent series (ml, ey QP)' is rational iff each mj is

rational.
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(22.2) THEOREM (KIEENE-SCHUTZENBERGER). The exponent series ¢ is

rational if and only if ¢ 1is recognizable.

PROOF. See EILENBERG [1974, Theorem VII,5.1]. [}

The notion of rationality can be interpreted in terms of a
calculus of interconnections of state-affine systems. This calculus
permits, via exponent series, the determination of the Volterra series
of a given system and, conversely, the construction of a realization
given (a rational expression for) a Volterra series. The calculus is
obtained as a straightforward translation of the well-known

menipulations with automata, as given for instance in EITENBERG [197L].
(a)

i.e., the response whose formal Volterra series has all those terms in

Consider the truncation f of f to kernels of degree at most 4,

Wf corresponding to Ha” < d and all other coefficients zero. As an
illustration of the use of rationality, we shall give a short proof of the
following result (variations of it, e.g. that each homogeneous part is

realizable, are proved gimilarly):

(22.3) PROPOSITION. Iet f be a bounded finitely realizable response

map. Then f(d) is also finitely realizable, for all 4 > 1.

(a)

PROOF. 1In terms of the corresponding exponent series, © is

FE where Sd is

the series with a, = 1 iff HaH < d and zero otherwise. For any
4, 8, is rational (e.g., for m =1, d = 2, Sq = OX10%L + O%2 + o*1).
The result is then an immediate consequence of the known fact that the

the Hadamard or coefficientwise product of f and of S

Hadamard product of rational series is again rational (see e.g.,
FLIESS [1972]). O



CHAPTER VI. CLASSES OF QUASI-REACHABIE REALIZATIONS.

We study in this chapter the structure of various classes of realiza-
tions of a fixed polynomial response map f. The goal is to understand
better the systems in each such class, as well as their interrelationships.
As a corcllary, we shall give a stronger version of the isomorphism

theorem of canonical realizations (11.5).

Although part of the discussion could proceed in general, we shall
restrict attention to quasi-reachable systems. With this restriction,
the classes of interest become naturally endowed with a lattice structure,
and the treatment is considerably simplified; results for more general
realizations can be often obtained by restricting to the closure of the
reachable set.

Unless otherwise stated, all systems in this chapter are quasi-
reachable k-systems realizing an arbitrary but fixed polynomial response
f.

23. The Iattice QR(f).
In this section we do not impose any finiteness restrictions on f.

(23.1) DEFINITTON. We say that T, dominates I

if there exists a k-system morphism T: Zl —;ZQ.

x and denote 22 < Zl,

The above defines a pre-order among systems, which will become a
partial order when isomorphic systems are identified.

(23.2) IEMMA. If T;2 L, -2, i=1, 2, are morphisms, then T

Furthermore, the Ti are dominating.

]
H
0

1 2

PROOF. Since Zl is quasi-reachable, the abstractly canonical

state-space X,. 1s dense in X, Thus by argument as in (7.7),

Tl = T2 on Xac' The equality follows by continuity. A similar argument
proves the last statement, O
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By a slight abuse of notation, the same letter will be used for a
system and for its isomorphism class. Let QR(f) denote the set of all
isomorphism classes of quasi-reachable realizations of f3; then QR(F)

inherits the preorder < ; in fact:

(2%.3) COROLLARY. QR(f) is partially ordered by <.

PROOF. If T: Zl _;22 and 8: %, - %, are morphisms, then

2 1
TS: T, > I, mst be equal to the identity morphism, by (23.3). Similarly,
ST is the identity. So T 1is an isomorphism. ]

Recall that Zfree(f) is the system having the input space Q as
its state-sapce, and with transitions extending the concatenation
operation on input sequences; see (6.10). By (8.2), the reachability

Q
map g: Ulz] —aXZ extends to a polynomial map g from & to XZ’ for

any k-system X. If I realizes f, then g induces an abstract-
system morphism from the system with X = U[z], P := concatenation, and

Q
h, x¥ as in Zfree(f)’ into X. Thus g induces a k-system morphism

from Zfree(f) into £. Since on the other hand, by (11.3), the canon-

ical realization Zf is terminal among quasi-reachable ones, it follows
that

(23.4) PROPOSITION. Zfree(f) is the (unique) largest, and T, the

(unique) smallest, element of QR(f). o

If T Zl —922 is a dominating k-system morphism, A(T) gives
A(Xg) as a subalgebra of A(Xl), with "co-transitions" A(Pl) and
"co-output map' A(hl) extending A(Pz), A(h2). Conversely, given any
k-subalgebra A of A(X1> such that
(25.5) A includes A,
(note that éf is a subalgebra of A(Xl), by the quasi-reachability
assumption) and

(23.6) A(Pl) (A) is included in A[Tl, ey Tm],
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then the restriction of A(Pl) to A, ‘together with the restrietion
of A(xg) to A and A(hl) (seen as a homomorphism into A), define
, with A(Xz) =A and Z, <. :
a unique such %, (up to isomorphism), since A(Pg), A(he), A(XE) are

a system Z Furthermore, A determines

given necessarily by the above procedure.

Thus, the (isomorphism classes of) systems less or equal than z
are in a one-to-one correspondence with the algebras satisfying (2.5) and
(2.6). Furthermore, this correspondence preserves orderings, when the
subalgebras A are ordered by inclusion. But (2.5) and (2.6) are pre-
served under intersections; similarly, if a family Ai satisfies (23.5)
and (23.6) then the algebra generated by the union of the A; again
satisfies these properties. Translating these facts into the partial

order for systems, and applying them for Z, = Zfree(f):

(23.7) THEOREM. QR(f) is a complete lattice. [

Although the technicalities are very different, the above is formally
very similar to the result for linear responses over rings presented in
SONTAG [1977].

2. EBxamples Using the Lattice Constructions.

The join Zl v 22, (corresponding to the algebra generated by Al

and A2) can be described somewhat more explicity than above. In fact,
Zq v Z, 1is the "fibre product" of Z, and Z,, when each system z;

is interpreted as an ordered pair (Zi, Ti)’ with T,8 % -~ I, the
(unique) k-system morphism into the canonical realization. In other
words, Zl v 22 is such that for every pair of k-system morphisms

by -»zi there is a unique k-system morphism X —aZl v 22 such that the

compositions Z —azl v 22 —>Zi are the original morphisms (the second
morphism being the natural one giving the dominance Zl v 22 > Zi). Thus
Zl v 22 can be explicity defined as follows: X has as its state-space

a closed subset of Xl X X2:
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(2h.2) X = {(g)(0),8,(0)), o in U*},

and P((xl,xg),us) 1= (Pl(xl, w), ?E(XE, w)), initial state (xi, xg), and
H(xl, xz) 1= hl(xl) (or hg(xg))'
In the following examples initial states are zero, and U =Y =Kk,

unless otherwise stated:

(24.2) EXAMPIE. Let %, be (with X = k)

x(t + 1) = uz(t)

y(t) = ©(t)

and I, be (with X ='k)

x(t + 1) = w(t)

y(t) = x2(t)

Both realize the same response map f with canonical realization (which

is also their meet):
x(t + 1) = u6(t)
y(t) = x(t).

Again, X = k. Their join is the system whose state-space is the "cusp"

:

. 2 . 2
{(xl, x2) in k¥ with x —x2} and

w? (%)

Il

xl(t + 1)

x(t + 1) = w(t)

2

v(t)

]

(%),
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which is more complex than the original systems. The form of the Join

follows from the above remarks. We now prove that Zl ~ 22 is the same

£ Since Zl and 22 both have dimension one, the one-step
reachability maps u hauz and u k»ui

as X%
permit identifying the algebra
Al of Zl with k[Tz] and the algebra A2 of 22 with k[TB].
Under these identifications the output map x F>x5 of X
lently, that of 22) dualizes to

1 (or equiva-

A(R): AGY) = X[L] ok[T): T 10

Thus A, = k[T6], which is also the intersection of A; and A,; thus

(translating in terms of systems), Zf is indeed the meet of the Zi.

(24.3) EXAMPIE. Here I, and 22 have as state-space the closed set

consisting of those gectors (xl, X, X}’ xu) in kl'L with xlx5 = xg,
and input set U = k", The equations are, for 21:
xl(t + 1) = u(t)
xp(6 + 1) = u(t)v(t)
xy(t + 1) = u(t)v(t)?
1,(8 + 1) = x,(8) +x(D)xy(E)u(t) + xy(8)v(B)
y(t) = %,(8)
and for 22:
x) (8 + 1) = v(t)
x2(t + 1) = u(t)v(t)
xs(t + 1) = u(t)v(t)

xu( t+ 1) = xg(t) + xB(t)u(t) + xl(t)xz(t)v(t)

y(t) = xu(t)o
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Their meet is the canonical realization Zf with Xf = all L-vectors
with xi = x2x3, and:

xl(t + 1) = u(t)v(t)

x (b + 1) = w2 (£)v(t)

x5t + 1) = w(t)v(H)

%yt + 1) = 1 (6) + xy(Hu(h) + x(8)v()

y(t)

xu(t).

Here the join turns out to be gimpler than all of the above: it is the

3

system with X = k” and

(25.) x (t+1) = u(t)
x,(6 + 1) = v(t)
xy(6 + 1) = x (Dxy(8) + x, (92 (Du(s) + x, (D)2, (H)(8)
y(t) = x5(%).

Since both Zi are quasi-reachable in two steps, the calculations of
T, v I, and I, » I, are straightforward when carried out in A(UZ) =
polynomial ring in L4 variables. Alternatively, we may use the above
fibre product congtruction for Zl v 22. Its state-space becomes then
the variety in k= given by the set of those (xi) satisfying

2
X, = XXy Xy = Xlx5’5

2
: X, = Xg, Xg = XlXS’ and = XX Thus
the projection k™~ -k

1°5°
which sends (xi) onto (xl, X xu) gives an

isomorphism between this variety and kB, and equations (24.4) result. O
(24.5) EXAMPLE. We shall consider the following subalgebras of k[nl, n2]:

2 i-1 i
Ay i= kg, nyngs Mylls eees Myfy s Nl
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Note that A~ includes A whenever r divides s. Thus A; =kl My n2]
is the algebra of the quasi-reachable system having X = k , initial
state (1, L)', (%) = xl(t) -1, and P, given by

A(Py): klny, n] b klng, n,10T)

Since 4. = k[nlnz, t > 01, the algebras Ai satisy the conditions in
(23.5) - (23.6). We call T, ‘the system corresponding to A, and f
the common response of all these systems. Note that éf is the inter-
section of all the Ai’ or just of Al’ A2, A, A8, ess » In terms of

systems, we have a chain of polynomial systems

(24.6) £y >Z, > 5 >Ig > ...
whose meet is Zf, a nonpolynomial system. Moreover, the systems Zi
have an interesting cofinality property in QR(f): for any noncanonical
5 in QR(f), either (1) = .=
LAz, 2> Zi.

, = Zpy OT (2) there is some i with

1
Indeed, let X be noncanonical, A = A(XZ)’ P the transition

map of X. Since éf is naturally included in A, we may think of

Qe = X( Ty ne) as a subfield of the quotient field Q(A). Working in the

latter, we have that A(Pf) extends both to the algebra Al = k[nl, ne]

(as A(Pl)) and to the algebra A (as A(P)). Since Q(éf) = Q(Al),

both A(Pl) and A(P) coincide on AlmA. If the latter is Ao then

(1) holds. Else, since AlﬁA satisfies (23.6), we may replace A by

its subalgebra Alf\A, ‘and so assume that A is included in Al =

k[nl, ng]. Since £ is noncanonical, A # Af Thus there is some a

in A with

a = co(ny) + b,

where c('qz) is a polynomial in us alone, of positive degree, and where
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b is in Ape So c(ng) =a~-b is also in A, Since A(P)(4) is

included in A[T], applying A(P) to c(ng) =2 din; results in
z din;Tl. By the main lemma (10.7), all dinjé are in A. Thus A
contains both éf and some n;, i.e., it contains éf[n;] = Ai’ and

Y~ dominates Zi, as wanted. O

(24.7) REMARK. There is an interesting consequence of the above cofinality
property. The "categorical" approach frequently suggested for a canonical
realization theory consists in defining "canonical" as "final in the
category of all 'reachable! realizations" (for a suitable notion of
reachability), instead of via a direct definition of observability; see

for example ARBIB and MANES [1974]. Using "quasi-reachable" as our notion
of reachability, this means that the canonical system should be the

smallest element in the lattice QR(f), i.e., this alternative definition

would result in the same realization I constructed in Chapter III.

One could ask, however, whether it is pgssible to obtain a "canonical
realization theory" (in the present sense) in the context of polynomial
systems, i.e.: is there a polynomial realization which is smallest
possible among all polynomial realizations? The above example provides
a negative answer to this question: any such realization X for the

above f would be either incomparable to Z. (hence, not less than it)

1
or it would be greater than one of the polynomial systems Zi’ and

hence not minimal either. O

25. Some Relevant Sublattices.

The lattice QR(f) is too "large," in that it contains realizations
of arbitrary dimensions. Certain sublattices described below are much
more interesting; it is a remarkable fact that there seems to be no way
to study any of these lattices without in some way first introducing
QR(f). 1In this section, f will be assumed to be finitely realizable.

(25.1) DEFINITION. MD(f) denotes the (isomorphism classes of) minimal-
dimensional realizations of f, wviewed as a partially-ordered subset of

QR(f) .
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(25.2) THEOREM. MD(f) is a complete sublattice of QR(f).

PROOF, Minimal realizations correspond to those subalgebras
A of the algebra of Volterra series which satisy (23.5) and (23.6)
together with the additional condition that A is algebraic over A

£
This is again a complete lattice.

(25.3) REMARK, By (9.3), if = is a realization of dimension n +then
the n-step reachability map is dominating. By the arguments in (12.12),
it follows that two minimal realizations are isomorphic if and only if
A(gn)(A) is the same subalgebra of A(U") for both of them, where

n = dim.Af. This permits calculations to be carried out explicity, in

AU,

Realizations in MD(f) are characterized by the fact that their
observation fields are algebraic over the canonical observation field
gf. (Note that the natural inclusion of the observation algebra éf =
A(Xf) in A(Z) extends to an inclusion of Qe in Q(£), for any
quasi-reachable realization £). Another important subclass of realiza-

tions is:

(25.4) DEFINITION. A realization X of f is guasi-canonical iff

g(z) is equal to gf. The poset of quasi-canonical realizations is
Qc(f).

A dominating k-space morphism T: X —Z is birational when A(Z)
has the same quotient field as A(X), (identifying via A(T)). The
meaning of (25.4) will be clarified by the algebraic:

(25.5) IEMMA. Let X, Z be almost-varieties, T: X —Z dominating.
Assume that the field k is algebraically closed and has characteristic

zero. Then T is birational if and only if there is a (Zariski) open
set Zl in Z such that the fibre T-l(z) has precisely one element,

for each =z in Zl.

PROOF. The argument is essentially that in (4.6). By DIEUDONNE
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(1974, Section 5.3], the varieties X,, Z; can be chosen to be normal

(i.e., A(Xl), A(Zl) are integrally closed). If T is birational,

n=m in (4.6) and the restriction map X, =7 is finite and onto;
furthermore, s = cardinality of fibres = 1, by DIEUDONNE [1972, Prop 5.3.2].
Conversely, if fibres have generically a single point then the argument

in (L.6) proves that n =m, so Q(X) is algebraic over Q(Z), with

separable degree one; since char k = 0, they are equal. 0

The above is a straightforward generalization of a result well-known
for varieties. Since Zf may be nonpolynomial, however, the almost-
variety case is needed in order to conclude:

(25.6) PROPOSITION. Iet k be as in (25.5). The (quasi-reachable)
almost-polynomial system £ is in QC(f) if and only if there exists

an open (hence dense) subset X. of its state-space X such that no

1

two states in Xl are indistinguishable,

PROOF, TImmediate from (2L.5), by considering the canonical

morphism T: Z —>Zf. a
This justifies the terminology "quasi-canonical" = quusi-reachable
plus "quasi-observable” in the above sense. Such systems have been also
suggested in the contect of minimality of discrete-time nonlinear systems
by PEARIMAN [1977] (for bilinear response maps). The "if" in (25.6) is
not true in general over the reals, but it is valid for restricted kinds
of systems (e.g., state-affine).
Reasoning as in previous cases, we can conclude the
(25.7) THEOREM. QC(f) is a complete sublattice of QR(f). a

In particular, there exists a largest quasi-canonical realization

Zf. Explicitly, Zf can be obtained by intersecting gf with the

algebra of Volterra series ¥ (this gives Af, the algebra of functions
on the state-space X;S, and restricting the maps defining Zfree(f).
That A' indeed satisfies (23.6) follows from the more general result:
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(25.8) ILEMMA. If T, <%
(23.6)), A : Q(Ae) MA

PROCF. Since Zl is quasi-reachable, its transition map P

is dominating; thus A(P) is one-to-one. So A(P) extends to a homo-

s then (with the notations in (23.5) and
satisfies (2.6).

1

morphism from Q(Al) into Q(Al[Tl, ceey Tm]), which itself restricte
to a homomorphism from Q(AE) into Q<A2[Tl’ cees Tm]). Since A,
satisfies (23.6), the result will follow from

(25:9) QASITy, wooy TDAMYIT, ooy T CQA)IT, wony T,

which is clear. m]

The largest quasi-canonical realization Zf is thus obtained using

Z and X =X above.

1o z"free(f) 2 by
Restricting even more the observability properties leads to two other

classes of realizations:

(25.10) DEFINITION. The sub-poset AO(f) [respectively, RD(f)] consists

of all realizations which are abstractly observable [respectively, whose

reachable states are pairwise distinguishable].

Thus, the % in RD(f) are those admitting a (necessarily one-to-
one) abstract system morphism Zac(f) - Z.

(25.11) THEOREM. RD(f) is a complete sublattice and AO(f) is a complete
Join-gsemilattice of QR(f).

PROOF. We shall use the characterization in (23.5) - (23.6).
Two states of a system I are indistinguishable if and only if they are
mapped into the same state under the canonical k~system morphism

b —;Zf. In terms of the algebra A of 5 (seen as a subalgebra of ¥)

states are homomorphisms x: A — k3 thus Xl is indistinguishable from

x2 iff Xl and x2 restrict to the same homomorphism on the subalgebra

éf- Thus X 1is abstractly observable if and only if equality of X,

and x2 on Af implies equality on all of A, and ¥ has its reachable
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states distinguishable if and only if this implication is true for all

reachable Xl and x2.

If A 1is the algebra generated by subalgebras 51’ and if :xl,
x2 are homomorphisms from A into k, then xl and x2 are equal on
A if and only if their restrictions to each Ai are equal. Thus if
the Ai correspond to abstractly observable systems Zi, or to systems
in RD(f), the same is true of A (which corresponds to the join of

the %.).
1

For the closure of RD(f) under meets, it is enough to remark
that, if %, <X, and Z, is in RD(f), then %, 1is also in RD(£).
Indeed, for x; and X, indistinguishable states in I, Tl(xl) =
Tl(xe) (Ti is here the canonical map I, _’Zf)' If the x, are
reachable, x, = gl(w&) for some input sequences ;. Then z; = gg(aﬁ)
are states of I, mapping onto the x., so TE(Zl) = T2(Z2)' Since

I, is in RD(£), z, = z,, SO also x =X, as wanted.

(25.12) REMARK. Closure under joins in AO(f) proves in particular
that there exists {in the ordering of QR(f)) a largest abstractly

observable realization. Zao(f) of f. A "dual" approach to realization

theory is that of finding such initial observable realizations, instead
of characterizing Zf as a final quasi-reachable realization. The
above construction, together with the other results in this work, permit
developing such a "dual" realization theory for polynomial response

g» Llike for the f = in example (18.1) (see
(18.5)), but in general they are different (see example (25.13) below).
Note that Zao(f) is initial for all, not just quasi-reachable, reali-

maps. Sometimes Zao(f) =X

zations: for any 2, one has a composition morphism Zao(f) —;Zb — Z,

where ZQ is the quasi-reachable subsystem of ZX.

(25.13) EXAMPLE. The above proof cannot be used to conclude that AO(F)
is closed under joins, since existence of a morphism Zl —;Ze, with

Z, in AO(f), does not imply abstract observability of .. In fact,
we now give a family of realizations 5, in AO(f) whose meet is not

t
in AO(f). To construct the ., we begin with the system 2 which has
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U=k2, X=k, Y=k, x" =0, and equations
x (6 + 1) =w (8), x,(t+2) =u(t),
2
(8) = x,(8), (8 = x ()% (1),

Iet f be the response of this system. Then X is in QR(f). We shall
work in the algebra A(X) = k[nl, ng], and use the characterizations
(23.5), (23.6) in order to define the systems Z,. As a subalgebra of
A(X),

2
Ap = klny, mpny

Any subalgebra of A(X) containing A, satisfies also (23.6), since

f
A(f)(A(X)) is in fact included in A(X)[Tl, T2]. The following are all

subalgebras containing éf’ for t =1, 2, 3, ...

A, := k[ t t+1 t+2 ]
t T T]l’ T]l'fl2: 711712’ T]l"le > ﬂlﬂg 2 tev iy

B := tgAt = k['ql, nlne].
2

In particular, B corresponds to the system Z' with X = k-, xﬁ' =0

and
xl(t + 1) = ul(t), xe(t +1) = ul(t)uz(t)

78 = 1 (8), (8 = x (D)xy(t).

Thus X' has all pairs of states distinguishable except those with

X = 0; the states in the line (;L_L = 0) are in one indistinguishability
class. Thus, X' 1is not observable, and it is the meet of the systems
E_t corresponding to the algebras At' We now claim that each Zt is
observable. In order to prove this claim, it is enough to prove that the
morphisms Zt — X' given by the corresponding inclusions are one-to-one
and have images which intersect with the unobservable states (xl = 0)

at just one point: X, = o, x2 = 0,
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The statements about the morphisms in turn follow from the follow-
ing fact (when translated into the corresponding algebras): If x: At -k
is a homomorphism with x(ql) = 0, then x(nln;) is also zerc, for
i=1, 4%, t+1, ... . Indeed, for t =1 this statement has been proven
in (3.19); for t > 1, (ﬂlng)t

1 = (nlng)ng'l forces X(nlne)t =0, so
2" 213 iy =
x(nlng) =0, and (nlng) = (“1”2 )nl forces x(nlne) = 0, and hence
x(ny1n3) = 0, for all i >1t, as wanted.

12 =

26. Normal realizations.

Recall (1.13) that the algebra A is integral over the subalgebra
B if every element a of A satisfies a monic equation with coefficients

in B, 4i.e., a is integral over B. The integral closure B of B

in A 1is the set of all a in A. integral over B; B is integrally
closed in A when B =B, When A = Q(B), the quotient field of the
integral domain B, one refers simply to the "integral closure" of B,
and to "integrally closed" B. For example, a unique factorization domain
(e.g., k[nl, cees nn},) is always integrally closed. The following
definition is sufficient for our purposes, but it may be extended to non-

irreducible spaces:

(26.1) DEFINITION. An irreducible k-space X is normal iff A(X) is
integrally closed.

In algebraic geometry the notion of normality is closely related to
the study of singularities. In fact, for varieties X of dimension one,
normality is equivalent to the nonexistence of singular points (so, for
k=, to X being a Riemann surface); in general, nonsingularity implies
norm;iity, but the converse is only partially true. Since k[nl, Moy «ees nn]
is integrally closed, kK" is always normal; for an almost-variety we can

take the canonical state-space of £ (ef. 18.1) as an

(26.2) EXAMPLE. A = k[ nt, t> 0] is integrally closed. Indeed, let
b be in the quotient field of A, Q(A) = k(nl, nz), and assume that b

is integral over A. In particular, b is integral over k[nl, ﬂe], which
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is integrally closed, so b must belong to the latter. If b is not
in A, but is a polynomial, it has a term cn;, ¢ in k, r > 0.
Since b 1is integral over A, there is an equation
(26.3) p"+a b4 . +a =0

) n-1 ° o ’
with the ai in A. Specializing iy into zero, there results an
equation as in (26.3) with the a, scalars and b(0, ne) a polynomial

in 0, of positive degree r, which is impossible. Thus b mst be
in A. O

(26.4) DEFINITION. NOR(f) is the subposet of QR(f) consisting of

all (quasi-reachable) normal realizations.

(26.5) I1EMMA. zfree(f) is in NOR(f)

PROOF. We must prove that

Y=ngk[[§n: §n+l’ ---]] [gl, sery E»n_l]

is integrally closed. Since intersections of, and polynomial rings over,
integrally closed domains are again so, (see e.g. BOURBAKI [1972, V.1.3,
Corollary 2]) the problem reduces %o proving that a power series domain
in infinitely many variables, with coefficients in a field, is integrally
closed. But this latter statement was proved by CASHWELL and EVERTT
[1963]. O

(26.6) REMARK. In contrast to a full power series ring, ¥ is not a
unique factorization domain (and is not local, either). Indeed, taking
m =1 for simplicity, let V¥ be the Volterra series whose terms are
all those monomials gal e éan having al, ey an all distinet and
all aj > i. Then, ¥, = (1 + gi)wi+l° Since (1 + gi) is not
invertible in ¥ (because 1 + gi + gi + éi + ... is not a Volterra

series), there results a strictly increasing chain

(v) C (v,) < (415) C
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of principal ideals; by the criterion in BOURBAKI [1972, VII. 3.2,

Theorem 2], ¥ is not a unique factorization domain. O

(26.7) PROPOSITION. Iet Z, e in QR(f), with %, <%, and %, in

2
NOR(f). Identify A= A(Xl) with a subalgebra of A, = A(X2) , and
consider the two subalgebras: A := integral closure of Al’ and B :=

intersection of all those integrally closed subalgebras of A2 which
satisfy (23.6) and include A Then A = B.

1
PROOF. Since the elements of Q(Al) integral over A, must

1

belong to any integrally closed algebra containing A A 1is included

l’
in B. To prove the other inclusion, it will be necessary to establish

that A satisfies (23.6) and it is integrally closed. The latter state-
ment follows from the fact that A2 is integrally closed. Consider now

the algebra A(P)(A), where P is the transition map of X Since

o
A 1is integral over A, and A(P) is a homomorphism, A(P)(A) has the
same quotient field, and is integral over, A(P)(Al), which is in turn
included in Al[Tl, cens Tm], and hence in A[Tl, cees Tm]. Since A
is integrally closed, A[Tl, cees Tm] also is, so A(P)(A) must be
ineluded in A[Tl, cens Tm] as wanted. O

(26.8) DEFINITION. In the situation of (26.7), the realization correspond-

ing to A and B is the integral closure of Zl, denoted Zl. The

canonical normal realization is Ef.

(26.9) REMARK. The integral closure of any system is well-defined:
10 by (26.5) the pair (Zl, I, = Zfree(f)) satisfies the
hypothesis of (26.7). Further, it is clear from the form of A that the

definition of El is independent of the 22. Note also that from the

definition of B it follows that if Zl < 22 then Zl < fg (integral

closure is therefore an algebraic closure operator).

given any =

(26.10) EXAMPLES. TFor the response f, in (18.1), it follows from (26.2)

that Zf is also the canonical normal realization of fo. Consider
o)
instead the system X with U=k, Y = k2,



129
. 2 2 3
X = {(xl, x2) in k% | x] = xg},
initial state zero, and equations
3 2
x(t+1) =ut)”, x(t+1) =u",

(8 = (8, ya(6) = x,(t).

Then, X is not in NOR(f), because n is in the quotient field Q(n)
of A(X) = k[ng, n5] but 1 satisifes the monic equation 2 - n2 =0,
and is hence integral over A(X). Its normalization % is the system
with X =k and

x(t + 1) = ut)

7, (8) = x(8)%, y(t) = x(8)?,

since the algebra k[n] of % is the integral closure of A(X). Since
£ is canonical, I is Ef (f = response of £), and is different from
Zf. Note that X had a singularity at the origin, while I has a non-

singular state gpace.

(26.11) THEOREM. NOR(f) is a complete lattice.

PROOF. It is easy to verify, either directly or using properties
of algebraic closure operators, that the meet in NOR(f) of a family
{Ei} is their meet in QR(f), while their join in NOR(f) 1is the
integral closure of their join in QR(f). O

We now turn to proving some variants of the isomorphism theorem (11.5)
and of (11.3). To simplify (but: see (26.20) below) we shall assume
for the rest of this section that

k 1is algebraically closed, of characteristic zero.

Before proving any results, we need to recall (with some changes in

terminology) some well-known definitions and results from algebra.
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(26.12) DEFINITION. A polynomial map T: X - X, between k-spaces is

1
one-to-one as schemes iff the following property holds: If Pl, P2 are
prime ideals in A(Xl) and A(T)"l(Pl) = A(T)'l(Pg) then P, = P,.

Note that when T is dominating and A(Xg) is identified through
A(T) with a subalgebra of A(Xl), the property becomes: If Pl,’\A(XQ) =

PgﬁA(Xg) then P, = P,.

(26.13) REMARK. Since k-points correspond to k-ideals (which are
maximal, hence prime), a T as in (26.12) is necessarily one-to-one in

the usual sense. The converse, however, need not hold. For example,

- t .
let X, = X(k[nl'r]ej, t >0) and X, = X(k[nl, nlngj), with T: X, - X

the map dual to the inclusion. Then T 1is one-to-one, as shown ii ¢
(24.13). Take now P, = the ideal of A(Xl) generated by all the
monomials n n,, t > 0. Since A(Xl)/Pl is isomorphic to k, B is
prime (and in fact, a k-ideal). Let P, be the ideal of A(Xl) gen-

c s . t
erated by my and Ny My then A(Xl)/P2 is isomorphic to k[nlnz, t>2],
an integral domain; thus, P2 is also a prime ideal, different from
P,. But PlAr\A(Xl) =P, f\A(XE): this is the k-ideal of A(XE)

generated by nl and nln2. Thus T is not one-to-one as schemes.
However, one has the following

(26.14) IEMMA. If T: Xy

then T 1s also one-to-one as schemes,

—>X2 ig one-to-one and X,, X, are varieties,

1’ e

PROOF. Prime ideals of A(X) correspond to closed irreducible
subsets of X (cf. (2.12)). Using (3.1lc), T being one-to-one as

schemes becomes: "I Vl, V2 are irreducible closed subsets of X such

that TiVli = Tivzi, then v, = V2". So assume that 'T(Vls = TlVéi =W, TLet
T, be the restriction of T to T_l(w). Thus T 1is dominating. By (3.14),
TO(Vi) contzi,;..ns an open set Wi. Let W3 := W, MW,, again open in

Xe. Then TO (WB) is included in Vl{”\Ve, because T 1is one-to-one.

Since T;l(WB) is open, hence dense, both V. = Vi = T;l(W), so

Vl = VE' 1
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We shall need a further concept, that of an open immersion T: Xl —>X2.
Its definition cannot be given without introducing the concept of nonaffine
schemes, which would complicate the exposition at this point; a dis-
cussion of immersions can be found in "EGA": CROTHENDIECK and DIEUDONNE
[1971, Part 4]. For our purposes it will be sufficient, however, to

have the following consequence of the definition:

(26.15) 1f T X 2% T,

then there exists a (unique) T: Xl —>X2 such that T2 o T = Tl'

is an open immersion, and Tl(Xl) - TE(XZ)’

As Dbefore, we shall say that a k-system morphism T: Zl —>22 is
an open immersion, or one-to-one as schemes, iff the corresponding property

holds for the underlying T: Xl —aXE.

The following technical result, based on Zariski's Main Theorem, is

the key to the isomorphism theory for normal realizations.

(26.16) LEMMA. Let %, I, bein QR(f) and let T: %, =%, be one-

to-one as schemes, with Zl finite-dimensional and 22 normal. Then

T 1is an open immersion.

PROOF. By Zariski's Main Theorem (see GROTHENDIECK and DIEUDONNE

(1967, Corollary 18.12.131), T: X, =X, factors as X] = Z -X with

Tt: Xl - Z an open immersion, and T": Z —X

2’

5 a finite morphism. Since

Zl is finite-dimensional and quasi-reachable, it is almost polynomial;

T Dbeing dominating, I, 1is also almost polynomial. Hence, by (25.5),

T 1is birational. Thus T" is also birational, and so (since X2 is
normal), it is an isomorphism. Thus T = T' is an open immersion, as

wanted. a

(26.17) COROLLARY. If = is a polynomial system in AO(£) MINOR(F)

then the natural morphism T: 5 ~>§f

is an open immersion.

PROOF. Ilet W5 eee, @) be input sequences such that
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Hi X 5Y X ¥ X wee XY (r times)
x b (0"Hx), ..., B0(x))"

is one-to-one (see SONTAG and ROUCHATEAU [1975, Prop. 7.2]). By (25.14),

H 1is also one-to-one as schemes. If H is the analogous map for =z

kil bl
(for the same wi), Hf ° T=H. Thus T 1s also one-to-one as schemes.
So (26.16) can be applied. 0
(26.18) COROLLARY. Let Zl, 22 be as in (26,17). Assume that Zl is
reachable, Then Z_ < X..
2—-"1
PROOF. Tmmediate from (26.15) and (26.17). O

We can then conclude one of the main results of this chapter:

(26.19) THEOREM. Any two abstractly canonical normal polynomial realiza-

tions are isomorphic as k-systems. ]

(26.20) REMARKS. {a) Analgous results can be derived for an arbitrary
field %k, provided that "abstract observability" be re-defined, taking
into account points in the "extended" state-space which includes points
in the algebraic closure of k. TFor example, the system over the reals
x(t + 1) = u(t), y(t) = xa(t) is not abstractly observable in this
restricted sense, because the map x —>x5 is not one-to-one over the

complex numbers.

(b) In Chapter I, the first definition proposed for "polynomial
systems" was that of a system of simultaneous first-order difference
equations, i.e., X = k", thus a polynomial normal system. So (26.19)
insures that two systems of this type, realizing the same response and
both abstractly observable and reachable, are isomorphic via a polynomial

coordinate change.

(c) Restrictbing to systems with X = kn, a rather strong result
in fact holds: If Zl < 22 and 22 is abstractly observable, then

Indeed, the T: X2 ->Xl must be one-to-one,

But a one-to-one polynomial map from kn into

Zl is isomorphic to X

by observability of X

ot
o
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n
k°~ must be onto (see e.g. CHERLIN [1976, Chapter I]). So T is an
isomorphism, by (26.16). 0O



VII. OTHER TOPICS

We have already seen that the response f of a polynomial system 2
does not in general admit a polynomial canonical realization, unless
certain restrictions (boundedness, existence of a recursive equation, etc.)
are imposed on f (or on ). For the general case, the results in
section (27) will exhibit the canonical realization in terms of locally
rational transition and output maps. Section (28) deals with the non-
existence in general of sets of polynomial representations of "low"
dimensions. Generalizations of the present work to the case of nonequil-
ibrium initial states and more general input, state, and output spaces are
discussed briefly in (29), while the last section includes a short
discussion of the problem of checking polynomial realizability, as well

ag other extensions and suggestions for further research.

27. The Canonical State-Space.

Before stating the main result of this section, we shall motivate our
approach. Unless otherwise stated, f will denote the response of a

fixed but arbitrary polynomial system 2.

Obtaining rational transitions for Zf is in a sense trivial. Since
the observation field Q. is finitely generated (as a field), and since
the algebra homomorphism

A(Pf): Ap =B

AT vy T

is one-to-one (because of quasi-reachability), A(Pf) can be uniquely
extended to gf and is thus completely determined by its action on a set

of generators d,; ..., 4 of Q.. Similarly, A(h)(Li) is rational in
the gq, for each generator I, of A(Y). This gives a realization with
state-space ¥* and transition and output maps rational (explicitly,
A(Pf)(qi) gives the i-th coordinate of the next state as a rational
function of previous state and input). When the field k has characteristic
zero, r can be taken as low ags n + 1, n = dimension of Z,. The

f
drawback of this simple-minded approach is of course that there is no way
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to guarantee that a state and input configuration will not appear, which is
a pole of the corresponding rational functions. Still, it is interesting
to note that outputs can be calculated except for a "generie" input sequence
(those not in a certain proper algebraic subset), so the response f is

completely determined from this rational realization. A similar situation

occurs with rational difference equations (Theorem 16.2) for f: a rather
low-order equation expresses future outputs as a rational function of past
inputs and outputs; this permits a very efficient calculation for "generic"
inputs, and the complete formal Volterra Series for f can still be re-

covered from the equation (Remark 16.8b, Example 18.8).

The problem is much less trivial if one is to explicitly define
transitions for every possible state and input. One way to do this is to
first define enough rational functions so that their domains of definition
cover X XU (XR = reachable set), each rational function defined on a

variety, and to implement transition and output maps via a series of
(27.1) "ir Qi(x, u) then Ri(x, u) else”

statements, each Qi being & predicate consisting of polynomial equalities
and inequalities and each Rj a rational function defined at those (x, u)
for which Qi(x, u) holds. We shall prove in the rest of this section
that such a representation indeed exists. The proof rests upon a decompo-
sition of (a large enough subset of) the state-space into (quasi-affine)
varieties. An example of such a decomposition is provided by the response
fo considered in example (18.1). Its canonical state-space can be de-

composed into the variety

X = {(xl, X, x3) in k3|(x2 + l)x5 =1}

(this corresponds, via the natural projection (xl, Xy x}) ka(xl, x2),
to the set D in p. 93) and an exbra point (thought of as a variety X2
of dimension zero). Thus a state x can be either in Xl or in X2;

if in the latter, P(x, u) = x and h(x) = -1; if in X;, ‘then h(x) = %,

and for transitions P: if XX, + x, + Xy £ -1 then
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. -1
P(x, u) := (xl U, XX, X+ X, (xlx2 + X)X, + 1)),

12 2

else, P(x, u) := the only state in X,

The proofs and statements of the above facts involve algebraic-

(a constant function).

geometric notiong somewhat less elementary than those used in previous
sections. We shall not explain these notions in detail, but will give

references to the relevant literature. We begin with a

(27.2) DEFINITION. A decomposition of a k-gystem X into quasi-affine

varieties consists of a set Zl’ ceny Zr of quasi-affine varieties and

morphisms ©.: Z, -»X such that, denoting X, := ©.(Z,) and X := union
———— i A i iV 2= Yo T —
of the Xi:

(a) each ¢, 1is an immersion,
(v) Xiﬁxj is empty for i # J,

(c) P(Xo x U) C X, and

(@) x* isin X_.

A good reference for the algebraic-geometric concepts used above is
HARTSHORNE] 1977]: "morphism" means morphism of schemes, "immersion"
means an isomorphism with an open subscheme of a closed subscheme of X
(HARTSHORNE, p. 120), and "quasi-affine variety" means an open subset
of an affine variety (HARTSHORNE, p. 3). Since nonaffine varieties also
appear, for the rest of this section the varieties introduced in Chapter

IT will be called affine varieties.

(27.%) REMARK. Given a decomposition as in (27.2), the (restriction to
XO of the) transition and output maps of £ can be defined separately
in each Xi’ which is up to isomorphism a quasi-affine variety. For
example, h gives rise to r maps hi = h|Xi. Let ii be an affine
variety of which Xi is an open subget. Since each hi is a morphism,
it can be represented by a rational function on Xi which has no poles

on Xi' To define P explicitly, we may proceed as follows, for each 1.
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Since, by (27.2¢), P(Xi X U) CX_, there is a covering of X, X U by

subsets V., Vir such that P(Vij) gﬁXj. In fact, letting

i1 °t e

Vij := P 1(xj) M (xi x U)
shows that each Vij can be taken to be an open subscheme of a closed
subscheme of Xi X U. In terms of Xi X U, each Vij can be therefore
determined by a set of polynomial equalities and inequalities (the

Qi(x, u) in (27.1)), and P restricted to Vij is given by a rational
function with no poles in Vi" Thus h and P can be indeed defined
on X by progrems of the type in (27.1), and since by (27.2¢,4) XO
contains all reachable states, this is clearly sufficient in order to

simulate Zf. a

The following theorem shows that we can always obtain a "stratification"
as in (27.2). Tt proves a weaker version of a (still open) conjecture of
M. HAZEWINKEL (personal communication) that decompositions always exist

with XO = Xf:

(27.4) THEOREM. X, admits a decomposition into quasi-affine verieties.

£

Moreover, Zl can be taken to be a variety and Xl

set of Xf. Further, if T: Z —;Zf is any k-system morphism with X

polynomial and if k 1is algebraically closed, Xo can be taken to be the

a principal open sub-

image T(X).
We shall first prove a technical

(7.5) IEMMA. If T: X —X, 1is a dominating polynomial map, with X

1

1

an irreducible affine variety, then there are closed sets X2 = Fl’ ey Fr
and principal open sets D;, ..., D, such that (i) T(Xl) is included

in the union of the Fj.f\Di, and (ii) each Fi f\Di is an affine
variety, i.e., if A(D,) = A2[s;_l] and F; =V(I,), then A(F, MD,) =
(AQ/Ii) [E;l] is finitely generated. (Here Ei is the coset of s, 1in
A2/Ii.)
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1

. ]

PROOF. Using (3.18), there is an s, i=s in A, with Ag[s'
finitely generated. We let Dy = X(Az[sil]), and identify A, with

a subalgebra of A Let sAl be the ideal generated by s in A

l. l}
and let Jl’ ceey JS be the set of prime ideals of Al which are minimal
over sAl (finitely many, because Al is Noetherian). Iet x: Al -k

be a homomorphism. If x(s) # O, then the restriction of x to A
(i.e., T(x)) is in D

ideal containing sA

2

1 If x(s) = O then the kernel of x is a prime

12 80 it contains some Ji' Thus x factors through
Al/Ji, and xlA2 factors through Ae/(AzﬁJi), i.e. T(x) 1is in the
closed subset V(AzfA\Ji) of X,. Since Al/Ji is again finitely generated

and A2/(A2(F\Ji) has less dimension than A we may assume by induction

2,
on dim A2 that the lemma is true for each dominating polynomial map

X(Al/Ji) —;X(Az/(Ag f\J&)). Thus for each V(AQ(ﬁWJi) there are open and

closed sets as wanted. These give rise in turn to open sets D2, ceey Dr

and closed sets F F_ of X,, and properties (i) and (ii) are

oy wees T 5
satisfied. (In fact, property (ii) is true in the sense of schemes, i.e.

for the map Spec A, — Spec A_ corresponding to T.) m]

1 2

PROOF of (27.4). To apply (27.5), let T: = —>Zf be a dominating
k-system morphism, with X polynomial. Iet the Di’ Fi be as in (27.5).
Defining if necessary new closed sets Fl' t= Fl,
12 orees Di-l’ the Fi(h\Di can be assumed
disjoint (the new algebras are quotients of the former ones, so they are

still finitely generated). Consider R, := T_l(Fi ﬂDi). These are affine

Fi' := intersection of

Fi with the complements of D

subvarieties of S, whose union covers X. Thus T(X) is the union of
the T<Ri)' Assume now that k is algebraically closed. Each TlRi

maps a variety into a variety, so by Chevalley's theorem (3.lhka), each
T(Ri) is a finite disjoint union of locally closed sets Vijrn\Sij’ i,e.
sets obtained as intersections of an open set Vij and a cloéosed set Sij'
Each of the Vi.lf\sij is itself locally closed as a subset of Xf,

since each Fi Di is locally closed. Thus each defines a scheme under
the induced sheaf, giving rise to the Zi in (27.2) (more precisely, we
are restricting to the k-points of the corresponding schemes). Since the

Fi!f\Di are (isomorphic to) affine varieties, each Vij(aﬁsij is an
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open subset of the variety Sij r\(Fifﬁ\Di), so the Zi are indeed quasi-
affine. Since T is a k-system morphism, T(Xl) satisfies (c) and (d)
of (27.2), and (a), (b) are valid by construction. The case of non-
algebraically closed k follows from the algebraically closed case by
consideration of the system X as a system over the algebraic closure

K of k, and operating in K; the sets Zi’ Xi will then consist of the

restriction to the k-points of the corresponding sets over K. O

28. Unconstrained Realizations.

When the canonical realization is polynomial, it admits by definition
a representation in terms of polynomial (rather than just rational)
difference equations in finitely many variables. It becomes then of
interest to ask how many equations are needed, i.e., what is the smallest

possible cardinality r = r(éf) of a set of generators for A.. A

f
lower bound for r is dim Zf, which is attained precisely when éf is
a2 polynomial ring, i.e. when Xf = kr. In general we shall call a realiza-

tion with X an affine space k' an unconstrained realization, since no
algebraic relations exist between its state variables. A result of

KAIMAN [1979]) (and independently by PEARIMAN and DENHAM [1979]) states that
Z, 1is unconstrained in the very special case of a bilinear single-output

kil
response map f. We saw in section (18.9) that a rather simple ¥,

f
f Dbilinear with two outputs or trilinear single-output showing that the

however, may have r(éf) > dim 2,. Counterexamples can also be given with

above result cannot be extended:

(28.1) EXAMPIE. Iet f
)

1 be the response map of the system having

m=p=2, X=k7 initial state zero and:

(06.2) xl(t + 1) = ul(t) + xe(t), x2('b + 1) = xl(t), xB(t + 1) = uz(t),

yy(6) = 3 ()5, (), 7,(6) = 5, (6)x (8).

Let f2 be the response of the system having m =3, p=1, X =k 5



140

initial state zero, and:

xl(t +1) = ul(t), xg(t + 1) = ug(t), XB(t +1) = uB(t),
(28.3) 0, (6 + 1) = 3 (8)up(8)ag(e) + 2y (8)u (8D () + 3y (8, (8)up()
SEACEAOLNCD
y(t) = x,(¢)

Then fl is bilinear and f2 is trilinear. Both systems (28.2) and

(28.3) are quasi-reachable, so the observation algebras can be calculated
directly. They are kln;, m,, N30 n2n3] and  klng, Ny, Mynzs Mo My,
respectively. Neither of these is isomorphic to a polynomial ring. In
fact, neither of them is even a UFD (unique factorization domain). Indeed,
the equation nl(ngnB) = nz(nlna) shows that nNply  can be decomposed
in two different ways into irreducibles (note that both nln3 and n2n5

are indeed irreducible in the corresponding algebras, since ﬂ5 is not

there). O

A result parallel to the one for bilinear responses was obtained by
GILBERT [19771, who proved that in the case of m =p =1 and f

homogeneous of degree two, there is always an unconstrained realization

of dimension equal to that of Zf. This result is different from the
one on bilinear maps: the following example shows that in this case éf

may not be a polynomial ring:

(28.4) EXAMPIE. Iet f5 be the response map of the system having

m=p=1 X-= kh, initial state zero, and:

xl(t + 1)

u(e), xy(s + 1) = x(8), x(t + 1) = xy(6) + (0,

i

(28.5) xu(t + 1) xz(t)x5(t) + u(t)x2(t)

y(t) = x,(8).
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In other words, f5 corresponds to the input-output map
y(t) =u(t - 3)(u(t - 1) +ult - 4) +u(t - 5) +ult - 6) +...).

(In particular, it is easy to realize f3 as a parallel connection of two
linear systems whose outputs are multiplied.) The system in (28.5)

is quasi-reachable, since the L-step reachability map
(ul, Uy, Uy uu) k;(uu, Uy Uy F Uy ug(ul + uh))

is dominating (for example, because its Jacobian has full rank at

(1, 0, 0, 0)). Thus the observation algebra is k[nl, Npr Miglgs My nu],
which is not even a UFD. a

Not only does éf not admit in general a system of n generators,

n = dim Zf, but r(éf) may in fact be arbitrarily large. Constructing
examples of this serves also to illustrate some technical tools of

rather general interest, which we shall discuss first.

(28.6) IEMMA. Iet I be an algebraically observable realization of

£, with XZ = kn and initial state zero. Assume that the quasi-reachable

set can be defined by equations Qi(x) = 0 where the Qi have no

linear term. Then r(éf) =r,

PROOF. By algebraic observability, éf is the algebra of the

quasi-reachable set V. Consider the tangent space TO(V) of V at
i

the origin (note x" = 0 is in V). This has equations Jx =0, vhere
(JO)ij = (aQi/ij)(O) is the Jacobian of the Q, at zero (see e.g.
DIEUDONNE [197h, Chapter VI], or SHAFAREVICH [1975, Chapter 3%]). By
hypothesis, J =0, so TO(V) has dimension r. If r(éf) would

be less than r, there would exist an immersion of V into a space

kd, d < r. This would imply that all points of V would have tangent
spaces of dimension less than r, a contradiction. (Note that this

uses, implicitly, the invariance of tangent spaces under isomorphism). O

(28.7) REMARK. The utility of the above lemma depends on having a fairly
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simple method to find the quasi-reachable set of a polynomial system X.

By (9.4), this is equivalent to finding the closure X, of the image
n, g, 1is
dominating if and only if its Jacobian is nonzero at some point, as used

of the n-step reachability map 8p D = dim 2. When X =k

in the previous exsmple. In general, with X gﬁkn, in = V(I), where

I is the kernel of A(gn); see (3.11). Finding I involves a classi-
cal syzygy problem. The effective decidability of this type of question
has been studied; see for instance SEIDENBERG [1971], but no simple
method exists. A heuristic method for obtaining generators for an ideal
J with V(J) ='in (not necessarily J = I(X), but enough for finding
in!), illustrated in (28.8) below, is to find enough elements

R R in I such that one will be able to prove that every point

3 esey
ii some opZn dense subset of V({Rl, ooy Rt}) is in the image of g,
This will imply that in = V({Rl, ceey Rt}). In fact, in finding input
sequences w such that gn(w) equals a given state, it is allowable for
this purpose to find inputs with values in the algebraic closure

K of k. Indeed, if a polynomial map T: k* —»k° has T(XT) = V, then
T(Kr) N ks also has closure V. Otherwise, there would exist a polynomial
function Q: k° -k such that Q°T = O on k but not on K . But

the field k Dbelng infinite means that Q¢T can only be zero if it has
as a polynomial every coefficient equal to zero, so it cannot be nonzero

r
on K. jm]
(28.8) EXAMPIE. Fix r >3 and let fh be the response of the system

having m=p =1, X = kr, initial state zero, and equations

xi(t + 1) = xi_l(t)u(t), i=1, ..., r-1,
x (6 + 1) = x (D)™ 4 x (DuE) ™ 5 L+ x L (6)ut)
y(t) = x (%)

This system is algebraically observable, because x, is in ;O and

Xiy seey X are in I, wusing (10.6). Tts quasi-reachable set is
1 r-1 ~1 5 >
defined by the equations xlx3 =Xy, XX = XB, ceey Xr-BXr-l =X 5



143

and XX, = XX ., @as we shall prove below. By (28.6), r(é~f ) =r,

but th has dimension n = 3 (see below). Thus r(éf) may be
arbitrarily larger than n. Note also that fh is homogeneous (of degree

r). 0

We now fill in the missing technical facts, using the method in
(28.7). (This rather easy example could, of course, be solved in many
other ways; we shall use it to illustrate the above method, which constructs

inputs explicitly.) The t-step reachability map is
—_ r 1
gt(ul, ceey ut) = (ut, U Uy ey W W, Z)

where

r-1 r-2 r-2

Z = ut—lut + ut-Eut-lut + ... + ut—Eut—lut’

whenever t > 3. Thus =X so we shall work with g_. The relations
- 3’ 3

= x2, etc., are easily found. Call V the set of solutions of

X %y -
these equations. Now, given any (xl, . xr) in v, if x, 4 0, then
also x, # 0 and we may define w := (ul, Uy, ua) with g(w) =x as
follows: Uy 1= XXy, Uy = X, and u; i= any root u of
r-1 r-2
u2u5 + uu2u5 + ...+ ueu3 = 0.

(Since uu # 0, there is always a solution wu in the algebraic closure
of k.) Thus g(w) = x, as is easily verified (e.g., X =y, and

X, = UX., = u, u, Dby definition of u,, u and xX. X_ = x2 impli ux, =
2"“%1“2 s > Uo 175 T Xp APIeS U Xg =
(u.2u5 SO Xy = Ul etc.) The case X, # O is however generic in V:

we shall prove that if @ 1is a polynomial which is zero on X_ +then §

3

is zero on V. Indeed, let Q be such a polynomial, and let x be in

V. If x, #0, x is in XB’ and there is nothing to prove. If x, =0,

the above equations imply that x_ = ... = xr 5= 0 and either xl =0

or x , =0. We consider first the case X, = 0. Then Q(xl, ceey xr) =

Ql(xr-l’ Xr)’ where Ql(Tl, T2) :=Q(0, 0, ..., O, T, T2). But Q, is
identically zero: it is enough to see for this that Ql is constant,
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since Q(0, ..., 0) = 0. The degree of Q, in T, is zero, since Q

2

is zero on V and uy is independent over Uy, uB. The degree of Ql
in Tl is also zero, because otherwise Q =0 on V would give rise to
an equation (ug-2u3)s = polynomial in ug_gu3 of degree less than s,

with coefficients which are themselves polynomials in u;uB,

1= 0, Just note that
Q(u3, LAY «..) = 0 implies (taking u, = 0) that Q(xl, 0, +v., 0) = O,
We are only left to prove that V has dimension 3. This follows from
the fact that g

i<r- 2,

a contradiction (compare terms). For the case xr

5 W SV (but not ge) is dominating. 0

It is natural to ask in general if it is possible to find unconstrained
minimal realizations, i.e. realizations with X = kn, n = the dimension
of the canonical realization. For f homogeneous of degree 2, the above-
mentioned result of GILBERT answers this question in a positive way. We
show below that this is false in general. Construction of counterexamples

is rather easy using variants of the following type of algebraic

(28.9) IEMMA. Let A Dbe a subalgebra of a polynomial ring B =

k[Tl, T,, TB, Tyy Lps eees LS] such that (i) A contains k[TlTE, Tlii’
TBTM’ TgTu]’ and (ii) A is a unique factorization domain. Then A

contains k[Tl, ceey Th]'

PROOF. Consider the elements Ql t= TlTE’ Q2 i= TlTB’ Q3 = T3Th’
and Qh S TETH’ of A. Then QlQ5 = QQQM' Since A 1is a UFD, there
exist elements a, b, ¢, d of A such that Ql = ab, Q3 = cd, Q2 = ac,
and Qh = bd. In particular, there is an equation T1T2 =ab in B.

Using that B is a UFD, it is clear that both a and b have zero

degree in the Li’ and in fact one can assume that a and b are both

monic monomials in Tl and T2. Thus there are four possibilities:
a = T2 and b = Tl’ or a = TlTE and b=1, or a=1 and b = T1T2,
or a = Tl and b = T2. If the first or the second possibility hold,

then ac 1is divisible (in B) by T2, contradicting the fact that ac =
Q2 = TlTB' Analogously, the third contradicts bd = Ql+ = TQTM' Thus

a = Tl and b = T2 are both in A, From Tlc = ac = T1T3 it follows

that ¢ = TB’ and from T2d =bd = T2Th it follows that 4 = Th' So
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A  contains all the Ti’ as wanted. m]

(28.10) EXAMPIE. Let f5 be the response of the system having m = L,

p=1, X= ks, initial state zero, and equations

xl(t + 1) = ul(t)ug(t), x2(t + 1) = ul(t)uB(t),
k(64 1) = (8D (8), 3,06 + 1) = uy(t)uy(t)
(28.11)
XS(t +1) = u3(t)uh(t)xl(t) + u2(t)uh(t)x2(t) + ul(t)ug(t)xB(t) +
(6 (6, (4)
y(e) = x(t).

This system is algebraically observable, and XQ is quasi-reachable in
two steps (the quasi-reachable get XQ is h-dimensional, and has equations
xl?} = xzxu). The dual of the 2-step reachability map identifies the

observation algebra with the subalgebra
k[Tsz, T1T3’ TBTM’ TQTh’ L]
of
B = k[Tl, T2, T3, Th’ Ll’ L2, L3, Lh]
where

L

TBThLl + T2T,+L2 + TngL3 + TlT3Lh'

(Here A(UE) is a polynomial ring in 8 variables, identified with B.)
Assume that there would exist an unconstrained realization X of f5
of dimension 4. By (11.3%), there is a dominating k-system morphism

T: Z "Zf' Let g2 be the 2-step reachability map of Z. Since Tog2
is the (dominating) 2-step reachability map of the L-dimensional system

Zf, it follows that 8 is dominating; (otherwise, dim ge(a ) is
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3 or less, contradicting dim XQ = L4). Thus A(gg) identifies A(XZ)
with a subalgebra A of B, such that A satisfies the conditions in
(28.9). Tt follows that A contains Tl’ T2, T3, Th’ and L. Since
the latter is algebraically independent over the Ti? A would have
transcendence degree at least 5. But A is isomorphic to A(XZ)’

(a polynomial ring in 4 variables,) contradicting this latter fact. O

29. Generalizations

The material in previous sections can be easily generalized in
various directions. 1In particular, we shall 1lift here the restriction
to shift-invariant input/output maps (and the corresponding equilibrium
initial-state agssumption for systems), without changing the nature of the
results. Similarly, the input and output-value spaces U and Y will
be allowed to be arbitrary k-spaces rather than km and kp; as explain-
ed in the introduction, this permits the incorporation of various
constraints into the model. We shall only sketch proofs, since these

are analogous to those for the particular case already treated.

The definition of polynomial response map can be given either in
terms of formal Volterra series, or simply considering the polynomial
maps £ — Y. We shall use here the latter style of definition (bu’c: see
example (29.11)), for which we must first introduce a suitable input
space. The motivation for the construction of § was the need for a
"completion" of Ulz], the latter being obtained from the set of all
sequences v by identifying (ut, cee ul) with (0, w, ..., ul).

An arbitrary polynomial response U¥ — Y does not necessarily factor
through Ulz], since no shift-invariance property insures that

ft(ut’ eeey ul) = ft+l(o’ Uy, ooy ul). We shall define now a k-space
Q' as a completion of U* itself.

For the rest of this section, U = X{C) and Y will denote arbitrary
but fixed k-spaces. We also use the notations Cn 1= X(Un) =C® ...%C
(n times), and C, := product of the ¢, for n>0 (note that C, =
X(k) is just a point).
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There are canonical projections Cy Cn, which give rise to homo-

morphisms Cy dC —>Cn ® C. These induce therefore a homomorphism
(29.1) a: ¢, ®C ango(cn@b ¢) = nngcn.

We introduce also a sequence of subalgebras C(i) of C* defined re-

cursively by: C(o) i=C,, and
(29.2) C(n) := (L x a)(k x (c(n_l) ®C)),

and denote by C, the intersection of all the C(n)' It is easy to
prove then that

(29.3) ¢ = (1 xa)(kx (c ®c)).

Thus, restricting the homomorphism (1 X @) to the subalgebra k X (Coo ?¢),

we can define

(29.4) B = pryo(1x )™Mt ¢ »C, ® C.
We denote

(29.5) 8" := x(p)

and

(29.6) @' := x(cw).

The projections C, -C, = restrict to (onto) homomorphisms 7t Gy = Cy

which dualize to closed immersions U’n - Q'. Identifying through these
n

inclusions the sets of input sequences U~ with subspaces of Q', it

can be proved as in (6.10) that
(29.7) 8': @' X U =

indeed extends the concatenation maps. Further,



148

(29.8) ker 7, + ker 7j =C,
whenever 1 # j, since the identity (1, 1, 1, ...) of C, can be
written as (1, 1, ..., 1, 0, 1, ...) (a zero in the i-th position,

thus in ker 7i) added to (0, ..., 0, 1, O, ...) (a one only in the

i-th position, thus in ker Vj). The image of U1 in Q 1is thus disjoint

with the image of UJ, and there results a canonical inclusion
(29.9) U* - af.

The image of this map is dense, since the intersection of all the Kker 7n
is zero. Thus a polynomial map with domain ' is completely determined

by its restriction to U¥. This motivates the

(29.10) DEFINITION. A generalized polynomial response map is & polynomial
map f: Q' =Y.

Thus a generalized polynomial response map is a map f: U¥ -Y which
satisfies certain additional properties (namely, those that imply the
existence of an extension to Q'). The most important of these properties
(obviously implied by (29.10)) is that the restriction f, to each g
be a polynomial map. To obtain a useful characterization, one needs to
make further assumptions on the input-value set U. When U is an affine
space km, the only further property needed is that the degree of each
ft in the last r inputs be bounded independently of +, for any r;
this is shown below for m =1, but basically the same proof is valid in
general. When U is a variety, the statement of the characterizations
is somewhat more complicated (a representation in terms of actual poly-
nomials must be chosen for each polynomizl map ft)’ but again it is

essentially the same as in the

(29.11) EXAMPIE. Let U = k. Then each Cn is a polynomial ring

k[gl, P §n], and <« 1is the linear extension of

(29.12) o((q) ® Q(£)) := (Q}},



149

where

(29.13) Q1 (615 «vs 8 1) =Q (&, «o0y & 5)Q(E)).

n+l
Thus C(l) is the set of all sequences of polynomials in 0, 1, 2, ...
variables such that the degree in gl is bounded. Iterating, C(r) is
the set of all sequences with the degree in gl, ey Er bounded. Thus
a polynomial function Q' —k, i.e. an element of A(Q') =C_, isa
sequence of polynomial functions ft: Ut — k such that the degree of ft
in &, ..., & 1is bounded for each r (independently of t). So when
Y = k%, a generalized polynomial response map f corresponds to a set
of p polynomial functions on Q' subject to the above restriction. Tt
is trivial to verify that when f is shift-invariant, i.e. £(0, w) =

f(w), this definition coincides with the one in Chapter III. a

The definition of a generallzed k-gsystem only differs from (8.1)
in that the initial state is not required to satisfy P(xﬂ, 0) = x*, As

before, there are t-step reachability maps 8 Ut —= X and a reachability
map g: U¥ -»X which extends to a polynomial map g': Q' - X. The

response map of X is fz :=h o g'. Defining now k-system morphisms
as before, and canonical := g' dominating + algebraic observability, one
concludes in analogy with previous results:

(29.14) THEORRM. Any generalized polynomial response has a canonical

generalized Kk-system realization, unique up to isomorphism. a

(29.15) EXAMPIE. Consider the generalized polynomial system 2 with

X = kB, U=Y =k, initial state (1, O, 0)' and equations

xl(t + 1) = xz(t)u(t)

x2(t +1) = xl(t)u(t)
(29.16)

x3(t + 1) = x3(t) + u(t)

y(t) = = (%).
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Calculating first ZObS results in dropping the third coordinate (since

only xl, X, are observable); the corresponding canonical realization is

2
thus obtained by restricting to the quasi~reachable set, which consists of
the union of the line xl = 0 and the line x2 = 0. Note that this is a
polynomial system, but the canonical state-space is not irreducible as in

the equilibrium initial state case. [m]

(29.17) REMARK. The above results properly generalize those in Chapter
ITI: it is not hard to prove that if f is a (nongeneralized) polynomial
response map, than any abstractly observable realization (and hence in
particular its generalized canonical realization) has equilibrium initial
state; thus the latter coincides with Zf. We shall not pursue here
extensions of the finiteness results or of those on input/output equations.
It is clear that further restrictions must be placed on U and Y in
order to render these problems meaningful. Under reasonable hypothesis
(e.g., U, Y varieties), generalizations do exist and are rather straight-

forward.

(29.18) REMARKS. (a) As in chapter V, an algorithmic, matrix-theoretic
realization theory for (generalized) bounded response maps, via (generalized)
state-affine systems, is easy to give. This is done in detail in SONTAG
[1979]. 1In fact, even more general (nonpolynomial, e.g. plecewise linear)
response maps are treated there using essentially the same methods. (The
only result that fails to generalize to non shift-invariant maps is the
implication "finite realizability implies state-affine realizability".

Counterexamples are given in the above reference.)

(b) Non strictly causal responses (present output may depend on
present input) and corresponding "Mealy-machine" realizations (output
y(t) is function of present state and input) can be also treated in a

totally analogous way.

{c) A much less trivial extension of the present setup consists
in allowing for nonaffine schemes as input, state, and output spaces.

While the practical significance of rather abstract schemes is at best
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doubtful, it is of interest to consider quasi-affine varieties, allowing
for locally rational transitions and outputs. (In fact, quasi-affine
varieties appear naturally among all varieties when abstract observability
is considered: as a consequence of Zariski's Main Theorem, the state-
space of an observable system, with Y = kp, is necessarily quasi-affine.)
It is interesting to remark, however, that no new generalization of
polynomial response maps appears if nonaffine state-spaces are allowed,
provided that U and Y vremain affine. Indeed, the "affinization"
functor X — X° (GROTHENDIECK and DIEUDONNE [1967, 9.1.211) maps any

such more general realization into another one with an affine state-space,
so the response of both systems must be polynomial, (The existence and
uniqueness theorem for canonical realizations appears to extend with no
difficulty to the case of nonaffine U, ¥, but other results are not so
straightforward.) |

30. Suggestions for Further Research.

Research in a new field is bound to suggest a wealth of open questions
and new directions of investigation. In attacking the realization theory

of nonlinear systems, the present work is no exception to that hope.

One of the byproducts of an algebraic study of systems is of course
the development of algorithms for system analysis and design. In the
case of bounded maps and state affine systems, we use linear-algebraic
techniques in constructing canonical realizations; these methods are a
rather simple generalization of the classical Hankel matrix technique
used so successfully in linear system theory. Finite dimensionality of
the observation space is responsible for the linear-algebraic character
of the study of bounded maps. This means that a nonlinear computational
technique is indispensable as soon as nonlinear feedback is present in a
system. An important question is, then: How effective are calculations
with fields, algebras and polynomials?

From its origins until (historically) not long ago, algebra remained

to a great extent a computational discipline. The development of "modern”
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algebra [or the modern development of algebra] has shifted the emphasis
towards generality and abstraction, permitting both the solution of hereto-
fore unsolvable problems and the understanding of deep questions which can
only now be even formulated in a rigorous way. Many questions of effect-
ive calculation have thus been left aside of the mainstream of algebra;

a development which is particularly unfortunate in view of the advent

of the digital computer. However, there are now signs of a trend toward
the effectivization of various basgic algebraic constructions. Some of
these constructions can be used to solve system-theoretic questions. For
instance, SEIDENBERG [1971] has worked on effective versions of Hilbert's
Basis Theorem, and his results find an immediate application to questions
of observability (SONTAG and ROUCHAIEAU [1975]1). The posthumous work of
ROBINSON [1975] (see also CROSSIEY and NERODE [1975]) represents a
promising approach to questions of computability in algebra, attacking such
questions from the point of view of mathematical logic (medel theory), but

most of the detailed work remains to be done.

Of course, there is a large number of classical results, dealing with
resultants and derivatives, and sometimes referred to by the label

elimination theory, which permit the effective verification of certain

conditions; our Jacobian criterion for finite-dimensional realizability
involves a simple application of such results. It would certainly be
of interest to explicitly compute the form of similar criteria for other

problems.

Many theoretical algebraic problems are also suggested by the present
work. TFor instance, as a rule system-theoretic questions depend for
their clarification upon the development of a real (as opposed to complex)
algebraic geometry. The papers of WHITNEY [1957] and of DUBOIS and
EFROYMSON [1970] are among the few works in this area. In fact, the study
of points in more arbitrary fields (e.g., the rational numbers) is needed
from our viewpoint. For instance, the question of the validity over
k # reals or k not algebraically closed, of the theorem: "A realization
is minimal if and only if it is weakly canonical”, leads to (unsolved)

problems of an arithmetic, rather than geometric, nature.
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There are many problems which probably do not require finding new
algebraic results. A typical open question of this type is: If k is
algebraically closed, is the reachable part of every polynomial system

(with equilibrium initial state) actually reachable in bounded time?

Essentially nothing has been said about the application of linear
methods to the ;ggg} study (when Xk = R or g) of nonlinear systems. The
connection with realization theory is given by the (easily proved) fact
that an unconstrained realization £ is in MD(fZ) iff it is locally
canonical at some state (i.e., a strong neighborhood of some x is
reachable and observable), which in turn follows from the linearized
system being canonical. Tt is as yet unclear whether this fact can be

used in the construction of minimal realizations.

Another topic we have not treated is that of giving methods for deciding
if a finitely realizable f with Zf nonpolynomial admits some poly-
nomial realization. In a sense this problem has an easy solution, say
for k =R, as follows. TFor any integers n, 4, and t, there is
a predicate In,d,t consisting of polyno$ial equalities and inequalities
such that, given any polynomial map F: U ->RB, F is equal to (fz)t
for some unconstrained polynomial system % of dimension n and degree
at most 4 (i.e., all polynomials appearing in the definition of X have

degree < d) if and only if the condition T is satisfied by the

coefficients of F. This is an easy consequegézjzf the Tarski-Seidenberg
decision method for elementary geometry (cf. 3.1k4), seeing the coefficients
of ¥ as indeterminates. (In the linear case d = 1, for example, the
Predicates correspond to the requirement that all the n-minors of the
t-th Hankel matrix be zero.) On the other hand, if Zf is determined
(e.g., via standard Jacobian arguments) to have dimension r, then
In,d,En (with n >7r) being satisfied for f,, 1s equivalent to f
itself having a polynomial realization of dimension n and degree < d.

Indeed, if Z partially realizes f. , it follows from SONTAG and

2n
ROUCHALEAU [1975, Theorem 6.1] that £ and Z, have the same response,
i.e. fZ = f. One should note that, although the Tarski-Seidenberg

methods are of impractically high computational complexity, the



154

implementation of the above procedure really relies on an a priori

calculation of the sequence of predicates I independently of the

n,d,t’
particular problem. Thus one could foresee a set of tables being published

listing the T The compilation of the explicit formulas for these

predicates Wou?édéz a worthwhile project in itself.

When f is bounded there is an explicit algorithm available for
realization, as explained in Chapter V. We have not included any discussion
on numerical questions. In fact, the algorithm as presented is numerically
unstable. It appears to be not at all difficult, however, to modify this
algorithm in order to obtain a numerically stable one (at the cost of
needing a slightly higher number of algebraic operations). This modifi-
cation should be a direct analogue of that recently introduced by DEJONG
[1978] to the corresponding linear system algorithms.

Various questions can be raised, however, regarding the suitability
of a state-affine realization theory in the bounded case. Although
boundedness implies state-affine realizability, lower-dimensional repre-
gentations will in general result when more general classes of systems
are considered. A trade-off between dimensionality and complexity of
the defining maps is often involved. State-affine realizations have an
obvious advantage from an analysis viewpoint; from a control-theoretic
standpoint, however, they don't have desirable controllability properties.
It is interesting to speculate on the impact of microprocessor technology,
rendering attractive the idea of a parallel multiprocessor configuration
calculating each state-variable via simple functions, as with state-

affine systems.

Topological questions have been almost by definition omitted. There
is a great number of such questions which are however of interest in
realization theory. For example, questions of genericity and approximea-
tion: what type of observation algebras appear generically?; in what
sense can be a finitely realizable f be approximated by another £

with 'nice' éf?, etc. This area is almost completely open.

Tt is interesting to note that with k finite every response is

polynomial, in fact bounded. This suggests applying the methods in this



155

work, (modifying "polynomial"™ into "polynomial function™) to the state-
assignment problem for automata; this hasn't been tried yet. Ancther
generalization deals with k being a ring (e.g., the integers); pre-
liminary results applicable to the internally-bilinear case are given
by FLIESS [1974] and SONTAG and ROUCHAIEAU [1977]. Related to this
point and previous ones, the effect of finite arithmetic is totally un-

explored.

Perhaps one of the most interesting open problems is that of under-
standing the relationships between the discrete-time theory pursued here
and the continuous-time theory developed by BROCKETT [1975], SUSSMANN [1976],
HERMANN and KRENER [1977], CROUCH [1977], and others. The results in
the two theories have a few superficial similarities (e.g., the finiteness
properties of the Lie algebra of a system have their parallels in
properties of the observation space), but the tools and results are in
general very different, due mainly to the nonreversibility of difference
(as opposed to differential) equations (so that semligroups appear where
groups appear in the continuous-time theory), and to the different
algebraic properties of difference and differential operators. For
example, the recent result of CROUCH [1977] that a "finite" continuous-
time map has its canonical state-space unconstrained is far from being

true in the present context (cf. section 28).

In so far as we have attacked the realization problem using methods
not standard in system theory, there arises the possibility of applying
the same methods to the study of other system-theoretic questions. Two
examples of this are the results in SONTAG and ROUCHAIEAU [1975], and a
result stating that a generic input sequence is sufficient for the
identification of a family of polynomial systems, proved in SONTAG [1979a].
Some parallel work, of a rather different type but also applying algebra-
geometric tools in system theory, has been done by various authors; for
example, HAZEWINKEL and KAIMAN [1975] (see also BYRNES and HURT [1978])
have studied the algebraic variety formed by the isomorphism classes of
linear systems of a given dimension, while HERMANN and MARTIN [1977] have

applied tools from algebraic geometry to obtain interesting new
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derivations of results in linear system theory.

Finally, the use of other methods should be investigated, even for
polynomial response maps. For example, an analytic realization of such
a response f may have 'nicer' properties than a polynomial or k-gystem
realization. On a more abstract level, the arguments in section 29 are
very near the type of category-theoretic models suggested by ARBIB and
MANES [1974] and others; since our type of response does not seem to
satisfy the hypothesis of any of the general approaches in the literature,
it would be interesting to study what modifications are needed in the

latter in order to have them include this case also.
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z system, 56

xﬁ initial state, 56

n" observable induced by w, 56

n" observability map, 56

p(t) iterate of transition map, 56

g & reachability map, restriction, 56
X, t-step reachable set, 56

Zac(f) abstractly canonical realization of f, 59
Zfree(f) free realization, 61

Z@ quasi-reachable subsystem, 63
L(%) observation space of X, 6k

A(Z) observation algebra of I, 64
Q(z) observation field of I, 6k

zobs observable "quotient", 65

Lf,éf,gf observation space, etc., of f, 69

;g,é?,gg, reachability and observability chains, 71
Obs(x) observation class, 76

g?,... extended observables, 85

Jn(f) n-th Jacobian of £, 89

E(@) behavior matrix, 102

tdeg f total degree, 109

QR(f) quasi-reachable lattice, 113

Qc(f) quasi-canonical lattice, 121

A0(f),RD(f) subsets of QR(f), 123



NOR(f)

el

r(A)
CsCysC,

Ql

166

normal realizations, 127

integral closure of X, 128
smallest number of generators, 139
algebras of input spaces, 146

generalized input space, 147



INDEX

Abstract system 56

-morphism 57
abstractly canonical 57
accessible representation 101

algebraic difference equation 8, 95, 99

-extension 38
affine i/o equation 8
almost-polynomial system 8, 61
approximation of i/o maps 11, 15k

Behavior matrix 13, 102, 150
bounded map 10, 80

Canonical normal realization 130
-representation 102
-state-space 134
-system 3-6, 67

cascades of linear systems 13, 109

causal 1, 55

concatenation L2, 147

constant-structure 55

constructible set 34, 138

continuity 32

continuous-time 155

convolution product Lk

coproduct 21

cusp 33, 131

Decomposition of system 136
degree of series L6
dense open set 27
dimension of k-space 39

-of k system 61
dominating map 32, 62, 113

Equilibrium state 3, 146
exponent series L6

Fibre product 118

fibres 39

finite i/o map 12, 109
-realizability 75

finitely generated support L7

free realization 61, 127

Generic inputs 135

Homogeneous response 98, 140
homomorphism (of k-algebras) 17

Initial state 3, 56, 16
input space 50, 147
input /output equation 83
-map 1, 55
integral extension 23
internally-bilinear response 81,
105
-gystem 11
immersion 136
-, closed 32, 62
-, open 1321
irreducible space 27
isomorphism of systems 59
-of k-spaces 33
-of k-systems 7, 68, 149

Jacobian criterion 10, 89
-matrix 89

k-algebra 17
-ideal 17
-radical 17
-reduced algebra 19
-space 29
-system 3-5, 60, 149
~system morphism 62

Lattice of minimal realizations 120
-of normal realizations 127
-of realizations 1L, 113

linear responses 81, 104
-systems 11, 105, 153

Meximal ideals 17

maximally separating subalgebra 22,
ok

Mealy machines 150

minimal system 76, 120, 14k, 153

monoid 43

multilinear responses 11, 81, 98,
105, 129

Normal k-space 126

Observable 56, 57, 69
-, basic 58
observability 6, 58, 124
-, algebraic 6, 6
-map 58



observability (cont'd)
-map, extended 67
observation algebra 9, 6L
-field 6L
-space 6L, 82
one-to-one as schemes 130
output space 54
-function 29

Polynomial i/o map 60
-map 29
~-response 60, 148

-gystem 2, 61, 77, 120, 153

power seriesg, formal 43
-, noncommutative 12

prime ideal 28

principal open set 35

products {of algebras) 20

Quasi-affine variety 135
quasi-canonical 121

quasi-reachability 7, 62, 14l

Rational i/o equation 8L
-series 111
-transitions 134
reachability 57
-map 56
realization 57
recursive i/o equation 8L
reduced representation 101
representation of a series
response 55

Schemes 16, 136, 150
shift-invariant 1, 146
singularity 3L
span-canonical 12, 105
span-reachable 12, 105
state-affine 105, 15h4
strictly recursive 99
strong topology 30
support of series 47

Tangent space 141

total degree 109

transcendence basis 38
-degree 38

transition map 2

truncation of response 112

168

Unconstrained system 139, 145

Variety, affine 30
Volterra series, formal 1, Lk

Weak observability 76
weekly canonical system 9, 76

Zariski's Main Theorem 131, 151
Zariski topology 25



