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Further results on controllability of recurrent neural networks 1
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Abstract

This paper studies controllability properties of recurrent neural networks. The new contributions are: (1) an extension of a
previous result to a slightly di�erent model, (2) a formulation and proof of a necessary and su�cient condition, and (3) an
analysis of a low-dimensional case for which the hypotheses made in previous work do not apply. c© 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

This paper deals with controllability properties of
what are often called “recurrent neural networks”.
These constitute a class of nonlinear systems which,
although formally analogous to linear systems, exhibit
interesting nonlinear characteristics and arise often in
applications, see e.g. [3–5, 7, 9–11, 14, 15, 18]. A gen-
eral model of recurrent nets (see e.g. [15]) is as fol-
lows. Assume given a Lipschitz map � :R→ R. The
most typical choice is

�(x)= tanh x : R→ R : x 7→ e x − e−x
e x + e−x

;

which is also called the “sigmoid” or “logistic” map.
For each positive integer n, we let �(n) denote the
diagonal mapping

�(n) :Rn→Rn :



x1
...
xn


 7→



�(x1)
...

�(xn)


 :

∗ Corresponding author. E-mail: sontag@hilbert.rutgers.edu.
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De�nition 1.1. An n-dimensional, m-input recurrent
net (with activation function �) is a system with state
space Rn and input-value space Rm, respectively, and
equations of the form

ẋ(t)= �(n)(Ax(t) + Bu(t)); (1)

where A∈Rn×n and B∈Rn×m.

Since �(n) is a globally Lipschitz map, such a sys-
tem is complete (every input is admissible for ev-
ery state). For general terminology about systems and
control, we follow [13]. In system-theoretic terms, we
may represent a net by means of a block diagram as
in Fig. 1.
Observe that, if we had �= the identity function, we

would be studying continuous-time time-invariant lin-
ear systems. However, in this paper � will be bounded,
which excludes that case. One manner in which recur-
rent nets arise is when modeling situations in which
rates of change of state variables are bounded or satu-
rated (we may use tanh to impose |ẋi|¡1). In the �eld
of neural networks, one thinks of the coordinates of x
as the describing the time evolution of an ensemble of
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Fig. 1. Block diagram of net.

Fig. 2. Block diagram of input-a�ne net.

n “neurons,” and the entries Aij and Bij as “synaptic
strengths”, of the connections among neurons; in that
context, � : R→ R is called the “activation function”.
The paper [1] initiated the study of controllability

properties for recurrent nets, and provided conditions
for the “forward accessibility” of such systems. In [16]
– see also [13] – a su�cient condition for complete
controllability was obtained, and this condition is re-
viewed below. One of the contributions of this paper
is to show that the condition in [16] can be turned into
a necessary and su�cient condition for a stronger
form of complete controllability.
There is a formal variant of the model given in

the above de�nition, also sometimes referred to as a
“recurrent neural network”, namely as follows.

De�nition 1.2. An n-dimensional, m-input input-
a�ne recurrent net (with activation function �) is a
system with state space Rn and input-value space Rm,
respectively, and equations of the form

ẋ(t)=A�(n)(x(t)) + Bu(t); (2)

where A∈Rn×n and B∈Rn×m.

The block diagram representing such a system is as
in Fig. 2.
As often remarked, see e.g. [2], it is sometimes pos-

sible to obtain results for input-a�ne recurrent net-
works from analogous results for (non-input-a�ne)
nets, by means of the change of variables z=Ax+Bu.
It is important to observe, however, that, under such
a change of variables, one obtains equations of the
form ż=A�(n)(z) + Bv, where the new control v is
the derivative of the original control. Thus, a solution
x(·) corresponding to the action of non-di�erentiable

(for instance, piecewise constant) u cannot be seen
always as a trajectory of the new system; indeed, the
function z will in general not be even absolutely con-
tinuous, so “ż” does not make sense. In addition, the
feedback change of variables (x; u) 7→ (Ax+Bu; v) can
fail to be invertible because the matrix [A; B] does not
have full rank (so not every state z can be written as
Ax+Bu for some x and u). In summary, obtaining re-
sults for input-a�ne nets by this transformation is not
completely trivial, and some work is required when
following this approach. In [2], it was shown how, for
questions of parameter identi�cation, this transforma-
tion can be fruitfully applied.Another of the contribu-
tions of this paper is to follow this approach in order
to provide a controllability result. It turns out that a
recent and nontrivial result about nonlinear controlla-
bility, from [6], is instrumental in the proof.
Finally, at the end of this paper we return to

the model (1), and provide a complete character-
ization of controllability for recurrent nets in the
two-dimensional case.

2. Statements of results

Given any continuous-time system ẋ=f(x; u), we
write �(t; x0; u) for the solution x(t) corresponding to
the initial state x(0)= x0 and the measurable (essen-
tially) bounded control u : I→Rm, where I = [0; T ] or
I = [0;∞). For those systems that are considered in
this paper, solutions exist globally and are unique, so
this is well-de�ned for all (t; x0; u). (See [13] for gen-
eralities and basic facts about control systems.) We
also write �(t; x; u) as �u(t; x) or �tu(x), depending on
the context.
As usual, given any two states x0; xf, we say that

x0 can be steered, or controlled, to xf if there is some
T¿0 and some control u on [0; T ] such that the solu-
tion is de�ned for all t ∈ [0; T ] and �(T; x0; u)= xf. A
system is controllable if every state x0 can be steered
to every other state xf.
For each pair of positive integers n and m, we in-

troduce the following open and dense subset of the set
of all n by m matrices:

Bn;m := {B∈Rn×m | (∀ i) rowi(B) 6=0 and
(∀ i 6= j) rowi(B) 6=± rowj(B)}

where rowi(·) denotes the ith row of the given ma-
trix. Observe that, in the special case m=1, a vector
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b∈Bn;1 if and only if all its entries are nonzero and
have di�erent absolute values.
Finally, we let� be the set of all functions � :R→R

which are Lipschitz and have the following properties:
1. � is an odd function, i.e. �(−r)=−�(r) for all
r ∈R;

2. �∞= lims→+∞ �(s) exists and is ¿0;
3. �(r)¡�∞ for all r ∈R;
4. for each a; b∈R; b¿1,

lim
s→+∞

�∞ − �(a+ bs)
�∞ − �(s) = 0: (3)

The activation function which appears most fre-
quently in applications is �= tanh, so the following
result from [16] is worth mentioning:

Lemma 2.1. The function tanh ∈�.

We recall the main result from [16]:

Theorem 1. Assume that �∈� and B∈Bn;m. Then
the system (1) is controllable.

In order to state a necessary condition, we need the
following concept, which we de�ne for more general
systems.

De�nition 2.2. A system ẋ=f(x; u) is strongly lo-
cally controllable around a state x0 if for each neigh-
borhoodV of x0 there is some neighborhoodW of x0,
included in V, so that, for every pair of states y and
z in W , y can be controlled to z without leaving V.

This de�nition amounts to the requirement that any
two states which are su�ciently close to x0 can be
steered to one another without large excursions; see
[13]. We will show, in Section 3:

Theorem 2. Assume that �∈�. Then the following
two properties are equivalent, for Eq. (1):
1. B∈Bn;m.
2. The system (1) is strongly locally controllable
around every state.

If a system with connected state space (as is the
case with recurrent nets, whose state space is Rn) is
strongly locally controllable around every state, then it
is clearly also completely controllable. (Strong locally
controllability around x0 implies that the reachable set
R(x0) is both open and closed.) In fact, the proof of
Theorem 1 given in [16] already establishes strong

local controllability. Thus, we only need to prove the
necessity of B∈Bn;m.
We now turn to input-a�ne nets. The main result,

to be proved in Section 4, is:

Theorem 3. Assume that �∈�, rank[A; B] = n, and
B∈Bn;m. Then Eq. (2) is completely controllable.

Finally, in Section 5, we will return to the model
(1), and ask now what can be said if the hypothesis
that B∈Bn;m is dropped. In general, obtaining neces-
sary and su�cient conditions for controllability when
B 6∈Bn;m appears to be a very di�cult subject. We
will, however, provide a complete solution for two-
dimensional single-input (n=2, m=1) systems.

3. Proof of Theorem 2

We start with a general observation.

Lemma 3.1. If B 6∈Bn;m then there exists a nonzero
p∈Rn so that
signpT�(n)(Ax + Bu)= signpTAx

for all (x; u)∈Rn×Rm (with the convention sign 0
=0).

Proof. We denote, for each i; bi := rowi(B) and
ai := rowi(A). There are three cases to consider: (1)
some bi=0, (2) bi − bj =0 for some i 6= j, and (3)
bi + bj =0 for some i 6= j.
In the �rst case, we let p := ei (ith canonical basis

vector). The conclusion follows from the equality

eTi �
(n)(Ax + Bu)= �(aix)

and the fact that sign �(v)= v. In the second case, we
let p := ei − ej. The expression
(ei − ej)T�(n)(Ax + Bu)
= �(aix + biu)− �(ajx + bju)
= �(aix + biu)− �(ajx + biu)

is nonnegative if and only if aix¿ajx (using that �
is monotonic), that is, when pTAx= aix − ajx¿0, so
also in this case we have the conclusion. Finally, if
bi + bj =0, we pick p := ei + ej. Then

(ei + ej)T�(n)(Ax + Bu)

= �(aix + biu) + �(ajx + bju)

= �(aix + biu)− �(−ajx + biu)
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(since � is odd), which is nonnegative precisely when
(ai + aj)x¿0.

We now complete the proof of Theorem 2. Suppose
that B 6∈Bn;m. Let p be as in Lemma 3.1 and letV be
Rn if pTA=0 and {x|pTAx¿0} otherwise. Pick any
state x0 ∈V. LetRV(x0) be the set of states reachable
from x0 without leavingV. Then RV(x0) is included
in the half-space

{x |pTx¿pTx0}:

This is because, if �̇= �(n)(A�+B!) and �(t)∈V for
all t, then

d
dt
pT�(t)=pT�(n)(A�(t) + B!(t))¿0;

so the function ’(t) :=pT�(t) is nondecreasing. Thus,
there cannot be any neighborhood of x0 which is reach-
able from x0 without leaving V. This completes the
proof of the theorem.

4. Proof of Theorem 3

We start by reviewing a very useful notion. We
consider systems ẋ=f(x; u) for which the state space
X is an open subset of some Euclidean space Rn, the
input-value space U is a subset of Rm; f is continu-
ously di�erentiable on x and f and fx are both con-
tinuous on (x; u).
Given x0; xf ∈X, one says that xf is normally

reachable from x0 (with piecewise constant controls)
if there are control values u1; : : : ; uk ∈U and switch-
ing times t1; : : : ; tk ∈R¿0 such that

�tkuk ◦ · · · ◦ �t1u1 (x0)= xf

and the map

(s1; : : : ; sk) 7→�skuk ◦ · · · ◦ �s1u1 (x0)

is nonsingular (i.e., its Jacobian at this point has rank
n) at (t1; : : : ; tk). If xf is normally reachable from x0,
for all pairs x0; xf ∈X, we say the system is globally,
or completely, normally controllable. It is easy to see
that the notion of normal reachability has the following
transitivity property.

Proposition 4.1. If y is normally reachable from x, x
is reachable from z with piecewise constant controls

and w is reachable from y with piecewise constant
controls, then w is normally reachable from z.

Of course, normal controllability implies controlla-
bility. A fundamental result in control theory makes a
converse statement:

Theorem 4 (Grasse and Sussmann [6]). Every com-
pletely controllable system is also completely nor-
mally controllable.

The main technical fact that we need is given by
the next result, which says that controllability is pre-
served under “backstepping” or “adding an integra-
tor” [8]. This result is a counterpart of the well-known
theorem which asserts that stabilizability is preserved
under backstepping; cf. [13], (Ch. 4), but the proofs
are very di�erent. The critical step is showing that if
a system is controllable then it is controllable using
di�erentiable controls with preassigned boundary val-
ues. The technique of proof is almost identical to the
one used in the much older paper [12], where it was
shown that analytic systems are controllable using in-
�nitely di�erentiable controls. We may now remove
analyticity assumptions, thanks to the recent result that
was cited in Theorem 4. We should point out, also,
that the special case of the result for “systems without
drift”, was previously given in [17].

Theorem 5. Suppose that the input-value set U is
open and connected. Then, ẋ=f(x; u) is completely
controllable if and only if the cascaded system

ẋ = f(x; y);

ẏ = v (4)

with state spaceX×U and control space Rm is com-
pletely controllable.

Proof. If the cascaded system is completely con-
trollable, it is clear that the x-subsystem must be
as well. We now prove the other direction. Assume
that ẋ=f(x; u) is completely controllable; Theorem
4 then says that the system is completely normally
controllable (with piecewise constant controls). Take
any x0; xf ∈X and any y0; yf ∈U. We will show
how to control (x0; y0) to (xf; yf).
Pick ”0¿0 small enough so that both �(”0; x0; y0)

and �(−”0; xf; yf) are de�ned, where we wrote
y0 and yf to denote the constant controls taking
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values y0 and yf respectively. Let x̃0 :=�(”0; x0; y0)
and x̃f :=�(−”0; xf; yf). Using that the x-subsystem
is completely normally controllable, in particular x̃0

is normally controllable to x̃f. Thus, there exist k,
u1; : : : ; uk , and t1; : : : ; tk ∈R¿0, such that
�tkuk ◦ · · · ◦ �t1u1 ( x̃0)= x̃f

and the map (s1; : : : ; sk) 7→�skuk ◦ · · · ◦ �s1u1 (x̃0) is non-
singular at (t1; : : : ; tk). Applying the Inverse Mapping
Theorem, we conclude that there is some neighbor-
hood Ṽ of x̃f and C1 functions s̃1; : : : ; s̃k : Ṽ →R¿0
such that

�s̃k (z̃)uk ◦ · · · ◦ �s̃1(z̃)u1 ( x̃0)= z̃

for all z̃ ∈ Ṽ . Let V :=�”0yf(Ṽ ), and de�ne s1; : : : ; sk :
V →R¿0 by

si(z) := s̃i(�(−”0; yf; z))
for i=1; : : : ; k. Then,

�”0yf ◦ �sk (z)uk ◦ · · · ◦ �s1(z)u1 ◦ �”0y0 (x0)= z

for all z ∈V . Because U⊆Rm is open and connected,
we may �nd a di�erentiable curve  : [0; k + 1]→U
such that (0)=y0, (k + 1)=yf and (i)= ui for
i=1; : : : ; k. De�ne ! :V ×R→R as follows:

w(z; t)=




0; t¡”0
1; ”06t¡”0 + s1(z)

: : :
k; ”0 + s1(z) + · · ·+ sk−1(z)

6t¡”0 + s1(z) + · · ·+ sk(z)
k + 1; ”0 + s1(z) + · · ·+ sk(z)¡t :

Then, we have

�(2”0 + s1(z) + · · ·+ sk(z); x0; (!(z; ·)))= z (5)

for all z ∈V .
We now choose a sequence of functions �l :R→R,

l=1; 2; : : : ; so that the following properties, for
each l:
• �l is C∞,
• �l(t)¿0 for all t ∈R and �(t)= 0 for all |t|¿1=l,
• ∫

R �l=1 for all l.
For instance, one could take

�l(t)=



cle

− 1
(l2t2−1)2 ; |t|¡1=l;

0; otherwise;

where cl is an appropriate normalizing constant.

We introduce, for each l, the function

!l :V ×R : (z; t) 7→
∫
R
!(z; �)�l(t − �) d�:

This is smooth in t, and the following properties hold:
1. !l(z; t)∈ [0; k + 1] for all l, z ∈V and t ∈R.
2. For each z ∈V , !l(z; t) 6=!(z; t) only if |t − ”0

−∑j
i=1 si(z)|¡1=l for some j; j=0; : : : ; k.

3. !l(z; 0)=0 and !l(z; 2”0+s1(z)+ · · ·+sk(z))= k
+ 1 for all z ∈V and all l¿1=”0.

Note that the functions (!l(z; ·)) are valid controls,
as they take values in U, because of 1. Moreover, the
values (!l(z; t)) belong to a compact subset K of U,
namely the image of , for all t and z ∈V:
We claim that

hl(z)→� (2”0 + s1(z) + · · ·+ sk(z);
x0; (!(z; ·)))= z (6)

as l→∞, uniformly on z (the last equality is true
because of Eq. (5)), where we de�ne for each l the
map hl :V →Rn as

hl(z) :=�(2”0 + s1(z) + · · ·+ sk(z); x0; (!l(z; ·))):
Indeed, we start by noting that we may assume, with-
out loss of generality, that there is some T¿0 such
that the �nal times are equibounded:

2”0 + s1(z) + · · ·+ sk(z)¡T for all z ∈V

(take a smaller, relatively compact, neighborhood V of
xf if necessary). In general, the following continuous
dependence result holds for the system ẋ=f(x; u), a
compact subset K ⊆U, and any �xed integer k: there
is a function � :R¿0→R¿0, with �(s)→ 0 as s→ 0,
such that, whenever u; v are two inputs with values in
K and of equal length T06T , which di�er in at most
k + 1 intervals of length �, then

‖�(T0; x0; u)− �(T0; x0; v)‖6�(�):
This is proved by induction, using continuity of tra-
jectories with respect to initial conditions and to con-
trols with uniform norm ([13], Theorem 1). We may
apply this general fact, for each z ∈V , and each l,
to u=!l(z; ·) and v=!(z; ·), since property 2 above
says that these di�er on at most k + 1 intervals, each
of length less than 2=l. So the convergence (6) holds,
since for each ”¿0 wemay simply pick l large enough
so that �(2=l)¡”, which then gives ‖hl(z)− z‖¡”
for all z ∈V .
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Finally, we note another general fact (which ap-
pears often in control theory, notably in connection
to the “Brunovsky–Lobry Lemma”): if V is an neigh-
borhood of a point xf ∈Rn, then is an ”¿0 such that
every continuous map h :V →Rn which is ”-close to
the identity must contain a neighborhood of xf in its
image. (Proof: without loss of generality, we may take
xf =0. Replace V by a subset, some closed ball B�
of radius �¿0 about zero. Now take any ”∈ (0; �).
Suppose that ‖h(x)− x‖¡” for all x∈V . Then every
p∈B�−” is in the image of h: for such a p, consider
the map H (x) := x − h(x) + p; then H maps B� into
itself, and hence by Brouwer’s Fixed Point Theorem
there is some �x so that H ( �x)= �x, which means that
h( �x)=p as we wanted to prove.) Applied to the above
maps hl, which converge uniformly to the identity, we
conclude, in particular that there are l and z0 ∈V such
that

�(2”0 + s1(z0) + · · ·+ sk(z0); x0; (!l(z0; ·)))= xf:
Since both  and !l(z0; ·)) are continuously di�eren-
tiable, we may write (!l(z0; t))=y0 +

∫ t
0 v(s) ds for

some bounded measurable (in fact, continuous) func-
tion v : R→Rm. As a control applied to the cascaded
system (4), v steers (x0; y0) to (xf; yf).
Since we had picked arbitrary (x0; y0) and (xf; yf),

this completes the proof of controllability.

We now complete the proof of Theorem 3. From
Theorems 1 and 5, we know that the cascaded system

ẋ(t) = �(n)(Ax(t) + By(t));

ẏ(t) = v (7)

is globally controllable.
Now take any two states z0; zf ∈Rn for system

(2). Since rank[A; B] = n, there are pairs (x0; y0)
and (xf; yf) in Rn+m such that Ax0 + By0 = z0 and
Axf + Byf = zf. Let v : [0; T ]→Rm be any con-
trol steering (x0; y0) to (xf; yf), along a trajectory
(x(·); y(·)) of system (7). Let z(t) :=Ax(t) + By(t).
This is an absolutely continuous function which satis-
�es z(0)= z0 and z(T )= zf. Moreover, its derivative
is Aẋ + Bẏ=A�(n)(z) + Bv, so v is a control steering
z0 to zf for system (2).

5. Two-dimensional recurrent nets

From now on, we will assume, for simplicity, that in
addition to �∈�, also � is continuously di�erentiable,

and satis�es �′(s)¿0 for all s∈R, �′ is decreasing to
zero on [0;∞), �′(0)= 1, and �∞=1. Note that the
standard example �= tanh satis�es these properties.
Furthermore, in this section, all recurrent nets are
two-dimensional and single-input (n=2; m=1).
When B=(b1; b2)T 6∈Bn;1, we may assume after a

rescaling of inputs, changes of variables x→ − x or
y→ − y, and=or exchanges of variables, that one of
these cases holds:
1. B=(0; 0)T,
2. B=(0; 1)T,
3. B=(1; 1)T,
and in the �rst case we do not have controllability.
In the remaining two cases, under a further feedback
transformation of the type u→ ax+ by+ u′, where u′

is a new control, one may transform a recurrent net,
while preserving controllability properties, into one of
the two canonical forms:

ẋ = �(ax + by);

ẏ = �(u) (8)

or

ẋ = �(ax + u);

ẏ = �(by + u): (9)

We now characterize controllability for each of these
forms.

Proposition 5.1. System (8) is controllable if and
only if |a|6|b| and b 6=0.

Proof. First we prove the necessity part. Obviously, if
b=0 the system is not controllable. So we can assume
that |a|¿|b|¿0. There are two cases to consider:
a¿0: In this case, since �∞=1, we may �nd

A¿0 such that a�(z)¿|b| for all z¿A. Then, the set
{(x; y)∈R2|ax + by¿A} is forward invariant for
system (8), which therefore cannot be controllable.
a¡0:We consider the system obtained by reversing

time in (8) and rede�ning the control as −u:

ẋ = �(−ax − by);
ẏ = �(u′) (10)

(note that, since � is an odd function, we may write
−�(ax + by)= �(−ax − by) and −�(u)= �(u′),
where we think of u′ :=−u as a new control). Since
(10) is not controllable, (8) is not controllable
either.
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We now turn to the su�ciency part. To prove
controllability, it is enough to show, for any system
that satis�es |a|6|b| and b 6=0, that the system is
null-controllable, i.e., every state can be steered to 0.
Indeed, suppose that this general fact has been estab-
lished. Now to steer a state back from 0 to any other
state (x; y), one may consider system (10). This also
satis�es the hypotheses and hence is null-controllable.
We �nd a control u that steers the state of this new
system from (x; y) to 0, and then apply −u to the
original system with the time reversed, to drive 0 to
(x; y). So we can steer any state to any other, by �rst
passing through the origin. Moreover, since b 6=0,
the system is locally controllable around the origin,
and so it su�ces to prove that every state x can be
steered into any arbitrarily chosen neighborhood of 0
(asymptotic null controllability).
We start with the case a=0. Take any neighbor-

hood V of the origin, and pick any state (x; y)∈R2.
It is clear that there is some control that steers this
state to some new state of the special form (x′; 0). If
this state is in V , we are done. Otherwise, we have
x′ 6=0. We will assume without loss of generality that
x′¿0, the argument for x′¡0 being analogous. We
next steer our state to a state of the form (x′′;−b),
along the trajectory (�; �). Let

t0 := inf{t¿0 | b�(t)¡0}:
Then, �(t0)= x′ +

∫ t0
0 �(b�(t)) dt¿0 and �(t0)= 0.

By the de�nition of t0 and the continuity of �, we
may choose t1¿t0 such that �(t1)¿0, b�(t1)¡0 and
(0; �(t1))∈V . Thus, we can steer our initial state to
the state (�(t1); �(t1)), and after that apply the control
≡ 0. The system will reach the state (0; �(t1)) in �nite
time. This completes our proof for the case a=0.
Now we assume that 0¡|a|6|b|, and show the

asymptotic null controllability. Through a change of
variables

x̃ = ax + by;

ỹ = y

and v= �(u), system (8) becomes as follows:

˙̃x = a �( x̃) + bv;
˙̃y = v

(11)

with control value space (−1; 1). The original sys-
tem (8) is asymptotically null-controllable if and only
if Eq. (11) is. Thus, we now prove that Eq. (11)
is asymptotically null-controllable. If a¡0, then we

simply steer ỹ to 0 and then use the identically zero
control, which makes x̃ go to 0 asymptotically while
“freezing” ỹ at zero. So we only need to deal with the
case a¿0. Moreover, we may assume without loss
of generality that b¿0. If this were not the case, we
change variables again, making y′ :=−ỹ and using
the new control v′ :=−v, which brings the system into
the above form with b replaced by −b. In summary,
we have 0¡a6b from now on.
We start by de�ning the following set:


 := {(x; y) | x¿0; y¿0; x + ay �(x)¡by}:
We claim that every initial state ( x̃0; ỹ0)∈
 can be
steered to the origin asymptotically. To see this, we
�rst apply the feedback control

v=
aỹ0

x̃0 − bỹ0 �( x̃)

to obtain the closed-loop system:

˙̃x =
ax̃0

x̃0 − bỹ0 �( x̃);

˙̃y =
aỹ0

x̃0 − bỹ0 �( x̃):
(12)

Let (�; �) be the trajectory of Eq. (12) that corre-
sponds to the initial state �(0)= x̃ 0, �(0)= ỹ 0. Since
x̃ 0¿0 and x̃ 0−bỹ 0¡−aỹ 0�( x̃ 0)¡0, it follows that
�(t)→ 0 monotonically as t→∞. Consider the func-
tion �(t) := ỹ 0�(t) − x̃ 0�(t). Then, from the form of
the equations, it follows that �̇≡ 0 and �(0)= 0. Thus
�≡ 0, so �(t)= (ỹ 0= x̃ 0)�(t)→ 0 as well.
By de�nition of 
; 0¡aỹ 0�( x̃ 0)¡bỹ 0− x̃ 0. Since

� is decreasing, we have that �(�(t))6�( x̃ 0) for all
t¿0. So∣∣∣∣ aỹ 0

x̃ 0 − bỹ 0 �(�(t))
∣∣∣∣¡1

for all t¿0, so the control v takes values in (−1; 1), as
required. This proves the claim. Moreover, the same
claim is also true for −
, because of the symmetry of
the system (that is, if we change variables x′ :=− x̃,
y′ :=−ỹ, and v′ :=−v, the system equations are the
same but 
 gets transformed into −
).
Now suppose given an arbitrary state ( x̃0; ỹ0)∈R2.

We �rst steer it to some state of the form (0; ỹ1). This
can always be done with controls bounded by one,
because a6b. If ỹ1 = 0, we are done. Otherwise, if
ỹ1¿0, we steer it to some ( x̃2; ỹ2)∈
. If ỹ1¡0, we
steer it to some ( x̃2; ỹ2)∈−
. These motions can be
accomplished by the application of a short duration
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control, positive or negative respectively. By the claim
proved above, we may then steer ( x̃2; ỹ2) to the origin
asymptotically.

Proposition 5.2. System (9) is completely control-
lable if and only if a 6= b.

Proof.We �rst show the necessity statement. Suppose
that a= b, and consider the initial state (0; 0). Pick any
control u, and let � be the solution of ẋ= �(ax + u)
with �(0)= 0. By uniqueness of solutions, (�; �) is the
trajectory for the entire system with the initial state
(0; 0). Thus any state (x; y) reachable from (0; 0) must
have x=y, and the system is not controllable.
Now we turn to proving su�ciency when a 6= b.

Arguing exactly as before, it su�ces to prove asymp-
totic null-controllability, because the condition a 6= b
is again satis�ed for the time reversed equations
(a→−a and b→−b), and the linearization at the
origin is controllable due to the condition a 6= b. We
may further assume (exchange equations if necessary)
that a¿b. There are two cases to consider.
b¿0: Here a¿b¿0. Let


 := {(x; y)∈R2 | 0¡x¡y; ax¿by}:
Claim 1. Pick (x0; y0)∈
. Then, there is a C1 func-
tion

k : (0;∞)→R

which has the following property:

y0�(sax0 + k(s))− x0�(sby0 + k(s))= 0
for all s∈ (0;∞): (13)

Indeed, we consider the following function:

f(s; u) :=y0�(sax0 + u)− x0�(sby0 + u):
For each �xed s, f(s;−∞)f(s;∞)=−(x0−y0)2¡0.
So there exists some u= k(s) such that f(s; k(s))= 0.
Moreover, for each u∈R for which f(s; u)= 0, nec-
essarily

@f
@u
(s; u)¿0: (14)

To verify this, take any u so that f(s; u)= 0. Since
ax0¿by0, also

�(sax0 + u)¿�(sby0 + u)

and therefore

x0�(sax0 + u)¿x0�(sby0 + u)=y0�(sax0 + u);

where the last equality follows from Eq. (13). This
implies that (x0 − y0)�(sax0 + u)¿0, which, since
x0 − y0¡0, means that
sax0 + u¡ 0: (15)

We know, then, that sby0 + u¡sax0 + u¡0. The
derivative �′ is increasing on (−∞; 0] (since � is odd
and we assumed that �′ is decreasing on [0;∞)), so
0¡�′(sby0 + u)6�′(sax0 + u):

Multiplying this inequality by x0¡y0 gives (14). We
conclude that u= k(s) is the unique solution of the
equation f(s; u)= 0 and, by the Implicit Mapping
Theorem, that k is C1. So Claim 1 is proved.

Claim 2. Any (x0; y0)∈
 can be controlled to the
origin asymptotically.

To prove this, we apply the feedback control
u= k(x=x0). Let � solve �̇= �(a� + k(�=x0)) with
�(0)= x0. Notice that u is well-de�ned (the argu-
ment of k is positive) at least for small t¿0, since
�(0)=x0 = 1. We let, for all t so that �(t)¿0:

s(t) :=
�(t)
x0
:

Thus, a�(t)= s(t)ax0 for all such t. Now we let
�(t) :=y0s(t). It follows that

�̇=
y0

x0
�̇=

y0

x0
�(a�+ k(s))=

y0

x0
�(sax0 + k(s))

which in turn equals �(sby0 + k(s)) by Eq.
(13). So, substituting y0s(t)= �(t), we have that
�̇= �(b� + k(s)). Thus (�; �) is the trajectory with
(�(0); �(0))= (x0; y0), as long as �(t) remains posi-
tive. Moreover, Eq. (15) insures that a� + k(s)¡0,
so �̇¡0 whenever �¿0. This implies that �(t)→ 0
as t increases (it could be the case that � becomes
zero in �nite time, or �(t)→ 0 as t → ∞), and, so
also �(t)=y0�(t)=x0 approaches zero. This proves
Claim 2.
Observe that the same claim holds true for −
,

because of the symmetry of the system (that is, if we
change variables x′ :=−x, y′ :=−y, and u′ :=−u, the
system equations are the same but 
 gets transformed
into −
).
Finally, take an arbitrary (x0; y0)∈R2. Suppose that

this point is not already in 
∪ (−
)∪{(0; 0)}. We
may �rst steer this point to a state of the form (0; y1).
(This can obviously be done, for instance by �rst using
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u=−ax − x to bring x close to zero, and then using
local controllability of the �rst equation). If y1 = 0,
then we are done.
Suppose y1¿0. If we apply u=1 thereafter, �(t)→

∞ and �(t) → ∞ along the ensuing trajectory (be-
cause the right-hand side in each of the equations in
Eq. (9) is bounded below by �(1)¿0). We evaluate
the limit of �=� using L’Hôpital’s rule. We have that
�̇= �(a�+ 1)→ 1 and either �→ 1 (if b¿0) or �→
�(1) (if b=0), so in either case the limit in question is
¿1. Since a¿b, a�−b� eventually becomes positive.
Let t0 be in�mum of the t¿0 so that a�(t)−b�(t)¿0.
For t6t0,

�̇(t)= �(a�(t) + 1)6�(b�(t) + 1)= �̇(t)

so � − � increases while t6t0. Thus �(t0) − �(t0)
¿y1¿0, and so for some small t¿t0 we have that
�(t)¿�(t) and a�(t)¿b�(t), so (�; �) enters 
. If
y1¡0, we may apply u=−1 and conclude that we
eventually enter −
. In any case, we can then steer
the state of the system to zero asymptotically. This
completes consideration of the case b¿0.
b¡0: In this case we may �rst steer x to 0 and

subsequently apply the identically zero control. The
y coordinate will go to 0 asymptotically, while x is
“frozen” at zero.
This completes our discussion of the two cases.

References

[1] F. Albertini, P. Dai Pra, Forward accessibility for recurrent
neural networks, IEEE Trans. Automat. Control 40 (1995)
1962–1968.

[2] F. Albertini, E.D. Sontag, For neural networks, function
determines form, Neural Networks 6 (1993) 975–990.

[3] Y.-C. Chu, K. Glover, Gain-scheduling for systems with
repeated scalar nonlinearities, IEEE Conf. Decision and
Control, San Diego, December 1997.

[4] Z. Feng, A.N. Michel, Uniqueness and stability of equilibria
of a class of neural networks with applications to
the Hop�eld model, IEEE Conf. Decision and Control,
San Diego, December 1997.

[5] C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, D. Chen, Higher
order recurrent networks and grammatical inference, in: D.S.
Touretzky (Ed.), Advances in Neural Information Processing
Systems 2, Morgan Kaufmann, San Mateo, CA, 1990.

[6] K.A. Grasse, H.J. Sussmann, Global controllability by nice
controls, in: H.J. Sussmann (Ed.), Nonlinear Controllability
and Optimal Control, Dekker, New York, 1990, pp. 33–79.

[7] K.J. Hunt, G.W. Irwin, K. Warwick (Eds.), Neural Network
Engineering in Dynamic Control Systems, Springer, London,
1995.

[8] M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and
Adaptive Control Design, Wiley, New York, 1995.

[9] M. Matthews, A state-space approach to adaptive nonlinear
�ltering using recurrent neural networks, in: Proc. IASTED
Symp. on Arti�cial Intelligence Applications and Neural
Networks, Z�urich, July 1990, pp. 197–200.

[10] A.N. Michel, J.A. Farrell, W. Porod, Qualitative analysis
of neural networks, IEEE Trans. Circuits System 36 (1989)
229–243.

[11] M.M. Polycarpou, P.A. Ioannou, Neural networks and on-line
approximators for adaptive control, in: Proc. 7th Workshop
on Adaptive and Learning Systems, Yale University, 1992,
pp. 93–798.

[12] E.D. Sontag, Finite dimensional open-loop control generators
for nonlinear systems, Int. J. Control 47 (1988) 537–556.

[13] E.D. Sontag, Mathematical Control Theory: Deterministic
Finite Dimensional Systems, 2nd ed., Springer, New York,
1998.

[14] E.D. Sontag, Neural networks for control, in: H.L. Tren-
telman, J.C. Willems (Eds.), Essays on Control: Perspectives
in the Theory and its Applications, Birkhauser, Boston, 1993,
pp. 339–380.

[15] E.D. Sontag, Recurrent neural networks: Some systems-
theoretic aspects, in: M. Karny, K. Warwick, V. Kurkova
(Eds.), Dealing with Complexity: a Neural Network
Approach, Springer, London, 1997, pp. 1–12.

[16] E.D. Sontag, H.J. Sussmann, Complete controllability of
continuous-time recurrent neural networks, Systems and
Control Lett. 30 (1997) 177–183.

[17] H.J. Sussmann, Local controllability and motion planning
for some classes of systems with drift, in: Proc. 30th Conf.
Decision and Control, Brighton, UK, IEEE Publications,
New York, 1991, pp. 1110–1114.

[18] R. Zbikowski, Lie algebra of recurrent neural networks
and identi�ability, in: Proc. Amer. Automat. Control Conf.,
San Francisco, 1993, pp. 2900–2901.


