
File: 571J 147901 . By:CV . Date:17:02:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 6655 Signs: 4480 . Length: 60 pic 11 pts, 257 mm

Journal of Computer and System Sciences � SS1479

journal of computer and system sciences 54, 190�198 (1997)

Neural Networks with Quadratic VC Dimension

Pascal Koiran*

LIP, ENS Lyon�CNRS, 46 alle� e d 'Italie, 69364 Lyon Cedex 07, France

and

Eduardo D. Sontag-

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Received July 24, 1995; revised February 27, 1996

This paper shows that neural networkswhich use continuousactivation
functions have VC dimension at least as large as the square of the number
of weights w. This results settles a long-standing open question,
namely whether the well-known O(w log w) bound, known for hard-
threshold nets, also held for more general sigmoidal nets. Implications
for the number of samples needed for valid generalization are discussed.
] 1997 Academic Press

1. INTRODUCTION

One of the main applications of artificial neural networks
is to pattern classification tasks. A set of labeled training
samples is provided, and a network must be obtained which
is then expected to correctly classify previously unseen
inputs. In this context, a central problem is to estimate the
amount of training data needed to guarantee satisfactory
learning performance. To study this question, it is necessary
to first formalize the notion of learning from examples.

One such formalization is based on the paradigm of
probably approximately correct (PAC) learning, due to
Valiant [16]. In this framework, one starts by fitting some
function f, chosen from a predetermined class F, to the
given training data. The class F is often called the
``hypothesis class,'' and for purposes of this discussion it will
be assumed that the functions in F take binary values
[0, 1] and are defined on a common domain X. (In neural
networks applications, typically F corresponds to the set of
all neural networks with a given architecture and choice of
activation functions. The elements of X are the inputs,
possibly multidimensional.) The training data consists of
labeled samples (xi , =i), with each xi # X and each
=i # [0, 1], and ``fitting'' by an f means that f (xi)==i for
each i. Given a new example x, one uses f (x) as a guess of

the ``correct'' classification of x. Assuming that both training
inputs and future inputs are picked according to the same
probability distribution on X, one needs that the space of
possible inputs be well-sampled by the training data, so that
f is an accurate fit. We omit the details of the formalization
of PAC learning, since there are excellent references
available, both in textbook (e.g., [2, 12]) and survey paper
(e.g., [11]) form, and the concept is by now very well
known.

After the work of Vapnik in statistics [17] and of Blumer
et al. in computational learning theory [5], one knows
that a certain combinatorial quantity, called the Vapnik�
Chervonenkis (VC) dimension VC(F) of the class F of
interest completely characterizes the sample sizes needed for
learnability in the PAC sense. (The appropriate definitions
are reviewed below. In Valiant's formulation one is also
interested in quantifying the computational effort required
to actually fit a function to the given training data, but we
are ignoring that aspect in the current paper.) Very roughly
speaking, the number of samples needed in order to learn
reliably is proportional to VC(F). Estimating VC(F) then
becomes a central concern. Thus from now on, we speak
exclusively of VC dimension, instead of the original PAC
learning problem.

The work of Cover [6] and Baum and Haussler [3] dealt
with the computation of VC(F) when the class F consists
of networks built up from hard-threshold activations and
having w weights; they showed that VC(F)=O(w log w).
(Conversely, Maass showed in [10] that there is also a
lower bound of this form.) It would appear that this
definitely settled the VC dimension (and hence also the
sample size) question.

However, the above estimate assumes an architecture
based on hard-threshold (``Heaviside'') neurons. In contrast,
the usually employed gradient descent learning algorithms
(``backpropagation'' method) rely upon continuous activa-
tions, that is, neurons with graded responses. As pointed out
in [14], the use of analog activations, which allow the

article no. SS971479

1900022-0000�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* E-mail: koiran�lip.ens-lyon.fr.
- This research was supported in part by US Air Force Grant AFOSR-

94-0293. E-mail: sontag�hilbert.rutgers.edu.

File: 571J 147902 . By:CV . Date:17:02:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 6663 Signs: 5898 . Length: 56 pic 0 pts, 236 mm

passing of rich (not just binary) information among levels,
may result in higher memory capacity as compared with
threshold nets. This has serious potential implications in
learning, essentially because more memory capacity means
that a given function f may be able to ``memorize'' in a
``rote'' fashion too much data, and less generalization is
therefore possible. Indeed, the paper [15] showed that there
are conceivable (though not very practical) neural architec-
tures with extremely high VC dimensions. Thus the problem
of studying VC(F) for analog networks is an interesting
and relevant issue. Two important contributions in this
direction were the papers by Maass [10] and by Goldberg
and Jerrum [7], which showed upper bounds on the VC
dimension of networks that use piecewise polynomial
activations. The last reference, in particular, established for
that case an upper bound of O(w2), where, as before, w is the
number of weights. However it was an open problem
(specifically, ``open problem number 7'' in the recent survey
[11]) if there is a matching w2 lower bound for such
networks, and more generally for arbitrary continuous-
activation nets. It could have been the case that the upper
bound O(w2) is merely an artifact of the method of proof in
[7] and that reliable learning with continuous-activation
networks is still possible with far smaller sample sizes,
proportional to O(w log w). But this is not the case, and in
this paper we answer Maass' open question in the affirmative.

Assume given an activation _ which has different limits at
\� and is such that there is at least one point where it
has a derivative and the derivative is nonzero (this last
condition rules out the Heaviside activation). Then there
are architectures with arbitrary large numbers of weights w
and VC dimension proportional to w2. The proof relies on
first showing that networks consisting of two types of
activations, Heavisides and linear, already have this power.
This is somewhat surprising result, since purely linear
networks result in VC dimension proportional to w, and
purely threshold nets have, as per the results quoted above,
VC dimension bounded by w log w. Our construction was
originally motivated by a related one, given in [7], which
showed that real-number programs (in the Blum�Shub�
Smale model of computation) [4] with running time T have
VC dimension 0(T2). The desired result on continuous
activations is then obtained, approximating Heaviside gates
by _-nets with large weights and approximating linear gates
by _-nets with small weights. This result applies in particular
to the standard sigmoid 1�(1+e&x). (However, in contrast
with the piecewise-polynomial case, there is still in that
case a large gap between our 0(w2) lower bound and the
O(w4) upper bound which was recently established in [8].)
A number of variations, dealing with Boolean inputs, or
weakening the assumptions on _, are also discussed. The
last section includes some brief remarks regarding an inter-
pretation of our results in terms of threshold-only networks
with ``shared'' weights.

Basic Terminology and Definitions
It is possible to formulate a general definition of ``network

architecture'' that allows for very arbitrary nets; see [11].
However, in order to streamline the presentation we will
only provide a simpler definition which is sufficient for
dealing with first-order (additive-synapse) nets. (At one
point we do need to deal technically with product units, but
we treat that case in and ad-hoc manner.)

Formally, a (first-order, feedforward) architecture or
network A is a connected directed acyclic graph together
with an assignment of a function to a subset of its nodes.
The nodes are of two types: those of fan-in zero are called
input nodes and the remaining ones are called computation
nodes or gates. An output node is a node of fan-out zero. To
each gate g there is associated a function _g : R � R, called
the activation or gate function associated to g.

The number of weights or parameters associated to a gate
g is the integer ng equal to the fan-in of g plus one. (This
definition is motivated by the fact that each input to the gate
will be multiplied by a weight, and the results are added
together with a ``bias'' constant term, seen as one more
weight; see below.) The (total) number of weights (or
parameters) of A is by definition the sum of the numbers ng ,
over all gates g of A. The number of inputs m of A is the
total number of input nodes (one also says that ``A has
inputs in Rm ''); it is assumed that m>0. The number of
outputs p of A is the number of output nodes (unless
otherwise mentioned, we assume by default that all nets
considered have one-dimensional outputs, that is, p=1).

Two examples of gate functions that are of particular
interest are the identity or linear gate: Id(x)=x for all x,
and the threshold or Heaviside function: H(x)=1 if x�0,
H(x)=0 if x<0.

If G is some set of functions R � R so that, for each gate
g of A, the function _g # G, then we say that G is a set of
gates for A. We use informal terminology as well; for
instance if we say that A consists (or is made of) of linear
and threshold gates, we mean that G=[H, Id] is a set of
gates for A.

Let A be an architecture. Assume that nodes of A have
been linearly ordered as ?1 , ..., ?m , g1 , ..., gl , where the ?j 's
are the input nodes and the gj 's the gates. For simplicity,
write ni : =ngi , for each i=1, ..., l. Note that the total
number of parameters is n=�l

i=1 ni and the fan-in of each
gi is ni&1. To each architecture A (strictly speaking, an
architecture together with such an ordering of nodes) we
associate a function

F : Rm_Rn � R p,

where p is the number of outputs of A, defined by first
assigning an ``output'' to each node, recursively on the
distance from the input nodes. Assume given an input
x # Rm and a vector of weights w # Rn. We partition w into

191NEURAL NETWORKS

File: 571J 147903 . By:CV . Date:17:02:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 6359 Signs: 4855 . Length: 56 pic 0 pts, 236 mm

blocks (w1 , ..., wl) of sizes n1 , ..., nl , respectively. First the
coordinates of x are assigned as the outputs of the input
nodes ?1 , ..., ?m , respectively. For each of the other gates gi ,
we proceed as follows. Assume that outputs y1 , ..., yni&1

have already been assigned to the predecessor nodes of gi

(these are input and�or computation nodes, listed consistently
with the order fixed in advance). Then the output of gi is by
definition

_g i (wi, 0+wi, 1y1+wi, 2 y2+ } } } +wi, n i&1yni&1),

where we are writing wi=(wi, 0 , wi, 1 , wi, 2 , ..., wi, n i&1). The
value of F(x, w) is then by definition the vector (scalar if
p=1) obtained by listing the outputs of the output nodes
(in the agreed-upon fixed ordering of nodes). We call F the
function computed by the architecture A. For each choice of
weights w # Rn, there is a function Fw : Rm � R p defined by
Fw(x) :=F(x, w); by abuse of terminology we sometimes
call this also the function computed by A (if the weight
vector has been fixed).

Assume that A is an architecture with inputs in Rm and
scalar outputs, and that the (unique) output gate has range
[0, 1]. A subset A�Rm is said to be shattered by A if for
each Boolean function ; : A � [0, 1] there is some weight
w # Rn so that Fw(x)=;(x) for all x # A. The Vapnik�
Chervonenkis (VC) dimension of A is the maximal size of
subset A�Rm that is shattered by A. If the output gate can
take nonbinary values, we implicitly assume that the result
of the computation is obtained by comparing the output to
a fixed threshold %. That is, when we say that a subset
A�Rm is shattered by A, we really mean that there exists
% # R such that A is shattered by the architecture H(A&%)
in which the output of A is decreased by an amount of %,
and then fed to a sign gate. Hence we actually construct
architectures with quadratic pseudo-dimension (and in fact
with quadratic ``V-dimension'' since the same threshold is
used for all points in the shattered set; see [1] for definitions
of these and other generalizations of the VC dimension).

The above formalism is too cumbersome for all proofs, so
we often use obvious shortcuts. For instance, if we say
``A is the net w0+w1 H(2x&1)'' we really mean that this
expression represents the scalar function computed by the
obvious net with one input (the variable x) and two gates
(one Heaviside, one linear); note that the number of weights
is 4 (the weights are 2, &1, w0 , w1).

Another convention, consistent with standard computer
science usage, is that we may use a phrase like ``for each
n�1 there is an architecture A with O(- n) weights and
gates in G'' to assert the existence of a sequence of architec-
tures An so that G is a set of gates for each An and so that
the number of weights of An is O(- n) as n � �. In this
context, when we say that A shatters a set of size %(n) we
really mean that there is a sequence of sets An so that An

shatters An and the cardinality of each An is %(n).

2. NETWORKS MADE UP OF LINEAR
AND THRESHOLD GATES

Proposition 1. For every n�1, there is a network
architecture A with inputs in R2 and O(- N) weights that can
shatter a set of size N=n2. This architecture is made only of
linear and threshold gates.

Proof. Our architecture has n parameters W1 , ..., Wn ;
each of them is an element of T=[0.w1 } } } wn ; wi # [0, 1]].
The shattered set will be S=[n]2=[1, ..., n]2.

For a given choice of W=(W1 , ..., Wn), A will compute
the Boolean function fW : S � [0, 1] defined as follows:
fW (x, y) is equal to the x th bit of Wy . Clearly, for any
Boolean function f on S, there exists a (unique) W such that
f =fW .

We first consider the obvious architecture which computes
the function:

f 1
W (y)=W1+ :

n

z=2

(Wz&Wz&1) H(y&z+1�2) (1)

sending each point y # [n] to Wy . This architecture has
n&1 threshold gates, 3(n&1)+1 weights, and just one linear
gate.

Next we define a second multi-output net which maps
w # T to its binary representation f 2(w)=(w1 , ..., wn).
Assume by induction that we have a net N2

i that maps w to
(w1 , ..., wi , 0 .wi+1 } } } wn). Since wi+1=H(0.wi+1 } } } wn& 1

2)
and 0 .wi+2 } } } wn=2_0.wi+1 } } } wn&wi+1, N2

i+1 can be
obtained by adding one threshold gate and one linear gate
to N2

i (as well as four weights). It follows that N2
n has n

threshold gates, n linear gates and 4n weights.
Finally, we define a net N3 which takes as input x # [n]

and w=(w1 , ..., wn) # [0, 1]n, and outputs wx . We would
like this network to be as follows:

f 3(x, w)=w1+ :
n

z=2

wzH(x&z+ 1
2)

& :
n

z=2

wz&1 H(x&z+ 1
2).

This is not quite possible, because the products between the
wi 's (which are inputs in this context) and the Heavisides
are not allowed. However, since we are dealing with binary
variables one can write uv=H(u+v&1.5). Thus N3 has
one linear gate, 4(n&1) threshold gates and 12(n&1)+n
weights. Note that fW (x, y)=f 3(x, f 2(f 1

W (y)). This can be
realized by means of a net that has n+2 linear gates,
(n&1) + n + 4(n & 1) = 6n & 5 threshold gates, and
(3n&2)+4n+(12n&11)=19n&13 weights. K

192 KOIRAN AND SONTAG

File: 571J 147904 . By:CV . Date:17:02:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 6060 Signs: 4652 . Length: 56 pic 0 pts, 236 mm

The following is the main result of this section:

Theorem 1. For every n�1, there is a network architec-
ture A with inputs in R and O(- N) weights that can shatter
a set of size N=n2. This architecture is made only of linear
and threshold gates.

Proof. The shattered set will be S=[0, 1, ..., n2&1].
For every x # S, there are unique integers x, y # [0, 1, ...,
n&1] such that u=nx+ y. The idea of the construction is
to compute x and y, and then feed (x+1, y+1) to the
network constructed in Proposition 1. Note that x is the
unique integer such that u&nx # [0, 1, ..., n&1]. It can
therefore by computed by brute force search as

x= :
n&1

k=0

kH[H(u&nk)+H(n&1&(u&nk))&1.5].

This network has 3n threshold gates, one linear gate and 8n
weights. Then of course y=u&nx. K

A Boolean version is as follows.

Theorem 2. For every d�1, there is a network architec-
ture A with O(- N) weights that can shatter the N=22d

points of [0, 1]2d. This architecture is made only of linear and
threshold gates.

Proof. Given u # [0, 1]2d, one can compute x=1+
�d

i=1 2i&1ui and y=1+�d
i=1 2 i&1ui+d with two linear

gates. Then (x, y) can be fed to the network of Proposition 1
(with n=2d). K

In other words, there is a network architecture with 2d

weights that can compute all Boolean functions on 2d
variables.

2.1. Constant Number of Linear Gates

We do not know whether similar constructions using
only a constant number of linear gates are possible.
However, by making a distinction between ``fixed weights''
and ``programmable weights'' one can prove a result in that
direction. Given a sequence of architectures Aj , with
numbers of weights n(j), respectively, assume that some
partition of the indices i=1, ..., n(j) into two subsets S (j)

f and
S (j)

p has been given. The cardinality of the first set is then
called the number of fixed weights and the cardinality of S (j)

p

is the number of programmable weights of the sequence of
architectures. For each j we then have a function F (j)(x, v)
obtained by fixing the coordinates in S (j)

f to some values
while allowing the remaining coordinates (collected into the
vector v) to be variable. Shattering and VC dimension are
then defined in terms of these restricted functions.

Theorem 3. For every n�1, there is a network architec-
ture A with inputs in R2, O(- N) programmable weights and
O(N) fixed weights that can shatter a set of size N=n2. This

architecture is made only of O(- N) threshold gates and of a
constant number of linear gates.

Proof. Note that N2
n is the only part of the network

constructed in Proposition 1 that uses a nonconstant
number of linear gates. These gates carry intermediate
results of the form 0.wi+1 } } } wn . However, this number can
be computed ``from scratch'' using the input w # T and the
previously computed bits w1 , ..., wi . More precisely the
next bit can be computed as follows: wi+1=H[2i (w&
�i

j=1 2& jwj)&1�2]. The number of weights in this new
construction is �n

i=1 (i+2)=O(n2), and none of them is
programmable. This replacement for N2 has n threshold
gates. So the total number of gates needed in this alternative
construction is 6n&5 threshold gates and two linear gates.

K

3. ARBITRARY SIGMOIDS

We now extend the preceding VC dimension bounds to
networks that use just one activation function _ (instead of
both linear and threshold gates). All that is required is that
the gate function have a sigmoidal shape and satisfy a very
weak smoothness property:

1. _ is differentiable at some point x0 (i.e., _(x0+h)=
(x0)+$(x0)h+o(h)), where _$(x0){0.

2. limx � &� _(x)=0 and limx � +� _(x)=1 (the limits
0 and 1 can be replaced by any distinct numbers).

A function satisfying these two conditions will be called
sigmoidal. Given any such _, we will show that networks
using only _ gates provide quadratic VC dimension.

Theorem 4. Let _ be an arbitrary sigmoidal function.
There exist architectures A1 and A2 with O(- N) weights
made only of _ gates such that:

v A1 can shatter a subset of R of cardinality N=n2;

v A2 can shatter the N=22d points of [0, 1]2d.

This follows directly from Theorems 1 and 2, together
with the following simulation result:

Theorem 5. Let _ be a an arbitrary sigmoidal function.
Let N be a network of T threshold and L linear gates, with
a threshold gate at the output. Then N can be simulated on
any given finite set of inputs by a network N$ of T+L gates
that all use the activation function _ (except the output gate
which is still a threshold). Moreover, if N has n weights then
N$ has O(n) weights.

Proof. Let S be a finite set of inputs. We can assume, by
changing the thresholds of threshold gates if necessary, that
the net input Ig(x) to any threshold gate g of N is different
from 0 for all inputs x # S.

193NEURAL NETWORKS

File: 571J 147905 . By:CV . Date:17:02:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 6517 Signs: 5121 . Length: 56 pic 0 pts, 236 mm

Given =>0, let N= be the net obtained by replacing the
output functions of all gates by the new output function
x [_(x�=) if this output function is the sign function, and
by x [_=(x)=[_(x0+=x)&_(x0)]�[=_$(x0)] if it is the
identity function. Note that for any a>0, lim= � 0+
_(x�=)=H(x) uniformly for x #]&�, &a] _ [a, +�]
and lim= � 0 _=(x)=x uniformly for x # [&1�a, 1�a].

This implies by induction on the depth of g that for any
gate g of N and any input x # S, the net input I g, =(x) to g
in the transformed net N= satisfies lim = � 0 I g, =(x)=Ig(x)
(here, we use the fact that the output function of every g is
continuous at Ig(x)). In particular, by taking g to be the
output gate of N, we see that N and N= compute the same
function on S if = is small enough. Such a net N= can be
transformed into an equivalent net N$ that uses only _ as
gate function by a simple transformation of its weights and
thresholds. The number of weights remains the same, except
at most for a constant term that must be added to each net
input to a gate; thus if N has n weights, N$ has at most 2n
weights. K

4. MORE GENERAL GATE FUNCTIONS

The objective of this section is to establish results similar
to Theorem 4, but for even more arbitrary gate functions, in
particular weakening the assumption that limits exist at
infinity. The main result is, roughly, that any _ which is
piecewise twice (continuously) differentiable gives at least
quadratic VC dimension, save for certain exceptional cases
involving functions that are almost everywhere linear.

In deriving the results of this section, we find it useful to
allow networks with multiplication and division gates,
which strictly speaking are not networks in the way that we
have defined the concept. By this we will mean that the
definition of architecture is extended so that the symbols
`` V '' and ``� '' are also allowed as labels for gates. The gates
labeled ``� '' have fan-in two and number of weights also
two (even though there is no natural numerical parameter
associated to the gate; we need to assign weights to multi-
plication and division gates to account for the numerical
parameters that will occur when simulating these gates by
_-gates); the output of such a gate is defined as the quotient
of its two inputs, assuming that the second input is nonzero.
The multiplication gates may have arbitrary fan-in, and
``number of weights'' equal to this fan-in; their output is
defined as the product of the inputs. An input to a circuit is
said to be valid if it does not cause a division by zero at any
division gate. We will only work with sets of valid inputs (so
the domain of the function computed by such a generalized
network is a subset of Rm and shattering is only defined for
subsets of this domain).

We may work indifferently with multiplication gates of
fan-in 2 or of unbounded fan-in. The number of weights is

unchanged up to a constant factor since a k-ary multiplica-
tion x1 } } } xk can be replaced for k>2 by a depth-(k&1)
circuit x1(x2(x3(} } } xn)) } } }) of binary gates with 2k&2
weights.

Theorem 6. For every n�1, there is a network architec-
ture with inputs in R2 and O(- N) weights that can shatter a
set of size N=n2. This architecture is made only of linear,
multiplication, and division gates.

The construction is based on that of Proposition 1. In
particular, the shattered is still S=[n]2. We first show how
to interpolate approximately.

Lemma 1. For every n�1, there is an architecture A$1
with inputs (x, W1 , ..., Wn) in Rn+1 and O(n) weights such
that the following property holds: for every =>0 there exists
a choice of the weights of A$1 such that the function f=$

1

implemented by the network satisfies lim= � 0 f=$
1(i, W1 , ...,

Wn)=Wi for i=1, ..., n.

Proof. Let us consider the function

f=$
1(x, W1 , ..., Wn)= `

n

i=1

(x&=&i) . :
n

i=1

ai Wi

x&=&i
,

where ai=1�> j{i (i& j) and ={0. It can be implemented
by an architecture made of one multiplication gate with
n+1 inputs, one linear gate with n inputs, n division gates,
and n linear gates with one input each (they compute the
terms x&=&i). The total number of weights is thus
(n+1)+n+2n+2n=6n+1. Whenever f=$

1 is defined,

f=$
1(x, W1 , ..., Wn)= :

n

i=1

Wi .
>j{i (x&=& j)

>j{i (i& j)
.

Hence lim= � 0 f=$
1(i, W1 , ..., Wn)=Wi . K

Lemma 2. There exists an architecture of linear and
multiplication gates with inputs in R, n output units and O(n)
weights such that the following property holds: for every
= # [0, 1]n, there exists an input w # [0, 1] such that the
output of the network f $2(w)=(f $2(w)1 , ..., f $2(w)n) of the
network satisfies f $2(w) i # [0, 1

2 [if =i=0, and f $2(w) i #
]1

2 , 1] if =i=1.

Proof. The construction is based on a simple idea from
symbolic dynamics. Consider the logistic map , : [0, 1] �
[0, 1] such that ,(x)=4x(1&x). We claim that for every
= # [0, 1]n, there exists w # [0, 1] such that ,i&1(w) # [0, 1

2 [
if =i=0, and ,i&1(w) #] 1

2 , 1[if =i=1. The result follows
from this claim, using the iterates ,i&1, i=1, ..., n as the
coordinates of f $2, since the logistic map can be implemented
by a subnetwork of linear and multiplication gates.

The proof of the claim is as follows. First, note that each
element of [0, 1] has two distinct preimages by ,, except 1;

194 KOIRAN AND SONTAG

File: 571J 147906 . By:CV . Date:17:02:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 6395 Signs: 4793 . Length: 56 pic 0 pts, 236 mm

and that ,(1
2)=1, ,(1)=0, and ,(0)=0. If =n=0, choose an

element wn in]0, 1
2 [; otherwise, choose wn in] 1

2 , 1[. We
construct a sequence w1 , ..., wn&1 by ``going backward in
time'' as follows: wi is defined to be the preimage of wi+1

which is in]0, 1
2 [if =i=0, and the preimage which is in

[1
2 , 1[otherwise. By construction, one can take w=w1 . K

The networks constructed in the two previous lemmas
will now be used as building blocks in the proof of
Theorem 6.

Proof of Theorem 6. Let f be an arbitrary Boolean func-
tion on [n]2. Let W=(W1 , ..., Wn) be a sequence of inputs
to the circuit f $2 of Lemma 2 such that H(f $2(Wj) i&

1
2)=

f (i, j) for i, j # [n].
Consider the map N= : (x, y) [f=$

1(x, f $2(f=$
1(y, W))1 , ...,

f $2(f=$
1(y, W))n). It can be implemented by a network of

O(n) weights where the output of f=$
1 is fed to f $2 and the n

outputs of f $2 are then fed (together with x) to f=$
1 . By

Lemma 1, lim = � 0 f=$
1(j, W)=Wj . By continuity of f $2,

when = is small enough f $2(f=$
1(j, W)) i<

1
2 if f (i, j)=0 and

f $2(f=$
1(j, W)) i>

1
2 if f (i, j)=1. Hence it follows from

Lemma 1 that when = is small enough, N=(i, j)< 1
2 if

f (i, j)=0 and N=(i, j)> 1
2 if f (i, j)=1. The Boolean

function f can thus be computed by comparing the output
of N= to 1

2 . K

We now explain how to get rid of division gates.

Theorem 7. Let N be a network made of linear, multi-
plication, and division gates, with one threshold gate at the
output and w weights. Then N can be simulated on its set of
valid inputs by a network N$ of linear and multiplication
gates with one threshold gate at the output and w$=O(w)
weights.

Proof. Let us assume without loss of generality that all
linear and multiplication gates of N are binary and that the
output gate is unary. Each nonoutput gate g of N will be
replaced in N$ by two gates g1 and g2 such that on any valid
input of N, the values assumed by these three gates satisfy
g(x)= g1(x)�g2(x). Each input to the new gates g1 and g2 is
now a pair (x1 , x2), representing the corresponding input
x1 �x2 to the original gate g. The outputs of g1 and g2 are
passed as a pair to the next gates in the graph. The rules for
forming g1 and g2 from each g follow these three simple
rules:

1. a .x1 �x2 + b .y1 �y2 + c = (ax1y2 + bx2y1 + cx2 y2) �
(x2y2) (simulation of linear gates):

2. (x1 �x2) . (y1�y2) = (x1y1) � (x2y2) (simulation of
multiplication gates);

3. (x1 �x2) � (y1 �y2) = (x1y2) � (x2y1) (simulation of
division gates).

Finally, a linear gate and a multiplication gate are added
before taking the sign at the output since

H(x1 �x2&%)=H(x2(x1&%x2))

whenever x2 {0. K

Corollary 1. For every n�1, there is a network
architecture with inputs in R2 and O(- N) weights that can
shatter a set of size N=n2. This architecture is made only of
linear and multiplication gates.

Proof. Follows immediately from Theorems 6 and 7. K

A function _ : R � R is said to be piecewise C2 if there
is a finite sequence a1<a2< } } } <ap such that on each
interval I of the form]&�, a1[,]ai , ai+1[or]ap , +�[,
_ |I is C 2.

(Note Our results hold even if it is only assumed that the
second derivative exists in each of the above intervals; we do
not use the continuity of these second derivatives.)

Theorem 8. Let _ be a piecewise C2 function. For every
n�1, there exists an architecture made of _-gates, and with
O(n) weights, that can shatter a subset of R2 of cardinality n2,
except perhaps in the following cases:

1. _ is piecewise-constant, and in this case the VC dimen-
sion of any architecture of n weights is O(n log n);

2. _ is affine, and in this case the VC dimension of any
architecture of n weights is at most n.

3. there are constants a{0 and b such that _(x)=ax+b
except at a finite nonempty set of points. In this case, the VC
dimension of any architecture of n weights is O(n2), and there
are architectures of VC dimension 0(n log n).

Note that the upper bound of the first special case is tight
for threshold nets and that of the second special case is tight
for linear function in Rn.

The proof of Theorem 8 is broken down into several
steps. The following result deals with the most interesting
case.

Lemma 3. Assume that _ is piecewise C2 and that there
exists a point x1 � [a1 , ..., ap], where _"(x1){0. For every
n�1, there exists an architecture of _-gates with O(n)
weights that can shatter a subset of R2 of cardinality n2.

Proof. The proof technique is similar to that of
Theorem 5. We will show that an architecture consisting of
linear and multiplication gates can be simulated on any
finite set by an architecture of _-gates with the same number
of weights, up to a constant factor.

Let I be an open interval containing x1 where _ is twice
differentiable. There exists x0 # I such that _$(x0){0:
indeed, if _$(x)=0 for every x # I, _"(x1) would be equal to
zero. Thus linear gates can be simulated using _ in a
neighborhood of x0 , just as in the proof of Theorem 5.

195NEURAL NETWORKS

File: 571J 147907 . By:CV . Date:17:02:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 6096 Signs: 4713 . Length: 56 pic 0 pts, 236 mm

Product gates can first be replaced by s-gates, where
s(x)=x2 is the square function, since xy=[(x+ y)2&
x2& y2]�2. An s-gate can be simulated by two _-gates and
a linear gate since for any A>0,

lim
= � 0

(x1+=x)+(x1&=x)&2_(x1)
_"(x1) =2 =x2,

for all x # [&A, A] (in fact, uniformly on such intervals).
Any such linear gate can be simulated by a _-gate, as
explained earlier. K

If _ is piecewise C2 but does not satisfy the hypotheses of
Lemma 3, it is a piecewise-linear function. We conclude with
a case-by-case analysis based on the slopes of its linear
pieces. The first special case in Theorem 8 follows from the
next trivial lemma and from the results of [3] for threshold
nets.

Lemma 4. Let _ be a piecewise-constant function. An
architecture of _-gates with n weights can be simulated by an
architecture of threshold gates with O(n) weights.

Proof. Assume that _(x)=v0 for x<a1 and _(x)=vi for
x #]ai , ai+1[(with the convention ap+1=+�). A _-gate
can be replaced by a subnetwork made of a constant
number of threshold gates by the relation:

_(x)=v0+ :
p

i=1

(vi&vi&1) H(x&ai)+ :
p

i=1

(_(ai)&vi)

_(H(x&ai)+H(&x+ai)&2).

Note that the role of the second sum is to compute the
correct value of _ at the breakpoints a1 , ..., ap . K

If _ is not piecewise-constant, there is a nontrivial (i.e., not
reduced to one of the ai 's) piece where _(x)=ax+b with
a{0. If this relation holds in fact over R, _ is affine and we
are in the second case of Theorem 8. In this case, the
input�output mapping of the network is affine, so that the
VC dimension is bounded by the number of weights (this
observation goes back at least to 1965; see [6]).

If the relation _(x)=ax+b (a{0) holds everywhere
except at a nonempty finite number of points, we are in
special case 3. The VC dimension of any architecture of n
weights is O(n2) by [7] (that paper actually deals with
arbitrary piecewise-polynomial gate functions). The lower
bound is established in Lemmas 6 and 7.

The only remaining case is that in which there exist at
least two nontrivial pieces, and in at least one _ is not
constant. This leads again to quadratic VC dimension, as
shown in the next lemma.

Lemma 5. Let _ be a piecewise-linear function such that
_(x)=:x+; on a nontrivial interval I and _(x)=:$x+;$ on
another nontrivial interval J, with (:, ;){(:$, ;$) and

(:, :$){(0, 0). For every n�1, there exists an architecture of
_-gates with O(n) weights that can shatter a subset of R2 of
cardinality n2.

Proof. As in Lemma 3, the proof technique is similar to
that of Theorem 5. We will show that an architecture
consisting of linear and multiplication gates can be
simulated on any finite set by an architecture of _-gates with
the same number of weights, up to a constant factor.

Assume for instance that :{0. Linear gates can be
simulated using _ on I, just as in the proof of Theorem 5.
The two intervals I and J can be taken adjacent; i.e., I can
be assumed to be of the form I=]a, b[and J of the form
J=]b, c[. In order to simulate threshold gates, two cases
can be distinguished.

Assume first that _ has two distinct limits at b, i.e.,
(b&){(b+). In this case, for any A>0, H(x)=
lim= � 0+[_(b+=x)&_(b&)]�[_(b+)&_(b&)] for all
x # [&A, A]"[0] (in fact, uniformly on this set). Thus we
can simulate threshold gates as well.

Assume now that, instead, _(&)=_(b+). This implies
that :{:$ since (:, ;){(:$, ;$). In this case, for any A>0
and any $>0,

H(x)= lim
= � 0+

(b+=x)&(b+=x&=2)&:=2

(:$&:) =2

(uniformly) for x # [&A, A]"(0, $). Thus we can also
simulate threshold gates in this case. K

In order to deal with the last exceptional case in
Theorem 8, we find it useful to introduce another auxiliary
computation model, based on circuits of linear and equality
gates. An equality gate has fan-in one and outputs E(x)=1
when its input x is equal to 0; it outputs E(x)=0 otherwise.

Lemma 6. For every n�1, there is a network architec-
ture A with inputs in R2 and O(n) weights that can shatter a
set of size N=nwlog2 nx. This architecture is made only of
linear and equality gates.

Proof. The construction is similar to that of Propo-
sition 1, and the reader is advised to start with that result.
The shattered set is S=[1, ..., k]_[1, ..., n], where k=
wlog2 nx , instead of [1, ..., n]2. The output fW (x, y) of the
network is still required to be the x th bit of Wy . Hence we
work with parameters W1 , ..., Wn of the form 0.w1 } } } wk

(wi # [0, 1]). The general structure of the network remains
the same. In particular, the maps f 1

W and f 3 can be com-
puted with the following obvious modifications: f 1

W (y)=
�n

z=1 WzE(y&z) and f 3(x, w)=�k
z=1 wzE(x&z)

(products can be rewritten as follows: uv=E(u+v&2)).
The extraction of the bits w1 , ..., wk is more interesting.

Assume again by induction that we have a net N2
i that

196 KOIRAN AND SONTAG

File: 571J 147908 . By:CV . Date:17:02:97 . Time:10:09 LOP8M. V8.0. Page 01:01
Codes: 7227 Signs: 4935 . Length: 56 pic 0 pts, 236 mm

maps w to (w1 , ..., wi , 0 .wi+1 } } } wk). The next bit can be
computed by exhaustive search as

wi+1= :
1

zi+2, ..., zk=0

E(0 .wi+1 } } } wk&0.1zi+2 } } } zk).

Then, of course, 0 .wi+2 } } } wn=2_0.wi+1 } } } wn&wi+1.
The number of equality gates in N2

k is �k&1
i=0 2i=

2k&1<n. Hence the number of weights in the whole
network is O(n). K

The following lemma completes the proof of Theorem 8
(note that we only need the direct implication).

Lemma 7. Let _ be a real function of the form _(x)=
:x+; (with :{0) except at a finite number of points. A net-
work of linear and equality gates with n weights can be
simulated by a network of _-gates with O(n) gates.
Conversely, a network of _-gates with n weights can be
simulated by a network of linear and equality gates with O(n)
gates.

Proof. As usual, a linear gate can be simulated using _
on any of its linear pieces. Assume that _(x)=:x+;,
except for x # [a1 , ..., ap]. For any A>0,

E(x)= lim
= � 0

_(a1+=x)&[:(a1+=x)+;]
_(a1)&(:a1+;)

(uniformly) for x # [&A, A].
Conversely, a _-gate can be simulated with a constant

number of linear and equality gates by the identity

_(x)=:x+;+ :
p

i=1

[_(ai)&(:ai+;)] E(x&ai). K

5. SOME REMARKS ON THRESHOLD NETS WITH
``SHARED'' WEIGHTS

In Section 2, we showed that we can get VC dimension n2

when using a mixture of O(n) threshold and linear gates,
compared to the known upper bound of O(n log n) which
would hold if only threshold gates were allowed. The gain
involved in adding linear gates would seem to be counter-
intuitive, since it is obviously possible to rewrite a network
made up of linear and threshold gates as a network made
exclusively of threshold gates. The explanation of this
apparent paradox is that, when rewriting in this manner, the
number of weights becomes as high as O(n2). The resulting
weights are ``shared'' among gates. But such a sharing
arrangement is not allowed in our definitions, and indeed,
cannot be exploited when using standard Cover-like counting
arguments, as in [6, 3], which are dependent upon the fan-
in of gates.

As a simple illustration of this process, consider a way of
rewriting the network obtained in Proposition 1 as a
network which only employs threshold gates. We sketch
next how one eliminates linear gates in that case.

First of all, the function f 1
W in Eq. (1) does not need to be

itself computed as a linear function. Instead, the n&1 values
H(y&2+ 1

2), H(y&3+ 1
2), . . . are first computed by a layer

of threshold gates. Write H9 (y) for the (n&1)-dimensional
column vector that lists these values, and write C=
(W2&W1 , ..., Wn&Wn&1) and d=W1 . Thus, f 1

W (y)=
CH9 (y)+d, but we do not compute this value just yet. Then
the coordinates of the composition f 2(f 1

W (y)) can be
computed recursively, starting with H9 (y): the value for any
given y is the vector (w1 , ..., wn), where w1=H(CH9 (y)+d),
w2=H(CH9 (y)&w1 �2+(2d& 1

2)�2), and so forth. Finally,
we can replace f 3 by its thresholded value. This construction
does not involve any linear gates. Each entry of C occurs in
the gates computing w1 , ..., wn , but these n instances can be
considered as a single instance of a ``shared weight.''

We conclude that it is possible to shatter the same set as
in Proposition 1 by means of an architecture of threshold
gates with O(n2) ``nonprogrammable'' (i.e., constant)
weights and only O(n) ``programmable'' shared weights (the
entries of C and affine functions of d). Note that without
weight sharing, the VC dimension of a threshold network
with n programmable weights remains O(n log n) by the
counting argument of [3].

A more restrictive type of weight-sharing has been studied
in the neural network literature, and proved to be useful in
invariant recognition tasks [9]. A formal model is studied
in [13], and it is shown that the VC dimension remains
O(n log n). In this model one assumes that there is an equiv-
alence relation between weights; this is similar to our
weight-sharing mechanism. However, one also assumes that
there is an equivalence relation on nodes, and that this
relation is compatible (in a precise sense) with the equiv-
alence relation on weights. This makes the model more
restrictive, explaining the smaller VC dimension.

REFERENCES

1. N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler, Scale-
sensitive dimensions, uniform convergence, and learnability, in
``Proceedings, 34th IEEE Symp. on Foundations of Computer Science,
1993,'' pp. 292�301.

2. M. Anthony and N. L. Biggs, ``Computational Learning Theory: An
Introduction,'' Cambridge Univ. Press, Cambridge, 1992.

3. E. B. Baum and D. Haussler, What size net gives valid generalization?,
Neural Comput. 1 (1989), 151�160.

4. L. Blum, M. Shub, and S. Smale, On the theory of computation and
complexity over the real numbers: NP-completeness, recursive
functions and universal machines, Bull. Amer. Math. Soc. 21 (1989),
1�46.

5. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth,
Learnability and the Vapnik�Chervonenkis dimension, J. Assoc.
Comput. Mach. 36 (1989), 929�965.

197NEURAL NETWORKS

File: 571J 147909 . By:CV . Date:17:02:97 . Time:10:11 LOP8M. V8.0. Page 01:01
Codes: 4575 Signs: 1807 . Length: 56 pic 0 pts, 236 mm

6. T. M. Cover, Capacity problems for linear machines, in ``Pattern
Recognition'' (L. Kanal, Ed.), pp. 283�289, Thompson, Washington,
DC, 1988.

7. P. Goldberg and M. Jerrum, Bounding the Vapnik�Chervonenkis
dimension of concept classes parameterized by real numbers, Mach.
Learning 18 (1995), 131�148.

8. M. Karpinski and A. Macintyre, Polynomial bounds for VC dimension
of sigmoidal neural networks, in ``Proceedings, 27th ACM Symposium
on Theory of Computing, 1995,'' pp. 200�208.

9. K. Lang and G. E. Hinton, ``The Development of TDNN Architecture
for Speech Recognition,'' Technical Report CMU-CS-88-152,
Carnegie-Mellon University, 1988.

10. W. Maass, Bounds for the computational power and learning
complexity of analog neural nets, in ``Proceedings, 25th ACM
Symposium on Theory of Computing, 1993,'' pp. 335�344.

11. W. Maass, Perspectives of current research about the complexity

of learning in neural nets, in ``Theoretical Advances in Neural
Computation and Learning'' (V. P. Roychowdhury, K. Y. Siu, and
A. Orlitsky, Eds.), pp. 295�336, Kluwer, Boston, 1994.

12. B. K. Natarajan, ``Machine Learning: A Theoretical Approach,''
Morgan Kaufmann, San Mateo, CA, 1991.

13. J. Shawe-Taylor, Threshold network learning in the presence of equiv-
alences, in ``Advances in Neural Information Processing Systems,''
Vol. 4, pp. 879�886, Morgan Kaufmann, San Mateo, CA, 1992.

14. E. D. Sontag, Sigmoids distinguish better than Heavisides, Neural
Comput. 1 (1989), 470�472.

15. E. D. Sontag, Feedforward nets for interpolation and classification,
J. Comput. System Sci. 45 (1992), 20�48.

16. L. G. Valiant, A theory of the learnable, Commun. ACM 27 (1984),
1134�1142.

17. V. N. Vapnik, ``Estimation of Dependencies Based on Empirical Data,''
Springer-Verlag, Berlin, 1982.

198 KOIRAN AND SONTAG

